VA Black Hills Health Care System Upgrade Mental Health Lock Ward Fort Meade, South Dakota

VA Project # 568-20-102

Specifications - Volume 1 Division 0 - 14

Construction Documents – Back Check Set

August 5, 2022

VA Black Hills Health Care System
Upgrade Mental Health Lock Ward
Fort Meade, South Dakota

VA PROJECT #568-20-102

July 20, 2022

ARCHITECT OF RECORD

Stone Group Architects, Inc. 700 East 7th Street Sioux Falls, SD 57103 (605) 271-1144

STRUCTURAL ENGINEER

Albertson Engineering, Inc. 3202 W. Main St. | Suite C Rapid City, SD 57702 (314) 645-1132

MECHANICAL ENGINEER

West Plains Engineering, Inc. 1750 Rand Road Rapid City, SD 57702 (605) 348-7455

ELECTRICAL ENGINEER

West Plains Engineering, Inc. 1750 Rand Road Rapid City, SD 57702 (605) 348-7455

FIRE PROTECTION

West Plains Engineering, Inc. 1750 Rand Road Rapid City, SD 57702 (605) 348-7455

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
00 01 15	List of Diawing Sheets	03-20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	05-21
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	03-20
01 33 23	Shop Drawings, Product Data, and Samples	06-21
01 35 26	Safety Requirements	07-20
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 35	Special Inspections	06-21
01 57 19	Temporary Environmental Controls	01-21
01 58 16	Temporary Interior Signage	07-15
01 74 19	Construction Waste Management	01-21
01 81 13	Sustainable Construction Requirements	10-17
01 91 00	General Commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	08-17
02 82 13.13	Glovebag Asbestos Abatement	01-21
02 84 16	PCB's, Tubes, and Ballasts	11-21
	DIVISION 03 - CONCRETE	
03 51 16	Gypsum Concrete Roof Decks	01-21
03 31 10	Gypsum concrete noor beens	01 21
	DIVISION 04 - MASONRY	
04 01 00	Maintenance of Masonry	01-21
04 20 00	Unit Masonry	08-17
	DIVISION 05 - METALS	
05 12 00	Structural Steel Framing	11-18
05 31 00	Steel Decking	01-21
05 51 00	Metal Stairs	01-21
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 10 00	Rough Carpentry	10-17
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	

SECTION NO.	DIVISION AND SECTION TITLES	DATE
07 01 50.19	Preparation for Re-Roofing	01-21
07 21 13	Thermal Insulation	01-21
07 22 00	Roof and Deck Insulation	01-21
07 40 00	Roofing and Siding Panels	01-21
07 54 19	Polyvinyl-Chloride (PVC) Roofing	12-18
07 60 00	Flashing and Sheet Metal	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	10-17
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-21
08 14 00	Interior Wood Doors	01-21
08 31 13	Access Doors and Frames	01-21
08 41 13	Aluminum-Framed Entrances and Storefronts	01-21
08 51 13	Aluminum Windows	01-21
08 71 00	Door Hardware	01-21
08 80 00	Glazing	01-21
		1
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 30 13	Ceramic/Porcelain Tiling	01-21
09 65 13	Resilient Base and Accessories	01-21
09 65 16	Resilient Sheet Flooring	05-18
09 65 19	Resilient Tile Flooring	05-18
09 67 23.20	Resinous Epoxy Base with Vinyl Chip Broadcast (RES 2)	01-21
09 91 00	Painting	01-21
09 96 59	Resinous Specialty Glazed Coating Systems for Walls,	01-21
	Ceilings, Wallboard, and Block CMU (RES-W1, RES-W2)	
	DIVISION 10 - SPECIALTIES	
		İ
10 21 23	Cubicle Curtain Tracks	01-21
10 26 00	Wall and Door Protection	01-21
	DIVISION 11 - EQUIPMENT	
	DIVISION 12 - FURNISHINGS	
12 36 00	Countertops	12-18
12 30 00	Countercops	12-10
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 05 41	Seismic Restraint Requirements for Non-Structural	01-14
	Components	
	DIVISION 14- CONVEYING EQUIPEMENT	

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 21- FIRE SUPPRESSION	
21 08 00	Commissioning of Fire Suppression System	11-16
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 12	General Motor Requirements for Plumbing Equipment	09-20
22 05 19	Meters and Gages for Plumbing Piping	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	05-21
22 13 00	Facility Sanitary and Vent Piping	09-20
22 14 00	Facility Storm Drainage	09-15
22 40 00	Plumbing Fixtures	09-15
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	02-20
23 05 41	Noise and Vibration Control for HVAC Piping and	02-20
	Equipment	
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 25 00	HVAC Water Treatment	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 40 00	HVAC Air Cleaning Devices	03-20
23 73 00	Indoor Central-Station Air-Handling Units	03-20
23 74 13	Packaged, Outdoor, Central-Station Air-Handling Units	03-20
23 82 00	Convection Heating and Cooling Units	03-20
	DIVISION 25 - INTEGRATED AUTOMATION	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17

DATE
01-17
01-18
11-16
01-18
01-18
01-18
01-17
01-18
tions
01-16
s 06-15
06-15
10-11
10-11

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

<u>Drawing No.</u> <u>Title</u>		
	01 - GENERAL	
GI-000	COVER SHEET	
GI-001	ACCESSIBILITY DETAILS	
GI-002	ACCESSIBILITY DETAILS	
GI-003	1ST LEVEL LIFE SAFETY PLAN	
GI-004	2ND LEVEL LIFE SAFETY PLAN	
GI-005	PHASING PLAN - 1st Level	
GI-006	PHASING PLAN - 2 ND LEVEL	
	04 - STRUCTURAL	
S-001	STRUCTURAL GENERAL NOTES	
S-002	IBC INSPECTION TABLES	
S-003	WIND UPLIFT PLAN	
S-004	SNOW DRIFT PLAN	
S-101	EXISTING ROOF PLAN	
S-102	PENTHOUSE FRAMING PLAN	
S-501	DETAILS	
S-601	TYPICAL DETAILS	
	05 - ARCHITECTURAL DEMOLITION	
AD-101	1ST LEVEL DEMOLITION PLAN - FLOOR PLAN	
AD-102	1ST LEVEL DEMOLITION PLAN - CEILING	
AD-103	DEMOLITION PLAN - ROOF	
AD-201	DEMOLITION ELEVATIONS	
	06 - ARCHITECTURAL	
AE-101	1ST LEVEL FLOOR PLAN & SCHEDULES	
AE-102	2ND LEVEL FLOOR PLAN	
AE-110	1ST FLOOR REFLECTED CEILING PLAN	
AE-120	ROOF PLAN	
AE-201	ELEVATIONS	
AE-301	BUILDING SECTIONS	

3 D 200	WALL OROMIONO & DOMESTIC
AE-302	WALL SECTIONS & DETAILS
AE-450	INTERIOR ELEVATIONS
AE-601	SCHEDULES
AE-801	1ST LEVEL FINISH PLAN
AE-802	2 ND LEVEL FINISH PLAN
	10 - MECHANICAL/PLUMBING
MA-101	MECHANICAL AND PLUMBING ABBREVIATIONS & SYMBOLS
FX101	FIRE PROTECTION PLAN
PD-101	1ST LEVEL PLUMBING DEMOLITION PLAN
PP-101	1ST LEVEL PLUMBING REMODEL PLAN
PP-102	ROOF PLUMBING REMODEL PLAN
MD-101	1ST LEVEL HVAC PIPING DEMOLITION PLAN
MD-201	1ST LEVEL HVAC DEMOLITION PLAN
MP-101	1ST LEVEL PIPING REMODEL PLAN
MP-102	ROOF PIPING PLAN
MH-101	1ST LEVEL HVAC REMODEL PLAN
MH-102	ROOF HVAC REMODEL PLAN
MJ-501	MECHANICAL DETAILS
MJ-502	MECHANICAL SCHEDULES
MJ-503	MECHANICAL SCHEDULES
MJ-504	MECHANICAL SCHEDULES
MJ-505	MECHANICAL SCHEDULES
	11 - ELECTRICAL
EA-101	ELECTRICAL SYMBOLS & ABBREVIATIONS
ED-101	1ST LEVEL LIGHTING DEMOLITION PLAN
ED-102	1ST LEVEL POWER DEMOLITION PLAN
ED-103	1ST LEVEL SIGNAL DEMOLITION PLAN
EL-201	1ST LEVEL LIGHTING REMODEL PLAN
EP-301	1ST LEVEL POWER REMODEL PLAN
EP-302	ROOF ELECTRICAL REMODEL PLAN
ES-401	1ST LEVEL SIGNAL REMODEL PLAN
FA-101	1ST LEVEL FIRE ALARM REMODEL PLAN
EJ-501	ELECTRICAL DETAILS & SCHEDULES
EJ-502	ELECTRICAL SPECIFICATIONS

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS

TABLE OF CONTENTS

1.1	GENERAL INTENTION
1.2	STATEMENT OF BID ITEM(S)1
1.3	SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR2
1.4	CONSTRUCTION SECURITY REQUIREMENTS2
1.5	FIRE SAFETY3
1.6	OPERATIONS AND STORAGE AREAS5
1.7	ALTERATIONS9
1.8	INFECTION PREVENTION MEASURES10
1.9	DISPOSAL AND RETENTION11
1.10	PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND
IMPRO	OVEMENTS11
1.11	RESTORATION
1.12	PHYSICAL DATA
1.13	LAYOUT OF WORK
1.14	AS-BUILT DRAWINGS
1.15	USE OF ROADWAYS
1.16	TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT14
1.17	TEMPORARY USE OF EXISTING ELEVATORS
1.18	TEMPORARY TOILETS
1.19	TESTS
1.20	INSTRUCTIONS

SECTION 01 00 00 GENERAL REQUIREMENTS

1.1 GENERAL INTENTION

- A. VA project number 568-20-102, Upgrade Mental Health Lock Ward in Building 148 in Fort Meade, South Dakota as indicated on the contract documents by Drawings and Specifications.
- B. A group site visit with all bidders has been scheduled as indicated in the Solicitation. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for A/E Upgrade Mental Health Lock Ward as required by drawings and specifications. Bidders may visit the site after the group visit only by appointment with the COR.
- C. Offices of Stone Group Architects, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by Department of Veterans Affairs, the Contractor shall notify the COR in sufficient time to enable testing laboratory personnel to be present at the site in time for proper taking and testing of specimens and field inspection. Such prior notice shall be not less than three workdays unless otherwise designated by the COR.
- E. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
- F. Prior to commencing work, general contractor shall provide proof that a OSHA certified "competent person" (CP) (29 CFR 1926.20(b)(2) will maintain a presence at the work site whenever the general or subcontractors are present.

G. Training:

 All employees of general contractor or subcontractors shall have the 10-hour OSHA certified Construction Safety course and/or other relevant competency training, as determined by VA CP with input from the ICRA team. 2. Submit training records of all such employees for approval before the start of work.

1.2 STATEMENT OF BID ITEM(S)

A. BASE BID: the Contractor shall provide all labor, materials, tools and equipment, and necessary supervision to perform all work associated with this project as indicated on the contract documents.

1.3 STATEMENT OF BID ITEM(S)

A. ITEM I, GENERAL CONSTRUCTION: Work includes all general construction, alterations, necessary removal of existing features and construction and certain other items.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. AFTER AWARD OF CONTRACT, the Contractor will be furnished electronic files of contract documents in .pdf format. The Contractor may produce as many sets of hard copy plans and specifications as needed, at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

A. Security Plan:

- The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
- 2. The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.

B. Security Procedures:

- 1. General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days' notice to the CO so that arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the CO.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the CO.

- 5. When barriers are not erected in patient accessible areas or being erected, the contractor shall supply 1 man to watch the work and log every item brought onto the ward.
- 6. At the end of each day, the contractor shall go through a checklist with the COR to verify no items are left where patients can access them.

C. Key Control:

- The General Contractor shall provide duplicate keys and lock combinations to the COR for the purpose of security inspections of every area of project including toolboxes and parked machines and take any emergency action.
- 2. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation.

1.6 FIRE SAFETY

- A. Applicable Publications: Publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.

 - 2. National Fire Protection Association (NFPA):

10-2022Standard for Portable Fire Extinguishers
30-2021Flammable and Combustible Liquids Code
51B-2019 \dots Standard for Fire Prevention During Welding,
Cutting and Other Hot Work
70-2020National Electrical Code

70-2020National Electrical Code
241-2022Standard for Safeguarding Construction,
Alteration, and Demolition Operations

- 3. Occupational Safety and Health Administration (OSHA):
 29 CFR 1926Safety and Health Regulations for Construction
- B. Fire Safety Plan: Establish and maintain a fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the general contractor's competent person

- per OSHA requirements. This briefing shall include information on the construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, etc. Documentation shall be provided to the COR that individuals have undergone contractor's safety briefing.
- C. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- D. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- E. Temporary Construction Partitions:
 - No plastic temporary partitions are allowed. Contractor is to provide and maintain suitable smokew and fire rated drywall barriers to prevent unauthorized access to work areas.
 - 2. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- F. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- G. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with COR.
- H. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to COR.
- I. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- J. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- K. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS,

and coordinate with COR. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.

- L. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with COR.
- M. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with COR. Obtain permits from facility Fire Department at least 24 hours in advance.
- N. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to COR.
- O. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- P. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- Q. Perform other construction, alteration and demolition operations in accordance with 29 CFR 1926.

1.7 OPERATIONS AND STORAGE AREAS

- A. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.

- 4. These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
- 5. All paper waste or electronic media such as CD's and diskettes shall be shredded and destroyed in a manner acceptable to the VA.
- 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
- 7. All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - a) Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - b) "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- B. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the CO. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- C. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the CO and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the CO, the buildings and utilities may be abandoned and need not be removed.
- D. The Contractor shall, under regulations prescribed by the CO Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the CO. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

- E. Working space and space available for storing materials shall be as determined by the COR.
- F. Workmen are subject to rules of Medical Center applicable to their conduct.
- G. Execute work to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two workdays. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- H. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the Utility Company involved:
 - 1. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- I. Phasing: The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to

- be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:
- J. To ensure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure accomplishment of this work in successive phases mutually agreeable to Medical Center Director, COR and Contractor.
- K. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without the Medical Center Director's prior knowledge and written approval.
 - 2. Contractor shall submit a request to interrupt any such services to COR, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
 - 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
 - 4. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.

- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- L. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged-in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- N. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.8 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the CO.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).

- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - 1. Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.9 INFECTION PREVENTION MEASURES

- A. Implement the requirements of VAMC's Infection Control Risk Assessment (ICRA) team. ICRA Group may monitor dust in the vicinity of the construction work and require the Contractor to take corrective action immediately if the safe levels are exceeded.
- B. Establish and maintain a dust control program as part of the contractor's infection preventive measures in accordance with the guidelines provided by ICRA Group as specified here. Prior to start of work, prepare a plan detailing project-specific dust protection measures, including periodic status reports, and submit to COR for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 1. All personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.

- C. In general, following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - 1. Dampen debris to keep down dust and provide temporary construction partitions in existing structures where directed by COR. Blank off ducts and diffusers to prevent circulation of dust into occupied areas during construction.
 - 2. Do not perform dust producing tasks within occupied areas without the approval of the COR. For construction in any areas that will remain jointly occupied by the Medical Center and Contractor's workers.

D. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.

1.10 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - 1. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.

1.11 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the CO.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by

the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the CO may have the necessary work performed and charge the cost to the Contractor.

1.12 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged.

 Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings, and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.13 PHYSICAL DATA

A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for

any interpretation of or conclusion drawn from the data or information by the Contractor.

1.14 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and benchmarks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the CO. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the CO until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the CO may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

1.15 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.16 WARRANTY MANAGEMENT

A. Warranty Management Plan: Develop a warranty management plan which contains information relevant to FAR 52.246-21 Warranty of Construction at least 30 days before the planned pre-warranty conference, submit three sets of the warranty management plan. Include within the warranty management plan all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan must be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesman, or of engineering background, not necessarily familiar with this contract. The term "status" as indicated below must include due

date and whether item has been submitted or was approved. Warranty information made available during the construction phase must be submitted to the Contracting Officer for approval prior to each monthly invoice for payment. Assemble approved information in a binder and turn over to the Government upon acceptance of the work. The construction warranty period will begin on the date of the project acceptance and continue for the product warranty period. A joint 4 month and 9 month warranty inspection will be conducted, measured from time of acceptance, by the Contactor and the Contracting Officer. Include in the warranty management plan, but not limited to, the following:

- Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the company of the Contractor, subcontractors, manufacturers or suppliers involved.
- 2. Furnish with each warranty the name, address and telephone number of each of the guarantor's representatives nearest project location.
- 3. Listing and status of delivery of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, pumps, motors, transformers and for all commissioned systems such as fire protection and alarm systems, sprinkler systems and lightning protection systems, etc.
- 4. A list for each warranted equipment item, feature of construction or system indicating:
 - a. Name of item.
 - b. Model and serial numbers.
 - c. Location where installed.
 - d. Name and phone numbers of manufacturers and suppliers.
 - e. Name and phone numbers of manufacturers or suppliers.
 - f. Names, addresses and phone numbers of sources of spare parts.
 - g. Warranties and terms of warranty. Include one-year overall warranty of construction, including the starting date of warranty of construction. Items which have extended warranties must be indicated with separate warranty expiration dates.
 - h. Starting point and duration of warranty period.
 - i. Summary of maintenance procedures required to continue the warranty in force.
 - j. Cross-reference to specific pertinent Operation and Maintenance manuals.

- k. Organizations, names and phone numbers of persons to call for warranty service.
- 1. Typical response time and repair time expected for various warranted equipment.
- 5. The plans for attendance at the 4 and 9-month post construction warranty inspections conducted by the government.
- 6. Procedure and status of tagging of all equipment covered by extended warranties.
- 7. Copies of instructions to be posted near selected pieces of equipment where operation is critical for warranty and/or safety reasons.
- B. Performance & Payment Bonds: The Performance & Payment Bonds must remain effective throughout the construction period.
 - 1. In the event the Contractor fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses.
 - 2. In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the contractor's expenses, the Contracting Officer will have the right to recoup expenses from the bonding company.
 - 3. Following oral or written notification of required construction warranty repair work, the Contractor shall respond in a timely manner. Written verification will follow oral instructions. Failure to respond will be cause for the Contracting Officer to proceed against the Contractor.
- C. Pre-Warranty Conference: Prior to contract completion, and at a time designated by the Contracting Officer, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of this section. Communication procedures for Contractor notification of construction warranty defects, priorities with respect to the type of defect, reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty will be established/ reviewed at this meeting. In connection with these requirements and at the time of the Contractor's quality control

completion inspection, furnish the name, telephone number and address of a licensed and bonded company which is authorized to initiate and pursue construction warranty work action on behalf of the Contractor. This point of contract will be located within the local service area of the warranted construction, be continuously available and be responsive to Government inquiry on warranty work action and status. This requirement does not relieve the Contractor of any of its responsibilities in conjunction with other portions of this provision.

- D. Contractor's Response to Construction Warranty Service Requirements:
- E. Following oral or written notification by the Contracting Officer, the Contractor shall respond to construction warranty service requirements in accordance with the "Construction Warranty Service Priority List" and the three categories of priorities listed below. Submit a report on any warranty item that has been repaired during the warranty period. Include within the report the cause of the problem, date reported, corrective action taken, and when the repair was completed. If the Contractor does not perform the construction warranty within the timeframe specified, the Government will perform the work and back charge the construction warranty payment item established.
 - 1. First Priority Code 1. Perform onsite inspection to evaluate situation, and determine course of action within 4 hours, initiate work within 6 hours and work continuously to completion or relief.
 - 2. Second Priority Code 2. Perform onsite inspection to evaluate situation, and determine course of action within 8 hours, initiate work within 24 hours and work continuously to completion or relief.
 - 3. Third Priority Code 3. All other work to be initiated within 3 workdays and work continuously to completion or relief.
 - 4. The "Construction Warranty Service Priority List" is as follows:
 - a) Code 1-Life Safety Systems
 - 1) Fire suppression systems.
 - 2) Fire alarm system(s).
 - b) Code 1-Air Conditioning Systems
 - 1) Air conditioning leak in part of the building, if causing damage.
 - 2) Air conditioning system not cooling properly.
 - c) Code 1 Doors
 - Overhead doors not operational, causing a security, fire or safety problem.

 Interior, exterior personnel doors or hardware, not functioning properly, causing security, fire or safety problem.

d) Code 3-Doors

- 4) Overhead doors not operational.
- 5) Interior/exterior personnel doors or hardware not functioning properly.

e) Code 1-Electrical

- 6) Power failure (entire area or any building operational after 1600 hours).
- 7) Security lights.
- 8) Smoke detectors.

f) Code 2-Electrical

- 9) Power failure (no power to a room or part of building). Receptacle and lights not operational (in a room or part of building).
- g) Code 3-Electrical
 - 10) Exterior lights not operational.
- h) Code 1-Gas
 - 11) Leaks and pipeline breaks.
- i) Code 1-Heat
 - 12) Power failure affecting heat.
- j) Code 1-Plumbing
 - 1) Hot water heater failure.
 - 2) Leaking water supply pipes
- k) Code 2-Plumbing
 - 13) Flush valves not operating properly
 - 14) Fixture drain, supply line or any water pipe leaking.
 - 15) Toilet leaking at base.
- 1) Code 3- Plumbing
 - 16) Leaky faucets.
- m) Code 3-Interior
 - 17) Floors damaged.
 - 18) Paint chipping or peeling.
 - 19) Casework damaged.
- n) Code 1-Roof Leaks
 - 20) Damage to property is occurring.
- o) Code 2-Water (Exterior)

- 21) No water to facility.
- p) Code 2-Water (Hot)
 - 22) No hot water in portion of building listed.
- q) Code 3
 - 23) All work not listed above.
- F. Warranty Tags: At the time of installation, tag each warranted item with a durable, oil and water-resistant tag approved by the Contracting Officer. Attach each tag with a copper wire and spray with a silicone waterproof coating. Also submit three record copies of the warranty tags showing the layout and design. The date of acceptance and the QC signature must remain blank until the project is accepted for beneficial occupancy. Show the following information on the tag.

Warranty Tags
Type of product/material
Model number
Serial number
Contract number
Warranty period from/to
Inspector's signature
Construction Contractor
Address
Telephone number
Warranty Contact
Address
Telephone number
Warranty response time priority code

1.17 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed, and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to compliance with the following provisions:
 - 1. Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the following provisions, the COR will withdraw permission for use of the equipment.
 - 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
 - 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
 - 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
 - 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
 - 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.

D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.19 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies, and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

1.20 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to the Medical Center heating distribution system.
 - a) Steam is available at no cost to Contractor.
- E. Electricity (for Construction and Testing): Furnish all temporary electric services.

- 1. Obtain electricity by connecting to the Medical Center electrical distribution system. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- 2. Water (for Construction and Testing): Obtain water by connecting to the Medical Center water distribution system. Provide reduced pressure backflow preventer at each connection as per code. Water is available at no cost to the Contractor.
- 3. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR discretion) of use of water from the Medical Center's system.
- F. Fuel: Natural and LP gas and burner fuel oil required for boiler cleaning, normal initial boiler-burner setup and adjusting, and for performing the specified boiler tests will be furnished by the Government. Fuel required for prolonged boiler-burner setup, adjustments, or modifications due to improper design or operation of boiler, burner, or control devices shall be furnished and paid by the Contractor at Contractor's expense.

1.21 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the CO. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of

- different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.22 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (three copies each and one electronic copy) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.
- C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training

will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.23 HISTORIC PRESERVATION

A. Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up.

- - - E N D - - -

Section 01 00 11

MEDICAL CENTER REQUIREMENTS

1.0 GENERAL INTENTION: This document pertains to station safety, health, and environmental policies for construction projects performed at the VA Black Hills Health Care System. Safety and health concerns are taken seriously at this facility. Both our staff and yours are expected to strictly adhere to the regulations and requirements. This is exceedingly important since we must be primarily concerned for the safety of our patients. In this regard, OSHA Standards may protect worker safety and health, but they have minimal benefit for protecting the safety and health of our patients, due primarily to their differing medical conditions. Review this information as orientation with your personnel performing work on site. In addition, construction can have significant impacts to the environment. It is the policy of this organization to minimize impacts in accordance with the facility's integrated Green Environmental Management Systems (GEMS). Where the requirements as outlined in this and Section 01 00 00 are differing, the more stringent shall apply.

2.0 REQUIREMENTS:

A. Security:

- 1. Secure all construction areas, especially mechanical and electrical rooms against entry of unauthorized individuals including patients.
- 2. Notify the Contracting Officer's Technical Representative (COR) for permission to work after hours and weekends. Standard work hours for the medical center are Monday-Friday, 7:00 a.m. to 4:30 p.m.
- 3. The VA will issue ID tags to contractor personnel. All contractor personnel are required to wear the VA provided ID at all times while working on government property. The Contractor will submit ID requests for each employee (including subcontractor employees) using the request form on attachment A.

B. Key Security:

- 1. Only a limited number of keys will be issued to the contractor. Key requests shall be made using the request form on attachment B.
- 2. If the Contractor loses a key, a charge of \$30 will be billed for a replacement key.
- Ensure all doors leading to and from construction are either monitored or locked to prevent access to the area from unauthorized persons.

- C. Contractor General Safety Program and Training Requirements:
 - 1. The Contractor shall appoint a "Competent Person" (CP) for the project. The CP will have primary responsibility for construction safety, OSHA compliance, and adherence to the Contractor's safety program. The Contractor shall provide for approval, as part of the submittal process, the name of the CP and documentation that the individual has had the necessary training, experience, and has the authority to carry out their responsibilities with respect to safety and health during construction activities. Evidence of training shall include completion of OSHA approved courses or other construction safety training consistent with the scope of the project.
 - 2. The Contractor shall also provide for approval, as part of the submittal process, evidence of a company safety policy that includes, as a minimum, the following components: a) Safety is the first priority and will not be compromised, b) PPE is provided for employees, and the employees are trained in its use, c) Details of regularly scheduled safety training for jobs site employees in regards to OSHA requirements, construction related impacts, and Life Safety Code requirements. This may be accomplished through documented "tool box talks", or other similar methods.
 - 3. The Contractors CP and primary workers will be required to view a VA provided video tape, "Playing It Safe", approximate viewing time 15 minutes. The video identifies concerns regarding patients safety, privacy, and infection control; and introduces Contractor's workers to the unique safeguards required when working in a hospital environment.
 - 4. Adhere to the following:
 - Follow all federal, state and local safety and health regulations.
 - Maintain safety in the construction site/area in accordance with the provisions of the contract that includes the Occupational Safety and Health Administration (OSHA) Regulations; National Electrical Codes; National Fire Protection Association (NFPA) 70, National Electric Code; and NFPA 101, Life Safety Code. Work in a safe manner and take all proper precautions while performing your work. Extra precautions shall be taken when working around persons occupying the building during construction.

- Provide Personal Protective Equipment (PPE) for your employees.
- Post appropriate signs in specific hazardous areas.
- Keep tools, ladders, etc., away from patients to prevent injuries.

D. Safety Inspections:

- The VA professional Occupational Safety and Health staff at this facility will perform safety inspections of all contract operations. Written reports of unsafe practices or conditions will be reported to the COR and Contracting Officer for immediate attention and resolution.
- 2. The Contractor's superintendent/CP is required to monitor work on a daily basis, including surveillance related to health and safety. The daily inspections are to be documented via the check list included on the back of the Daily Log form (attachment C). Completed Daily Logs should be provided to the COR at the end of each shift, and no later than the next working day.

E. Fire Alarms:

- 1. The fire alarm system connects all buildings at this facility, and is activated by various heat, duct, manual pull stations and smoke sensors. Manual pull stations are provided at each entrance. Survey the area in which you are working to locate the manual pull stations.
- 2. In the event of a fire alarm sounding, you are to remain in your area, unless medical center personnel (Safety, Nursing or Engineering) instruct otherwise, or unless a fire situation is in your area, in which case you should immediately evacuate.
- 3. Any work involving the fire protection systems requires written permission to proceed from the COR. Do not tamper with or otherwise disturb any fire alarm system components without prior written permission. To do so without written permission will result in an adverse action.

F. Hazardous Materials:

1. Many of the operations you are scheduled to perform may involve the use of hazardous materials. Prior to locating hazardous materials on site, submit all Material Safety Data Sheets (MSDS) through the COR for evaluation by the facility Safety Officer.

- 2. Storage of hazardous materials within buildings shall be minimal with only enough on hand to perform daily work tasks. Flammable materials must either be removed from buildings at the end of the work shift or stored in approved flammable storage containers.
- 3. Care must be taken to ensure adequate ventilation to remove vapors of hazardous materials in use. Many of the patients being cared for in the facility are susceptible to environmental contaminants, even when odors seem minimal. Isolate those areas where vapors are produced and ventilate to the most extent possible to reduce the number of complaints.
- G. Airborne Dust Control During Construction:
 - 1. Generation of dust is of major concern within staff, and especially in patient occupied buildings. Where operations involve the generation of dust, all efforts shall be directed at reducing airborne generated dust to the lowest level feasible. This may be accomplished by a number of methods. These include misting the area with water or use of tools attached to High Efficiency Particulate Air (HEPA) filtering vacuums. Where large amounts of materials may be disturbed, resulting in airborne dust, establishment of full ceiling-to-floor barriers shall be required.
 - 2. This project is classified as **CLASS III** per the pre-construction risk assessment.
 - 3. Classification of Jobs:
 - a. CLASS I Includes, but is not limited to, inspection, non-invasive activity-includes, not limited to removal of ceiling tiles for inspection (1/50 sq ft), painting (not sanding), wall covering, electrical trim work, minor plumbing, activities which do not generate dust or require cutting of walls or access to ceilings other than for visual inspection.
 - i. During Construction:
 - 1. Execute work by methods to minimize raising dust from construction operations.
 - 2. Immediately replace any ceiling tile displaced for visual inspection.
 - b. CLASS II (projects require barrier precautions) Includes, but is not limited to, small scale, short duration, moderate to high levels-includes but not limited to installation of

telephone/computer cabling, access to chase spaces, cutting of walls or ceiling where dust migration can be controlled.

- i. During Construction:
 - 1. Include all items from Class I above
 - 2. Provides active means to prevent air-borne dust from dispersing into atmosphere
 - 3. Water mist work surfaces to control dust while cutting.
 - 4. Seal unused doors with duct tape.
 - 5. Block off and seal air vents.
 - 6. Place dust mat at access points of work area.
 - 7. Contain construction waste before transport in tightly covered containers.
 - 8. Isolate HVAC system in areas where work is being performed to prevent contamination of duct system.
- ii. Upon Completion of Project:
 - 1. Wipe surfaces with disinfectant.
 - 2. Contain construction waste before transport in tightly covered containers.
 - 3. Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
 - 4. Remove isolation of HVAC system in areas where work is being performed.
- c. CLASS III (projects require barrier precautions) Includes, but is not limited to, work that generates a moderate to high level of dust or requires demolition or removal of any fixed building components or assemblies. Includes but not limited to sanding of walls for painting or wall covering; removal of floor coverings, ceiling tiles, and casework; new wall construction; minor duct work or electrical work above the ceilings; major cabling activity; any activity which cannot be completed in a single work shift.
 - i. During Construction:
 - 1. Include all items from Class I/II above
 - 2. Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins.

- 3. Maintain negative air pressure within work site utilizing HEPA equipped air filtration units.
- 4. Cover transport receptacles or carts. Tape covering unless solid lid.
- ii. Upon Completion of Project:
 - 1. Include all items from Class I/II above
 - 2. Do not remove barriers from work area until completed project is thoroughly cleaned bas required by the owner's Safety Department and/or Infection Control Department.
 - 3. Remove barrier materials carefully to minimize spreading of dirt and debris associated with construction.
 - 4. Vacuum work area with HEPA filtered vacuums.
 - 5. Wet mop area with disinfectant
 - 6. work is being performed.
- d. CLASS IV (projects require barrier precautions) Includes, but is not limited to, major duration and construction activities-Includes, but not limited to: activities that require consecutive work shifts; requires heavy demolition or removal of a complete cabling system; new construction.
 - i. During Construction:
 - 1. Include all items from Class I/II/III above
 - 2. Seal holes, pipes, conduits, and punctures appropriately.
 - 3. If exiting to a patient care area, construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave the work site.
 - 4. Walk-off mats are recommended to minimize tracking of heavy dirt and dust from construction areas. Shoe covers may be considered in certain areas.
 - ii. Upon Completion of Project:
 - 1. Include all items from Class I/II/III above.
- H. Contact with Asbestos Containing Materials (ACM):
 - 1. Due to the age of buildings, many contain asbestos containing materials (ACM). Primary ACM uses in the medical center includes floor tile, mastic, piping and HVAC insulation. The medical center has performed a comprehensive asbestos survey and has identified

- accessible ACM. Some areas contain damaged asbestos and should not be accessed without prior abatement.
- 2. The most common type of ACM insulation you may encounter includes thermal system insulation (TSI) and floor tile. ACM TSI is generally covered with a cloth wrap or lagging, and the asbestos substrate generally appear white in color. Do not sand, drill, gouge or otherwise disturb this type of insulation. Contractors disturbing or releasing asbestos containing materials will be liable for all damages and cleanup costs.
- 3. Where disturbance of asbestos is likely, it has been addressed in the contract for removal. If contact with the presence of asbestos is presented, stop all work in the immediate area and immediately contact the COR or Safety Officer to make necessary arrangements for removal.
- 4. In some areas, asbestos insulation has been identified on elbows, between fiberglass piping insulation, as patching materials among the fiberglass insulation. Fiberglass insulation used in this facility is usually yellow or pink in color, wrapped either by cloth or paper lagging.
- 5. A complete assessment of asbestos materials and conditions are available for viewing by contacting the COR. Prior to performing work above any ceiling or starting in a new area, consult with the COR concerning existing conditions of ACM.
- 6. Some of the areas in the facility are identified as restricted areas due to condition of ACM. These are readily labeled. *Do not enter these areas* unless first contacting the COR. Entry requirements to these areas are awareness of the hazards, proper protective clothing (coveralls and respirators) and personal monitoring in accordance with OSHA requirements.

I. Environmental Protection:

1. It may help you to be aware of the seriousness that the environmental protection requirements of each contract are regarded. Adherence to these requirements is subject to continuing scrutiny from the community and backed by severe penalties, such as fines and incarceration. These environmental requirements will be strictly enforced. Contractors are required to abide by all Federal, State, and Local environmental regulations.

- 2. No hazardous materials will be disposed of on Government property.

 Haul all waste off-site or dispose in contractor owned and operated waste removal containers.
- 3. Forward a copy of all waste manifests for special or hazardous wastes to the COR. Environmental requirements will be strictly enforced.

J. Permit Required Confined Spaces:

- 1. Contractors performing work on this facility shall follow all requirements outlined in OSHA Standards for working in confined spaces. There are numerous permits required confined spaces on this facility. These spaces have been identified. Some spaces have been posted, but the majority have not due to their configuration. A complete listing of these areas is located in the Fire Department.
- 2. Confined spaces are areas that are large enough to be entered, have limited egress/exit potential and are not designed for permanent human occupancy. If you encounter any space that meets this definition, and if it is a suspected confined space, contact the COR.
- 3. Contractors performing work in confined spaces are responsible for compliance with all applicable standards and regulations.

K. Housekeeping:

- 1. Protect patients and VA personnel in occupied areas from the hazards of dust, noise, construction debris and material associated with a construction environment. Keep work area clear, clean and free of loose debris, construction materials and partially installed work that would create a safety hazard or interfere with VA personnel duties and traffic.
- Wet mop occupied areas clean and remove any accumulation of dust/debris from cutting or drilling from any surface at the end of each workday.
- 3. Make every effort to keep dust and noise to a minimum at all times.

 Take special precautions to protect VA equipment from damage including excessive dust.
- 4. Maintain clear access to mechanical, electrical devices, equipment and main corridors. This will ensure access to existing systems in the event of an emergency.
- 5. Clean area of all construction debris and dust upon completion of demolition and/or renovation.

6. During construction operations, keep existing finishes protected from damage. Cover and protect all carpets during construction. Any carpets or surfaces damaged as a result of construction activities will be replaced at the contractor expense.

L. Hot Work Permits:

- 1. Any hot work operations including cutting, welding, thermal welding, brazing, soldering, grinding, thermal spraying, thawing pipes or any other similar activity, require a Hot Work Permit to be obtained by the Contractor from the Fire Department. The Contractor is responsible for conforming to all Medical Center regulations, policies and procedures concerning Hot Work Permits as outlined below:
 - a. Prior to the performance of hot work in patient-occupied buildings, request a Hot Work Permit from the Fire Department.
 - b. The Fire Department will inspect the area and ensure that the requirements of NFPA 241 and OSHA standards have been satisfied. The Hot Work Permit will be granted and must be posted in the immediate area of the work.
 - c. The Hot Work Permit will apply only to the location identified on the permit. If additional areas involve hot work, additional permits must be requested.
 - d. Upon completion of all hot work, notify the Fire Department to perform a re-inspection of the area.
- 2. Do not use any of the extinguishers in the medical center for standby purpose while conducting hot work. Contractors are required to supply their own Class ABC extinguishers. Medical center extinguishers are only to be used in the event of a fire.
- M. Emergency Medical Services: Emergency medical services for stabilization purposes are available for contractors at this facility. For medical emergencies, dial 6911 when inside any building. Report the nature of the emergency and location. The operator will dispatch in-house personnel or coordinate an outside emergency assistance based on the nature of the emergency.
- N. Use of Government-Owned Material and Equipment: Use of Government-owned material and equipment is prohibited.
- O. Superintendent Communications: At all times during the performance of this contract, the Contractors Superintendent is to be available by cellular phone. At the beginning of the contract and prior to beginning

- any construction, supply the COR with the telephone number for the Superintendent.
- P. Parking: Contractor employees shall be assigned a parking area during the preconstruction meeting.

Q. Traffic:

- 1. Traffic hazards are minimal at this facility. Drivers should be particularly concerned with pedestrian traffic.
- 2. Seat belt use is mandatory on the station.
- 3. Federal police officers maintain a 24-hour patrol of the area.
- 4. Speed limits are to be observed and are strictly enforced.
- R. Contractor's Trailers: Contractor's trailers shall be located at the area assigned. All utility connections to the trailer shall be installed at the contractor expense. Trailer removal is required upon completion of the contract, unless approved by the COR to leave in place.
- S. Smoking: No smoking is permitted in buildings or around hazardous areas. Any smoking inside a government building is subject to a fine without warning.
- T. Lock out/tag out: Contractors performing work on equipment and systems are responsible for compliance with the facilities lock out/tag out policies.
- U. Road Closures: For any work requiring closure of a road or parking lot, a request for closure shall be made in writing at least 5 days in advance for approval by the COR and Fire Department.

- - - E N D - - -

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule) and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - 2. Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant and will notify the Contractor of the VA decision

within seven calendar days from receipt of the qualification proposal. In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 15 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review: three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as

a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents.

These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- D. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised electronic file as specified by the Contracting Officer. The revised

submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

- E. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- F. The Complete Project Schedule shall contain all major work activities/events.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities/events for guarantee period services, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.232 for (PAYMENTS UNDER FIXED PRICE CONSTRUCTION).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/event with a minimum duration of five workdays at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
 - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
 - 3. Break up the work into activities/events of a duration no longer than 20 workdays each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 workdays.
 - 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.

- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - 1. The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.
 - Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.
- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

- A. Monthly, the contractor shall submit an application and certificate for payment using VA Form 10-6001a reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.
- B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COR three workdays in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - 2. Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - 3. Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - 4. Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/events.
 - 6. Logic and duration revisions required by this section of the specifications.
 - 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and COR for the contract change(s). When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the COR. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly

project schedule update requirements and shall be submitted to the COR within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.

D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

- A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:
 - Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
 - 2. Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
 - 3. Reschedule the work in conformance with the specification requirements.

B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - 1. Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - 2. Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.
 - 4. When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.
- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental) and will be based on the complexity of the revision or

- contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in workdays) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computer-produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the provisions specified under FAR 52.243 4 (Changes) and VAAR 852.236 88 (Changes Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.
- D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month-by-month basis.

- - - E N D - - -

SECTION 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted electronically using Oracle Primavera for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal Exchange at no cost to the Contractor; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or

product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.

- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying

- submittals required by the contract documents, but which have been omitted from the submittal register.
- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The VA will provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA
- D. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- E. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.

- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data will be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title, location and number.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - 4. Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - 6. When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

CONTRACTOR	
 (Firm Name)	
Approved	
	1
Approved with corrections as noted on submittal data and/or	
attached sheets(s)	1
ı 	
SIGNATURE:	
 TITLE:	
	— '
DATE:	_
I I	

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer.
- B. Compile the electronic submittal file as a single, complete document. Name the electronic submittal file specifically according to its contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.
- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the Contracting Officer.

- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Up to 3 additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the VA.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
 - "Approved": authorizes the Contractor to proceed with the work covered.
 - 2. "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project.

- Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

 Al0.1-2017Pre-Project & Pre-Task Safety and Health

 Planning

 Al0.34-2021Protection of the Public on or Adjacent to

 Construction Sites
 - A10.38-2021Basic Elements of an Employer's Program to

 Provide a Safe and Healthful Work Environment

 American National Standard Construction and

 Demolition Operations
- C. American Society for Testing and Materials (ASTM):
 E84-2021Surface Burning Characteristics of Building
 Materials
- D. The Facilities Guidelines Institute (FGI): $FGI \ \ Guidelines-2022 Guidelines \ for \ Design \ and \ Construction \ of$ Healthcare Facilities
- E. National Fire Protection Association (NFPA):
 - - 70E-2021Standard for Electrical Safety in the Workplace 99-2021Health Care Facilities Code
 - 241-2022Standard for Safeguarding Construction,
 Alteration, and Demolition Operations
- F. The Joint Commission (TJC)
 - TJC ManualComprehensive Accreditation and Certification

 Manual
- G. U.S. Nuclear Regulatory Commission
 - 10 CFR 20Standards for Protection Against Radiation

- H. U.S. Occupational Safety and Health Administration (OSHA):
 - 29 CFR 1910Safety and Health Regulations for General Industry
 - 29 CFR 1926Safety and Health Regulations for Construction Industry
- I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:
 - No impact near miss incidents that should be investigated but are not required to be reported to the VA;
 - 2. Minor incident/impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;
 - 3. Moderate incident/impact Any work-related injury or illness that results in:

 - b. Restricted work;
 - c. Transfer to another job;

- d. Medical treatment beyond first aid;
- e. Loss of consciousness;
- 4. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
- 5. Any incident that leads to major equipment damage (greater than \$5000).
- F. These incidents must be investigated and are required to be reported to the VA;
 - 1 Major incident/impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.
- G. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable federal, state, and local laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer Representative.

1.4 ACCIDENT PREVENTION PLAN (APP):

A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each

subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.

- B. The APP shall be prepared as follows:
 - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET**. Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - 2) Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
 - b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor.
 - 2) Contract number.
 - 3) Project name.
 - 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
 - c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing

commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.

- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - 1) A statement of the employer's ultimate responsibility for the implementation of his SOH program.
 - 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
 - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.
 - 4) Requirements that no work shall be performed unless a designated competent person is present on the job site.
 - 5) Requirements for pre-task Activity Hazard Analysis (AHAs).
 - 6) Lines of authority.
 - 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified.
- **e. SUBCONTRACTORS AND SUPPLIERS.** If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- 1) Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.

- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- 2) Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Contracting Officer Representative:
 - 1) Exposure data (man-hours worked;
 - 2) Accident investigation reports.
 - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response.
 - 2) Contingency for severe weather.
 - 3) Fire Prevention.
 - 4) Medical Support.
 - 5) Posting of emergency telephone numbers.
 - 6) Prevention of alcohol and drug abuse.
 - 7) Site sanitation (housekeeping, drinking water, toilets).

- 8) Night operations and lighting.
- 9) Hazard communication program.
- 10) Welding/Cutting "Hot" work.
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E).
- 12) General Electrical Safety.
- 13) Hazardous energy control (Machine LOTO).
- 14) Site-Specific Fall Protection & Prevention.
- 15) Excavation/trenching.
- 16) Asbestos abatement.
- 17) Lead abatement.
- 18) Crane Critical lift.
- 19) Respiratory protection.
- 20) Health hazard control program.
- 21) Radiation Safety Program.
- 22) Abrasive blasting.
- 23) Heat/Cold Stress Monitoring.
- 24) Crystalline Silica Monitoring (Assessment).
- 25) Demolition plan (to include engineering survey).
- 26) Formwork and shoring erection and removal.
- 27) PreCast Concrete.
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Project Manager, project superintendent, project overall designated OSHA Competent Person, and facility Safety Contracting Officer Representative. Should any severe hazard exposure, i.e., imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure

and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
 - 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.

- b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.

C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e., Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e., Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations). However, the SSHO has be a separate qualified individual from the Prime Contractor's Superintendent and/or Quality Control Manager with duties only as the SSHO.
- D. The SSHO or an equally qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Contracting Officer Representative that individuals have undergone contractor's safety briefing.

G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - 2. The Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
 - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
 - 4. A report of the inspection findings with status of abatement will be provided to the Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site.

Notify the Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity,

installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer Representative determine whether a government investigation will be conducted.

- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Contracting Officer Representative within 5 calendar days of the accident. The Contracting Officer Representative will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer Representative monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - 2. Safety glasses unless written authorization is given by the Contracting Officer Representative in circumstances of no eye

- hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer Representative in circumstances of no foot hazards.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities.

 Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.

 Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e., Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Contracting Officer Representative. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: Class III however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:
 - 1) Notify the Contracting Officer Representative
 - 2) Execute work by methods to minimize raising dust from construction operations.

- 3) Ceiling tiles: Immediately replace a ceiling tile displaced for visual inspection.
- b. Upon Completion:
 - 1) Clean work area upon completion of task
 - 2) Notify the Contracting Officer Representative

2. Class II requirements:

- a. During Construction Work:
 - 1) Notify the Contracting Officer Representative
 - 2) Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.
 - 6) Remove or isolate HVAC system in areas where work is being performed.
- b. Upon Completion:
 - 1) Wipe work surfaces with cleaner/disinfectant.
 - 2) Contain construction waste before transport in tightly covered containers.
 - 3) Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area
 - 4) Upon completion, restore HVAC system where work was performed
 - 5) Notify the Contracting Officer Representative

3. Class III requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative
 - 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording

- and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
- 5) Contain construction waste before transport in tightly covered containers.
- 6) Cover transport receptacles or carts. Tape covering unless solid lid.

b. Upon Completion:

- Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative and thoroughly cleaned by the VA Environmental Services Department.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Vacuum work area with HEPA filtered vacuums.
- 4) Wet mop area with cleaner/disinfectant.
- 5) Upon completion, restore HVAC system where work was performed.
- 6) Return permit to the Contracting Officer Representative

4. Class IV requirements:

- a. During Construction Work:
 - 1) Obtain permit from the Contracting Officer Representative 2)

 Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e., sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.

- 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
- 7) All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.

b. Upon Completion:

- 1) Do not remove barriers from work area until completed project is inspected by the Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.
- 2) Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
- 3) Contain construction waste before transport in tightly covered containers.
- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- 8) Return permit to the Contracting Officer Representative
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - 2. Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Contracting Officers Representative and Medical Center) - Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.

- c. Class III & IV Seal all penetrations in existing barrier airtight
- d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
- e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing
- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.

D. Products and Materials:

- 1. Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
- 2. Barrier Doors: Self Closing One-hour fire-rated solid core wood in steel frame, painted
- 3. Dust proof one-hour fire-rated drywall
- 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
- 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
- 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
- 7. Disinfectant: Hospital-approved disinfectant or equivalent product
- 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be established and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities.

 Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic

- status reports, and submit to Contracting Officer Representative and Facility CSC for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupy medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Contracting Officers Representative and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.
 - 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the

- construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

I. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- 3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e., vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.

- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous

- areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer Representative.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Standpipes: Install and extend standpipes up with each floor in accordance with 29 CFR 1926 and NFPA 241. Do not charge wet standpipes subject to freezing until weather protected.
- K. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers. Sprinkler heads must be oriented upward for any spaces with ceilings removed, in rooms where walls do not go up to deck.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Contracting Officers Representative.

- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer Representative.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer Representative. Obtain permits from Contracting Officer Representative at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer Representative.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the Contracting Officer
 Representative that personnel have been trained in the fire safety
 aspects of working in areas with impaired structural or
 compartmentalization features.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance were achieving an electrically safe work condition prior to beginning work would

increase or cause additional hazards or is infeasible due to equipment design or operational limitations is energized work permitted. The Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.

- 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the The Contracting Officer Representative.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30-ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30-ampere circuits, GFCI

protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E-2015, Chapter 1, Article 110.4(C)(2).

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
 - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green

indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:

- 1. The Competent Person's name and signature.
- 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.
- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall have two sections; one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Contracting Officer Representative prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the Contracting Officer Representative. The permit shall be maintained onsite, and the first section of the permit shall include the following:
 - 1. Estimated start time & stop time
 - 2. Specific location and nature of the work.
 - 3. Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - 4. Indication of whether soil or concrete removal to an offsite location is necessary.
 - 5. Indication of whether soil samples are required to determined soil contamination.

- 6. Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.
- 7. Indication of review of site drawings for proximity of utilities to digging/drilling.
- C. The second section of the permit for excavations greater than five feet in depth shall include the following:
 - 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetronmeter will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 Type B, greater than 1.5 Tons/FT2 Type A without condition to reduce to Type B).
 - 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
 - 3. Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
 - 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.
- D As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.

- The planned dig site will be outlined/marked in white prior to locating the utilities.
- Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
- 3. 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
- 4. Digging will not commence until all known utilities are marked.
- 5. Utility markings will be maintained
- E. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 to 5 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- F. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Contracting Officer Representative 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Contracting Officer Representative.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer Representative. Obtain permits from Contracting Officer Representative at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.

- 2. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or color-coded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - 4. Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS

Office of Construction & Facilities Management

Facilities Quality Service (00CFM1A)

425 Eye Street N.W, (sixth floor)

Washington, DC 20001

Telephone Numbers: (202) 632-5249 or (202) 632-5178

Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

AA Aluminum Association Inc.

http://www.aluminum.org

AABC Associated Air Balance Council

http://www.aabchq.com

AAMA American Architectural Manufacturer's Association

http://www.aamanet.org

AAN American Nursery and Landscape Association

http://www.anla.org

AASHTO American Association of State Highway and Transportation

Officials

http://www.aashto.org

AATCC American Association of Textile Chemists and Colorists

http://www.aatcc.org

ACGIH American Conference of Governmental Industrial Hygienists

http://www.acgih.org

ACI American Concrete Institute

http://www.aci-int.net

ACPA American Concrete Pipe Association

http://www.concrete-pipe.org

ACPPA American Concrete Pressure Pipe Association

http://www.acppa.org

ADC Air Diffusion Council

http://flexibleduct.org

AGA American Gas Association

http://www.aga.org

AGC Associated General Contractors of America

http://www.agc.org

AGMA American Gear Manufacturers Association, Inc. http://www.agma.org AHAM Association of Home Appliance Manufacturers http://www.aham.org AIA American Institute of Architects http://www.aia.org American Institute of Steel Construction AISC http://www.aisc.org American Iron and Steel Institute AISI http://www.steel.org American Institute of Timber Construction AITC http://www.aitc-glulam.org AMCA Air Movement and Control Association, Inc. http://www.amca.org American Nursery & Landscape Association ANLA http://www.anla.org American National Standards Institute, Inc. ANSI http://www.ansi.org The Engineered Wood Association APA http://www.apawood.org ARI Air-Conditioning and Refrigeration Institute http://www.ari.org ASAE American Society of Agricultural Engineers http://www.asae.org ASCE American Society of Civil Engineers http://www.asce.org ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org ASME American Society of Mechanical Engineers

http://www.asme.org

ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org ASTM American Society for Testing and Materials http://www.astm.org AWI Architectural Woodwork Institute http://www.awinet.org American Welding Society AWS http://www.aws.org American Water Works Association AWWA http://www.awwa.org Builders Hardware Manufacturers Association ВНМА http://www.buildershardware.com BIA Brick Institute of America http://www.bia.org CAGI Compressed Air and Gas Institute http://www.cagi.org CGA Compressed Gas Association, Inc. http://www.cganet.com The Chlorine Institute, Inc. СТ http://www.chlorineinstitute.org CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org CISPI Cast Iron Soil Pipe Institute http://www.cispi.org Chain Link Fence Manufacturers Institute CLFMI http://www.chainlinkinfo.org Concrete Plant Manufacturers Bureau CPMB http://www.cpmb.org CRA California Redwood Association

http://www.calredwood.org

CRSI	Concrete Reinforcing Steel Institute
	http://www.crsi.org
CTI	Cooling Technology Institute
	<pre>http://www.cti.org</pre>
DHI	Door and Hardware Institute
	<pre>http://www.dhi.org</pre>
EGSA	Electrical Generating Systems Association
	http://www.egsa.org
EEI	Edison Electric Institute
	<pre>http://www.eei.org</pre>
EPA	Environmental Protection Agency
	http://www.epa.gov
ETL	ETL Testing Laboratories, Inc.
	<pre>http://www.etl.com</pre>
FAA	Federal Aviation Administration
	http://www.faa.gov
FCC	Federal Communications Commission
	<pre>http://www.fcc.gov</pre>
FPS	The Forest Products Society
	http://www.forestprod.org
GANA	Glass Association of North America
	<pre>http://www.cssinfo.com/info/gana.html/</pre>
FM	Factory Mutual Insurance
	<pre>http://www.fmglobal.com</pre>
GA	Gypsum Association
	http://www.gypsum.org
GSA	General Services Administration
	http://www.gsa.gov
HI	Hydraulic Institute
	http://www.pumps.org

HPVA Hardwood Plywood & Veneer Association http://www.hpva.org

ICBO International Conference of Building Officials
 http://www.icbo.org

ICEA Insulated Cable Engineers Association Inc.
http://www.icea.net

\ICAC Institute of Clean Air Companies http://www.icac.com

IPCEA Insulated Power Cable Engineers Association

NBMA Metal Buildings Manufacturers Association http://www.mbma.com

MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

http://www.mss-hq.com

NAAMM National Association of Architectural Metal Manufacturers ${\tt http://www.naamm.org}$

NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org

NBS National Bureau of Standards
See - NIST

NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org

NEC National Electric Code

See - NFPA National Fire Protection Association

NEMA National Electrical Manufacturers Association http://www.nema.org

NFPA National Fire Protection Association http://www.nfpa.org NHLA National Hardwood Lumber Association http://www.natlhardwood.org NIH National Institute of Health http://www.nih.gov NIST National Institute of Standards and Technology http://www.nist.gov NLMA Northeastern Lumber Manufacturers Association, Inc. http://www.nelma.org National Particleboard Association NPA 18928 Premiere Court Gaithersburg, MD 20879 (301) 670-0604 National Sanitation Foundation NSF http://www.nsf.org Window and Door Manufacturers Association NWWDA http://www.nwwda.org OSHA Occupational Safety and Health Administration Department of Labor http://www.osha.gov Portland Cement Association PCA http://www.portcement.org Precast Prestressed Concrete Institute PCI http://www.pci.org PPI The Plastic Pipe Institute http://www.plasticpipe.org

Post-Tensioning Institute

Porcelain Enamel Institute, Inc. http://www.porcelainenamel.com

PEI

РТТ

RFCI The Resilient Floor Covering Institute http://www.rfci.com RIS Redwood Inspection Service See - CRA RMA Rubber Manufacturers Association, Inc. http://www.rma.org Southern Cypress Manufacturers Association SCMA http://www.cypressinfo.org SDI Steel Door Institute http://www.steeldoor.org SOI Secretary of the Interior http://www.cr.nps.gov/local-law/arch stnds 8 2.htm IGMA Insulating Glass Manufacturers Alliance http://www.igmaonline.org SJI Steel Joist Institute http://www.steeljoist.org Sheet Metal and Air-Conditioning Contractors SMACNA National Association, Inc. http://www.smacna.org SSPC The Society for Protective Coatings http://www.sspc.org STI Steel Tank Institute http://www.steeltank.com Steel Window Institute SWT http://www.steelwindows.com TCA Tile Council of America, Inc. http://www.tileusa.com TEMA Tubular Exchange Manufacturers Association http://www.tema.org TPI Truss Plate Institute, Inc.

583 D'Onofrio Drive; Suite 200

Madison, WI 53719 (608) 833-5900

UBC The Uniform Building Code
See ICBO

UL Underwriters' Laboratories Incorporated
 http://www.ul.com

ULC Underwriters' Laboratories of Canada http://www.ulc.ca

WCLIB West Coast Lumber Inspection Bureau 6980 SW Varns Road, P.O. Box 23145
Portland, OR 97223
(503) 639-0651

WRCLA Western Red Cedar Lumber Association
P.O. Box 120786
New Brighton, MN 55112
(612) 633-4334

WWPA Western Wood Products Association http://www.wwpa.org

- - - E N D - - -

SECTION 01 45 00 QUALITY CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for Contractor Quality Control (CQC) for Design-Bid-Build (DBB) or Design-Build (DB) construction projects. This section can be used for both project types.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. ASTM International (ASTM)
 - 1. D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 - 2. E329 (2014a) Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction

1.3 SUBMITTALS

Government approval is required for all submittals. CQC inspection reports shall be submitted under this Specification section and follow the [Applicable CQC Control Phase (Preparatory, Initial, or Follow-Up)]: [Applicable Specification section] naming convention.

- 1. Preconstruction Submittals
 - a. Interim CQC Plan
 - b. CQC Plan
 - c. Additional Requirements for Design Quality Control (DQC) Plan
- 2. Design Data
 - a. Discipline-Specific Checklists
 - b. Design Quality Control
- 3. Test Reports
 - a. Verification Statement

PART 2 PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system. that complies with the FAR Clause 52.246.12 titled "Inspection of Construction". QC consists of plans, procedures, and organization necessary to produce an end product which complies with the Contract requirements. The QC system covers all design and construction

operations, both onsite and offsite, and be keyed to the proposed design and construction sequence. The project superintendent will be held responsible for the quality of work and is subject to removal by the Contracting Office or Authorized designee for non-compliance with the quality requirements specified in the Contract. In this context the highest level manager responsible for the overall construction activities at the site, including quality and production is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CQC PLAN:

- A. Submit the CQC Plan no later than Contracting Officers Representative to determine during Constructability review 15 days after receipt of Notice to Proceed (NTP) proposed to implement the requirements of the FAR Clause 52.246.12 titled "Inspection of Construction". The Government will consider an Interim CQC Plan for the first 10 days of operation, which must be accepted within 15 business days of NTP. Design and/or construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an Interim plan applicable to the particular feature of work to be started. Work outside of the accepted Interim CQC Plan will not be permitted to begin until acceptance of a CQC Plan or another Interim CQC Plan containing the additional work scope is accepted.
- B. Content of the CQC Plan: Include, as a minimum, the following to cover all design and construction operations, both onsite and offsite, including work by subcontractors, designers of record consultants, architects/engineers (A/E), fabricators, suppliers, and purchasing agents:
 - 1. A description of the QC organization, including a chart showing lines of authority and acknowledgement that the CQC staff will implement the three phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.
 - The name, qualifications (in resume format) duties, responsibilities, and authorities of each person assigned a CQC function.

- 3. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will be issued by the CQC System Manager. Furnish copies of these letters to the Contracting Officer or Authorized designee.
- 4. Procedures for scheduling, reviewing, certifying, and managing submittals including those of subcontractors, designers of record, consultants, A/E's offsite fabricators, suppliers and purchasing agents. These procedures must be in accordance with Section 01 33 23 Shop Drawings, Product Data, and Samples.
- 5. Control, verification, and acceptance of testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer or Authorized designee are required to be used)
- 6. Procedures for tracking Preparatory, Initial, and Follow-Up control phases and control, verification, and acceptance tests including documentation.
- 7. Procedures for tracking design and construction deficiencies from identification through acceptable corrective action. Establish verification procedures that identified deficiencies have been corrected.
- 8. Reporting procedures, including proposed reporting formats.
- 9. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different environment. Although each section of specifications can generally be considered as a definable feature of work, there are frequently more than one definable feature under a particular section. This list will be agreed upon during the Coordination meeting.
- 10. Coordinate schedule work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special

Inspections and Schedule of Special Inspections. Where the applicable Code issue by the International Code Council (ICC) calls for inspections by the Building Official, the Contractor must include the inspections in the CQC Plan and must perform the inspections required by the applicable ICC. The Contractor must perform these inspections using independent qualified inspectors. Include the Special Inspection Plan requirements in the CQC Plan.

- C. Additional Requirements for Design Quality Control (DQC) Plan: The following additional requirements apply to the DQC Plan for DB projects only and not DBB projects:
 - 1. Submit and maintain a DQC Plan as an effective QC program which assures that all services required by this contract are performed and provided in a manner that meets professional architectural and engineering quality standards. As a minimum, all documents must be technically reviewed by competent, independent reviewers identified in the DQC Plan. The same element that produced the product may not perform the independent technical review (ITR). Correct errors and deficiencies in the design documents prior to submitting them to the Government.
 - 2. Include the design schedule in the master project schedule, showing the sequence of events involved in carrying out the project design tasks within the specific Contract period. This should be at a detailed level of scheduling sufficient to identify all major design tasks, including those that control the flow of work. Include review and correction periods associated with each item. This should be a forward planning as well as a project monitoring tool. The schedule reflects calendar days and not dates for each activity. If the schedule is changed, submit a revised schedule reflecting the change within 7 calendar days. Include in the DQC Plan the disciplinespecific checklists to be used during the design and quality control of each submittal. Submit at each design phase as part of the project documentation these completed discipline-specific checklists.
 - 3. Implement the DQC Plan by a DQC Manager who has the responsibility of being cognizant of and assuring that all documents on the project have been coordinated. This individual must be a person who has verifiable engineering or architectural design experience and is a Professional Engineer or Registered Architect within the state of

Construction location. Notify the Contracting Officer or Authorized designee, in writing, of the name of the individual, and the name of an alternate person assigned to the position.

- D. Acceptance of Plan: Acceptance of the Contractor's plan is required prior to the start of design and construction. Acceptance is conditional and will be predicated on satisfactory performance during the design and construction. The Government reserves the right to require the Contractor to make changes in the CQC Plan and operations including removal of personnel as necessary, to obtain the quality specified.
- E. Notification of Changes: After acceptance of the CQC Plan, notify the Contracting Officer or Authorized designee in writing of any proposed change. Proposed changes are subject to acceptance by the Government prior to implementation by the Contractor.

3.3 COORDINATION MEETING:

After the Preconstruction Conference Post-award Conference before start of design or construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer or Authorized designee to discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 2 business days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be developed, including the forms for recording the CC operations, design activities (if applicable), control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting will be prepared by the Government, signed by both the Contractor and Contracting Officer or Authorized designee and will become a part of the contract file. There can be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION:

A. Personnel Requirements: The requirements for the CQC organization are a Safety and Health Manager, CQC System Manager, a Design Quality Manager (if applicable), and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager shall satisfy the requirements of Specification 01 35 26

Safety Requirements and reports directly to a senior project (or corporate) official independent from the CQC System Manager. The Safety and Health Manager will also serve as a member of the COC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer or Authorized designee. Provide adequate office space, filing systems, and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawings submittals, schedules and all other project documentation to the CQC organization. The CQC organization is responsible to maintain these documents and records at the site at all times, except as otherwise acceptable to the Government.

- B. CQC System Manager: Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC system Manager is required to be a graduate engineer, graduate architect, or a graduate of construction management, with a minimum of 5 years construction experience on construction similar to the scope of this Contract. This CQC System manager is on the site at all times during construction and is employed by the General Contractor. The CQC System Manager is assigned as CQC System Manager but has duties as project superintendent in addition to quality control. Identify in the plan an alternate to serve in the event of the CDQC System Manager's absence. The requirements for the alternate are the same as the CQC System Manager.
- C. CQC Personnel: In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist in the CQC System Manager for the following areas, as applicable: electrical, mechanical, civil, structural, environmental, architectural, materials technician submittals clerk, Commissioning Agent/LEED specialist, and low voltage systems. These individuals or specified technical companies are employees of the prime or

subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the Experience Matrix listed herein. These individuals can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality controls duties as described in the CQC Plan. A single person can cover more than one area provided that the single person is qualified to perform QC activities in each designated and that workload allows.

EXPERIENCE MATRIX

Area	Qualifications
Civil	Graduate Civil Engineer or Construction Manager with 2 years of experience in the type of work being performed on this project or technician with 5 years related experience.
Mechanical	Graduate Mechanical Engineer with 2 years of experience or construction professional with 5 years of experience supervising mechanical features of work in the field with a construction company.
Electrical	Graduate Electrical Engineer with 2 years related experience or construction professional with 5 years of experience supervising electrical features of work in the field with a construction company.
Structural	Graduate Civil Engineer (with Structural Track or Focus), Structural Engineer, or Construction Manager with 2 years of experience or construction professional with 5 years of experience supervising structural features of work in the field with a construction company.
Architectural	Graduate Architect with 2 years of experience or construction professional with 5 years of related experience.
Environmental	Graduate Environmental Engineer with 3 years of experience.
Submittals	Submittal Clerk with 1 year experience.
Concrete, Pavement, and Soils	Materials Technician with 2 years of experience for the appropriate area.

Area	Qualifications
Testing, Adjusting, and Balancing (TAB)	Specialist must be a member of AABC or an experienced technicaion of the firm certified by the NEBB.
Design Quality Control Manager	Registered Architect or Professional Engineer

- D. Additional Requirements: In addition to the above experience and education requirements, the CQC System Manager and Alternate CQC System Manager are required to have completed the Construction Quality Management (CQM) for Construction course. If the CQC System Manager does not have a current specification, obtain the CQM for Contractors course identification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer or Authorized designee for information on the next scheduled class.
- E. Organizational Changes: Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer or Authorized designee for acceptance.
- 3.5 SUBMITTALS AND DELIVERABLES: Submittals have to comply with the requirements in Section 01 33 23 Shop Drawings, Product Data, and Samples. The CQC organization is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements. When Section 01 91 00 General Commissioning Requirements is included in the contract, the submittals required by the section have to be coordinated with the Section 01 33 23 Shop Drawings, Product Data, and Samples to ensure adequate time is allowed for each type of submittal required.

3.6 CONTROL:

- A. CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:
 - 1. Preparatory Phase: This phase is performed prior to beginning work on each definable feature of work after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase includes:

- a. A review of each paragraph of applicable specifications, references codes, and standards. Make available during the preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.
- b. Review of the Contract drawings.
- c. Check to assure that all materials and equipment have been tested, submitted, and approved.
- d. Review of provisions that have been made to provide required control inspection and testing.
- e. Review Special Inspections required by Section 01 45 35 Special Inspections, that Statement of Special Inspections and the Schedule of Specials Inspections.
- f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.
- g. Examination of required materials, equipment, and sample work to assure that they are on hand conform to approved shop drawings or submitted data, and are properly stored.
- h. Review of the appropriate Activity Hazard Analysis (AHA) to assure safety requirements are met.
- i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards - contract defined or industry standard if not contract defined - for that feature of work.
- j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.
- k. Discussion of the initial control phase.
- 1. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the Preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the Preparatory phase actions by separate minutes prepared by the CQC System Manager and

attach to the daily CQC report. Instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.

- B. Initial Phase: This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:
 - 1. Check work to ensure that it is in full compliance with contract requirements. Review minutes of the Preparatory meeting.
 - Verify adequacy of controls to ensure full contract compliance.
 Verify the required control inspection and testing is in compliance with the contract.
 - 3. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.
 - 4. Resolve all differences.
 - 5. Check safety to include compliance with an upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.
 - 6. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the initial phase for definable features of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with Follow-Up phases.
 - 7. The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.
 - 8. Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections.
- C. Follow-Up Phase: Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements until the completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final Follow-Up checks and correct all deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Coordinate scheduled work with Special Inspections required by Section 01 45 35 Special

- Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections
- D. Additional Preparatory and Initial Phases on the same definable features of work if: the quality ongoing work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.

3.7 TESTS

- A. Testing Procedure: Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance test when specified. Procure the services of a Department of Veteran Affairs approved testing laboratory or establish an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:
 - 1. Verify that testing procedures comply with contract requirements.
 - 2. Verify that facilities and testing equipment are available and comply with testing standards.
 - 3. Check test instrument calibration data against certified standards.
 - 4. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.
 - 5. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the unique sequential control number identifying the test. If approved by the Contracting Officer or Authorized designee, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test facility directly to the Contracting Officer or Authorized designee. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.
- B. Testing Laboratories: All testing laboratories must be validated through the procedures contained in Specification section 01 45 29 Testing Laboratory Services.

- 1. Capability Check: The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.
- 2. Capability Recheck: If the selected laboratory fails the capability check, the Contractor will be assessed a charge equal to value of recheck to reimburse the Government for each succeeding recheck of the laboratory or the checking of a subsequently selected laboratory. Such costs will be deducted from the Contract amount due the Contractor.
- C. Onsite Laboratory: The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

- A. Punch-Out Inspection: Conduct an inspection of the work by the CQC system Manager near the end of the work, or any increment of the work established by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications. Include within the list of deficiencies the estimated date by which the deficiencies will be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is accomplished, notify the Government that the facility is ready for the Government Pre-Final Inspection.
- B. Pre-Final Inspection: The Government will perform the Pre-Final Inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final Acceptance Inspection with the customer can be scheduled. Correct any items noted on the Pre-Final Inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate construction completion dates.

C. Final Acceptance Inspection: The Contractor's QC Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Authorized designee is required to be in attendance at the Final Acceptance Inspection. Additional Government personnel can also be in attendance. The Final Acceptance Inspection will be formally scheduled by the Contracting Officer's or Authorized designee based upon results of the Pre-Final Inspection. Notify the Contracting Officer through the Contracting Officers Representative office at least 14 days prior to the Final Acceptance Inspection and include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date schedule for the Final Acceptance Inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with FAR Clause 52.246-12 titled "Inspection of Construction".

3.9 DOCUMENTATION

- A. Quality Control Activities: Maintain current records providing factual evidence that required QC activities and tests have been performed.

 Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:
 - 1. The name and area of responsibility of the Contractor/Subcontractor
 - Operating plant/equipment with hours worked, idle, or down for repair.
 - 3. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.
 - 4. Test and control activities performed with results and references to specification/drawing requirements. Identify the Control Phase (Preparatory, Initial, and/or Follow-Up). List deficiencies noted, along with corrective action.
 - 5. Quantity of materials received at the site with statement as to acceptability, storage, and reference to specification/drawing requirements.
 - 6. Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.

- 7. Offsite surveillance activities, including actions taken.
- 8. Job safety evaluations stating what was checked, results, and instructions or corrective actions.
- 9. Instructions given/received and conflicts in plans and specifications.
- 10. Provide documentation of design quality control activities. For independent design reviews, provide, as a minimum, identification of the Independent Technical Reviewer (ITR) team, the ITR review comments, responses, and the record of resolution of the comments.
- B. Verification Statement: Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily with 1 week after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, prepare and submit on report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work will be for that day only. Reports need to be signed and dated by the CQC System Manager. Include copies of test reports and copies of reports prepared by all subordinate QC personnel within the CQC System Manager Report.

3.10 SAMPLE FORMS

Templates of various quality control reports can be found on the Whole Building Design Guide website at https://www.wbdg.org/FFC/NAVGRAPH/ 01%2045%2000.00%2020 quality control reports.pdf

3.11 NOTIFICATION OF NONCOMPLIANCE: The Contracting Officer or Authorized designee will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor should take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site will be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders will be made

the subject of claim for extension of time or for excess costs or damages by the Contractor.

- - - END - - -

SECTION 01 45 35 SPECIAL INSPECTIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This guide specification will be applicable to both new buildings and existing building rehabilitations/renovations. In addition to the Special Inspection and testing specified requirements, a registered design professional must perform structural observations during construction. All observed deficiencies will be immediately reported to the Contracting Officer. The registered design professional performing these observations will be a representative of the Designer of Record (DOR) for the building being constructed.
- B. Structural observations are required for the following project conditions per IBC Chapter 17:
 - 1. Seismic Design Category D, E or F; and assigned to Risk Cat III, IV or V.
 - 2. Seismic Design Category D, E or F; and with a height greater than 22860 mm 75 ft.
 - 3. Seismic Design Category E, assigned to Risk Category I or II and the building is greater than two stories above grade plane.
 - 4. Nominal design wind speed in excess of 49 m/sec 110 mph; and assigned to Risk Cat III, IV or V.
 - 5. Nominal design wind speed in excess of 49 m/sec 110 mph; and with a height greater than 23 m 75 ft.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE)
 - 1. ASCE 7 (2010; Errata 2011; Supp 2 2013) Minimum Design Loads for Buildings and Other Structures
- C. International Code Council (ICC)
 - 2. ICC IBC (2015) International Building Code

1.3 **GENERAL REQUIREMENTS**

A. Perform Special Inspections in accordance with the Statement of Special Inspections, Schedule of Special Inspections and Chapter 17 of ICC IBC.

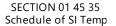
The Statement of Special Inspections and Schedule of Special Inspections are included as an attachment to this specification. Special Inspections are to be performed by an independent third party and are intended to

ensure that the work of the prime contractor is in accordance with the Contract Documents and applicable building codes. Special inspections do not take the place of the three phases of control inspections performed by the Contractor's QC Manager or any testing and inspections required by other sections of the specifications.

B. Structural observations will be performed by the Government. The contractor must provide notification to the Contracting Officer 14 days prior to the following points of construction that structural observations need to occur:

1. The Government shall perform structural observations during construction.

1.4 **DEFINITIONS**


- A. Continuous Special Inspections The constant monitoring of specific tasks by a special inspector. These inspections must be carried out continuously over the duration of the particular tasks.
- B. Periodic Special Inspections Special Inspections by the special inspector who is intermittently present where the work to be inspected has been or is being performed. Specific time interval on a specific Special Inspection should be indicated on the Schedule of Special Inspections.
- C. Perform Perform these Special Inspections tasks for each welded joint or member.
- D. Observe Observe these Special Inspections items on a random daily basis. Operations need not be delayed pending these inspections.
- E. Special Inspector (SI) A qualified person retained by the contractor and approved by the Contracting Officer as having the competence necessary to inspect a particular type of construction requiring Special Inspections. The SI must be an independent third party hired directly by the Prime Contractor.
- F. Associate Special Inspector (ASI) A qualified person who assists the SI in performing Special Inspections but must perform inspection under the direct supervision of the SI and cannot perform inspections without the SI on site.
- G. Third Party A third party inspector must not be company employee of the Contractor or any Sub-Contractor performing the work to be inspected.

- H. Special Inspector of Record (SIOR) SIOR must be an independent third party hired directly by the Prime Contractor and is required for the following project conditions:
 - 1. Seismic Design Category D, E, or F; and assigned to Risk Category III, IV, or V.
 - 2. Seismic Design Category D, E, or F; and with a height greater than $22860 \, \text{mm}$ 75 ft.
 - 3. Seismic Design Category E, assigned to Risk Category I or II and the building is greater than two (2) stories above grade plane.
 - 4. Nominal design wind speed in excess o f49 m/sec 100 mph; and assigned to Risk Category III, IV, or V.
 - 5. Nominal design wind speed in excess of 49 mm/sec 100mph; and with a height greater than 23m 75ft.
 - 6. In addition to these conditions, the DOR is encouraged to consider using an SIOR on large magnitude or critical projects where this additional level of quality control is affordable.
- I. Contracting Officer The Government official having overall authority for administrative contracting actions. Certain contracting actions may be delegated to the Contracting Officer's Representative (COR).
- J. Contractor's Quality Control (QC) Manager An individual retained by the prime contractor and qualified in accordance with the Section 01 45 00.00 10 QUALITY CONTROL having the overall responsibility for the contractor's QC organization.
- K. Designer of Record (DOR) A registered design professional is contracted by the Government as an A/E responsible for the overall design and review of submittal documents prepared by others. The DOR is registered or licensed to practice their respective design profession as defined by the statutory requirements of the professional registration laws in state in which the design professional works. The DOR is also referred to as the Engineer of Record (EOR) in design code documents.
- L. Statement of Special Inspections (SSI) A document developed by the DOR identifying the material, systems, components and work required to have Special Inspections and covering the following:
 - 1. List of the Architectural Designated Seismic Systems these components are in or attached to a Risk Category IV or V structure and are needed for continued operation of the facility or their failure could impair the continued operation of the facility.

- 2. List of the Mechanical Designated Seismic Systems
 - a. For Seismic Design Category C or Risk V, list the following:
 - Heating, ventilation, and air-conditioning (HVAC) ductwork containing hazardous materials and anchorage of such ductwork
 - Piping systems and mechanical units containing flammable, combustible, or highly toxic materials.
 - b. For Seismic Design Category D, E, or F or Risk Category V list mechanical system that meet one of the following:
 - Life safety component required to function after an earthquake
 - 2) Component that contains hazardous content,
 - 3) All components in an essential facility needed for continued operation after an earthquake.
- 3. List of the Electrical Designated Systems
 - a. For Seismic Design Category C or Risk V, list the anchorage of electrical equipment used for emergency or standby power systems.
 - b. For Seismic Design Category D, E or F list electrical system that meet one of the following:
 - Life safety component required to function after an earthquake
 - 2) Component that contains hazardous content,
 - 3) All components in an essential facility needed for continued operation after an earthquake.
- 4. List of elements that are part of the progressive collapse resistance system.
 - a. Provide a description of the following as they apply:
 - Elements of the tie force system consisting of internal longitudinal and transverse, vertical, and peripheral tie.
 - 2) Elements of the alternate path system.
 - 3) Elements having enhanced local resistance. The Statement of Special Inspections and the Schedule of Special Inspections will be included as an attachment to this specification
 - a) Schedule of Special Inspections A schedule which lists each of the required Special Inspections, the extent to which each Special Inspections is to be performed, and the required frequency for each in accordance with ICC

IBC Chapter 17. Template found here:

SECTION 01 45 35 Statement of SI Tem

- b) Designated Seismic System Those nonstructural components that require design in accordance with ASCE 7 Chapter 13 and for which the component importance factor, Ip, is greater than 1.0. This designation applies to systems that are required to be operational following the Design Earthquake for RC I - IV structures and following the MCER for RC V structures. All systems in RC V facilities designated as MC-1 in accordance with UFC 3-310-04 are considered part of the Designated Seismic Systems.
- M. Submittals: Government approval is required for all submittals. CQC Special Inspection reports shall be submitted under this Specification section and follow the [Special Inspection]: [Applicable Specification section or description] naming convention. Submit the following:
 - 1. SD-01 Preconstruction Submittals;
 - 2. SIOR Letter of Acceptance;
 - 3. Special Inspections Project Manual;
 - 4. Special Inspections Agency's Written Practices
 - 5. NDT Procedures and Equipment' Calibration Records;
 - 6. SD-06 Test Reports;
 - 7. Special Inspections
 - 8. Daily Reports;
 - 9. Special Inspections; Biweekly Reports;
 - 10. SD-07 Certificates;
 - 11. Fabrication Plant
 - 12. Steel Truss Plant;
 - 13. Wood Truss Plant;
 - 14. AC472 Accreditation;
 - 15. Steel Joist Institute Membership;
 - 16. Precast Concrete Institute (PCI) Certified Plant;
 - 17. Certificate of Compliance;
 - 18. Special Inspector of Record Qualifications;
 - 19. Special Inspector Qualifications;
 - 20. Qualification Records for NDT technicians;

- 21. SD-11 Closeout Submittals;
- 22. Interim Final Report of Special Inspections;
- 23. Comprehensive Final Report of Special Inspections;
- N. Special Inspector Qualifications: Submit qualifications for each SI, ASI, and the SIOR from the following certifying associations: Associated Air Balance Council (AABC); American Concrete Institute (ACI); Association of the Wall and Ceiling Industry (AWCI); American Welding Society (AWS); Factory Mutual (FM); International Code Council (ICC); Nondestructive Testing (NDT); National Institute for Certification in Engineering Technologies (NICET); Precast/Prestressed Concrete Institute (PCI); Post-Tensioning Institute (PTI); Underwriters Laboratories (UL). Qualifications should be in accordance with the following minimums; PM or SRE can restrict qualifications to the higher standards shown if multiple options are shown for a role based on complexity of project.

QUALIFICATIONS

Area	Special Inspector	Associated Special Inspector	SIOR
Steel Construction and High Strength Bolting	ICC Structural Steel and Bolting Special Inspector certificate with on year of related experience, or Registered Professional Engineer with related experience.	Engineer-In-Training with one year of related experience.	
Welding Structural Steel (For highly complex steel use only AWS Certified Welding Inspectors)	ICC Welding Special Inspector certificate with one year of related experience or AWS Certified Welding Inspector	AWS Certified Associate Welding Inspector	
Nondestructive Testing of Welds	NDT Level II Certificate	NDT Level II Certificate plus one year of related experience	

Area	Special Inspector	Associated Special Inspector	SIOR
Cold Formed Steel Framing	ICC Structural Steel and Bolting Special Inspector certificate with on year of related experience, or ICC Commercial Building Inspector with one year of experience; or Registered Professional Engineer with related experience.	Engineer-In-Training with one year of related experience.	
Masonry Construction	ICC Structural Masonry Special Inspector Certificate with one year of related experience, or Registered Professional Engineer with related experience	Engineer-In-Training with one year of related experience	
Sprayed Fire Resistant Manual	ICC Spray-applied Fireproofing Special Inspector Certificate, or ICC Fire Inspector I Certificate with one year of related experience, or Registered Professional Engineer with related experience	Engineer-In-Training with one year of related experience	
Fire-Resistant Penetrations and Joints	Passed the UL Firestop Exam with one year of related experience, or Passed the FM Firestop Exam with one year of related experience, or Registered Professional Engineer with related experience	Engineer-In-Training with one year of related experience.	

Area	Special Inspector	Associated Special Inspector	SIOR
Smoke Control	AABC Technician Certification with one year of related experience, or Registered Professional Engineer with related experience	Engineer-In-Training with one year of related experience.	
SIOR			Registered Professional Engineer

PART 2 - PRODUCTS

2.1 FABRICATORS SPECIAL INSPECTION

- A. Special Inspections of fabricator's work performed in the fabricator's shop is required to be inspected in accordance with the Statement of Special Inspections and the Schedule of Special Inspections unless the fabricator is certified by the approved agency to perform such work without Special Inspections. Submit the applicable certification(s) from the following list to the Contracting Officer for information to allow work performed in the fabricator's shop to not be subjected to Special Inspections.
- B. The following certifications meet the requirements for fabricator approval in accordance with paragraph 1704.2.5.2 of IBC:
 - 1. American Institute of Steel Construction (AISC) Certified Fabrication Plant, Category STD.
 - 2. Truss Plate Institute (TPI) steel truss plate quality assurance program certification.
 - 3. Truss Plate Institute (TPI) wood truss plate quality assurance program certification.
 - 4. International Accreditation Service, AC472 Accreditation Steel Joist Institute Membership
 - 5. Precast Concrete Institute (PCI) Certified Plant, Group C
- C. At the completion of fabrication, submit a certificate of compliance, to be included with the comprehensive final report of Special

Inspections, stating that the materials supplied and work performed by the fabricator are in accordance the construction documents.

PART 3 - EXECUTION

3.1 RESPONSIBILIES MATRIX

Inspector	Responsibility	Condition
SIOR	 a. Supervise all Special Inspectors required by the contract documents and the IBC. b. Submit a SIOR Letter of Acceptance to the Contracting Officer attesting to acceptance of the duties of SIOR, signed and sealed by the SIOR. c. Verify the qualifications of all of the Special Inspectors. d. Verify the qualifications of fabricators. 	Applicable when SIOR is required
	 e. Submit Special Inspections agency's written practices for the monitoring and control of the agency's operations to include the following: The agency's procedures for the selection and administration of inspection personnel, describing the training, experience and examination requirements for qualifications and certification of inspection personnel. The agency's inspection procedures, including general inspection, material controls, and visual welding inspection. Submit qualification records for nondestructive testing (NDT) technicians designated for the project. Submit NDT procedures and equipment calibration records for NDT to be performed and equipment to be used for the project. 	Applicable when SIOR is required and when the structural design is required to follow AISC341 for seismic design of steel structures
	 g. Prepare a Special Inspections Project Manual, which will cover the following: 1. Roles and responsibilities of the following individuals during Special Inspections: SIOR, SI, General Contractor, Subcontractors, QC Manager, and DOR. 2. Organizational chart and/or communication plan, indicating lines of communication 3. Contractor's internal plan for scheduling inspections. Address items such as timeliness of inspection requests, who to contact for inspection requests, and availability of alternate inspectors. Contractor's internal plan for scheduling inspections. Address items such as timeliness of inspection requests, who to contact for inspection requests, who to contact for inspection requests, and availability of alternate inspectors. 4. Indicate the government reporting procedures. 	Applicable when SIOR is required

Inspector	Responsibility	Condition
	5. Propose forms or templates to be used by SI and SIOR to document inspections.	
	6. Indicate procedures for tracking nonconforming work and verification that corrective work is complete.	
	7. Indicate how the SIOR and/or SI will participate in weekly QC meetings.	
	8. Indicate how Special Inspections of shop fabricated items will be handled when the fabricator's shop is not certified per paragraph FABRICATOR SPECIAL INSPECTIONS.	
	9. Include a section in the manual that covers each specific item requiring Special Inspections that is indicated on the Schedule of Special Inspections. Provide names and qualifications of each special inspector who will be performing the Special Inspections for each specific item. Provide detail on how the Special Inspections are to be carried out for each item so that the expectations are clear for the General Contractor and the Subcontractor performing the work. Make a copy of the Special Inspections Project Manual available on the job site during construction. Submit a copy of the Special Inspections Project Manual for approval.	
	h. Attend coordination and mutual understanding meeting where the information in the Special Inspections Project Manual will be reviewed to verify that all parties have a clear understanding of the Special Inspections provisions and the individual duties and responsibilities of each party.	
	i. Maintain a 3- ring binder for the Special Inspector's daily and biweekly reports and the Special Inspections Project Manual. This file must be located in a conspicuous place in the project trailer/office to allow review by the Contracting Officer and the DOR.	
	j. Submit a copy of the Special Inspector's daily reports to the QC Manager.	
	k. Discrepancies that are observed during Special Inspections must be reported to the QC Manager for correction. If discrepancies are not corrected before the special inspector leaves the site the observed discrepancies must be documented in the daily report.	
	1. Submit a biweekly Special Inspections report until all work requiring Special Inspections is complete. A report is required for each biweekly	

Inspector	Responsibility	Condition
	period in which Special Inspections activity occurs, and must include the following: 1. A brief summary of the work performed during the reporting time frame. 2. Changes and/or discrepancies with the drawings, specifications, and mechanical or electrical component certification if they require seismic systems, that were observed during the reporting period. 3. Discrepancies which were resolved or corrected. 4. A list of nonconforming items requiring resolution. 5. All applicable test results including nondestructive testing reports.	
QC Manager	a. If there is no SIOR, QC Manager must Supervise all Special Inspectors required by the contract documents and the IBC; Verify the qualifications of all of the Special Inspectors; Verify the qualifications of fabricators; Maintain a 3-ring binder for the Special Inspector's daily and biweekly reports. This file must be located in a conspicuous place in the project trailer/office to allow review by the Contracting Officer and the DOR.	Applicable when SIOR is not required
	b. Maintain a rework items list that includes discrepancies noted on the Special Inspectors daily report.	n/a
Special Inspectors	 a. Inspect all elements of the project for which the special inspector is qualified to inspect and are identified in the Schedule of Special Inspections. b. Attend preparatory phase meetings related to the Definable Feature of Work (DFOW) for which the special inspector is qualified to inspect. 	
	 c. Submit Special Inspections agency's written practices for the monitoring and control of the agency's operations to include the following: 1. The agency's procedures for the selection and administration of inspection personnel, describing the training, experience and examination requirements for qualifications and certification of inspection personnel. 2. The agency's inspection procedures, including general inspection, material controls, and visual welding inspection. 	Applicable when SIOR is NOT required and when the structural design is required to follow AISC 341 for seismic design of

Inspector	Responsibility	Condition
	d. Submit qualification records for nondestructive testing (NDT) technicians designated for the project.e. Submit NDT procedures and equipment calibration records for NDT to be performed and equipment to be used for the project.]	steel structures
	f. Submit a copy of the daily reports to the QC Manager. g. Discrepancies that are observed during Special Inspections must be reported to the QC Manager for correction. If discrepancies are not corrected before the special inspector leaves the site the observed discrepancies must be documented in the daily report. h. Submit a biweekly Special Inspection Report until all inspections are complete. A report is required for each biweekly period in which Special Inspections activity occurs, and must include the following: 1. A brief summary of the work performed during the reporting time frame 2. Changes and/or discrepancies with the drawings, specifications, and mechanical or electrical component certification if they require seismic systems that were observed during the reporting period. 3. Discrepancies which were resolved or corrected. 4. A list of nonconforming items requiring resolution. 5. All applicable test result including nondestructive testing reports. j. At the completion of the project submit a comprehensive final report of Special Inspections that documents the Special Inspections completed for the project and corrections of all discrepancies noted in the daily reports. The comprehensive final report of Special Inspections must be signed, dated and indicate the certification of the special inspector qualifying them to conduct the inspection.	Applicable when SIOR is not required
	k. Submit daily reports to the SIOR	Applicable when SIOR is required

3.2 DEFECTIVE WORK

Check work as it progresses, but failure to detect any defective work or materials must in no way prevent later rejection if defective work or materials are discovered, nor obligate the Government to accept such work.

- - - E N D - - -

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage are defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely affect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.
- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.

- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer's Representative (COR) to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officers Representative for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control,

- noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal
- i. Drawings showing locations of any proposed stream crossings, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- 1. Inclusion of "best management practices" and methodologies.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs,

vines, grasses, topsoil, and landforms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted. Provide erosion control plans, in phases where required.

- 1. Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
- Protection of Landscape: Protect trees, shrubs, vines, grasses, landforms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- 4. Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local 10 year storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.

- b. Reuse or conserve the collected topsoil sediment as directed by the COR. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING.
- c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.
- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features shown on the Environmental Protection Plan. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- 6. Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 7. Manage and control spoil areas on Government property to limit spoil to areas shown and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- 8. Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the COR.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.

- 1. Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
- 2. Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
- 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of South Dakota and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.

- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - 1. Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- 2. Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels at 15 meter (50 feet) (dBA):

EARTHMOVING		MATERIALS HAN	IDLING
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	100
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.

- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the \underline{A} weighing network of a General-Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

1.1 DESCRIPTION

A. This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install temporary signs attached to room door frame or room doorknob, lever, or pull for doors on corridor openings.
- B. Mark on signs with felt tip marker having approximately 3 mm (1/8-inch) wide stroke for clearly legible numbers or letters.
- C. Identify room with numbers as designated on floor plans.

3.2 LOCATION

- A. Install on doors that have room, corridor, and space numbers shown.
- B. Doors that do not require signs are as follows:
 - Corridor barrier doors (cross-corridor) in corridor with same number.
 - 2. Folding doors or partitions.
 - 3. Toilet or bathroom doors within and between rooms.
 - 4. Communicating doors in partitions between rooms with corridor entrance doors.
 - 5. Closet doors within rooms.
- C. Replace missing, damaged, or illegible signs.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

Section 02 41 00, DEMOLITION.

Section 01 00 00, GENERAL REQUIREMENTS.

1.3 D. Division 1 Sustainability specifications

QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage or Contamination.
 - 7. Mishandling and Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.

H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in

the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

- 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
- 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the COR a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.

- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - 1) Description of materials to be site-separated and self-hauled to designated facilities.
 - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

Target waste diversion rate by material and an overall diversion rate. Final report documenting the results of implementation of the preconstruction waste management plan.

APPLICABLE PUBLICATIONS

- A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC):

 LEED Green Building Rating System for New Construction

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the

quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping

fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.
- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased

- products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.
- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - 1. Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.
- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- D. Construction Indoor Air Quality (IAQ) Management Plan:

- 1. Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.
 - d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
 - e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
 - f. Instruction procedures and schedule for implementing building flush-out.

E. Product Submittals:

- 1. Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
- 2. Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's product categories. Data to include percentage of biobased content and source of biobased material.
- 3. Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.
- 4. For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.

- F. Sustainable Construction Progress Reports: Concurrent with each
 Application for Payment, submit a Sustainable Construction Progress
 Report to confirm adherence with Sustainability Action Plan.
 - 1. Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data.
 - Include updated and current Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 3. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.
- G. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - 1. Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 2. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - 3. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - 4. Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description of each approach, documenting implementation of IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
 - 5. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.
 - b. Product data for filtration media installed immediately prior to occupancy.
 - c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with Contracting Officers Representative and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, Emission Testing method for California Specification 01350 (CDPH Standard Method V1.1-2010).
- I. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - 1. Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Indoor carpet adhesives: 50 g/L.
 - 2) Wood Flooring Adhesive: 100 g/L.
 - 3) Rubber Floor Adhesives: 60 g/L.
 - 4) Subfloor Adhesives: 50 g/L.
 - 5) Ceramic Tile Adhesives and Grout: 65 g/L.
 - 6) Cove Base Adhesives: 50 g/L.
 - 7) Multipurpose Construction Adhesives: 70 g/L.
 - 8) Porous Material (Except Wood) Substrate: 50 g/L.
 - 9) Wood Substrate: 30 g/L.
 - 10) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 11) Architectural Porous Sealant Primer: 775 g/L.
 - 12) Other Sealant Primer: 750 g/L.
 - 13) Structural Wood Member Adhesive: 140 g/L.
 - 14) Sheet-Applied Rubber Lining Operations: 850 g/L.
 - 15) Top and Trim Adhesive: 250 g/L.
 - 16) Architectural Sealant: 250 g/L.
 - 17) Other Sealant: 420 g/L.
 - b. Non-Flooring Adhesives and Sealants:
 - 1) Drywall and Panel Adhesives: 50 g/L.
 - 2) Multipurpose Construction Adhesives: 70 g/L.
 - 3) Structural Glazing Adhesives: 100 g/L.
 - 4) Metal-to-Metal Substrate Adhesives: 30 g/L.
 - 5) Plastic Foam Substrate Adhesive: 50 g/L.
 - 6) Porous Material (Except Wood) Substrate Adhesive: 50 g/L.
 - 7) Wood Substrate Adhesive: 30 g/L.
 - 8) Fiberglass Substrate Adhesive: 80 g/L.
 - 9) Architectural Non-Porous Sealant Primer: 250 g/L.

- 10) Architectural Porous Sealant Primer: 775 g/L.
- 11) Other Sealant Primer: 750 g/L.
- 12) PVC Welding Adhesives: 510 g/L.
- 13) CPVC Welding Adhesives: 490 g/L.
- 14) ABS Welding Adhesives: 325 g/L.
- 15) Plastic Cement Welding Adhesives: 250 g/L.
- 16) Adhesive Primer for Plastic: 550 g/L.
- 17) Contact Adhesive: 80 g/L.
- 18) Special Purpose Contact Adhesive: 250 g/L.
- 19) Structural Wood Member Adhesive: 140 g/L.
- 20) Sheet Applied Rubber Lining Operations: 850 g/L.
- 21) Top and Trim Adhesive: 250 g/L.
- 22) Architectural Sealants: 250 g/L.
- 23) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - a. Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.
- 3. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.
 - b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
 - c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAQMD Rule 1113.
 - d. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Clear Wood Finish, Lacquer: 550 g/L.
 - 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
 - 4) Clear Wood Finish, Varnish: 350 g/L.
 - 5) Floor Coating: 100 g/L.

- 6) Interior Flat Paint, Coating or Primer: 50 g/L.
- 7) Interior Non-Flat Paint, Coating or Primer: 150 g/L.
- 8) Sealers and Undercoaters: 200 g/L.
- 9) Shellac, Clear: 730 g/L.
- 10) Shellac, Pigmented: 550 g/L.
- 11) Stain: 250 g/L.
- 12) Clear Brushing Lacquer: 680 g/L.
- 13) Concrete Curing Compounds: 350 g/L.
- 14) Japans/Faux Finishing Coatings: 350 g/L.
- 15) Magnesite Cement Coatings: 450 g/L.
- 16) Pigmented Lacquer: 550 g/L.
- 17) Waterproofing Sealers: 250 g/L.
- 18) Wood Preservatives: 350 g/L.
- 19) Low-Solids Coatings: 120 g/L.
- 4. Carpet installed in building interior must comply with one of the following:
 - a. Meet testing and product requirements of the Carpet and Rug Institute Green Label Plus program.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at the 14 day time point.
- 5. Each non-carpet flooring element installed in building interior which is not inherently non-emitting (stone, ceramic, powder-coated metals, plated or anodized metal, glass, concrete, clay brick, and unfinished or untreated solid wood flooring) must comply with one of the following:
 - a. Meet requirements of the FloorScore standard as shown with testing by an independent third-party.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at 14 day time point.
- 6. Composite wood and agrifiber products used within the weatherproofing membrane must contain no added urea-formaldehyde resins
- 7. Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies must not contain added ureaformaldehyde.
- C. Recycled Content:
 - 1. Any products being installed or used that are listed on EPA

 Comprehensive Procurement Guidelines designated product list must

meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:

- a. Building insulation.
- b. Cement and concrete.
- c. Consolidated and reprocessed latex paint.
- d. Floor tiles.
- e. Flowable fill.
- f. Laminated paperboard.
- g. Modular threshold ramps.
- h. Nonpressure pipe.
- i. Patio blocks.
- j. Railroad grade crossing surfaces.
- k. Roofing materials.
- 1. Shower and restroom dividers/partitions.
- m. Structural fiberboard.
- n. Nylon carpet and nylon carpet backing.
- o. Compost and fertilizer made from recovered organic materials.
- p. Hydraulic mulch.
- q. Lawn and garden edging.
- r. Plastic lumber landscaping timbers and posts.
- s. Park benches and picnic tables.
- t. Plastic fencing.
- u. Playground equipment.
- v. Playground surfaces.
- w. Bike racks.

D. Biobased Content:

- 1. Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:
 - 1) Adhesive and Mastic Removers.
 - 2) Carpets.
 - 3) Cleaners.
 - 4) Composite Panels.
 - 5) Corrosion Preventatives.
 - 6) Erosion Control Materials.

- 7) Dust Suppressants.
- 8) Fertilizers.
- 9) Floor Cleaners and Protectors.
- 10) Floor Coverings (Non-Carpet).
- 11) Glass Cleaners.
- 12) Hydraulic Fluids.
- 13) Industrial Cleaners.
- 14) Interior Paints and Coatings.
- 15) Mulch and Compost Materials.
- 16) Multipurpose Cleaners.
- 17) Multipurpose Lubricants.
- 18) Packaging Films.
- 19) Paint Removers.
- 20) Plastic Insulating Foam.
- 21) Pneumatic Equipment Lubricants.
- 22) Roof Coatings.
- 23) Wastewater Systems Coatings.
- 24) Water Tank Coatings.
- 25) Wood and Concrete Sealers.
- 26) Wood and Concrete Stains.
- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.
 - 1. WaterSense categories include:
 - a. Bathroom Faucets
 - b. Commercial Toilets
 - c. Irrigation Controllers
 - d. Pre-Rinse Spray Valves
 - e. Residential Toilets
 - f. Showerheads
 - g. Spray Sprinkler Bodies
 - h. Urinals
- F. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - 1. Applicable Energy Star product categories as of 09/14/2017 include:
 - a. Appliances:
 - 1) Air Purifiers and Cleaners.

- 2) Clothes Dryers (Residential).
- 3) Clothes Washers (Commercial & Residential).
- 4) Dehumidifiers.
- 5) Dishwashers (Residential).
- 6) Freezers (Residential).
- 7) Refrigerators (Residential).
- b. Electronics and Information Technology:
 - 1) Audio/Video Equipment.
 - 2) Computers.
 - 3) Data Center Storage.
 - 4) Digital Media Player.
 - 5) Enterprise Servers.
 - 6) Imaging Equipment.
 - 7) Monitors.
 - 8) Professional Displays.
 - 9) Set-Top and Cable Boxes.
 - 10) Telephones.
 - 11) Televisions.
 - 12) Uninterruptible Power Supplies.
 - 13) Voice over Internet Protocol (VoIP) Phones.
- c. Food Service Equipment (Commercial):
 - 1) Dishwashers.
 - 2) Fryers.
 - 3) Griddles.
 - 4) Hot Food Holding Cabinets.
 - 5) Ice Makers.
 - 6) Ovens.
 - 7) Refrigerators and Freezers.
 - 8) Steam Cookers.
 - 9) Vending Machines.
- d. Heating and Cooling Equipment:
 - 1) Air-Source Heat Pumps (Residential).
 - 2) Boilers.
 - 3) Ceiling Fans (Residential).
 - 4) Central Air Conditioners (Residential).
 - 5) Ductless Heating and Cooling (Residential).
 - 6) Furnaces (Residential).
 - 7) Water Heaters.

- 8) Geothermal Heat Pumps (Residential).
- 9) Light Commercial Heating and Cooling Equipment.
- 10) Room Air Conditioners (Residential).
- 11) Ventilation Fans (Residential).

e. Other:

- 1) Decorative Light Strings.
- 2) Electric Vehicle Supply Equipment.
- 3) Laboratory-Grade Refrigerators and Freezers.
- 4) Light Bulbs.
- 5) Light Fixtures.
- 6) Pool Pumps.
- 7) Roof Products.
- 8) Water Coolers.
- 9) Windows, Doors, and Skylights.
- G. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Boilers (Commercial).
 - 2. Dishwashers (Commercial).
 - 3. Electric Chillers, Air-Cooled (Commercial).
 - 4. Electric Chillers, Water-Cooled (Commercial).
 - 5. Exterior Lighting.
 - 6. Fluorescent Ballasts.
 - 7. Fluorescent Lamps, General Service.
 - 8. Ice Machines, Water-Cooled.
 - 9. Industrial Lighting (High/Low Bay).
 - 10. Light Emitting Diode (LED) Luminaires.
- H. Electronic products and equipment being installed which fall into any of the following categories shall be EPEAT registered. Electronic products and equipment covered by EPEAT program as of 09/14/2017 include:
 - 1. Computers.
 - 2. Displays.
 - 3. Imaging Equipment.
 - 4. Televisions.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Construction Indoor Air Quality Management:

- 1. During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
- 2. Protect stored on-site and installed absorptive materials from moisture damage.
- 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.
- 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy.
- 5. Provide construction dust control to comply with SCAQMD Rule 403.

- - - END - - -

SECTION 01 91 00

GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 21, Division 22, Division 23, and Division 26 series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 22, Division 23, and Division 26series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy

phases is intended to achieve the following specific objectives according to the contract documents:

- 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Contracting Officers Representative (COR) as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication

- and cooperation between the Commissioning Agent and all other parties (Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc.) is essential to the success of the Commissioning effort.
- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - 1. No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 32.16.15 PROJECT SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- C. Section 01 32.16.16 NETWORK ANALYSIS SCHEDULES (SMALL PROJECTS DESIGN/BID/BUILD)
- D. Section 01 32.16.17 PROJECT SCHEDULES (SMALL PROJECTS- DESIGN/BUILD)
- E. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES
- F. Section 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS
- G. Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- I. Section 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS.

1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.
- C. The commissioning activities have been developed to support the United States Green Building Council's (USGBC) LEED ™ rating program and to support delivery of project performance in accordance with the VA requirements developed for the project to support the following credits:
 - Commissioning activities and documentation for the LEED™ section on "Energy and Atmosphere" and the prerequisite of "Fundamental Building Systems Commissioning."
 - 2. Commissioning activities and documentation for the LEED™ section on "Energy and Atmosphere" requirements for the "Enhanced Building System Commissioning" credit.
 - 3. Activities and documentation for the LEED $^{\text{TM}}$ section on "Measurement and Verification" requirements for the Measurement and Verification credit.

1.5 ACRONYMS

List of Acronyms	
Acronym	Meaning
A/E	Architect / Engineer Design Team

List of Acronyms		
Acronym	Meaning	
AHJ	Authority Having Jurisdiction	
ASHRAE	Association Society for Heating Air Condition and	
	Refrigeration Engineers	
BOD	Basis of Design	
BSC	Building Systems Commissioning	
CCTV	Closed Circuit Television	
CD	Construction Documents	
CMMS	Computerized Maintenance Management System	
CO	Contracting Officer (VA)	
COR	Contracting Officer's Representative (see also VA-RE)	
COBie	Construction Operations Building Information Exchange	
CPC	Construction Phase Commissioning	
Сх	Commissioning	
CxA	Commissioning Agent	
CxM	Commissioning Manager	
CxR	Commissioning Representative	
DPC	Design Phase Commissioning	
FPT	Functional Performance Test	
GBI-GG	Green Building Initiative - Green Globes	
HVAC	Heating, Ventilation, and Air Conditioning	
LEED	Leadership in Energy and Environmental Design	
NC	Department of Veterans Affairs National Cemetery	
NCA	Department of Veterans Affairs National Cemetery	
	Administration	
NEBB	National Environmental Balancing Bureau	
O&M	Operations & Maintenance	
OPR	Owner's Project Requirements	
PFC	Pre-Functional Checklist	
PFT	Pre-Functional Test	
SD	Schematic Design	
SO	Site Observation	
TAB	Test Adjust and Balance	
VA	Department of Veterans Affairs	
VAMC	VA Medical Center	
VA CFM	VA Office of Construction and Facilities Management	

List of Acronyms		
Acronym	Meaning	
VACO	VA Central Office	
VA PM	VA Project Manager	
VA-COR	VA Contracting Officer Representative	
USGBC	United States Green Building Council	

1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training.

<u>Accuracy:</u> The capability of an instrument to indicate the true value of a measured quantity.

Back Check: A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

Basis of Design (BOD): The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines.

<u>Benchmarks:</u> Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

CCTV: Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

COBie: Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer

Maintenance Management Systems (CMMS) used to operate facilities. See the

Whole Building Design Guide website for further information

(http://www.wbdg.org/resources/cobie.php)

<u>Commissionability:</u> Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists:</u> Lists of data or inspections to be verified to ensure proper system or component installation, operation, and function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation).

Commissioning Manager (CxM): A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

Commissioning Process: A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report:</u> The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

<u>Commissioning Representative (CxR)</u>: An individual appointed by a sub-contractor to manage the commissioning process on behalf of the sub-contractor.

<u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements.

Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC):</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

<u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

<u>Deferred System Test:</u> Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

Deficiency: See "Commissioning Issue".

<u>Design Criteria:</u> A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR.

<u>Design Intent:</u> The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

<u>Design Narrative:</u> A written description of the proposed design solutions that satisfy the requirements of the OPR.

<u>Design Phase Commissioning (DPC):</u> All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

Executive Summary: A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

Functionality: This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

Industry Accepted Best Practice: A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

<u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

<u>Lessons Learned Workshop:</u> A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment.

Maintainability also includes components that have readily obtainable repair parts or service.

<u>Manual Test:</u> Testing using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the 'observation').

Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

Peer Review: A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

<u>Precision:</u> The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

<u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

Pre-Functional Test (PFT): An inspection or test that is done before
functional testing. PFT's include installation verification and system and
component start up tests.

<u>Procedure or Protocol:</u> A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

Resolution: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component,

equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

Special System Inspections: Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

<u>Static Tests:</u> Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

<u>Start Up Tests:</u> Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

Systems Manual: A system-focused composite document that includes all information required for the owners operators to operate the systems.

<u>Test Procedure:</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Testing:</u> The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

<u>Training Plan:</u> A written document that details, in outline form the expectations of the operator training. Training agendas should include

instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

Trending: Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification:</u> The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit:</u> A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

1.7 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:

Systom	Description
System	Description
Exterior Closure	Exterior walls, exterior windows, exterior
	doors, louvers, grilles and sunscreens,
Roofing	Roof system (including parapet), roof openings
	(skylights, pipe chases, ducts, equipment
	curbs, etc.)
Note:	The emphasis on commissioning the above
	building envelope systems is on control of air
	flow, heat flow, noise, infrared, ultraviolet,
	rain penetration, moisture, durability,
	security, reliability, constructability,
	maintainability, and sustainability.
Specialties	
Equipment	
Conveying Equipment	
Fire Suppression	
Fire Sprinkler Systems	Wet pipe system, dry pipe system, pre-action
	system, special agent systems
Plumbing	
Fixtures, Domestic	Plumbing Fixtures, Valves, shock absorbers,
Water Distribution	piping
HVAC	
Noise and Vibration	Noise and vibration levels for critical
Control	equipment such as Air Handlers, Chillers, etc.
	will be commissioned as part of the system
	commissioning

Systems To Be Commission	ned
System	Description
Direct Digital Control	Operator Interface Computer, Operator Work
System**	Station (including graphics, point mapping,
	trends, alarms), Network Communications Modules
	and Wiring, Integration Panels. [DDC Control
	panels will be commissioned with the systems
	controlled by the panel]
Chilled Water System**	Chillers (air-cooled), pumps (variable
	primary), VFDs associated with chilled water
	system components, DDC Control Panels
	(including integration with Building Control
	System)
Steam/Heating Hot	condensate recovery, water treatment, controls,
Water System**	interface with facility DDC system.
HVAC Air Handling	Air handling Units, packaged rooftop AHU,
Systems**	humidifiers, DDC control panels
HVAC	General exhaust, toilet exhaust, laboratory
Ventilation/Exhaust	exhaust, isolation exhaust, room pressurization
Systems	control systems
HVAC Terminal Unit	VAV Terminal Units, CAV terminal units, fan
Systems**	coil units
Humidity Control	Humidifiers, controls, interface with facility
Systems	DDC
Electrical	
Grounding & Bonding	Witness 3rd party testing, review reports
Systems	
Electric Power	Metering, sub-metering, power monitoring
Monitoring Systems	systems, PLC control systems
Electrical System	Review reports, verify field settings
Protective Device	consistent with Study
Study	

System	Description
	Description
Low-Voltage	Normal power distribution system, Life-safety
Distribution System	power distribution system, critical power
	distribution system, equipment power
	distribution system, switchboards, distribution
	panels, panelboards, verify breaker testing
	results (injection current, etc)
Lighting & Lighting	Emergency lighting, occupancy sensors, lighting
Control** Systems	control systems, architectural dimming systems,
	theatrical dimming systems, exterior lighting
	and controls
Communications	
Grounding & Bonding	Witness 3rd party testing, review reports
System	
Structured Cabling	Witness 3rd party testing, review reports
System	
Public Address & Mass	Witness 3rd party testing, review reports
Notification Systems	
Nurse Call & Code Blue	Witness 3rd party testing, review reports
Systems	
Security Emergency	Witness 3rd party testing, review reports
Call Systems	
Electronic Safety and Sec	curity
Grounding & Bonding	Witness 3rd party testing, review reports
Physical Access	Witness 3rd party testing, review reports
Control Systems	
Access Control Systems	Witness 3rd party testing, review reports
Security Access	Witness 3rd party testing, review reports
Detection Systems	
Video Surveillance	Witness 3rd party testing, review reports
System	
Fire Detection and	100% device acceptance testing, battery draw-
Alarm System	down test, verify system monitoring, verify
	interface with other systems.

Systems To Be Commissioned										
System	Description									
Table Notes										
** Denotes systems that LEED requires to be commissioned to comply with										
the LEED Fundamental Com	missioning pre-requisite.									

1.8 COMMISSIONING TEAM

- A. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
 - Contractor' Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- C. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - 2. User: Representatives of the facility user and operation and maintenance personnel.
 - 3. A/E: Representative of the Architect and engineering design professionals.

1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - 2. Training in operation and maintenance of systems, subsystems, and equipment.

- 3. Testing meetings.
- 4. Witness and assist in Systems Functional Performance Testing.
- 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - 2. Conduct operation and maintenance training sessions in accordance with approved training plans.
 - 3. Verify that Work is complete, and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - 6. Participate in meetings to coordinate Systems Functional Performance Testing.
 - 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
 - 8. Provide information to the Commissioning Agent for developing commissioning plan.

- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.

1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues.

 Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.

- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

 Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.
- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12-month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes.

- Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
- Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
- 3. Identification of systems and equipment to be commissioned.
- 4. Schedule of Commissioning Coordination meetings.
- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.
 - 3. Time and date of test.
 - 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.

- 5. Dated signatures of the person performing test and of the witness, if applicable.
- 6. Individuals present for test.
- 7. Observations and Issues.
- 8. Issue number, if any, generated as the result of test.
- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.

- 1. Creating a Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.
 - c. Identify date and time of the issue.
 - d. Identify test number of tests being performed at the time of the observation, if applicable, for cross reference.
 - e. Identify system, subsystem, and equipment to which the issue applies.
 - f. Identify location of system, subsystem, and equipment.
 - g. Include information that may be helpful in diagnosing or evaluating the issue.
 - h. Note recommended corrective action.
 - i. Identify commissioning team member responsible for corrective action.
 - j. Identify expected date of correction.
 - k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed, or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed, and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements

of the Contract Documents and those that do not meet requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:

- Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5, Commissioning Issues Log.
- 6. Listing of deferred and off-season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off-season test(s) results.
 - 2. Completed Systems Functional Performance Test Procedures for off season $\mathsf{test}(s)$.
 - 3. Documentation that unresolved system performance issues have been resolved
 - 4. Updated Commissioning Issues Log, including status of unresolved issues
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - Design Narrative, including system narratives, schematics, single-line diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.

- 3. Reference to Final Commissioning Report.
- 4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
 - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
 - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned.

 These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
 - 7. Systems Functional Performance Test Procedures: Preliminary step-by-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.

- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report.

 One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.

I. Data for Commissioning:

1. The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.

2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 14 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 14 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.15 OUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals.

 Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test

instruments. Instruments shall have been calibrated within six months prior to use.

1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing

and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing.

 Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

Construction Phase			Commiss	sionin	t	L = Lead	
Commissioning Roles & Responsibilities			COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				P = Participate A = Approve R = Review O = Optional
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Meetings	Construction Commissioning Kick Off meeting	L	А	Р	Р	0	
	Commissioning Meetings	L	A	P	P	0	
	Project Progress Meetings	Р	А	Р	L	0	
	Controls Meeting	L	А	Р	Р	0	
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD.		A	Р	Р	N/A	
Cx Plan & Spec	Final Commissioning Plan	L	A	R	R	0	
Schedules	Duration Schedule for Commissioning Activities		А	R	R	N/A	

Construction Phase			= Commis	sionin	L = Lead		
Commissioning Roles & Responsibilities			COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				P = Participate A = Approve R = Review O = Optional
Category	Task Description	CxA	COR	A/E	PC	M&O	Notes
OPR and BOD	Maintain OPR on behalf of Owner	L	А	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document Reviews	TAB Plan Review	L	A	R	R	0	
THE VIEWS	Submittal and Shop Drawing Review	R	A	R	L	0	
	Review Contractor Equipment Startup Checklists	L	А	R	R	N/A	
	Review Change Orders, ASI, and RFI	L	А	R	R	N/A	
Site	Witness Factory Testing	P	A	Р	L	0	
Observations	Construction Observation Site Visits	L	A	R	R	0	
Functional	Final Pre-Functional Checklists	L	А	R	R	0	
Test Protocols	Final Functional Performance Test Protocols		A	R	R	0	
Technical Activities	Issues Resolution Meetings	P	A	Р	L	0	
Reports and	Status Reports	L	A	R	R	0	

Construction P	CxA =	= Commis	sionin	L = Lead			
Commissioning Notes a Nesponsibilities		Repre A/E = PC =	COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M			P = Participate A = Approve R = Review O = Optional	
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Logs	Maintain Commissioning Issues Log	L	A	R	R	0	

10-01-15

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

Acceptance Phase			Commi	ssioni	nt	L = Lead	
Commissioning Roles & Responsibilities			entat	acting ive n Arch	P = Participate A = Approve R = Review		
				Contra Facil	O = Optional		
Category	Task Description	CxA	RE	A/E	PC	O&M	Notes
Meetings	Commissioning Meetings	L	А	Р	Р	0	
	Project Progress Meetings	Р	А	Р	L	0	
	Pre-Test Coordination Meeting	L	А	Р	Р	0	
	Lessons Learned and Commissioning Report Review Meeting	L	А	Р	P	0	

Acceptance Phas	CxA = Commissioning Agent					L = Lead	
	COR = Contracting Officer Representative					P = Participate A = Approve	
Commissioning R	Commissioning Roles & Responsibilities			n Arch	/Engir	neer	R = Review
		PC = P	rime	Contra	ctor		O = Optional
		O&M =	Gov't	Facil	ity 08	M	operenar
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
Coordination	Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD	L	Р	Р	Р	0	
Cx Plan & Spec	Maintain/Undata Commissioning Dlan	T.	<u> </u>	<u> </u>	_	1	
cx Plan & Spec	Maintain/Update Commissioning Plan		A	R	R	0	
Schedules	Prepare Functional Test Schedule	L	A	R	R	0	
OPR and BOD	Maintain OPR on behalf of Owner	L	A	R	R	0	
	Maintain BOD/DID on behalf of Owner	L	А	R	R	0	
Document Reviews	Review Completed Pre-Functional Checklists	L	A	R	R	0	
	Pre-Functional Checklist Verification	L	А	R	R	0	
	Review Operations & Maintenance Manuals	L	А	R	R	R	
	Training Plan Review	L	А	R	R	R	
	Warranty Review	L	А	R	R	0	
	Review TAB Report	L	А	R	R	0	
Site	Construction Observation Site Visits	L	A	R	R	0	
Observations	Witness Selected Equipment Startup	L	А	R	R	0	

Acceptance Phas	CxA =	Commi	ssioni	L = Lead			
Commissioning Roles & Responsibilities			COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				P = Participate A = Approve R = Review O = Optional
Category	Task Description	CxA	RE	A/E	PC	M&O	Notes
Functional	TAB Verification	L	А	R	R	0	
Test Protocols	Systems Functional Performance Testing	L	А	Р	Р	Р	
	Retesting	L	А	Р	Р	Р	
Technical	Issues Resolution Meetings	P	A	P	L	0	
Activities	Systems Training	L	S	R	Р	Р	
Reports and	Status Reports	L	A	R	R	0	
Logs	Maintain Commissioning Issues Log	L	А	R	R	0	
	Final Commissioning Report	L	А	R	R	R	
	Prepare Systems Manuals	L	А	R	R	R	

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

Warranty Phase	CxA =	- Commi	ssioni	L = Lead			
Commissioning R	oles & Responsibilities	COR = Contracting Officer Representative A/E = Design Arch/Engineer PC = Prime Contractor O&M = Gov't Facility O&M				P = Participate A = Approve R = Review O = Optional	
Category	Task Description	CxA	COR	A/E	PC	O&M	Notes
Meetings	Post-Occupancy User Review Meeting		А	0	Р	Р	
Site Observations	Periodic Site Visits	L	A	0	0	P	
Functional Test Protocols	Deferred and/or seasonal Testing	L	А	0	P	Р	
Test Flotocols							
Technical Activities	Issues Resolution Meetings	L	S	0	0	P	
	Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues	L	A		R	Р	
Reports and	Final Commissioning Report Amendment	L	А		R	R	
Logs	Status Reports	L	А		R	R	

3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
 - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
 - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.

d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.

3. Sensor and Actuator Calibration

- a. All field installed temperature, relative humidity, CO2 and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23, Division 26, Division 27, and Division 28 specifications.
- b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.

4. Execution of Equipment Startup

- a. Fourweeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
- b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
- c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
- d. Only individuals that have direct knowledge and witnessed that a line-item task on the Startup Checklist was performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning

Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.

C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.4 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers Critical, Priority, and Maintenance.
 - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
 - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Workstation located within the engineer's office.

 Additionally, Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
 - 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift. These alarms shall be generated in a scheduled report automatically by the DDC system at the start of each shift. The generated maintenance report will be printed to a printer located within the engineer's office.
- C. The Contractor shall provide a wireless internet network in the building for use during controls programming, checkout, and

- commissioning. This network will allow project team members to more effectively program, view, manipulate and test control devices while being in the same room as the controlled device.
- D. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the COR and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
 - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the COR. Any pre-test trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the COR, prior to the execution of Systems Functional Performance Testing.
 - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.
 - 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct

- Digital Control System, then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.
- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.

Dual-Path Air H	Dual-Path Air Handling Unit Trending and Alarms											
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay					
OA Temperature	AI	15 Min	24 hours	3 days	N/A							
RA Temperature	AI	15 Min	24 hours	3 days	N/A							
RA Humidity	AI	15 Min	24 hours	3 days	P	>60% RH	10 min					
Mixed Air Temp	AI	None	None	None	N/A							
SA Temp	AI	15 Min	24 hours	3 days	С	±5°F from SP	10 min					
Supply Fan Speed	AI	15 Min	24 hours	3 days	N/A							
Return Fan Speed	AI	15 Min	24 hours	3 days	N/A							
RA Pre-Filter Status	AI	None	None	None	N/A							
OA Pre-Filter Status	AI	None	None	None	N/A							
After Filter Status	AI	None	None	None	N/A							
SA Flow	AI	15 Min	24 hours	3 days	С	±10% from SP	10 min					

Dual-Path Air H	Iandling	Unit Trend	ding and Alar	ms			
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
OA Supply Temp	AI	15 Min	24 hours	3 days	Р	±5°F from SP	10 min
RA Supply Temp	AI	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AI	15 Min	24 hours	3 days	N/A		
OA Flow	AI	15 Min	24 hours	3 days	Р	±10% from SP	5 min
RA Flow	AI	15 Min	24 hours	3 days	Р	±10% from SP	5 min
Initial UVC Intensity (%)	AI	None	None	None	N/A		
Duct Pressure	AI	15 Min	24 hours	3 days	С	±25% from SP	6 min
CO2 Level	AI	15 Min	24 hours	3 days	Р	±10% from SP	10 min
Supply Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Return Fan Status	DI	COV	24 hours	3 days	С	Status <> Command	10 Min
High Static Status	DI	COV	24 hours	3 days	P	True	1 min
Fire Alarm Status	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 1	DI	COV	24 hours	3 days	С	True	10 min
Freeze Stat Level 2	DI	COV	24 hours	3 days	С	True	5 min
Freeze Stat Level 3	DI	COV	24 hours	3 days	Р	True	1 min
Fire/Smoke Damper Status	DI	COV	24 hours	3 days	Р	Closed	1 min
Emergency AHU Shutdown	DI	COV	24 hours	3 days	Р	True	1 min
Exhaust Fan #1 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
Exhaust Fan #2 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min

Dual-Path Air H	Iandling	g Unit Trend	ling and Aları	ns			
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Exhaust Fan #3 Status	DI	COV	24 hours	3 days	С	Status <> Command	10 min
OA Alarm	DI	COV	24 hours	3 days	С	True	10 min
High Static Alarm	DI	COV	24 hours	3 days	С	True	10 min
UVC Emitter Alarm	DI	COV	24 hours	3 days	Р	True	10 min
CO2 Alarm	DI	COV	24 hours	3 days	Р	True	10 min
Power Failure	DI	COV	24 hours	3 days	Р	True	1 min
Supply Fan Speed	AO	15 Min	24 hours	3 days	N/A		
Return Fan Speed	AO	15 Min	24 hours	3 days	N/A		
RA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA CHW Valve Position	AO	15 Min	24 hours	3 days	N/A		
OA HW Valve Position	AO	15 Min	24 hours	3 days	N/A		
Supply Fan S/S	DO	COV	24 hours	3 days	N/A		
Return Fan S/S	DO	COV	24 hours	3 days	N/A		
Fire/Smoke Dampers	DO	COV	24 hours	3 days	N/A		
Exhaust Fan	DO	COV	24 hours	3 days	N/A		
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A		
Exhaust Fan S/S	DO	COV	24 hours	3 days	N/A		
AHU Energy	Calc	1 Hour	30 day	N/A	N/A		

Terminal Unit (VAV, CAV, etc.) Trending and Alarms									
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay		

Terminal Unit (Terminal Unit (VAV, CAV, etc.) Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min				
Air Flow	AI	15 Min	12 hours	3 days	P	±5°F from SP	10 min				
SA Temperature	AI	15 Min	12 hours	3 days	Р	±5°F from SP	10 min				
Local Setpoint	AI	15 Min	12 hours	3 days	М	±10°F from SP	60 min				
Space Humidity	AI	15 Min	12 hours	3 days	P	> 60% RH	5 min				
Unoccupied Override	DI	COV	12 hours	3 days	М	N/A	12 Hours				
Refrigerator Alarm	DI	COV	12 hours	3 days	С	N/A	10 min				
Damper Position	AO	15 Minutes	12 hours	3 days	N/A						
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A						

4-Pipe Fan Coil Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min			
SA Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min			
Pre-Filter Status	AI	None	None	None	М	> SP	1 hour			
Water Sensor	DI	COV	12 hours	3 days	M	N/A	30 Min			
Cooling Coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A					
Heating coil Valve Position	AO	15 Minutes	12 hours	3 days	N/A					
Fan Coil ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min			

Unit Heater Tre	Unit Heater Trending and Alarms										
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Space Temperature	AI	15 Minutes	12 hours	3 days	Р	±5°F from SP	10 min				
Heating Valve Position	AO	15 Minutes	12 hours	3 days	N/A						
Unit Heater ON/OFF	DO	COV	12 hours	3 days	М	Status <> Command	30 min				

Domestic Hot Wa	Domestic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Domestic HW Setpoint WH-1	AI	15 Minute	12 Hours	3 days	N/A						
Domestic HW Setpoint WH-2	AI	15 Minute	12 Hours	3 days	N/A						
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	С	> 135 oF	10 Min				
Domestic HW Temperature	AI	15 Minute	12 Hours	3 days	Р	±5°F from SP	10 Min				
Dom. Circ. Pump #1 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min				
Dom. Circ. Pump #2 Status	DI	COV	12 Hours	3 days	М	Status <> Command	30 min				

Domestic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay			
Dom. Circ. Pump #1 Start/Stop	DO	COV	12 Hours	3 days	N/A					
Dom. Circ. Pump #2 Start/Stop	DO	COV	12 Hours	3 days	N/A					
Domestic HW Start/Stop	DO	COV	12 Hours	3 days	N/A					

Hydronic Hot Wa	ter Tre	ending and A	larms				
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
System HWS Temperature	AI	15 min	12 hours	3 days	С	±5°F from SP	10 Min
System HWR Temperature	AI	15 min	12 hours	3 days	M	±15°F from SP	300 Min
HX-1 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Entering Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
HX-2 Leaving Temperature	AI	15 min	12 hours	3 days	Р	±5°F from SP	10 Min
System Flow (GPM)	AI	15 min	12 hours	3 days	N/A		
System Differential Pressure	AI	15 min	12 hours	3 days	Р	±10% from SP	8 Min
				3 days			
HW Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
HW Pump 1 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
HW Pump 2 VFD Speed	AO	15 Min	12 Hours	3 days	N/A		
Steam Station #1 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A		

Hydronic Hot Wa	Hydronic Hot Water Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Steam Station #1 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station #2 1/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station #2 2/3 Control Valve Position	AO	15 Min	12 Hours	3 days	N/A						
Steam Station Bypass Valve Position	AO	15 Min	12 Hours	3 days	N/A						
HW Pump 1 Start/Stop	DO	COV	12 Hours	3 days	N/A						
HW Pump 2 Start/Stop	DO	COV	12 Hours	3 days	N/A						
HWR #1 Valve	DO	COV	12 Hours	3 days	N/A						
HWR #2 Valve	DO	COV	12 Hours	3 days	N/A						

Chilled Water S	Chilled Water System Trending and Alarms										
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay				
Chiller 1 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	P	±5°F from SP	10 Min				
Chiller 1 Flow	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 1 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A						
Chiller 2 Entering Temperature	AI	15 Minutes	12 Hours	3 days	N/A						

Chilled Water S	ystem 1	rending and	Alarms				
Point	Туре	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 2 Leaving Temperature	AI	15 Minutes	12 Hours	3 days	Р	±5°F from SP	10 Min
Chiller 2 Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Percent Load	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 KW Consumption	AI	15 Minutes	12 Hours	3 days	N/A		
Chiller 2 Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Decoupler Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Differential Pressure	AI	15 Minutes	12 Hours	3 days	Р	±5% from SP	10 Min
Secondary Loop Flow	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Supply Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Return Temperature	AI	15 Minutes	12 Hours	3 days	N/A		
Secondary Loop Tonnage	AI	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Primary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Secondary Loop Pump 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 1 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min

Chilled Water System Trending and Alarms							
Point	Type	Trend Interval	Operationa 1 Trend Duration	Testing Trend Duration	Alarm Type	Alarm Range	Alarm Delay
Chiller 1 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 1 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Chiller 2 Status	DI	COV	12 Hours	3 days	С	Status <> Command	30 min
Chiller 2 Evaporator Iso-Valve	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Evaporator Flow Switch	DI	COV	12 Hours	3 days	N/A		
Chiller 2 Unit Alarm	DI	COV	12 Hours	3 days	С	True	10 Min
Emergency Shutdown	DI	COV	12 Hours	3 days	Р	True	1 Min
Primary Loop Pump 1 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Loop Pump 2 VFD Speed	AO	15 Minutes	12 Hours	3 days	N/A		
Primary Pump 1 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Primary Pump 2 Start / Stop	DO	COV	12 Hours	3 days	N/A		
Chiller 1 Enable	DO	COV	12 Hours	3 days	N/A		
Chiller 1 Iso- Valve Command	DO	COV	12 Hours	3 days	N/A		
Chiller 2 Enable	DO	COV	12 Hours	3 days	N/A		
Chiller 2 Iso- Valve Command	DO	COV	12 Hours	3 days	N/A		

E. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified

after submission shall be recorded and resubmitted to the COR and Commissioning Agent.

- 1. Point-to-Point checkout documentation;
- 2. Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
- 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

SYSTEM					
Sensor	Calibration	O&M Calibration Procedure			
Selisor	Frequency	Reference			
Discharge air	Once a year	Volume I Section D.3.aa			
temperature	Once a year				
Discharge static	Every 6 months	Volume II Section A.1.c			
pressure	Every 6 months	volume ii section A.i.c			

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

AIR HANDLING UNIT AHU-1						
Control Reference	Proportional Constant	Integral Constant	Derivative Constant	Interval		
Heating Valve Output	1000	20	10	2 sec.		

3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance
 Testing is to demonstrate that each system is operating according to

the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.

- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.
- D. Purpose of Test Procedures: The purpose of each specific Systems

 Functional Performance Test is to verify and document compliance with the

 stated criteria of acceptance given on the test form. Representative test

 formats and examples are found in the Commissioning Plan for this project.

 (The Commissioning Plan is issued as a separate document and is available

 for review.) The test procedure forms developed by the Commissioning

 Agent will include, but not be limited to, the following information:
 - System and equipment or component name(s)

- 2. Equipment location and ID number
- 3. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
- 4. Date
- 5. Project name
- 6. Participating parties
- 7. A copy of the specification section describing the test requirements
- 8. A copy of the specific sequence of operations or other specified parameters being verified
- 9. Formulas used in any calculations
- 10. Required pretest field measurements
- 11. Instructions for setting up the test.
- 12. Special cautions, alarm limits, etc.
- 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether proper performance of each part of the test was achieved.
- 15. A section for comments.
- 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e., persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
 - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
 - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be

erroneous or not applicable. Simulating a condition is preferable.
e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.

- 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended overusing the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to

- continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. Testing Prerequisites: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.
- K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

A. Documentation: The Commissioning Agent will witness and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled-out forms with the O&M manual data.

- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
 - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
 - 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with

- the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
- b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
- c. The Commissioning Agent will document the resolution process.
- d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
 - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
 - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.

- 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
- 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
- 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form and provide signed copies to the Commissioning Agent and the Contractor.

3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent.

Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26, Division 27, Division 28, and Division 31 sections. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.
 - 6. Review course materials (including operation and maintenance manuals).
 - 7. Review and discuss locations and other facilities required for instruction.
 - 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
 - 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - 2. Qualification Data: Submit qualifications for facilitator and/or instructor.

- 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
- 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
- 5. Demonstration and Training Recording:
 - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
 - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
 - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
 - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
 - e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

D. Quality Assurance:

- 1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
- 2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.

3. Photographer Qualifications: A professional photographer who is experienced photographing construction projects.

E. Training Coordination:

- 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
- 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.

F. Instruction Program:

- 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. Fire protection systems, including fire alarm, fire pumps, and fire suppression systems.
 - b. Intrusion detection systems.
 - c. Conveying systems, including elevators, wheelchair lifts, escalators, and automated materials handling systems.
 - d. Medical equipment, including medical gas equipment and piping.
 - e. Laboratory equipment, including laboratory air and vacuum equipment and piping.
 - f. Heat generation, including boilers, feedwater equipment, pumps, steam distribution piping, condensate return systems, heating hot water heat exchangers, and heating hot water distribution piping.
 - g. Refrigeration systems, including chillers, cooling towers, condensers, pumps, and distribution piping.
 - h. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
 - i. HVAC instrumentation and controls.
 - j. Electrical service and distribution, including switchgear, transformers, switchboards, panelboards, uninterruptible power supplies, and motor controls.
 - k. Packaged engine generators, including synchronizing switchgear/switchboards, and transfer switches.
 - 1. Lighting equipment and controls.

- m. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- n. Site utilities including lift stations, condensate pumping and return systems, and storm water pumping systems.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - 1. Basis of System Design, Operational Requirements, and Criteria:
 Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor is delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - H, Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - a. Instructions on meaning of warnings, trouble indications, and error messages.
 - b. Instructions on stopping.
 - c. Shutdown instructions for each type of emergency.
 - d. Operating instructions for conditions outside of normal operating limits.
 - e. Sequences for electric or electronic systems.

- f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - q. Instruction on use of special tools.
- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.

e. Review of spare parts needed for operation and maintenance.

H. Training Execution:

 Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.

2. Instruction:

- a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
- b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - 1) The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - 2) The VA will furnish an instructor to describe VA's operational philosophy.
 - 3) The VA will furnish the Contractor with names and positions of participants.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
- 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

I. Demonstration and Training Recording:

 General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of

- each training module, record each chart containing learning objective and lesson outline.
- 2. Video Format: Provide high quality color DVD color on standard size DVD disks.
- 3. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training.

 Display continuous running time.
- 4. Narration: Describe scenes on videotape by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.

---- END ----

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- B. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Asbestos Removal: Section 02 82 13.31 ASBESTOS TRANSITE ABATEMENT
- F. Lead Paint: Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
- H. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- I. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS, Article 1.12, INFECTION CONTROL.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck.

- Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the COR. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have COR's approval.
- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS and Section 01 35 26, SAFETY REQUIREMENTS.

1.4 UTILITY SERVICES:

A. Demolish and remove outside utility service lines shown to be removed.

B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - 2. To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the COR. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas, including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.
- E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the COR. When Utility lines are encountered that are not indicated on the drawings, the COR shall be notified prior to further work in that area.

3.2 CLEAN-UP:

A. On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to COR. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 02 82 13.13 GLOVEBAG ASBESTOS ABATEMENT

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor (Contractor) discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining quidance from the Contracting Officer shall become the sole risk and responsibility of the Contractor. All cost incurred due to such action are also the responsibility of the Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated by the glovebag method. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of ACM in an appropriate regulated area in the following approximate quantities;

Asbestos Containing Material	Locations	Quantity	
Tan Glue Pods on metal ductwork	Mezzanine above Mechanical Room CM100 by exit door to roof	3 sf	

1.1.3 RELATED WORK

A. Section 02 41 00; DEMOLITION.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

- A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, work-site preparations, emergency procedures arrangements, and standard operating procedures for glovebag asbestos abatement work.
- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State, and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved pre-abatement work plan. Asbestos abatement drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action.

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimates which are limited by the physical constraints imposed by occupancy of the buildings. Accordingly, minor variations (+/- 5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the Contractor shall

provide unit prices for additional footage for newly discovered materials and those prices will be used for additional work under the contract.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer or their field representative presents a written Stop Asbestos Removal Order, the Abatement Contractor/Personnel shall immediately stop all asbestos removal and adequately wet any exposed ACM. The Contractor shall not resume any asbestos removal activity until authorized to do so by the VA. A stop asbestos removal order may be issued at any time the VA determines abatement conditions/activities are not within specification requirements. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the industrial hygienist's time. The occurrence of any of the following events shall be reported immediately by the Contractor in writing to the VA representative and shall require the Contractor to immediately stop asbestos removal activities and initiate fiber reduction activities:

- A. =/> 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach/break in regulated area critical barrier(s)/floor;
- C. serious injury/death at the site;
- D. fire/safety emergency at the site;
- E. respiratory protection system failure;
- F. power failure or loss of wetting agent; or
- G. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestos-containing materials, typically during removal. Includes removal, encapsulation, enclosure, demolition and renovation activities related to asbestos.

ACE - Asbestos contaminated elements.

ACM - Asbestos containing material.

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos-containing material (ACM) - Any material containing more than one percent asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-containing waste material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment

leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency having jurisdiction over the regulated area.

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Barriers placed over critical barriers and exposed
directly to abatement work.

Secondary Barrier - Any additional sheeting used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos
containing materials.

Certified Industrial Hygienist (CIH) - One certified in practice of industrial hygiene by the American Board of Industrial Hygiene. An industrial hygienist Certified in Comprehensive Practice by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard,

floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's industrial hygiene consultant (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH) - The Contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of the PIH.

Count - Refers to the fiber count or the average number of fibers
greater than five microns in length per cubic centimeter of air.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

Disposal bag - Typically 6 mil thick siftproof, dustproof, leaktight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard

sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be siftproof, dustproof, and leaktight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than 1 percent asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60×60 -inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - A filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 microns or greater in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned.

Intact - The ACM has not crumbled, been pulverized, or otherwise
deteriorated so that the asbestos is no longer likely to be bound with
its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP's) - EPA's rule to control emissions of asbestos to the environment.

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL's.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air outside the respirator.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators for organic vapor exposures.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who

owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone of the person using a cassette and battery-operated pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8-hour time weighted average. For asbestos fibers, the PEL is 0.1 fibers per cc.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, sometimes flame retardant in compliance with NFPA 241.

Positive/negative fit check - A method of verifying the fit of a respirator by closing off the filters and breathing in or closing off the exhalation valve and breathing out while detecting leakage of the respirator.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (k) (5).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH.

Project designer - A person who has successfully completed the training
requirements for an asbestos abatement project designer as required by
40 CFR 763 Appendix C, Part I; (B)(5).

Protection factor - A value assigned by OSHA/NIOSH to indicate the assigned protection a respirator should provide if worn properly. The

number indicates the reduction of exposure level from outside to inside the respirator.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material

which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I nonfriable ACM that has become friable; Category I nonfriable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II nonfriable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area. Also used for bag/drum decontamination in the EDF.

Standard operating procedures (SOP's) - Asbestos work procedures required to be submitted by the contractor before work begins.

Supplied air respirator (SAR) - A respirator that utilizes an air supply separate from the air in the regulated area.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Industrial Hygienist (VPIH/CIH) - Department of Veterans Affairs Professional Industrial Hygienist.

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM or ACM waste material.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW
 - Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300

D. ASTM American Society for Testing and Materials

1916 Race St.

Philadelphia, PA 19103

215-299-5400

E. CFR Code of Federal Regulations

Government Printing Office

Washington, DC 20420

F. CGA Compressed Gas Association

1235 Jefferson Davis Highway

Arlington, VA 22202

703-979-0900

G. CS Commercial Standard of the National Institute of Standards and Technology (NIST)

U. S. Department of Commerce

Government Printing Office

Washington, DC 20420

H. EPA Environmental Protection Agency

401 M St., SW

Washington, DC 20460

202-382-3949

I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420

J. MSHA Mine Safety and Health Administration

Respiratory Protection Division

Ballston Tower #3

Department of Labor

Arlington, VA 22203

703-235-1452

K. NIST National Institute for Standards and Technology

U. S. Department of Commerce

Gaithersburg, MD 20234

301-921-1000

L. NEC National Electrical Code (by NFPA)

M. NEMA National Electrical Manufacturer's Association

2101 L Street, NW

Washington, DC 20037

N. NFPA National Fire Protection Association

1 Batterymarch Park

P.O. Box 9101
Quincy, MA 02269-9101
800-344-3555

O. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway
Cincinnati, OH 45226
513-533-8236

P. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402

Q. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

R. USA United States Army Army Chemical Corps Department of Defense Washington, DC 20420

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with this specification exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 CONTRACTOR RESPONSIBILITY

The Contractor shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the abatement project. The contractor

is responsible for providing and maintaining training, accreditation, medical exams, medical records, personal protective equipment as required by applicable Federal, State and Local regulations. The contractor shall hold the VA and VPIH/CIH consultants harmless for any failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The contractor will incur all costs of the CPIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910.132 Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.20 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910.151 Medical and First Aid
- B. Environmental Protection Agency (EPA)
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
 Title 49 CFR 100 185 Transportation

1.5.4 STATE REQUIREMENTS:

- A. State requirements that apply to the abatement work include the following:
 - 1. Administrative Rules of South Dakota (ARSD) 74:36:08:02 and training requirements found in ARSD 74:31 and SDCL 34-44. Administrative code adopted by the South Dakota Health Commission to implement the statutes may be found under 10A NCAC 41C .0601 Asbestos Hazard Management Program.
 - 2. The South Dakota Asbestos Rules adopt the National Emission Standards for Hazardous Air Pollutants (NESHAP) relating to asbestos demolition and renovation by reference. These

regulations may be found at 40 CFR Part 61, Subpart M - National Emission Standard for Asbestos (40 CFR 61-141-157).

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - 1. American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems Z88.2 Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL)586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to, the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007.
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification is given to EPA, State, and Local authorities.

1.5.9 PERMITS/LICENSES

The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.10 POSTING AND FILING OF REGULATIONS

Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipment and personal possessions to avoid unauthorized access into the regulated area. Note:

 Notification of adjacent personnel is required by OSHA in 29 CFR
 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized and method of analysis.
- C. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.12 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately notify the VA.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.

- D. Access to the regulated area shall be through a single decontamination unit, if required. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside, however, they shall be sealed with poly sheeting and taped until needed.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24-hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Abatement Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA security guards.

1.5.13 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed by the Contractor prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a); (b).
- B. Emergency procedures shall be in written form and prominently posted and available in the regulated area. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule and layout of regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for

- response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non-life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; and power failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that work is stopped and wetting is continued until correction of the problem.

1.5.14 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VPCIH to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the pre-start meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person shall also be presented.

- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Contractor's Standard Operating Procedures for Class I Glovebag Asbestos Abatement. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - Notification requirements procedure of Contractor as required in 29
 CFR 1926.1101 (d);
 - 3. If required, decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Glovebag abatement methods/procedures and equipment to be used;
 - 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized onsite shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number;

- qualifications; accreditation card with picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist (CPIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete standard operating procedure for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
 - 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.132;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program All respirators used must be NIOSH approved for asbestos abatement activities. The written respiratory protection shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c) (1) (i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years' experience coordinating the program. The RPPC must provide a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualification. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full-face powered air purifying respirator when fiber levels are maintained consistently at or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician has determined they are capable of doing so and has issued a written opinion for that person.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Fit tests shall be done for PAPR's which have been put into a failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative fit check is done each time the respirator is donned by an employee. Headcoverings must cover respirator headstraps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a fit check shall preclude that person from wearing a respirator until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) maintenance and care of respirators.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. The physician's written opinion as required by 29 CFR 1926.1101 (m) (4) shall be provided for each person and shall include in the opinion the person has been evaluated for working in a heat stress environment while wearing personal protective equipment and is able to perform the work.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

1.8.4 REGULATED AREA ENTRY PROCEDURE

Worker protection shall meet the most stringent requirement. The Competent Person shall ensure that each time workers enter the regulated area, they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.5 DECONTAMINATION PROCEDURE - PAPR

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid asbestos fibers wile showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.
 - 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!

D. Shower and wash body completely with soap and water. Rinse thoroughly.

E. Rinse shower room walls and floor to drain prior to exiting.

F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I glovebag regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

Provide each regulated area with separate personnel (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF is the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

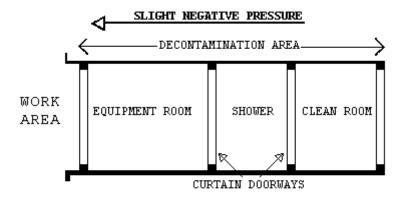
1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area shall follow the requirements at 29 CFR 1926.1101 (j) (1) and these specifications. All equipment and materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire-retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weigh sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary electric power with ground fault protection and overhead wiring in the PDF and W/EDF. Provide a sub-panel for all temporary power in the clean room. Provide adequate lighting to provide

a minimum of 50-foot candles in the PDF and W/EDF. Provide temporary heat to maintain $70^{\circ}F$ throughout the PDF and W/EDF.

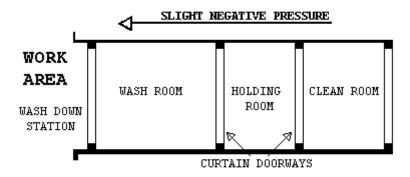

1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 2 layers of 6 mil fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide flapped doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. An adequate supply of disposable towels shall be provided. Provide storage lockers per person. A portable fire extinguisher, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the regulated area to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining

smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100-micron sock in the shower drain; a 20-micron filter; and a final 5-micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.

- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment, reusable footwear and for use as a change station for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3-foot-wide door made of 2 layers of 6 mil fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. Provide a temporary electrical sub-panel equipped with GFCI in this room to accommodate any equipment required in the regulated area.
- 4. The PDF shall consist of the following: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF is minimum of 2 layers of 6 mil fire retardant poly.


1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide a W/EDF consisting of a wash room, holding room, and clean room for removal of all waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment, bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the building exterior. Construct the clean room using 2×4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room

shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of two layers of 6 mil fire retardant poly.

5. The W/EDF shall be provided as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the Contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and

- the CPIH has submitted verification to the VA's representative to this effect:
- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated/work area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized place.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Poly sheeting put under the glovebag regulated area shall be a minimum of 6 mils in thickness.
- F. If required, the method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces.
- G. Polyethylene sheeting utilized for personnel decontamination facility shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements shall be provided. Fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project shall also be provided. All electrically operated hand tools, equipment, electric cords shall be equipped with GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water, and falling material).

- K. Disposal bags 2 layers of 6 mil, for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided a copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard Communication. Chlorinated compounds shall not be used with any spray adhesive or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a hazard assessment conducted under 29 CFR 1910.132(d).

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All horizontal surfaces in the regulated area must be covered with 2 layers of 6 mil fire retardant poly to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated, immediately stop work and clean up the contamination at no additional cost to the Government. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 2.2.8; FIRESTOPPING.

2.2.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

A. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

A. Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view

of an occupied area, provide a visual barrier of 6 mil opaque fireretardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid.

2.2.4 CRITICAL BARRIERS

A. Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS

A. A loose layer of 6 mil fire retardant poly shall be used as a drop cloth to protect the floor/horizontal surfaces from debris generated during the glovebag abatement. This layer shall be replaced as needed during the work.

2.2.6 EXTENSION OF THE REGULATED AREA

A. If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. If the affected area cannot be added to the regulated area, decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

2.2.7 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves must be firestopped with a fire-rated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The Contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA Representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant

system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. The CPIH shall periodically inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for

this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH with review and approval of the VPIH/CIH. An agreement between the CPIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: Assure quality; resolve problems; and prevent the spread of contamination beyond the regulated area. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
- Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
- 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of unforeseen developments, etc.
 - 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area or building at the conclusion of the abatement and clean-up work to certify compliance with all regulations and the VA requirements/specifications.
 - 6. Task 6: Issue certificate of decontamination for each regulated area or building and project report.
- B. All data, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and

- consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY ABATEMENT CONTRACTOR CPIH

The CPIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor /Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in air sampling and analysis. The IH Technician shall have a NIOSH 582 Course or equivalent and show proof. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA/State Contractor/Supervisor and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT. A daily log documenting all OSHA requirements for air monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH. The log will contain, at a minimum, information on personnel or area sampled, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be

collected. In addition to the continuous monitoring required, the CPIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH responsibilities.

2.4 STANDARD OPERATING PROCEDURES

The Contractor shall have established Standard Operating Procedures (SOP's) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the ways and procedures to be followed during all phases of the work by the Contractor's personnel. The SOP's must be modified as needed to address specific requirements of the project. The SOP's shall be submitted for review and approval prior to the start of any abatement work. The minimum topics and areas to be covered by the SOP's are:

- A. Minimum Personnel Qualifications
- B. Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements for Glovebag Abatement
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Monitoring, Inspections, and Testing
- I. Removal Procedures for ACM Using the Glovebag Method
- J. Disposal of ACM waste
- K. Regulated Area Decontamination/Clean-up
- L. Regulated Area Visual and Air Clearance
- M. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-CONSTRUCTION MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project.

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the

- "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Standard Operating Procedures developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH.
- D. Submit the specifics of the materials and equipment to be used for this project with brand names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - 1. HEPA vacuums, air monitoring pumps, calibration devices, and emergency power generating system.
 - 2. Waste water filtration system, shower system, critical/floor barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, fire extinguishers.
 - 4. Personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire, ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - 1. Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date

- 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years:
 - Project Name; Reason; Date; Reference Name/Number; Resolution
- 3. List asbestos regulatory citations, penalties, damages paid and legal actions taken against the company in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; provide references; phone numbers; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - 1. CPIH: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of SOP's developed; medical opinion; current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion; current respirator fit test.
 - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion; current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain english the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of SOP's incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who does and how is air monitoring conducted; a list of references of independent laboratories/IH's familiar with

- your air monitoring and standard operating procedures; copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. When rental equipment is to be used in regulated areas or used to transport asbestos waste, the contractor shall assure complete decontamination of the rental equipment before return to the rental agency.
 - 1. Submit, before the start of work, the manufacturer's technical data and MSDS for encapsulants used on the project. Provide application instructions also.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as critical barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWA's/EL's. Submit this daily log to VA's representative.
- B. The CPIH shall document and maintain the following during abatement and submit as appropriate to the VA's representative.
 - 1. Inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 2. Removal of any poly critical/floor barriers.
 - 3. Visual inspection/testing by the CPIH prior to application of lockdown encapsulation.
 - 4. Packaging and removal of ACM waste from regulated area.
 - 5. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. The report shall include a certificate of completion, signed and dated by the CPIH, in accordance with Attachment #1. The VA Representative will forward the abatement report to the Medical Center after completion of the project.

2.6 ENCAPSULANTS

2.6.1 TYPES OF ENCAPSULANTS

- A. The following four types of encapsulants must comply with comply with performance requirements as stated in paragraph 2.6.2:
 - 1. Removal encapsulant used as a wetting agent to remove ACM.
 - 2. Bridging encapsulant provides a tough, durable coating on ACM.
 - 3. Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2").
 - 4. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.6.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - 2. University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft 2).
 - 2. ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).
 - 3. ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kg-mm (43 in/lb).
 - 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft^2) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.7 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations.

2.8 RECYCLABLE PROTECTIVE CLOTHING

If recyclable clothing is provided, all requirements of EPA, DOT and OSHA shall be met.

PART 3 - EXECUTION

3.1 PRE-ABATEMENT ACTIVITIES

3.1.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of 10/95 A/E Quality Alert indicating the failure to identify asbestos as applicable to glovebag abatement in the areas listed. Make sure these areas are looked at/reviewed on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations;

- inside chases/walls; transite piping/ductwork/sheets; behind radiators; below window sills; water/sewer lines; electrical conduit coverings; steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects which the Contractor is required to remove from the regulated area have been cleaned and removed or properly protected from contamination.
- D. Shut down and seal with a minimum of 2 layers of 6 mil fire retardant poly all HVAC systems serving the regulated area. The regulated area critical barriers shall be completely isolated from any other air in the building. The VA's representative will monitor the isolation provision.
- E. Shut down and lock out in accordance with 29 CFR 1910.147 all electrical circuits which pose a potential hazard. Electrical arrangements will be tailored to the particular regulated area and the systems involved. All electrical circuits affected will be turned off at the circuit box outside the regulated area, not just the wall switch. The goal is to eliminate the potential for electrical shock which is a major threat to life in the regulated area due to water use and possible energized circuits. Electrical lines used to power equipment in the regulated area shall conform to all electrical safety standards and shall be isolated by the use of a ground fault circuit interrupter (GFCI). All GFCI shall be tested prior to use. The VA's representative will monitor the electrical shutdown.
- F. If required, remove and dispose of carpeting from floors in the regulated area.
- G. Inspect existing firestopping in the regulated area. Correct as needed.

3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved SOP's, especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation.

- C. The CPIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification.

3.2 REGULATED AREA PREPARATIONS

3.2.1 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed ambient background levels. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.2.2 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out electric power to the regulated area. Provide temporary power and lighting. Ensure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

3.2.3 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated

Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.2.4 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.2.5 WATER FOR ABATEMENT

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

3.2.6 PRE-CLEANING MOVABLE OBJECTS

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.2.7 PRE-CLEANING FIXED OBJECTS

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After precleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.2.8 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestoscontaining materials during this pre-cleaning phase.

3.3 CONTAINMENT BARRIERS AND COVERINGS FOR THE REGULATED AREA

3.3.1 GENERAL

Seal off any openings at the perimeter of the regulated area with critical barriers to completely isolate the regulated area and to contain all airborne asbestos contamination created by the abatement activities. Should the adjacent area past the regulated area become contaminated due to improper work activities, the Contractor shall suspend work inside the regulated area, continue wetting, and clean the adjacent areas in accordance with procedures described in these specifications. Any and all costs associated with the adjacent area cleanup shall not be borne by the VA.

3.3.2 PREPARATION PRIOR TO SEALING OFF

Place all materials, equipment and supplies necessary to isolate the regulated area inside the regulated area. Remove all movable

material/equipment as described above and secure all unmovable material/equipment as described above. Properly secured material/equipment shall be considered to be outside the regulated area.

3.3.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area shall be permitted only through the PDF. All other means of access shall be closed off by proper sealing and DANGER signs posted on the clean side of the regulated area where it is adjacent to or within view of any occupiable area. An opaque visual barrier of 6 mil poly shall be provided so that the abatement work is not visible to any building occupants. If the area adjacent to the regulated area is accessible to the public, construct a solid barrier on the public side of the sheeting for protection and isolation of the project. The barrier shall be constructed with nominal 2" x 4" (50mm x 100mm) wood or metal studs 16" (400mm) on centers, securely anchored to prevent movement and covered with a minimum of 1/2" (12.5mm) plywood. Provide an appropriate number of OSHA DANGER signs for each visual and physical barrier. Any alternative method must be given a written approval by the VA's representative.

3.3.4 CRITICAL BARRIERS

The regulated area must be completely separated from the adjacent areas, and the outside by at least 2 layers of 6 mil fire retardant poly and duct tape/spray adhesive. Individually seal all supply and exhaust ventilation openings, lighting fixtures, clocks, doorways, windows, convectors, speakers, and other openings into the regulated area with 2 layers of 6 mil fire retardant poly, and taped securely in place with duct tape/spray adhesive. Critical barriers must remain in place until all work and clearances have been completed. Light fixtures shall not be operational during abatement. Auxiliary lighting shall be provided. If needed, provide plywood squares 6" x 6" x 3/8" (150mm x 150mm x 18mm) held in place with one 6d smooth masonry/galvanized nail driven through the center of the plywood square and duct tape on the poly so as to clamp the poly to the wall/surface. Locate plywood squares at each end, corner, and 4' (1200mm) maximum on centers.

3.3.5 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be

enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.

3.3.6 FLOOR BARRIERS:

All floors within 10' of glovebag work shall be covered with 2 layers of 6 mil fire retardant poly.

3.4 REMOVAL OF MISCELLANEOUS ACM MATERIALS IN GLOVEBAGS

3.4.1 WETTING MATERIALS

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP's regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: Provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during disturbance equal to or greater than the amended water described above in B.

3.4.2 SECONDARY BARRIER AND WALKWAYS

- A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely floors within 10 feet (3M) of the area where work is to done. Secure the secondary barrier with duct tape to prevent debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- B. Install walkways using 6 mil poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the floor from

contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.4.3 WET REMOVAL OF ACM

A. Using acceptable glovebag procedures, adequately and thoroughly wet the ACM to be removed prior to removal to reduce/prevent fiber release to the air. Adequate time must be allowed for the amended water to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except in the case of electrical hazards or a greater safety issue is possible!

3.5 GLOVEBAG REMOVAL PROCEDURES

3.5.1 GENERAL

All applicable OSHA requirements and glovebag manufacturer's recommendations shall be met during glove bagging operations.

- 1. Mix the surfactant with water in the garden sprayer, following the manufacturer's directions.
- 2. Have each employee put on a HEPA filtered respirator approved for asbestos and check the fit using the positive/negative fit check.
- 3. Have each employee put on a disposable full-body suit. Remember, the hood goes over the respirator straps.
- 4. Check closely the integrity of the glove bag to be used. Check all seams, gloves, sleeves, and glove openings. OSHA requires the bottom of the bag to be seamless.
- 5. Attach glovebag with required tools per manufacturer's instructions.
- 6. Insert the wand from the water sprayer through the water porthole.
- 7. Insert the hose end from a HEPA vacuum into the upper portion of the glove bag.
- 8. Wet and remove the glue pods.
- 9. When the work is complete, spray the upper portion of the bag and clean-push all residue into the bottom of the bag with the other waste material. Be very thorough. Use adequate water.

- 10. Put all tools, after washing them off in the bag, in one of the sleeves of glove bag and turn it inside out, drawing it outside of the bag. Twist the sleeve tightly several times to seal it and tape it several tight turns with duct tape. Cut through the middle of the duct tape and remove the sleeve. Put the sleeve in the next glove bag or put it in a bucket of water to decontaminate the tools after cutting the sleeve open.
- 11. Turn on the HEPA vacuum and collapse the bag completely. Remove the vacuum nozzle, seal the hole with duct tape, twist the bag tightly several times in the middle, and tape it to keep the material in the bottom during removal of the glove bag from the duct.
- 12. Slip a disposal bag over the glove bag. Remove the tape securing the ends, and slit open the top of the glove bag and carefully fold it down into the disposal bag. Double bag and gooseneck waste materials.

3.5.2 NEGATIVE PRESSURE GLOVEBAG PROCEDURE

- 1. In addition to the above requirements, the HEPA vacuum shall be run continuously during the glovebag procedure until completion at which time the glovebag will be collapsed by the HEPA vacuum prior to removal from the component.
- 2. The HEPA vacuum shall be attached and operated as needed to prevent collapse of the glovebag during the removal process.

3.6 LOCKDOWN ENCAPSULATION

3.6.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, all surfaces shall be encapsulated with a bridging encapsulant.

3.6.2 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work with two coats of encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the encapsulant.

3.7 DISPOSAL OF ACM WASTE MATERIALS

3.7.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Disposal shall be done at the approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.7.2 PROCEDURES

- A. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures in this specification. Waste shall be double-bagged prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goosenecked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP's signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be reused.
- B. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second bag.
- C. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.8 PROJECT DECONTAMINATION

3.8.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleaning of the regulated area surfaces after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.8.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.8.3 WORK DESCRIPTION

Decontamination includes the cleaning and clearance of the air in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities.

3.8.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary barrier of poly removed and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 3. Decontamination facilities, if required for personnel and equipment in operating condition.

3.8.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping methods. Use each surface of a cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. If determined by the CPIH/VPIH/CIH additional cleaning(s) may be needed.

3.8.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH and VPIH/CIH will perform a thorough and detailed visual inspection after the first cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A(III) (B) (7) (d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH documenting the

inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

3.8.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification.

3.9 FINAL VISUAL INSPECTIONS AND AIR CLEARANCE TESTING

3.9.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.9.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.9.3 FINAL AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final testing. Air samples will be collected and analyzed in accordance with procedures for PCM/TEM in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures. Additional inspection and testing will be done at the expense of the Contractor.
- B. If the results of the PCM/TEM are acceptable, remove the critical barriers. Any small quantities of residue material found upon removal of the poly shall be removed with a HEPA vacuum and localized isolation. If significant quantities are found as determined by the VPIH/CIH, then the entire area affected shall be cleaned as specified in the final cleaning.

C. When release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.9.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured with PCM/TEM methods
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the TEM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques. Samples will be collected on 0.8μ MCE filters for PCM analysis and 0.45μ Polycarbonate filters for TEM analysis. Before pumps are started, initiate aggressive sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off.

3.9.5 CLEARANCE SAMPLING USING PCM

The NIOSH 7400 method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 5 PCM clearance samples will be collected.

3.9.6 CLEARANCE SAMPLING USING TEM

Not applicable.

3.9.7 LABORATORY TESTING OF PCM SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA to perform analysis of the air samples. Samples will be sent by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.9.8 LABORATORY TESTING OF TEM SAMPLES

No applicable.

3.10 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.10.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, complete asbestos abatement work upon meeting the regulated area clearance criteria and fulfilling the following:

- A. Remove all equipment, materials, and debris from the project area.
- B. Package and dispose of all asbestos waste as required.
- C. Repair or replace all interior finishes damaged during the abatement work.
- D. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.10.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.10.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.10.4 RE-INSULATION

If required as part of the contract, replace all asbestos containing insulation with suitable non-asbestos material. Provide MSDS's for all replacement materials. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

CERTIFICATE OF COMPLETION

DATE:	
PROJEC	CT NAME:
VAMC/A	ADDRESS:
1.	I certify that I have personally inspected, monitored and supervised
the ak	patement work of:
	which took place from to.
2.	That throughout the work all applicable requirements/regulations and the VA's specifications were met.
3.	That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
4.	That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
5.	That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
6.	That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
7.	That all glovebag work was done in accordance with OSHA requirements and the manufacturer's recommendations.
	CPIH Name:
	Signature/Date:
	Asbestos Abatement Contractor's Name:

Signature/Date:

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

DATE:

PROJECT NAME:

PROJECT ADDRESS:

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos

Employee Personal Protective Equipment

Establishment of a Respiratory Protection Program

State of the Art Work Practices

Personal Hygiene

Additional Safety Hazards

Medical Monitoring

Air Monitoring

Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards

Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature: Social Security Number:

Printed Name: Witness:

AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name:

Social Security Number:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

- 2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.
- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH:

Date:

Printed Name of CPIH:

Signature of Contractor:

Date:

Printed Name of Contractor:

ABATEMENT CONTRACTOR/COMPETENT PERSON(S) REVIEW AND ACCEPTANCE OF THE VA'S ASBESTOS SPECIFICATIONS

VA Project Location:	
VA Project #:	
VA Project Description:	
This form shall be signed by the Asbestos Abatement Asbestos Abatement Contractor's Competent Person(s) pri the VA related to this Specification. If Contractor's/Competent Person(s) has not signed this allowed to work on-site.	or to any start of work at the Asbestos Abatement
I, the undersigned, have read VA's Asbestos Specification abatement requirements. I understand the requirement Specification and agree to follow these requirements as and regulations of OSHA/EPA/DOT and State/Local requirements ample opportunity to read the VA's Asbestos Specification opportunity to ask any questions regarding the contresponse related to those questions. I do not have any fithe content, intent and requirements of the VA's Asbeston specification of the VA's Asbeston content, intent and requirements of the VA's Asbeston specification of the VA's Asbeston content, intent and requirements of the VA's Asbeston content.	ts of the VA's Asbestos well as all required rules ements. I have been given an on and have been given an ent and have received aurther questions regarding
At the conclusion of the asbestos abatement, I will abatement work was done in accordance with the VA's A all ACM was removed properly and no fibrous residue remains	sbestos Specification and
Abatement Contractor Owner's Signature	Date
Abatement Contractor Competent Person(s)	Date
	Date
	Date

- - - E N D - - -

SECTION 02 84 16 HANDLING OF FLUORESCENT TUBES, BALLASTS, THERMOSTATS, AND BATTERIES

PART 1 GENERAL

1.1 REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA)

40	CFR 1910.1000	Air Contaminants
	CFR 260 CFR 261	Hazardous Waste Management System: General Identification and Listing of Hazardous
		Waste
40	CFR 262	Standards Applicable to Generators of Hazardous Waste
40	CFR 263	Standards Applicable to Transporters of Hazardous Waste
40	CFR 264	Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities
40	CFR 265	Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities
40	CFR 268	Land Disposal Restrictions
40	CFR 270	EPA Administered Permit Programs: The Hazardous Waste Permit Program
40	CFR 273	Standards For Universal Waste Management
40	CFR 761	Polychlorinated Biphenyls (PCBs) Manufacturing, Processing, Distribution in Commerce, and Use Prohibitions
49	CFR 178	Specifications for Packagings

1.2 PROJECT REQUIREMENTS

Removal and disposal of the mercury containing fluorescent light tubes, ballasts, and batteries in the backup/emergency/exit light fixtures on the $1^{\rm st}$ floor of Building 148 in the Mental Health Lockup Ward as follows:

MATERIAL	MATERIAL Locations	
Fluorescent tubes	Rooms, hallways, offices	~140 fixtures
Batteries in exit	Exit doors	6 units
light fixtures		

1.3 DEFINITIONS

1.3.1 UNIVERSAL WASTE

Universal Waste means any of the following hazardous wastes that are managed under the universal waste requirements 40 CFR 273:

- (1) Batteries as described in Sec. 273.2 of this chapter;
- (2) Lamps as described in Sec. 273.5 of this chapter;
- (3) Ballasts as described in Sec. 273.5 of this chapter.

1.4 QUALITY ASSURANCE

1.4.1 REGULATORY REQUIREMENTS

Perform work in accordance with 40 CFR 761 and perform mercury-containing lamps storage and transport in accordance with 40 CFR 261, 40 CFR 264, 40 CFR 265, and 40 CFR 273.

1.4.2 TRAINING

Certified industrial hygienist (CIH) shall instruct and certify the training of all persons involved in the removal of batteries, ballasts, mercury-containing lamps, and thermostats. The instruction shall include: The dangers of mercury exposure, decontamination, safe work practices, and applicable OSHA and EPA regulations. The CIH shall review and approve the Removal Work Plans.

1.4.3 REGULATION DOCUMENTS

Maintain at all times one copy each at the office and one copy each in view at the job site of 29 CFR 1910.1000, 40 CFR 260, 40 CFR 261, 40 CFR 262, 40 CFR 263, 40 CFR 265, 40 CFR 268, 40 CFR 270, and 40 CFR 273, and of the Contractor removal work plan and disposal plan for PCB and for associated mercury-containing lamps.

1.5 SUBMITTALS

Certificates

Training Certification
Removal Work Plan
Disposal Pla

Closeout Submittals

Certificate of Disposal and/or recycling. Submit to the Government before application for payment within 30 days of the date that the disposal of the batteries and mercury-containing lamp waste identified on the manifest was completed.

1.6 ENVIRONMENTAL REQUIREMENTS

Use special clothing:

- a. Disposable gloves (polyethylene)
- b. Eye protection
- c. PPE as required

1.7 SCHEDULING

Notify the Contracting Officer 20 days prior to the start of removal work.

1.8 QUALITY ASSURANCE

1.8.1 WORK PLAN

Submit a job-specific plan within 20 calendar days after award of contract of the work procedures to be used in the removal, packaging, and storage of batteries and mercury-containing lamps. Include in the plan: Requirements for Personal Protective Equipment (PPE), spill cleanup procedures and equipment, eating, smoking and restroom procedures. The plan shall be approved and signed by the Certified Industrial Hygienist. Obtain approval of the plan by the Contracting Officer prior to the start of removal work.

1.8.2 DISPOSAL/RECYCLING PLAN

Submit a Disposal or Recycling Plan with 45 calendar days after award of contract. The Plan shall comply with applicable requirements of federal, state, and local regulations and address:

- a. Estimated quantities of wastes to be generated, disposed of, and/or recycled.
- b. Names and qualifications of each Contractor that will be transporting, storing, treating, and disposing of the wastes. Include the facility location. Furnish two copies of EPA and state waste permit applications and EPA identification numbers, as required.
- c. Names and qualifications (experience and training) of personnel who will be working on-site with wastes.
- d. Spill prevention, containment, and cleanup contingency measures to be implemented.
- e. Work plan and schedule for waste removal, containment, storage, transportation, disposal and or recycling. Wastes shall be cleaned up and containerize daily.

PART 2 PRODUCTS

Not used.

PART 3 EXECUTION

3.1 WORK PROCEDURE

Furnish labor, materials, services, and equipment necessary for the removal of thermostats, batteries, ballasts, and mercury-containing fluorescent lamps, in accordance with local, state, or federal regulations. Do not expose lamps or batteries to open flames or other high temperature sources since toxic decomposition by-products may be produced. Do not break mercury containing fluorescent lamps, thermostat switches, or battery casings.

3.1.1 Work Operations

Ensure that work operations or processes involving Universal Waste materials are conducted in accordance with 40 CFR 761, 40 CFR 262 40 CFR 263, and the applicable requirements of this section, including but not limited to:

- a. Obtaining suitable storage sites.
- b. Notifying Contracting Officer prior to commencing the operation.
- c. Reporting leaks and spills to the Contracting Officer.
- d. Cleaning up spills.
- e. Inspecting Universal Waste items and waste containers for leaks and forwarding copies of inspection reports to the Contracting Officer.
- f. Maintaining inspection, inventory and spill records.

3.3 REMOVAL

3.3.1 Lighting Lamps

Remove lighting tubes/lamps from the lighting fixture and carefully place (unbroken) into appropriate containers (original transport boxes or equivalent). In the event of a lighting tube/lamp breaking, sweep and place waste in double plastic taped bags and dispose of as universal waste as specified herein.

3.3.2 Batteries

Remove batteries from the fixtures and carefully place into appropriate containers for transportation to an EPA licensed recycling facility.

3.3.3 Ballasts

Field check ballast labels and remove all ballasts that are not marked "No PCB's" from the fixtures and carefully place into metal drums for transportation to an EPA licensed recycling/disposal facility.

3.4 STORAGE FOR DISPOSAL

3.4.1 STORAGE CONTAINERS FOR BATTERIES

Store batteries in containers approved by DOT in accordance with $40\ \text{CFR}$ 761.

3.4.2 STORAGE CONTAINERS FOR LAMPS

Store mercury containing lamps in appropriate DOT containers. The boxes shall be stored and labeled for transport in accordance with 40 CFR 273.

3.4.3 STORAGE CONTAINERS FOR MERCURY SWITCHES

Store mercury containing switches in appropriate DOT containers. The containers shall be stored and labeled for transport in accordance with 40 CFR 273.

3.4.4 STORAGE CONTAINERS FOR BALLASTS

Store PCB ballasts in appropriate DOT containers. The drums shall be stored $$02\ 84\ 16\ -\ 4$$

and labeled for transport in accordance with 40 CFR 273.

3.4.5 LABELING OF WASTE CONTAINERS

Label with the following:

- a. Date the item was placed in storage and the name of the cognizant activity/building.
- b. Label waste in accordance with 40 CFR 273. Affix labels to all waste containers.

3.5 DISPOSAL

Dispose of off Government property in accordance with EPA, DOT, and local regulations at a permitted site.

3.5.1 IDENTIFICATION NUMBER

For mercury containing lamp removal, Federal regulations 40 CFR 273 require that large quantity handlers of Universal waste (LQHUW) must provide notification of universal waste management to the appropriate EPA Region (or state director in authorized states), obtain an EPA identification number, and retain for three years records of off-site shipments of universal waste. The contractor shall verify that the activity has a U.S. EPA generator identification number for use on the Universal Waste manifest. If not, the contractor shall advise the activity that it must file and obtain an I.D. number with EPA prior to commencement of removal work.

- - - E N D - - -

SECTION 03 51 16 GYPSUM CONCRETE ROOF DECKS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Section specifies gypsum plank systems for fire rated roof decks.

1.2 RELATED WORK

- A. Section 05 12 00, STRUCTURAL STEEL FRAMING: Steel Framing.
- B. Section 07 54 19, POLYVINYL-CHLORIDE ROOFING: Membrane Roofing.

1.3 QUALITY CONTROL

- A. Work performed by experienced, qualified installers approved by manufacturer of gypsum plank.
- B. Gypsum materials products of one manufacturer.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. All items indicated below are required submittals requiring Contracting Officer's Representative (COR) review and approval.
- B. Fire Tests: Fire tests, data and certifications substantiating that Gypsum Plank Decking complies with fire rating requirements.
- C. Shop Drawings: Show typical plank layouts, perimeter and framed opening supports and details of construction, installation, fastenings and grouting.
- D. Manufacturer's Literature and Data: Each item specified.
- E. Load tables for sub-purlins.
- F. Sustainable Construction Submittals:
- G. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight

1.5 DELIVERY AND STORAGE

- A. Deliver materials in original packages, containers, or bundles bearing brand name and name of manufacturer.
- B. Store materials in a manner that prevents damage before use. When stored under tarpaulins, provide ventilation to prevent moisture accumulation under tarpaulin.
- C. Store gypsum planks flat and off ground. Handle and stack in a manner to prevent damage to face, ends, and edges and keep dry until used.
- D. Store gypsum concrete off ground and keep dry until used.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designations only.

B. ASTM International (ASTM):

A36/A36M-19Standard		Specification	for	Carbon	Structural
	Steel				

A499-15(2020)	Standard	andard Specification		Steel	Bars	and
	Shapes,	Carbon Rolled	from	"T" Ra	ails	

A568/A568M-19a	Standard Specification for Steel, Sheet,
	Carbon, Structural, and High-Strength, Low-
	Alloy, Hot-Rolled and Cold-Rolled, General
	Requirements

A653/A653M-20Standard Specification for Steel Sheet, Zinc

Coated (Galvanized) or Zinc Iron Alloy Coated

(Galvannealed) by the Hot Dip Process

A1064/A1064M-18aStandard Specification for Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete

C317/C317M-00(2019)Standard Specification for Gypsum Concrete
C1396/C1396M-17Standard Specification for Gypsum Board
E119-20Standard Test Methods for Fire Tests of
Building Construction and Materials

C. American Welding Society Publication (AWS):

D1.1/D1.1M-20Structural Welding Code - Steel

PART 2 - PRODUCTS

2.1 MATERIALS

A. Sub-purlins:

- 1. Open web truss-tees, hot-rolled bulb-tees or folded sheet metal tees as required by design loads, spans and fire ratings.
- 2. Flanges: Provide 16 mm (5/8-inch) minimum bearing for gypsum planks.
- 3. Galvanize or factory coat sub-purlins with manufacturer's standard primer.
- 4. Open web truss-tees: Fabricate from cold-formed steel wire conforming to ASTM A1064.
- 5. Hot-rolled bulb-tees: Rail-shaped, fabricated from hot-rolled steel conforming to ASTM A36 or ASTM A499.

6. Folded sheet metal tees: Fabricate from sheet steel conforming to ASTM A653 and ASTM A568.

B. Cross-Tees:

- 1. Cold-Formed, Fabrication from sheet steel conforming to ASTM A525 or ASTM A568
- 2. Size: 30 mm (1-1/4-inches) by 13 mm (1/2-inch) by 0.6 mm (0.023-inch) thick by 600 mm (24-inches) long.

C. Gypsum Deck Plank:

- 1. Fabricated of gypsum board: ASTM C1396.
- 2. Nominal Size: 50 mm (2-inches) thick by 600 mm (24-inches) wide by main purlin span. Where possible, length should span two main purlin spans.
- 3. Factory laminate from two 25 mm (1-inch) thick gypsum panels with top panel edge set back along sub-purlin edge not more than 13 mm (1/2-inch).
- 4. Edge encased in water-resistant paper.
- D. Gypsum Deck Panels: ASTM C1396, Type "X", 16 mm (5/8-inch) thick by 600 mm (24-inches) wide by main purlin span.
- E. Grout: Gypsum Concrete: ASTM C317, Class A, 3.5 MPa (500 psi) minimum compressive strength.

2.2 DECK SYSTEM

A. Roof Deck: Provide one hour fire rating per tested assembly by Underwriter's Laboratory Inc. or other testing.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Examine substrates, framing and conditions under which gypsum plank is to be installed and notify COR in writing of conditions detrimental to proper and timely completion.
- B. Do not proceed until unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Weld per AWS D1.1.
- B. Sub-purlins:
 - 1. Space at approximately 650 mm (24-5/8-inches) on center to provide minimum 16 mm (5/8-inch) continuous bearing for gypsum plank or deck.
 - 2. Install framing of openings.
 - 3. Touch up welds with same type of rust-inhibitive paint used for primer.

- 4. Roof Decks: Use minimum 13 mm (1/2-inch) fillet welds on alternate sides of sub-purlins, both sides at end joints to main purlins.
- 5. For fire rated roof decks weld per fire test assembly.
- C. Gypsum Deck Plank for Roof Decks:
 - 1. Place plank on lower flanges of sub-purlins or other framing with ends and edges supported.
 - 2. Stagger joints in adjacent courses.
 - 3. Support end joints with cross-tees not supported by framing.
 - 4. Cut plank to fit at ends and framed openings.
- D. Provide continuous 16 mm (5/8-inch) minimum bearing for plank support at deck perimeter, plank ends and openings exceeding 200 mm (8-inches).

E. Grout:

- 1. Mix gypsum concrete thoroughly using a minimum amount of water to form a thick, pourable consistency.
- 2. Fill edge joints to slight excess with single pour at sub-purlins.
 - a. Grout end joints on single span system against steel framing.
 - b. After initial set, strike of excess to form smooth, flush joint.
 - c. Form cant strips and curbs where shown.
- 3. Fill joints at roof ridges, hips and valleys.

F. Patching:

- 1. Fill with grout and smooth any surface damage to gypsum plank.
- 2. Remove and replace cracked, broken, and plank damaged beyond repair.
- G. Cleaning and Protection:
 - 1. Upon completion of gypsum plank decking, remove, debris and sweep surface clean. Leave ready for subsequent work.
 - 2. Protect finished deck from weather and subsequent construction operations.
 - 3. Provide hardboard or plywood temporary protection over decking subject to repetitive impact or wheeled loads.

- - - E N D - - -

SECTION 04 01 00 MAINTENANCE OF MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Repointing existing damaged masonry joints.
 - 2. Replacing existing damaged masonry units.

1.2 RELATED WORK

A. Section 04 05 13, MASONRY MORTARING: Mortars for new masonry.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

C67/C67M-20Sampling		and	Testing	Brick	and	Structural	Clay
	Tile.						

	C144-18	Aggregate	for	Masonry	Mortar.
--	---------	-----------	-----	---------	---------

C150/C150M-20Specification for Portland Cement.

C216-19 -Facing Brick (Solid Masonry Units Made from

Clay or Shale)

C270-19aelMortar for Unit Masonry

C295/C295M-19Petrographic Examination of Aggregates for

Concrete

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Replacement units indicating manufacturer recommendation for each application.
- C. Samples:
 - 1. Pointing Mortar: Molded, 150 mm (6 inches) long for each type, texture, and color.
- D. Test reports:
 - 1. Preconstruction test results of existing masonry mortar and units.
 - 2. Recommended mortar mix and mortar materials sources.

1.5 QUALITY ASSURANCE

A. Installer Qualifications:

- 1. Documented experience in completion of work, similar in design, material, and extent specified.
- B. Preconstruction Testing:
 - 1. Existing Brick: according to ASTM C67.
 - 2. Existing Mortar: according to ASTM C295/C295M.
 - a. Recommend mortar mix compatible with existing and mortar material sources required to match existing color and texture.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store materials covered, protected from weather, and elevated above grade.
 - 1. Prevent contamination of aggregates.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Cold Weather Requirements: Maintain mortar ingredients and substrate within temperature range between 4 degrees C (40 degrees F) and 49 degrees C (120 degrees F) when outside temperature is less than 4 degrees C (40 degrees F).
 - Hot Weather Requirements: Protect mortar-joint from evaporation of moisture from mortar material. When required, provide adequately shaded work area.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Mortar Components:
 - 1. Hydrated Lime: ASTM C207, Type S.
 - 2. Aggregate: ASTM C144.
 - 3. Portland Cement: ASTM C150/C150M, Type I.

4. Water: Potable, free of substances that are detrimental to grout, masonry, and metal.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Match Existing.
- B. Provide each product from one manufacturer and from one production run.

2.3 REPLACEMENT MASONRY UNITS

- A. Face Brick:
 - 1. ASTM C216, matching existing .
 - 2. Efflorescence: Rated slight efflorescent when tested according to ASTM C67.
- B. Other Masonry Units: Match existing.

2.4 MIXES

- A. Tuck Pointing Mortar: ASTM C270.
 - 1. Type N.

2.5 ACCESSORIES

A. Cleaning Agent: Soapless, non-acidic, detergent, specially prepared for cleaning brick masonry.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
 - 1. Protect from mortar droppings and cleaning operations.
- C. Remove existing fixtures and fittings concealing masonry joints to permit repointing and repair.

3.2 EXISTING MORTAR JOINTS

- A. Cut out existing bed and head mortar joints, to uniform depth of 19 mm (3/4 inches), or to sound mortar without damaging edges and faces of existing masonry units to remain.
- B. Remove dust and debris from joints.
 - 1. Do not rinse when temperature is below freezing.

3.3 TUCK POINTING

- A. Dampen joints immediately before tuck pointing. Allow masonry units to absorb surface water.
- B. Tightly pack tuck pointing mortar into joints in thin layers, 6 mm (1/4 inch) thick, maximum.
- C. Allow layer to become slightly hardened before applying next layer.
- D. Pack final layer flush with surfaces of masonry units.

3.4 MASONRY UNIT REPLACEMENT

- A. Cut out mortar joints surrounding masonry units requiring replacement.
 - 1. Remove existing masonry units creating opening for replacement masonry unit installation.
 - 2. Remove mortar, dust, and debris from opening perimeter surfaces.
 - 3. Prevent debris from falling into cavity.
- B. Dampen surfaces of surrounding existing masonry before installing replacement masonry units.
 - 1. Allow existing masonry to absorb surface moisture before installing replacement units.
 - 2. Butter contact surfaces of existing masonry and replacement masonry units with mortar.
 - 3. Center replacement masonry units in opening and press into position.
 - 4. Remove excess mortar.
 - 5. Tuck point replacement masonry units to ensure full head and bed joints.

3.5 JOINT TOOLING

- A. Tool repointed and replaced masonry joints when mortar becomes slightly hardened.
- B. Produce smooth, compacted, joint matching existing.

3.6 CLEANING

- A. Remove mortar splatter from exposed surfaces immediately.
- B. Clean exposed masonry surfaces on completion.
- C. Remove mortar droppings and other foreign substances from wall surfaces.
- D. Wet surfaces with clean water.
- E. Wash with cleaning agent.
- F. Brush masonry surfaces with stiff fiber brushes while washing.
- G. Immediately after washing, rinse with clean water.
 - 1. Remove traces of detergent, foreign streaks or stains.

- - - E N D - - -

SECTION 04 20 00 UNIT MASONRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes: Concrete masonry unit (CMU) assemblies for:
 - 1. Interior walls .

1.2 RELATED REQUIREMENTS

A. Sealants and Sealant Installation: Section 07 92 00, JOINT SEALANTS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Concrete Institute (ACI):
 - 1. 315-99 Details and Detailing of Concrete Reinforcement.
 - 2. 530.1/ASCE 6/TMS 602-13 Specification for Masonry Structures.
- C. ASTM International (ASTM):
 - A615/A615M-15ae1 Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
 - 2. A951/A951M-14 Steel Wire for Masonry Joint Reinforcement.
 - 3. A1064/A1064M-15 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
 - 4. C34-13 Structural Clay Load-Bearing Wall tile.
 - 5. C55-14a Concrete Building Brick.
 - 6. C56-13 Structural Clay Nonloadbearing Tile.
 - 7. C62-13a Building Brick (Solid Masonry Units Made from Clay or Shale).
 - 8. C67-14 Sampling and Testing Brick and Structural Clay Tile.
 - 9. C90-14 Load-Bearing Concrete Masonry Units.
 - 10. C126-15 Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units.
 - 11. C216-15 Facing Brick (Solid Masonry Units Made From Clay or Shale).
 - 12. C612-14 Mineral Fiber Block and Board Thermal Insulation.
 - 13. C744-14 Prefaced Concrete and Calcium Silicate Masonry Units.
 - 14. D1056-14 Flexible Cellular Materials Sponge or Expanded Rubber.
 - 15. D2240-05(2010) Rubber Property-Durometer Hardness.
 - 16. F1667-15 Driven Fasteners: Nails, Spikes, and Staples.
- D. American Welding Society (AWS):
 - 1. D1.4/D1.4M-11 Structural Welding Code Reinforcing Steel.
- E. Brick Industry Association (BIA):
 - 1. TN 11B-88 Guide Specifications for Brick Masonry, Part 3.

- F. Federal Specifications (Fed. Spec.):
 - 1. FF-S-107C(2) Screws, Tapping and Drive.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Fabrication, bending, and placement of reinforcing bars. Comply with ACI 315. Show bar schedules, diagrams of bent bars, stirrup spacing, lateral ties and other arrangements and assemblies.
 - 2. Special masonry shapes, profiles, and placement.
 - 3. Masonry units for typical window and door openings, and, for special conditions as affected by structural conditions.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.

D. Samples:

- 1. Face brick: Sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints.
- Ceramic Glazed Facing Brick: Sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints.
- 3. Concrete masonry units, when exposed in finish work.
- 4. Anchors and Ties: Each type.
- 5. Joint Reinforcing: 1200 mm (48 inches) long each type.
- 6. Glazed Structural Facing Tile: Clipped panels (triplicate) of four wall units with base units, showing color range, each color and texture.
- E. Test reports: Certify products comply with specifications.
 - 1. Ceramic glazed facing brick.
- F. Certificates: Certify products comply with specifications.
 - 1. Face brick.
 - 2. Solid and load-bearing concrete masonry units, including fire-resistant rated units.
 - 3. Ceramic glazed facing brick.

1.5 QUALITY ASSURANCE

1.6 DELIVERY

A. Deliver products in manufacturer's original sealed packaging.

- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products above grade, protected from contamination.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Hot and Cold Weather Requirements: Comply with ACI 530.1/ASCE 6/TMS 602.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: See Drawings. Match Existing where applicable.
- B. Provide each product from one manufacturer.

2.2 UNIT MASONRY PRODUCTS

- A. Brick:
 - 1. Face Brick:
 - a. ASTM C216, Grade SW, Type FBS.
 - b. Brick when tested according to ASTM C67: Classified slightly efflorescent or better.
 - c. Size:
 - 1) Modular.
 - 2) Thin Brick: 13 mm (1/2 inch) thick with angle shapes for corners.
 - 2. Building Brick: ASTM C62, Grade MW for backup and interior work; Grade SW where in contact with earth.
 - 3. Ceramic Glazed Facing Brick: ASTM C126.
 - 4. One Face Exposed: Grade S, Type I.
 - 5. Two Faces Exposed: Grade S, Type II.
- B. Concrete Masonry Units (CMU):
 - 1. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90.
 - a. Unit Weight: Normal weight.
 - 2. Sizes: Modular, 200 mm by 400 mm (8 inches by 16 inches) nominal face dimension; thickness as indicated on drawings.

- 3. For molded faces used as a finished surface, use concrete masonry units with uniform fine to medium surface texture unless specified otherwise.
- C. Concrete Brick: ASTM C55.
- D. Clay Tile Units:
 - 1. Glazed Structural Facing Tile:
 - a. ASTM C126, Grade S, Type I (single faced units).
 - 2. Size: 8W, thickness as shown.

2.3 ANCHORS, TIES, AND REINFORCEMENT

- A. Steel Reinforcing Bars: ASTM A615/A615M; Grade 60, deformed bars.
- B. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951/A951M.
 - 2. Hot dipped galvanized after fabrication.
 - 3. Width of joint reinforcement 40 mm (1.6 inches) less than nominal thickness of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcement minimum 3000 mm (10 feet) long, factory cut.
 - 6. Joint reinforcement with crimp formed drip is not acceptable.
 - 7. Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires.
 - 8. Ladder Design:
 - a. Longitudinal wires deformed 4 mm (0.16 inch) diameter wire.
 - b. Cross wires 2.6 mm (0.10 inch) diameter.
 - 9. Trussed Design:
 - a. Longitudinal and cross wires minimum 4 mm (0.16 inch nominal) diameter.
 - b. Longitudinal wires deformed.
- C. Adjustable Veneer Anchor for Framed Walls:
 - 1. Two piece, adjustable anchor and tie.
 - 2. Anchor and tie may be either loop or angle type; provide only one type throughout.
 - 3. Loop Type:
 - a. Anchor: Screw-on galvanized steel anchor strap 2.75 mm (0.11 inch) by 19 mm (3/4 inch) wide by 225 mm (9 inches) long, with 9 mm (0.35 inch) offset and 100 mm (4 inch) adjustment. Provide 5 mm (0.20 inch) hole at each end for fasteners.
 - b. Ties: Triangular tie, fabricated of 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Ties long enough to engage

anchor and be embedded minimum 50 mm (2 inches) into bed joint of masonry veneer.

4. Angle Type:

- a. Anchor: Minimum 2 mm (16 gage) thick galvanized steel angle shaped anchor strap. Provide hole in vertical leg for fastener. Provide hole near end of outstanding leg to suit upstanding portion of tie.
- b. Tie: Fabricate from 5 mm (0.20 inch) diameter galvanized cold drawn steel wire. Form "L" shape to be embedded minimum 50 mm (2 inches) into the bed joint of masonry veneer and provide upstanding leg to fit through hole in anchor and be long enough to allow 50 mm (2 inches) of vertical adjustment.

D. Dovetail Anchors:

- Corrugated steel dovetail anchors formed of 1.5 mm (0.06 inch) thick by 25 mm (1 inch) wide galvanized steel, 90 mm (3-1/2 inches) long where used to anchor 100 mm (4 inch) nominal thick masonry units, 140 mm (5-1/2 inches) long for masonry units more than 100 mm (4 inches) thick.
- 2. Triangular wire dovetail anchor 100 mm (4 inch) wide formed of 4 mm (9 gage) steel wire with galvanized steel dovetail insert. Anchor length to extend minimum 75 mm (3 inches) into masonry, 25 mm (1 inch) into 40 mm (1-1/2 inch) thick units.
- 3. Form dovetail anchor slots from 0.6 mm (0.02 inch) thick galvanized steel (with felt or fiber filler).

E. Individual Ties:

- 1. Rectangular ties: Form from 5 mm (3/16 inch) diameter galvanized steel rod to rectangular shape minimum 50 mm (2 inches) wide by sufficient length for ends of ties to extend within 25 mm (1 inch) of each face of wall. Ties that are crimped to form drip are not acceptable.
- 2. Adjustable Cavity Wall Ties:
 - a. Adjustable wall ties may be furnished at Contractor's option.
 - b. Two piece type permitting up to 40 mm (1-1/2 inch) adjustment.
 - c. Form ties from 5 mm (3/16 inch) diameter galvanized steel wire.
 - d. Form one piece to rectangular shape 105 mm (4-1/8 inches) wide by length required to extend into bed joint 50 mm (2 inches).

- e. Form other piece to 75 mm (3 inch) long by 75 mm (3 inch) wide shape, having 75 mm (3 inch) long bent section for engaging 105 mm (4-1/8 inch) wide piece to form adjustable connection.
- F. Wall Ties, (Mesh or Wire):
 - 1. Mesh wall ties formed of ASTM A1064/A1064M, W0.5, 2 mm, (0.08 inch) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long.
 - Rectangular wire wall ties formed of W1.4, 3 mm, (0.12 inch)
 galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches)
 long.
- G. Corrugated Wall Tie:
 - 1. Form from 1.5 mm (0.06 inch) thick corrugated, galvanized steel 30 mm (1-1/4 inches) wide by lengths to extend minimum 100 mm (4 inches) into joints of masonry plus 38 mm (1-1/2 inch) turn-up.
 - 2. Provide 5 mm (3/16 inch) hole in turn-up for fastener attachment.

2.4 ACCESSORIES

- A. Shear Keys:
 - Solid extruded cross-shaped section of rubber, neoprene, or polyvinyl chloride, with durometer hardness of approximately 80 when tested according to ASTM D2240, and minimum shear strength of 3.5 MPa (500 psi).
 - 2. Shear Key Dimensions: Nominal 70 mm by 8 mm for long flange and 38 mm by 16 mm for short flange (2-3/4 inches by 5/16 inch for long flange, and 1-1/2 inches by 5/8 inch for short flange).

B. Weeps:

- 1. Weep Hole Wicks: Glass fiber ropes, 10 mm (3/8 inch) minimum diameter, 300 mm (12 inches) long.
- 2. Weep Tubing: Round, polyethylene, 9 mm (3/8 inch) diameter, 100 mm (4 inches) long.
- 3. Weep Hole: Flexible PVC louvered configuration with rectangular closure strip at top.
- C. Cavity Drain Material: Open mesh polyester sheets or strips to prevent mortar droppings from clogging the cavity.
- D. Preformed Compressible Joint Filler:
 - 1. Thickness and depth to fill joint.
 - 2. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1.
 - 3. Non-Combustible Type: ASTM C612, Type 5, Max. Temp.1800 degrees F.
- E. Box Board:

- 1. Mineral Fiber Board: ASTM C612, Type 1.
- 2. 25 mm (1 inch) thickness.
- 3. Other spacing material having similar characteristics is acceptable subject to Contracting Officer's Representative's approval.

F. Masonry Cleaner:

- 1. Detergent type cleaner selected for each type masonry.
- 2. Acid cleaners are not acceptable.
- 3. Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate.

G. Fasteners:

- 1. Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length.
- 2. Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length.
- 3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting.
- H. Welding Materials: AWS D1.4/D1.4M, type to suit application.

PART 3 - EXECUTION

3.1 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Keep finish work free from mortar smears or spatters and leave neat and clean.

C. Wall Openings:

- Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses.
- 2. When items are not available when walls are built, prepare openings for subsequent installation.

D. Tooling Joints:

- 1. Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar.
- 2. Tool while mortar is soft enough to be compressed into joints and not raked out.
- Finish joints in exterior face masonry work with jointing tool, and provide smooth, water-tight concave joint unless specified otherwise.

4. Tool Exposed interior joints in finish work concave unless specified otherwise.

E. Lintels:

- 1. Lintels are not required for openings less than 1000 mm (40 inches) wide that have hollow metal frames.
- 2. Openings 1025 mm (41 inches) wide to 1600 m (63 inches) wide without structural steel lintel or frames, require lintel formed of concrete masonry lintel or bond beam units filled with grout and reinforced with one No. 16 (No. 5) rod top and bottom for each 100 mm (4 inches) of nominal thickness unless shown otherwise.
- 3. Lintel Bearing Length: Minimum 200 mm (8 inches) at both ends.
- 4. Build masonry openings or arches over wood or metal centering and supports when steel lintels are not used.
- F. Temporary Formwork: Provide formwork and shores as required for temporary support of reinforced masonry elements.
- G. Construct formwork to conform to shape, line and dimensions indicated on drawings. Make sufficiently tight to prevent mortar, grout, or concrete leakage. Brace, tie and support formwork as required to maintain position and shape during construction and curing of reinforced masonry.
- H. Do not remove forms and shores until reinforced masonry members have hardened sufficiently to carry their own weight and other reasonable temporary construction loads.
- I. Minimum Curing Times Before Removing Shores and Forms:
 - 1. Reinforced Masonry: 7 days.

3.2 INSTALLATION - ANCHORAGE

- A. Veneer to Framed Walls:
 - 1. Install adjustable veneer anchors.
 - 2. Fasten anchor to stud through sheathing with self-drilling and tapping screw, one at both ends of loop type anchor.
 - 3. Space anchors maximum 400 mm (16 inches) on center vertically at each stud.
- B. Veneer to Concrete Walls:
 - Install dovetail slots in concrete vertically at 400 mm (16 inches) on centers.
 - 2. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals.

- 3. Anchor new masonry facing to existing concrete with adjustable cavity wall ties spaced at 400 mm, (16 inches) maximum vertical intervals, and at 400 mm (16 inches) maximum horizontal intervals. Fasten ties to concrete with power actuated fasteners or concrete nails.
- C. Masonry Facing to Backup and Cavity Wall Ties:
 - 1. Use individual ties for new work.
 - 2. Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 400 mm (16 inches) horizontally.
 - 3. At openings, provide additional ties spaced maximum 900 mm (36 inches) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening.
 - 4. Anchor new masonry facing to existing masonry with adjustable cavity wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails.
 - 5. Option: Install joint reinforcing for multiple wythes and cavity wall ties spaced maximum 400 mm (16 inches) vertically.
 - 6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals maximum 400 mm (16 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours.
- D. Anchorage of Abutting Masonry:
 - Anchor interior 100 mm (4 inch) thick masonry partitions to exterior masonry walls with wall ties. Space ties at 600 mm (24 inches) maximum vertical intervals. Extend ties 100 mm (4 inches) minimum into masonry.
 - 2. Anchor interior masonry bearing walls or interior masonry partitions over 100 mm (4 inches) thick to masonry walls with rigid wall anchors spaced at 400 mm (16 inch) maximum vertical intervals.
 - 3. Anchor abutting masonry walls and partitions to concrete with dovetail anchors. Install dovetail slots vertically in concrete at centerline of abutting wall or partition. Locate dovetail anchors at 400 mm (16 inch) maximum vertical intervals. Secure anchors to existing wall with two 9 mm (3/8 inch) by 75 mm (3 inch) expansion bolts or two power-driven fasteners.

4. Anchor abutting interior masonry partitions to existing concrete and existing masonry construction, with adjustable wall ties. Extend ties minimum 100 mm (4 inches) into joints of new masonry. Fasten ties to existing concrete and masonry construction, with powder actuated drive pins, nail or other means that provides rigid anchorage. Install anchors at 400 mm (16 inch) maximum vertical intervals.

E. Masonry Furring:

- Anchor masonry furring less than 100 mm (4 inches) nominal thick to masonry walls or to concrete with adjustable wall ties or dovetail anchors.
- 2. Space at maximum 400 mm (16 inches) on center in both directions.
- F. Anchorage to Steel Beams or Columns:
 - 1. Use adjustable beam anchors on each flange.
 - At columns weld steel rod to steel columns at 300 mm (12 inch) intervals, and place wire ties in masonry courses at 400 mm (16 inches) maximum vertically.

3.3 INSTALLATION - REINFORCEMENT

- A. Joint Reinforcement:
 - Install joint reinforcement in CMU wythe of combination brick and CMU, cavity walls, and single wythe concrete masonry unit walls or partitions.
 - 2. Reinforcing is acceptable in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls.
 - 3. Locate joint reinforcement in mortar joints at 400 mm (16 inch) maximum vertical intervals.
 - 4. Additional joint reinforcement is required in mortar joints at both 200 mm (8 inches) and 400 (16 inches) above and below windows, doors, louvers and similar openings in masonry.

B. Steel Reinforcing Bars:

 Install reinforcing bars in cells of hollow masonry units where required for vertical reinforcement and in bond beam units for horizontal reinforcement. Install in wall cavities of reinforced masonry walls where indicated on drawings.

2. Bond Beams:

a. Form Bond beams of load-bearing concrete masonry units filled with grout and reinforced with two No. 15m (No. 5) reinforcing bars unless shown otherwise. Do not cut reinforcement.

b. Brake bond beams only at expansion joints and at control joints, if shown.

3. Grout openings:

- a. Leave cleanout holes in double wythe walls during construction by omitting units at base of one side of wall.
- b. Locate 75 mm by 75 mm (3 inches. by 3 inches.) min. cleanout holes at location of vertical reinforcement.
- c. Keep grout space clean of mortar accumulation and debris. Clean as work progresses and immediately before grouting.

3.4 INSTALLATION - BRICK EXPANSION AND CMU CONTROL JOINTS

- A. Provide brick expansion joint (EJ) and CMU control joints (CJ) where indicated on drawings.
- B. Keep joint free of mortar and other debris.
- C. Joints Occur In Masonry Walls:
 - 1. Install preformed compressible joint filler in brick wythe.
 - 2. Install cross shaped shear keys in concrete masonry unit wythe with preformed compressible joint filler on both sides of shear key.
- D. Use standard notched concrete masonry units (sash blocks) made in full and half-length units where shear keys are used to create a continuous vertical joint. Alter Structural clay tile units to accommodate shear key flanges.
- E. Interrupt joint reinforcement at expansion and control joints.
- F. Fill opening in exposed face of expansion and control joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.5 INSTALLATION - ISOLATION JOINT

- A. Where full height walls and partitions lie parallel or perpendicular to and under structural beams and shelf angles, provide minimum 9 mm (3/8 inch) separation between walls and partitions and bottom of beams and shelf angles.
- B. Insert continuous full width strip of non-combustible type compressible joint filler.
- C. Fill opening in exposed face of isolation joints with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.6 INSTALLATION - BRICKWORK

- A. Lay clay brick according to BIA TN 11B.
- B. Laying:

- Lay brick in one-half running bond with bonded corners, unless indicated otherwise. Match bond of existing building on alterations and additions.
- 2. Maintain bond pattern throughout.
- Do not use brick smaller than half-brick at any angle, corner, break, and jamb.
- 4. Where length of cut brick is greater than one half length, maintain vertical joint location.
- Lay exposed brickwork joints symmetrical about center lines of openings.
- 6. Do not structurally bond multi-wythe brick walls, unless indicated on drawings.
- 7. Before starting work, lay facing brick on foundation wall and adjust bond to openings, angles, and corners.
- 8. Lay brick for sills with wash and drip.
- 9. Build solid brickwork as required for anchorage of items.

C. Joints:

- 1. Exterior And Interior Joint Widths: Lay for three equal joints in 200 mm (8 inches) vertically, unless shown otherwise.
- 2. Rake joints for pointing with colored mortar when colored mortar is not full depth.
- 3. Arches:
 - a. Flat arches (jack arches) lay with camber of 1 in 200 (1/16 inch per foot) of span.
 - b. Face radial arches with radial brick with center line of joints on radial lines.
 - c. Form Radial joints of equal width.
 - d. Bond arches into backing with metal ties in every other joint.

D. Weep Holes:

- 1. Install weep holes at 600 mm (24 inches) on center in bottom of vertical joints of exterior masonry veneer or cavity wall facing over foundations, bond beams, and other water stops in wall.
- 2. Form weep holes using wicks made of mineral fiber insulation strips turned up 200 mm (8 inches) in cavity. Anchor top of strip to backup to securely hold in place.
- 3. Install sand or pea gravel in cavity approximately 75 mm (3 inches) high between weep holes.

E. Solid Exterior Walls:

- 1. Build with 100 mm (4 inches) of nominal thick facing brick, backed up with cast-in-place concrete.
- 2. Construct solid brick jambs minimum 20 mm (0.81 inches) wide at exterior wall openings and at recesses, except where exposed concrete unit backup is shown.
- 3. Do not install full bonding headers.

4. Parging:

- a. For solid masonry walls, lay backup to height of six brick courses, parge backup with 13 mm (1/2 inch) of mortar troweled smooth; then lay exterior wythe to height of backup.
- b. Make parging continuous over backup and extend 150 mm (6 inches) onto adjacent concrete or masonry.
- c. Parge ends and backs for recesses in exterior walls to thickness of 13 mm (1/2 inch).
- d. Parge inside surface of exterior walls to produce true even surface to receive insulation.
- 5. Coordinate with building insulation for thickness of insulation and allowance of air space behind exterior wythe.
- 6. In locations where hurricane driven rains are expected, install bituminous dampproofing on cavity side of inner wythe.

F. Cavity Walls:

- 1. Keep air space clean of mortar accumulations and debris.
- 2. Lay the interior wythe of the masonry wall full height where air barrier is required on cavity face. Coordinate to install air barrier before laying outer wythe.
- 3. Insulated Cavity Type Exterior Walls:
 - a. Install insulation against cavity face of inner masonry wythe.
 - b. Place insulation between rows of ties or joint reinforcing. Adhere insulation to masonry surface with a bonding agent as recommended by insulation manufacturer.
 - c. Lay outer masonry wythe up with air space between insulation and masonry units.

4. Veneer Framed Walls:

- a. Build with 100 mm (4 inches) of face brick over sheathed stud wall with air space.
- b. Keep air space clean of mortar accumulations and debris.

3.7 INSTALLATION - CONCRETE MASONRY UNITS

A. Types and Uses:

- Provide special concrete masonry shapes as required, including lintel and bond beam units, sash units, and corner units. Provide solid concrete masonry units, where full units cannot be installed, or where needed for anchorage of accessories.
- 2. Provide solid load-bearing concrete masonry units or grout cell of hollow units at jambs of openings in walls, where structural members impose loads directly on concrete masonry, and where shown.
- 3. Do not install brick jambs in exposed finish work.

B. Laying:

- 1. Lay concrete masonry units with 9 mm (3/8 inch) joints, with a bond overlap of minimum 1/4 of unit length, except where stack bond is indicated on drawings.
- 2. Do not wet concrete masonry units before laying.
- 3. Bond external corners of partitions by overlapping alternate courses.
- 4. Lay first course in a full mortar bed.
- 5. Set anchorage items as work progress.
- 6. Where ends of anchors, bolts, and other embedded items, project into voids of units, completely fill voids with mortar or grout.
- 7. Provide 6 mm (1/4 inch) open joint for sealant between existing construction, exterior walls, concrete work, and abutting masonry partitions.
- 8. Lay concrete masonry units with full face shell mortar beds and fill head joint beds for depth equivalent to face shell thickness.
- 9. Lay concrete masonry units so cores of units, that are to be filled with grout, are vertically continuous with joints of cross webs of such cores completely filled with mortar. Unobstructed core openings minimum 50 mm (2 inches) by 75 mm (3 inches).
- 10. Do not wedge masonry against steel reinforcing. Minimum 13 mm (1/2 inch) clear distance between reinforcing and masonry units.
- 11. Install deformed reinforcing bars of sizes indicated on drawings.
- 12. At time of placement, ensure steel reinforcement is free of loose rust, mud, oil, and other contamination capable of affecting bond.
- 13. Place steel reinforcement at spacing indicated on drawings before grouting.
- 14. Minimum clear distance between parallel bars: One bar diameter.
- 15. Hold vertical steel reinforcement in place vertically by centering clips, caging devices, tie wire, or other approved methods.

- 16. Support vertical bars near each end and at maximum 192 bar diameter on center.
- 17. Splice reinforcement or attach reinforcement to dowels by placing in contact and securing with wire ties.
- 18. Stagger splices in adjacent horizontal reinforcing bars. Lap reinforcing bars at splices a minimum of 40 bar diameters.
- 19. Grout cells of concrete masonry units, containing reinforcing bars, solid as specified.
- 20. Install cavity and joint reinforcement as masonry work progresses.
- 21. Rake joints 6 to 10 mm (1/4 to 3/8 inch) deep for pointing with

3.8 GROUTING

A. Preparation:

- 1. Clean grout space of mortar droppings before placing grout.
- 2. Close cleanouts.
- 3. Install vertical solid masonry dams across grout space for full height of wall at intervals of maximum 9000 mm (30 feet). Do not bond dam units into wythes as masonry headers.
- 4. Verify reinforcing bars are installed as indicated on drawings.

B. Placing:

- 1. Place grout in grout space in lifts as specified.
- 2. Consolidate each grout lift after free water has disappeared but before plasticity is lost.
- 3. Do not slush with mortar or use mortar with grout.
- 4. Interruptions:
 - a. When grouting must be stopped for more than an hour, top off grout 40 mm (1-1/2 inches) below top of last masonry course.
 - b. Grout from dam to dam on high lift method.
 - c. Longitudinal run of masonry may be stopped off only by raking back one-half masonry unit length in each course and stopping grout 100 mm (4 inches) back of rake on low lift method.

C. Puddling Method:

- Consolidate by puddling with grout stick during and immediately after placing.
- Grout cores of concrete masonry units containing reinforcing bars solid as masonry work progresses.

D. Low Lift Method:

1. Construct masonry to 1.8 m (6 feet) maximum height before grouting.

 Grout in one continuous operation and consolidate grout by mechanical vibration and reconsolidate after initial water loss and settlement has occurred.

3.9 PLACING REINFORCEMENT

- A. General: Clean reinforcement of loose rust, mill scale, earth, ice or other materials which will reduce bond to mortar or grout. Do not use reinforcement bars with kinks or bends not shown on drawings or approved submittal drawings, or bars with reduced cross-section due to excessive rusting or other causes.
- B. Position reinforcement accurately at spacing indicated on drawings. Support and secure vertical bars against displacement. Install horizontal reinforcement as masonry work progresses. Where vertical bars are shown in close proximity, provide clear distance between bars of minimum one bar diameter or 25 mm (1 inch), whichever is greater.
- C. Splice reinforcement bars only where indicated on drawings, unless approved by Contracting Officer's Representative. Provide lapped splices. In splicing vertical bars or attaching to dowels, lap ends, place in contact and wire tie.
- D. Provide minimum lap as indicated on approved submittal drawings, or if not indicated, minimum 48 bar diameters.
- E. Embed metal ties in mortar joints as work progresses, with minimum mortar cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations.
- F. Embed prefabricated horizontal joint reinforcement as work progresses, with minimum cover of 15 mm (5/8 inch) on exterior face of walls and 13 mm (1/2 inch) at other locations. Lap joint reinforcement minimum 150 mm (6 inches) at ends. Use prefabricated "L" and "T" sections to provide continuity at corners and intersections. Cut and bend joint reinforcement for continuity at returns, offsets, column fireproofing, pipe enclosures and other special conditions.
- G. Anchoring: Anchor reinforced masonry work to supporting structure as indicated on drawings.
- H. Anchor reinforced masonry walls at intersections with non-reinforced masonry.

3.10 INSTALLATION OF REINFORCED CONCRETE UNIT MASONRY

- A. Do not wet concrete masonry units (CMU).
- B. Lay CMU units with full-face shell mortar beds. Fill vertical head joints (end joints between units) solidly with mortar from face of unit

to distance behind face equal to thickness of longitudinal face shells. Solidly bed cross-webs of starting courses in mortar. Maintain head and bed 9 mm (3/8 inch) joint widths.

C. Where solid CMU units are shown, lay with full mortar head and bed joints.

D. Walls:

- 1. Pattern Bond: Lay CMU wall units in 1/2-running bond with vertical joints in each course centered on units in courses above and below, unless otherwise indicated. Bond and interlock each course at corners and intersections. Use special-shaped units where shown, and as required for corners, jambs, sash, control joints, lintels, bond beams and other special conditions.
- 2. Maintain vertical continuity of core or cell cavities, which are to be reinforced and grouted, to provide minimum clear dimension indicated and to provide minimum clearance and grout coverage for vertical reinforcement bars. Keep cavities free of mortar. Solidly bed webs in mortar where adjacent to reinforced cores or cells.
- 3. Where horizontally reinforced beams (bond beams) are indicated on drawings, use special units or modify regular units to allow for placement of continuous horizontal reinforcement bars. Place small mesh expanded metal lath or wire screening in mortar joints under bond beam courses over cores or cells of non-reinforced vertical cells, or provide units with solid bottoms.
- 4. Provide pattern bond shown, or if not shown, alternate head joints in vertical alignment.

E. Grouting:

- 1. Use fine grout for filling spaces less than 100 mm (4 inches) in one or both horizontal directions.
- 2. Use coarse grout for filling 100 mm (4 inch) spaces or larger in both horizontal directions.
- 3. Grouting Technique: Use either low-lift grouting techniques.

F. Low-Lift Grouting:

- 1. Provide minimum clear dimension of $50~\mathrm{mm}$ (2 inches) and clear area of $5160~\mathrm{sq.}$ mm (8 sq. inches) in vertical cores to be grouted.
- 2. Place vertical reinforcement before grouting of CMU. Extend above elevation of maximum pour height as required for splicing. Support in position at vertical intervals not exceeding 192 bar diameters nor 3 m (10 feet).

- 3. Lay CMU to maximum pour height. Do not exceed 1.5 m (5 feet) height, or if bond beam occurs below 1.5 m (5 feet) height, stop pour 38 mm (1-1/2 inches) below top of bond beam.
- 4. Rod or vibrate grout during placing. Place grout continuously; do not interrupt pouring of grout for more than one hour. Terminate grout pours 38 mm (1-1/2 inches) below top course of pour.
- 5. Bond Beams: Stop grout in vertical cells 38 mm (1-1/2 inches) below bond beam course. Place horizontal reinforcement in bond beams; lap at corners and intersections as indicated on drawings. Place grout in bond beam course before filling vertical cores above bond beam.

3.11 CONSTRUCTION TOLERANCES

- A. Lay masonry units plumb, level and true to line within tolerances according to ACI 530.1/ASCE 6/TMS 602 and as follows:
- B. Maximum variation from plumb:
 - 1. In 3000 mm (10 feet) 6 mm (1/4 inch).
 - 2. In 6000 mm (20 feet) 9 mm (3/8 inch).
 - 3. In 12,000 mm (40 feet) or more 13 mm (1/2 inch).
- C. Maximum variation from level:
 - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch).
 - 2. In 12,000 mm (40 feet) or more 13 mm (1/2 inch).
- D. Maximum variation from linear building lines:
 - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch).
 - 2. In 12,000 mm (40 feet) or more 19 mm (3/4 inch).
- E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown:
 - 1. Minus 6 mm (1/4 inch).
 - 2. Plus 13 mm (1/2 inch).
- F. Maximum variation in prepared opening dimensions:
 - 1. Accurate to minus 0 mm (0 inch).
 - 2. Plus 6 mm (1/4 inch).

3.12 CLEANING AND REPAIR

- A. General:
 - 1. Clean exposed masonry surfaces on completion.
 - Protect adjoining construction materials and landscaping during cleaning operations.
 - 3. Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint.

4. Remove mortar droppings and other foreign substances from wall surfaces.

B. Brickwork:

- 1. First wet surfaces with clean water, then wash down with detergent solution. Do not use muriatic acid.
- 2. Brush with stiff fiber brushes while washing, and immediately wash with clean water.
- 3. Remove traces of detergent, foreign streaks, or stains of any nature.

C. Concrete Masonry Units:

- 1. Immediately following setting, brush exposed surfaces free of mortar or other foreign matter.
- 2. Allow mud to dry before brushing.

3.13 FIELD QUALITY CONTROL

- A. Water Penetration Testing:
 - Seven days before plastering or painting, in presence of Contracting Officer's Representative, test solid exterior masonry walls for water penetration.
 - 2. Direct water on masonry for a period of one hour when wind velocity is less than five miles per hour.
 - Should moisture appear on inside of walls tested, make additional tests at other areas as directed by Contracting Officer's Representative.
 - 4. Correct areas showing moisture on inside of walls, and repeat test at repaired areas, to ensure moisture penetration has been stopped.
 - 5. Make water test at following locations:
 - a. All new exterior windows.
 - b. Eight places on other buildings.
 - c. At Connecting Corridor make one test for each 45,000 mm (150 lineal feet) of exterior masonry walls.

- - - E N D - - -

SECTION 05 12 00 STRUCTURAL STEEL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies structural steel shown and classified by Section 2, Code of Standard Practice for Steel Buildings and Bridges.

1.2 RELATED WORK

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Painting: Section 09 91 00, PAINTING.
- D. Steel Decking: Section 05 31 00, STEEL DECKING.

1.3 QUALITY ASSURANCE

- A. Fabricator and erector must be a Company specializing in performing the work of this section with minimum five years of documented experience.
- B. The controlling contractor must ensure that the steel erector is provided written notification required by 29 CFR 1926.752, before authorizing the commencement of steel erection; provide copy of this notification to the RE/COR.

1.4 TOLERANCES

A. Hold fabrication tolerances for structural steel within limits established by ASTM A6, by Section 7, Code of Standard Practice for Buildings and Bridges, and by Standard Mill Practice - General Information (AISC ASD Manual, Ninth Edition, Page 1-145 LRFD Manual, Second Edition, Page 1-183).

1.5 DESIGN

A. Connections: Design and detail all connections for each member size, steel grade and connection type to resist the loads and reactions indicated on the drawings or specified herein. Use details consistent with the details shown on the Drawings, supplementing where necessary. The details shown on the Drawings are conceptual and do not indicate the required weld sizes or number of bolts unless specifically noted. Use rational engineering design and standard practice in detailing, accounting for all loads and eccentricities in both the connection and the members. Promptly notify the RE/COR of any location where the connection design criteria is not clearly indicated. The design of all connections is subject to the review and acceptance of the RE/COR. Submit structural calculations prepared and sealed by a qualified

engineer registered in the state where the project is located. Submit calculations for review before preparation of detail drawings.

1.6 REGULATORY REQUIREMENTS

- A. AISC: Specification for Structural Steel Buildings Allowable Stress Design or LRFD Specification for Structural Steel Buildings.
- B. AISC: Code of Standard Practice for Steel Buildings and Bridges.

1.7 SUSTAINABILITY REQUIREMENTS

A. Materials in this section may contribute towards contract compliance with sustainability requirements. See Section 01 81 11, SUSTAINABLE DESIGN REQUIRMENTS, for project local/regional materials, low-emitting materials, recycled content requirements.

1.8 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop and Erection Drawings: Complete.
- D. Test Reports:
 - 1. Welders' qualifying tests.

1.9 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by the basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- C. American National Standards Institute (ANSI):

B18.22.1-03 Plain Washers

B18.22M-05 Metric Plain Washers

D. American Society for Testing and Materials (ASTM):

A6/A6M-13

General Requirements for Rolled Structural
Steel Bars, Plates, Shapes, and Sheet Piling
A36/A36M-12

Carbon Structural Steel

A53/A53M-12

Pipe, Steel, Black and Hot-Dipped, Zinc-Coated
Welded and Seamless

A123/A123M-12

Zinc (Hot-Dip Galvanized) Coatings on Iron and
Steel Products

A307-12

Carbon Steel Bolts and Studs, 60,000 psi

Tensile Strength

F3125 Standard Specification for High Strength

Structural Bolts and Assemblies, Steel and

Alloy Steel, Heat Treated, Inch Dimensions 120 ksi and 150 ksi Minimum Tensile Strength, and Metric Dimensions 830 MPa and 1040 MPa Minimum

Tensile Strength

A500/A500M-10a Cold Formed Welded and Seamless Carbon Steel

Structural Tubing in Rounds and Shapes

A992/A992M-11 Structural Steel Shapes

E. American Welding Society (AWS):

D1.1/D1.1M-10 Structural Welding Code-Steel

F. Research Council on Structural Connections (RCSC) of The Engineering Foundation:

Specification for Structural Joints Using ASTM A325 or A490 Bolts (2000)

G. Military Specifications (Mil. Spec.):

MIL-P-21035 Paint, High Zinc Dust Content, Galvanizing,
Repair (2003)

H. Occupational Safety and Health Administration (OSHA):

29 CFR Part 1926 Safety Standards for Construction

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Structural Steel: ASTM A36, A992.
- B. Structural Tubing: ASTM A500, Grade B.
- D. Steel Pipe: ASTM A53, Grade B.
- E. Bolts, Nuts and Washers:
 - 1. High-strength bolts, including nuts and washers: ASTM F3125 GradeA325.
 - 2. Bolts and nuts, other than high-strength: ASTM A307, Grade A.
 - 3. Plain washers, other than those in contact with high-strength bolt heads and nuts: ANSI Standard B18.22.1.
- F. Zinc Coating: ASTM A123.
- G. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035.

PART 3 - EXECUTION

3.1 CONNECTIONS (SHOP AND FIELD)

A. Welding: Welding in accordance with AWS D1.1. Make welds only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.1 to perform type of work required.

B. High-Strength Bolts: High-strength twist-off bolts tightened per manufacturer's recommendations for a bearing (non-slip) connection.

3.2 FABRICATION

A. Execute fabrication in accordance with Chapter M, Specification for Steel Buildings - Allowable Stress Design and Plastic Design or Load and Resistance Factor Design.

3.3 SHOP PAINTING

- A. General: Shop paint steel with primer in accordance with Section 6, Code of Standard Practice for Steel Buildings and Bridges.
- B. Shop paint for steel surfaces is specified in Section 09 91 00, PAINTING.
- C. Do not apply paint to following:
 - 1. Surfaces within 50 mm (2 inches) of joints to be welded in field.
 - 2. Surfaces which will be encased in concrete.
 - 3. Surfaces which will receive sprayed on fireproofing.
 - 4. Top flange of members which will have shear connector studs applied.
- D. Zinc Coated Finish (Hot Dip Galvanized): Provide per ASTM A123 (after fabrication).
- E. Touch-up (after erection): Clean and wire brush any abraded and other spots worn through zinc coating, including threaded portions of bolts and welds and touch-up with galvanizing repair paint.

3.4 ERECTION

- A. General: Erect structural steel framing in accordance with Section 7, Code of Standard Practice for Steel Buildings and Bridges.
- B. Temporary Supports: Provide temporary support of structural steel frames during erection in accordance with Section 7, Code of Standard Practice for Steel Buildings and Bridges.

3.5 FIELD PAINTING

- A. After erection, touch-up steel surfaces specified to be shop painted.

 After welding is completed, clean and prime areas not painted due to field welding.
- B. Finish painting of steel surfaces is specified in Section 09 91 00, PAINTING.

- - - E N D - - -

SECTION 05 31 00 STEEL DECKING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies material and services required for installation of steel decking as shown and specified.

1.2 RELATED WORK

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Finish Painting: Section 09 91 00, PAINTING.

1.3 DESIGN REQUIREMENTS

- A. Design steel decking in accordance with AISI publication,

 "Specification for the Design of Cold-formed Steel Structural Members"

 except as otherwise shown or specified.
- B. Design all elements with the latest published version of applicable codes.

1.4 SUSTAINABILITY REQUIREMENTS

A. Materials in this section may contribute towards contract compliance with sustainability requirements. See Section 01 81 11, SUSTAINABLE DESIGN REQUIRMENTS.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Prepare shop and erection drawings showing decking unit layout, connections to supporting members, and similar information necessary for completing installation as shown and specified, including supplementary framing, sump pans, ridge and valley plates, cant strips, cut openings, special jointing or other accessories. Show welding, side lap, closure, deck reinforcing and closure reinforcing details. Show openings required for work of other trades, including openings not shown on structural drawings. Indicate where temporary shoring is required to satisfy design criteria.
- C. Manufacturer's Literature and Data: Indicate steel decking section properties and specifying structural characteristics.
- D. Certification: For each type and gauge of metal deck supporting concrete slab or fill, furnish certification of the specified fire ratings. Certify that the units supplied are U.L. listed as a "Steel Floor and Form Unit".

E. Insurance Certification: Assist the Government in preparation and submittal of roof installation acceptance certification as may be necessary in connection with fire and extended coverage insurance.

1.6 QUALITY ASSURANCE

- A. Underwriters' Label: Provide metal floor deck units listed in Underwriters' Laboratories "Fire Resistance Directory", with each deck unit bearing the UL label and marking for specific system detailed.
- B. FM Listing: Provide metal roof deck units which have been evaluated by Factory Mutual Global and are listed in "Factory Mutual Research Approval Guide" for "Class 1" fire rated construction.
- C. Pre-Installation Conference: Convene a meeting on site, after submittals are received and approved but before any work, to review drawings and specifications, submittals, schedule, manufacturer instructions, site logistics and pertinent matters of coordination, temporary protection, governing regulations, tests and inspections; participants to include RE/COR and all parties whose work is affected or related to the work of this section.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by the basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. American Society for Testing and Materials (ASTM):

A36/A36M-12 Carbon Structural Steel

A653/A653M-11 Steel Sheet, Zinc-Coated (Galvanized) or ZincIron Alloy-Coated (Galvanized) by the Hot-Dip
Process

A1008/A1008M-12a Steel, Sheet, Cold-Rolled, Carbon, Structural,
High-Strength Low-Alloy with Improved
Formability, Solution Hardened, and Bake
Hardenable

C. American Iron and Steel Institute (AISI):

AISI S100-07 North American Specification for the Design of Cold-Formed Steel Structural Members,

Specification and Commentary for the Design of Cold-Formed Steel Structural Members

D. American Welding Society (AWS):

D1.3D1.3M-08 Structural Welding Code - Sheet Steel

- E. Factory Mutual (FM Global):
 - Loss Prevention Data Sheet 1-28: Design Wind Loads (2012) Factory Mutual Research Approval Guide (2005)
- F. Military Specifications (Mil. Spec.):

MIL-P-21035B Paint, High Zinc Dust Content, Galvanizing Repair (2003)

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Steel Decking: ASTM A653, Structural Quality or ASTM A1008/A1008M, Grade C, D, or E.
- D. Primer for Shop Painted Sheets: Manufacturer's standard primer (2 coats). When finish painting of steel decking is specified in Section 09 91 00, PAINTING, primer coating must be compatible with specified finish painting.
- E. Miscellaneous Steel Shapes: ASTM A36.
- F. Welding Electrode: E60XX minimum.
- G. Sheet Metal Accessories: ASTM A653, galvanized, unless noted otherwise. Provide accessories of every kind required to complete the installation of metal decking in the system shown. Finish sheet metal items to match deck including, but not limited to, the following items:
 - 1. Metal Cover Plates: Provide for end-abutting deck units, to close gaps at changes in deck direction, columns, walls and openings; same quality as deck units but not less than 1.3 mm (18 gauge) sheet steel.
 - 2. Continuous Sheet Metal Edging: Provide at openings, concrete slab edges and roof deck edges; same quality as deck units but not less than 1.3 mm (18 gauge) steel. Manufacture to design side and end closures supporting concrete and their attachment to supporting steel, to safely support the wet weight of concrete and construction loads. Limit deflection of cantilever closures to 3 mm (1/8 inch) maximum.
 - 3. Metal Closure Strips: Provide for openings between decking and other construction, of not less than 1.3 mm (18 gauge) sheet steel of the same quality as the deck units. Form to the configuration required to provide tight-fitting closures at open ends of flutes and sides of decking.

- 5. Cant Strips: Provide bent metal 45 degree leg cant strips where indicated on the Drawings. Fabricate cant strips from 1 mm (20 gauge) metal with a minimum 125 mm (5 inch) face width.
- 6. Seat Angles for Deck: Provide where a beam does not frame into a column.
- 7. Sump Pans for Roof Drains: Fabricate from single piece of minimum 1.9 mm (14 gauge) galvanized sheet steel with level bottoms and sloping sides to direct water flow to drain, unless otherwise shown. Provide sump pans of adequate size to receive roof drains and with bearing flanges not less than 75 mm (3 inches) wide. Recess pans not less than 38 mm (1 1/2 inches) below roof deck surface, unless otherwise shown or required by deck configuration. Holes for drains will be cut in the field.

2.2 REQUIREMENTS

- A. Provide steel decking of the type, depth, gauge, and section properties as shown.
- B. Metal Roof Deck: Single pan fluted units with flat horizontal top surfaces utilized to act as a permanent support for all superimposed loads. Comply with the depth and minimum gage requirements as shown on the Contract Documents.
 - 4. Deep Rib (Type N) deck.
 - 7. Finish: Prime painted. Apply finished coat of paint to underside of deck after installation. Color as selected by Architect.
- C. Do not use steel deck for hanging supports for any type or kind of building components including suspended ceilings, electrical light fixtures, plumbing, heating, or air conditioning pipes or ducts or electrical conduits.

PART 3 - EXECUTION

3.1 ERECTION

- A. Do not start installation of metal decking until corresponding steel framework has been plumbed, aligned and completed and until temporary shoring, where required, has been installed. Remove any oil, dirt, paint, ice, water and rust from steel surfaces to which metal decking will be welded.
- B. Coordinate and cooperate with structural steel erector in locating decking bundles to prevent overloading of structural members.
- D. Provide steel decking in sufficient lengths to extend over 3 or more spans.

- E. Place steel decking units at right angles to supporting members. End lap sheets of roof deck a minimum of 50 mm (2 inches) and over supports.
 - 1. Fasten roof deck units as indicated on drawings.
- G. Cutting and Fitting:
 - 1. Cut all metal deck units to proper length in the shop prior to shipping.
 - 2. Field cutting by the metal deck erector is restricted to bevel cuts, notching to fit around columns and similar items, and cutting openings that are located and dimensioned on the Structural Drawings.
 - 3. Other penetrations shown on the approved metal deck shop drawings but not shown on the Structural Drawings are to be located, cut and reinforced by the trade requiring the opening.
 - 4. Make all cuts neat and trim using a metal saw, drill or punchout device; cutting with torches is expressly prohibited.
 - 5. Do not make any cuts in the metal deck that are not shown on the approved metal deck drawings. If an additional opening not shown on the approved shop drawings is required, submit a sketch, to scale, locating the required new opening and any other openings and supports in the immediate area. Do not cut the opening until the sketch has been reviewed and accepted by the RE/COTR. Provide any additional reinforcing or framing required for the opening at no cost to the Government. Failure to comply with these requirements is cause for rejection of the work and removal and replacement of the affected metal deck.
 - 6. Reinforcement at Openings: Provide additional metal reinforcement and closure pieces as required for strength, continuity of decking, and support of other work shown.

3.3 FIELD REPAIR

A. Areas scarred during erection.

- - - E N D - - -

SECTION 05 51 00 METAL STAIRS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies steel stairs with railings.
- B. Types:
 - 1. Industrial stairs: Open riser stairs.

1.2 RELATED WORK

A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Postconsumer and preconsumer recycled content as specified in PART 2 PRODUCTS.
- C. Shop Drawings: Show design, fabrication details, installation, connections, material, and size of members.
- D. Fabrication qualifications.
 - a. Installer qualifications.
 - b. Calculations.
- E. Welding qualifications.

1.4 QUALITY ASSURANCE

- A. Fabricator: A firm with a minimum of three (3) years' experience in type of work required by this section. Submit fabricator qualifications.
- B. Installer: A firm with a minimum of three (3) years' experience in type of work required by this section. Submit installer qualifications.
- C. Calculations: Provide professionally prepared calculations and certification of performance of this work, signed and sealed by a Professional Engineer registered in the state where the work is located. Perform structural design of the stair including supports for the metal stair frame. Indicate how Design Criteria as specified have been incorporated into the design.
- D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M and AWS D1.3/D1.3M.

1.5 APPLICATION PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation.

	В.	American	Society	of	Mechanical	Engineers	(ASME)	:
--	----	----------	---------	----	------------	-----------	--------	---

B18.2.1-12Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange, Lobed Head, and Lag Screws (Inch Series)

B18.2.3.8M-81(R2005) ...Metric Heavy Lag Screws

B18.6.1-81(R2008)Wood Screws (Inch Series)

B18.6.3-13Machine Screws, Tapping Screws, and Metallic Drive Screws (Inch Series)

B18.6.5M-10Metric Thread Forming and Thread Cutting Tapping Screws

B18.6.7M-10Metric Machine Screws

B18.22M-81(R2010)Metric Plain Washers

B18.21.1-09Washers: Helical Spring-Lock, Tooth Lock, and Plain Washer (Inch Series)

C. ASTM International (ASTM):

A36/A36M-19Structural Steel

A47/A47M-99e1R2018)Ferritic Malleable Iron Castings

A48/A48M-03(R2016)Gray Iron Castings

A53/A53M-20Pipe, Steel, Black and Hot-Dipped Zinc-Coated Welded and Seamless

A123/A123M-17Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A153/A153M-16aZinc Coating (Hot-Dip) on Iron and Steel Hardware

A307-14e1Carbon Steel Bolts, Studs and Threaded Rod 60,000 PSI Tensile Strength

A653/A653M-20Steel Sheet, Zinc Coated (Galvanized) or Zinc Alloy Coated (Galvannealed) by the Hot-Dip Process

A786/A786M-15Rolled Steel Floor Plates

A1008/A1008M-20Steel, Sheet, Cold-Rolled, Carbon, Structural,

High-Strength, Low-Alloy

A1011/A1011M-18Steel, Sheet and Strip, Strip, Hot-Rolled Carbon, Structural, High-Strength, Low-Alloy

- D. American Welding Society (AWS):
 - D1.1/D1.1M-15Structural Welding Code-Steel
 D1.3/D1.3M-18Structural Welding Code-Sheet Steel
- E. The National Association of Architectural Metal Manufactures (NAAMM) Manuals:
 - MBG 531-17Metal Bar Gratings

AMP521-01(R2012)Pipe Railing Manual, Including Round Tube

- F. American Iron and Steel Institute (AISI):
 - S100-12Design of Cold-Formed Steel Structural Members
- G. National Fire Protection Association (NFPA):

101-21Life Safety Code

H. Society for Protective Coatings (SSPC):

Paint 25(1997; E 2004) .Zinc Oxide, Alkyd, Linseed Oil Primer for Use
Over Hand Cleaned Steel, Type I and Type II

PART 2 - PRODUCTS

2.1 DESIGN CRITERIA

- A. Design stairs to support live load of 4.79 kN/square meter (100-pound force/ square feet) and a concentrated load of 1.33 kN (300 pound force) applied on an area of 2580 square mm (4 square inch).
 - 1. Uniform and concentrated loads need not be assumed to act concurrently.
 - 2. Provide stair framing capable of withstanding stresses resulting from railing loads in addition to the loads specified above. Limit deflection of treads, platforms, and framing members to L/360 or 6.4 mm (1/4 inch), whichever is less.
- B. Provide structural design, fabrication and assembly in accordance with requirements of NAAMM Metal Stairs Manual, except as otherwise specified or shown.
- C. Design Grating treads in accordance with NAAMM Metal Bar Grating Manual.
- D. Design handrails and top rails of guards to support uniform load of not 0.73 kN/meter (50-pound force/feet) applied in any direction and a concentrated load of 0.89 kN (200 pound force) applied in any direction. Uniform and concentrated loads need not be assumed to act concurrently.
- E. Infill of guards to support concentrated load of 0.22 kN (50-pound force) applied horizontally on an area of 0.093 square meter (one square feet).

F. Design fire stairs to conform to NFPA 101.

2.2 MATERIALS

- A. Steel Pipe: ASTM A53/A53M, Standard Weight, zinc coated.
- B. Steel Grating: Metal bar type grating NAAMM BG.
- C. Sheet Steel: ASTM A1008/A1008M.
- D. Structural Steel: ASTM A36/A36M.
- E. Steel Floor Plate: ASTM A786/A786M.
- F. Steel Decking: Form from zinc coated steel conforming to ASTM A653/A653M, with properties conforming to AISI S100 Specification for the Design of Cold-Formed Steel Structural Members.
- G. Steel Plate: ASTM A1011/A1011M.
- H. Iron Castings: ASTM A48/A48M, Class 30.
- I. Malleable Iron Castings: ASTM A47/A47M.
- J. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 30 percent.

2.3 FABRICATION GENERAL

A. Fasteners:

- 1. Conceal bolts and screws wherever possible.
- 2. Use countersunk heads on exposed bolts and screws with ends of bolts and screws dressed flush after nuts are set.
- 3. Galvanized zinc-coated fasteners in accordance with ASTM A153/A153M and used for exterior applications or where built into exterior walls or floor systems. Select fasteners for the type, grade, and class required for the installation of steel stair items.
- 4. Standard/regular hexagon-head bolts and nuts be conforming to ASTM A307, Grade A.
- 5. Square-head lag bolts conforming to ASME B18.2.3.8M, ASME B18.2.1.
- 6. Machine screws cadmium-plated steel conforming to ASME B18.6.7M, ASME B18.6.3.
- 7. Wood screws, flat-head carbon steel conforming to ASME B18.6.5M, ASME B18.6.1.
- 8. Plain washers, round, general-assembly-grade, carbon steel conforming to ASME B18.22M, ASME B18.21.1.
- Lockwashers helical spring, carbon steel conforming to ASME B18.2.1, ASME B18.2.3.8M.

B. Welding:

- 1. Structural steel, AWS D1.1/D1.1M, and sheet steel, AWS D1.3/D1.3M.
- 2. Where possible, locate welds on unexposed side.

- 3. Grind exposed welds smooth and true to contour of welded member.
- 4. Remove welding splatter.
- C. Remove sharp edges and burrs.
- D. Fit stringers to head channel and close ends with steel plates welded in place where shown.
- E. Fit face stringer to newel post by tenoning into newel post, or by notching and fitting face stringer to side of newel where shown.
- F. Shop Prime Painting: Shop prime steelwork with red oxide primer in accordance with SSPC Paint 25.
 - Hot dip galvanize steelwork as indicated in accordance with ASTM A123/A123M. Touch up abraded surfaces and cut ends of galvanized members with zinc-dust, zinc-oxide primer, or an approved galvanizing repair compound.
- G. Form exposed work true to line and level with accurate angles and surfaces and straight sharp edges. Ease exposed edges to a radius of approximately 0.8 mm (1/32 inch), and bend metal corners to the smallest radius possible without causing grain separation or otherwise impairing the work.
- H. Continuously weld corners and seams in accordance with the recommendations of AWS D1.1/D1.1M. Grind smooth exposed welds and flush to match and blend with adjoining surfaces.
- I. Form exposed connections with hairline joints that are flush and smooth, using concealed fasteners wherever possible. Use exposed fasteners of the type indicated or, if not indicated, use Phillips flathead (countersunk) screws or bolts.
- J. Provide and coordinate anchorage of the type indicated with the supporting structure. Fabricate anchoring devices, space as indicated and required to provide adequate support for the intended use of the work.
- K. Use hot-rolled steel bars for work fabricated for bar stock unless work is indicated or specified as fabricated from cold-finished or coldrolled stock.

2.4 RAILINGS

- A. Fabricate railings, including handrails, from steel pipe.
 - 1. Connections may be standard fittings designed for welding or coped or mitered pipe with full welds.
 - 2. Wall handrails are provided under Section 05 50 00, METAL FABRICATIONS.

- B. Return ends of handrail to wall and close free end.
- C. Provide standard terminal castings where fastened to newel.
- D. Space intermediate posts not over 1828 mm (6 feet) on center between end post or newel post.
- E. Fabricate handrail brackets from cast malleable iron.
- F. Provide standard terminal fittings at ends of post and rails.

2.5 CLOSED RISER STAIRS

- A. Provide treads, risers, platforms, railings, stringers, headers and other supporting members.
- B. Fabricate pans for treads and platforms, and risers from sheet steel. Fabricate pans for platforms from steel decking where shown.
- C. Form risers with sanitary cove.
- D. Fabricate stringers, headers, and other supporting members from structural steel.
- E. Construct newel posts of steel tubing having wall thickness not less than 5 mm (3/16-inch), with forged steel caps and drops.

2.6 INDUSTRIAL STAIRS

- A. Provide treads, platforms, railings, stringers and other supporting members as shown.
- B. Treads and platforms of checkered steel floor plate:
 - 1. Turn floor plate down to form nosing on treads and edge of platform at head of stairs.
 - 2. Support tread and platforms with angles welded to plate.
 - Do not leave exposed fasteners on top of treads or platform surfaces.
 - 4. Provide flat sheet steel risers for stairs with steel plate treads where shown.
- C. Treads and platforms of steel grating:
 - 1. Fabricate steel grating treads and platforms in accordance with requirements of NAAMM MBG 531-09.
 - 2. Provide end-banding bars, except where carrier angle are used at
 - 3. Support treads by use of carrier plates or carrier angle. Use carrier plate end banding bars on exterior stairs.
 - 4. Provide abrasive nosing on treads and edge of platforms at head of stairs.
 - 5. Provide toe plates on platforms where shown.

PART 3 - EXECUTION

3.1 STAIR INSTALLATION

- A. Provide columns, hangers, and struts required to support the loads imposed.
- B. Perform job site welding and bolting as specified for shop fabrication.
- C. Set stairs and other members in position and secure to structure as shown.
- D. Install stairs plumb, level and true to line.
- E. Provide steel closure plate to fill gap between the stringer and surrounding wall. Weld and apply primer, ready to accept paint finish.

3.2 RAILING INSTALLATION

- A. Install standard terminal fittings at ends of posts and rails.
- B. Secure brackets, posts and rails to steel by welds, and to masonry or concrete with expansion sleeves and bolts, except secure posts at concrete by setting in sleeves filled with commercial non-shrink grout.
- C. Set rails horizontal or parallel to rake of stairs to within 3 mm in 3658 mm (1/8-inch in 12 feet).
- D. Set posts plumb and aligned to within 3 mm in 3658 mm (1/8-inch in 12 feet).

3.3 FIELD PRIME PAINTING

- A. Touch-up abraded areas with same primer paint used for shop priming.
- B. Touch up abraded galvanized areas.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies wood blocking, framing, sheathing, furring, nailers, sub-flooring, rough hardware, and light wood construction.

1.2 RELATED WORK:

- A. Sustainable design requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Postconsumer and preconsumer recycled content as specified in PART 2 - PRODUCTS.
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
 - 3. For composite wood products, submit documentation indicating that product contains no added urea formaldehyde.
- C. Shop Drawings showing framing connection details, fasteners, connections and dimensions.
- D. Manufacturer's Literature and Data:
 - 1. Submit data for lumber, panels, hardware and adhesives.
 - 2. Submit data for wood-preservative treatment from chemical treatment manufacturer and certification from treating plants that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 3. Submit data for fire retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 4. For products receiving a waterborne treatment, submit statement that moisture content of treated materials was reduced to levels specified before shipment to project site.
- E. Manufacturer's certificate for unmarked lumber.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 152 mm (6 inches) above grade and cover with well-ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 QUALITY ASSURANCE:

A. Installer: A firm with a minimum of three (3) years' experience in the type of work required by this section.

1.6 GRADING AND MARKINGS:

A. Any unmarked lumber or plywood panel for its grade and species will not be allowed on VA Construction sites for lumber and material not normally grade marked, provide manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material meet the specified the specified requirements.

1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA):

 NDS-15National Design Specification for Wood

 Construction

 WCD1-01Details for Conventional Wood Frame

 Construction
- C. American Institute of Timber Construction (AITC):
 A190.1-07Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME):
 B18.2.1-12(R2013)Square and Hex Bolts and Screws
 B18.2.2-10Square and Hex Nuts
 B18.6.1-81(R2008)Wood Screws
- F. ASTM International (ASTM):

	A653/A653M-13	.Steel Sheet Zinc-Coated (Galvanized) or Zinc-
	1100071100011 10	Iron Alloy Coated (Galvannealed) by the Hot Dip
		Process
	C954-11	.Steel Drill Screws for the Application of
		Gypsum Board or Metal Plaster Bases to Steel
		Studs from 0.033 inch (2.24 mm) to 0.112-inch
		(2.84 mm) in thickness
	C1002-14	Steel Self-Piercing Tapping Screws for the
		Application of Gypsum Panel Products or Metal
		Plaster Bases to Wood Studs or Metal Studs
	D198-14	.Test Methods of Static Tests of Lumber in
		Structural Sizes
	D2344/D2344M-13	.Test Method for Short-Beam Strength of Polymer
	, , , , , , , , , , , , , , , , , , , ,	Matrix Composite Materials and Their Laminates
	D2559-12a	.Adhesives for Structural Laminated Wood
		Products for Use Under Exterior (Wet Use)
		Exposure Conditions
	D3498-03(R2011)	.Adhesives for Field-Gluing Plywood to Lumber
	, ,	Framing for Floor Systems
	D6108-13	.Test Method for Compressive Properties of
		Plastic Lumber and Shapes
	D6109-13	.Test Methods for Flexural Properties of
		Unreinforced and Reinforced Plastic Lumber and
		Related Products
	D6111-13a	.Test Method for Bulk Density and Specific
		Gravity of Plastic Lumber and Shapes by
		Displacement
	D6112-13	.Test Methods for Compressive and Flexural Creep
		and Creep-Rupture of Plastic Lumber and Shapes
	F844-07a(R2013)	.Washers, Steel, Plan (Flat) Unhardened for
		General Use
	F1667-13	.Nails, Spikes, and Staples
G.	American Wood Protectio	n Association (AWPA):
	AWPA Book of Standards	
Н.	Commercial Item Descrip	tion (CID):
	A-A-55615	.Shield, Expansion (Wood Screw and Lag Bolt Self
		Threading Anchors)
I.	Forest Stewardship Coun	cil (FSC):

FSC-STD-01-001(Ver. 4-0)FSC Principles and Criteria for Forest Stewardship

J. Military Specification (Mil. Spec.):

MIL-L-19140ELumber and Plywood, Fire-Retardant Treated

K. Environmental Protection Agency (EPA):

40 CFR 59(2014)National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

L. Truss Plate Institute (TPI):

TPI-85Metal Plate Connected Wood Trusses

M. U.S. Department of Commerce Product Standard (PS)

N. ICC Evaluation Service (ICC ES):

AC09Quality Control of Wood Shakes and Shingles
AC174Deck Board Span Ratings and Guardrail Systems
(Guards and Handrails)

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber must bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks are to be in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review,
 American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA NDS having design stresses as shown.
- C. Lumber Other Than Structural:
 - 1. Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - 2. Framing lumber: Minimum extreme fiber stress in bending of 7584 kPa (1100 PSI).

- 3. Furring, blocking, nailers and similar items 101 mm (4 inches) and narrower Standard Grade; and, members 152 mm (6 inches) and wider, Number 2 Grade.
- 4. Board Sub-flooring: Shiplap edge, 25 mm (1 inch) thick, not less than 203 mm (8 inches) wide.

D. Sizes:

- 1. Conforming to PS 20.
- Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.

E. Moisture Content:

- 1. Maximum moisture content of wood products is to be as follows at the time of delivery to site.
 - a. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - b. Lumber over 50 mm (2 inches) thick: 25 percent or less.

F. Fire Retardant Treatment:

- 1. Comply with Mil Spec. MIL-L-19140.
- 2. Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.

G. Preservative Treatment:

- 1. Do not treat Heart Redwood and Western Red Cedar.
- 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 610 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members provided in connection with roofing and flashing materials.
- 3. Treat other members specified as preservative treated (PT).
- 4. Preservative treat by the pressure method complying with AWPA Book use category system standards U1 and T1, except any process involving the use of Chromated Copper Arsenate (CCA) or other agents classified as carcinogenic for pressure treating wood is not permitted.

2.2 PLYWOOD:

- A. Comply with PS 1.
- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which

identifies compliance by veneer grade, group number, span rating where applicable, and glue type.

C. Sheathing:

- 1. APA rated Exposure 1 or Exterior; panel grade CD or better.
- 2. Wall sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with supports 406 mm (16 inches) on center and 12 mm (15/32 inch) thick with supports 610 mm (24 inches) on center unless specified otherwise.
 - b. Minimum 1200 mm (48 inches) wide at corners without corner bracing of framing.

2.3 ROUGH HARDWARE AND ADHESIVES:

- A. Screws:
 - 1. Wood to Wood: ASME B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.

B. Nails:

- Size and type best suited for purpose unless noted otherwise.
 Provide aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
- 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Provide special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.

C. Adhesives:

- 1. For field-gluing plywood to lumber framing floor or roof systems: ASTM D3498.
- 2. For structural laminated Wood: ASTM D2559.
- 3. Adhesives to have a VOC content of 70~g/L or less when calculated according to 40~CFR 59, (EPA Method 24).

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

A. Conform to applicable requirements of the following:

- 2. AITC A190.1 Timber Construction Manual for heavy timber construction.
- 3. AFPA WCD1 for nailing and framing unless specified otherwise.
- 4. APA for installation of plywood or structural use panels.

B. Fasteners:

1. Nails.

- a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA WCD1 where detailed nailing requirements are not specified in nailing schedule. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.
- b. Use special nails with framing connectors.
- c. For sheathing and subflooring, select length of nails sufficient to extend 25 mm (1 inch) into supports.
- d. Use 8d or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
- e. Use 16d or larger nails for nailing through 50 mm (2 inch) thick lumber.
- f. Select the size and number of nails in accordance with the Nailing Schedule except for special nails with framing anchors.
- g. Nailing Schedule; Using Common Nails:
 - 4) Subflooring or Sheathing:
 - a) 152 mm (6 inch) wide or less to each joist face nail two (2) 8d nails.
 - c) Plywood or structural use panel to each stud or joist face nail 8d, at supported edges 152 mm (6 inches) on center and at intermediate supports 254 mm (10 inches) on center. When gluing plywood to joint framing increase nail spacing to 305 mm (12 inches) at supported edges and 508 mm (20 inches) o.c. at intermediate supports.

2. Bolts:

- a. Fit bolt heads and nuts bearing on wood with washers.
- b. Countersink bolt heads flush with the surface of nailers.
- c. Embed in concrete and solid masonry or provide expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
- d. Provide toggle bolts to hollow masonry or sheet metal.

- e. Provide bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 610 mm (24 inch) intervals between end bolts. Provide clips to beam flanges.
- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be provided where practical to anchor to solid masonry, concrete, or steel.
- 5. Do not anchor to wood plugs or nailing blocks in masonry or concrete. Provide metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- D. Cut notch, or bore in accordance with AFPA WCD1 passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Provide longest lengths practicable.
 - 3. Provide fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.
 - b. Nail at ends and not over 610 mm (24 inches) between ends.
 - c. Stagger nails from side to side of wood member over 127 mm (5 inches) in width.
 - 5. Unless otherwise shown, provide wall furring 25 mm by 75 mm (1 inch by 3 inch) continuous wood strips installed plumb on walls, using wood shims where necessary so face of furring forms a true, even plane. Space furring not over 406 mm (16 inches) on centers, butt joints over bearings and rigidly secure in place. Anchor furring on 406 mm (16 inches) centers.

K. Rough Bucks:

- Install rough wood bucks at opening in masonry or concrete where wood frames or trim occur.
- 2. Brace and maintain bucks plumb and true until masonry has been built around them or concrete cast in place.
- 3. Cut rough bucks from 50 mm (2 inch) thick stock, of same width as partitions in which they occur and of width shown in exterior walls.
- 4. Extend bucks full height of openings and across head of openings; fasten securely with anchors specified.

N. Sheathing:

- 1. Provide plywood or structural-use panels for sheathing.
- 2. Lay panels with joints staggered, with edge and ends 3 mm (1/8 inch) apart and nailed over bearings as specified.
- 3. Set nails not less than 9 mm (3/8 inch) from edges.
- 4. Install 50 mm by 101 mm (2 inch by 4 inch) blocking spiked between joists, rafters and studs to support edge or end joints of panels.
- 5. Match and align sheathing which is an extension of work in place to existing.

- - - E N D - - -

SECTION 07 01 50.19 PREPARATION FOR RE-ROOFING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Complete roof removal for new roof system installation.
 - 2. Partial roof removal for new roof system installation.
 - 3. Roofing membrane and selective roofing system component removal for new roof membrane installation.
 - 4. Existing roofing membrane preparation for new roofing installation.
- B. Existing Roofing System: PVC System components include:
 - 1. Roof insulation and drainage board.
 - 2. Roofing membrane.
 - 3. Cover board.
 - 4. Roof insulation.
 - 5. Vapor retarder.
 - 6. Substrate board.

1.2 RELATED WORK

- A. Section 05 31 00, STEEL DECKING: Replacement Roof Deck.
- B. Section 06 10 00, ROUGH CARPENTRY: Replacement Roof Deck and Parapet Sheathing.
- C. Section 07 54 19, POLYVINYL-CHLORIDE (PVC) ROOFING: New Roofing System.
- D. Section 07 60 00, FLASHING AND SHEET METAL: Sheet Metal Counterflashing.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- - FX-1 (R2016)Standard Field Test Procedure for Determining the Withdrawal Resistance of Roofing Fasteners.

Nondestructive Testing.

- C. American Society for Nondestructive Testing (ASNT): SNT-TC-1A (2019)Personnel Qualification and Certification for
- D. ASTM International (ASTM):
 - C208-12(2017) e2Cellulosic Fiber Insulating Board.
 C578-19Rigid, Cellular Polystyrene Thermal Insulation.
 - C728-17aPerlite Thermal Insulation Board.

C1177/C1177M-17Glass Mat Gypsum Substrate for Use as Sheathing.

C1153-10(2015)Location of Wet Insulation in Roofing Systems
Using Infrared Imaging.

C1278/C1278M-17Standard Specification Fiber-Reinforced Gypsum Panel.

D4263-83(2018)Indicating Moisture in Concrete by the Plastic Sheet Method.

E. U.S. Department of Commerce National Institute of Standards and Technology (NIST):

DOC PS 1-19Structural Plywood.

DOC PS 2-18Performance Standard for Wood-Based Structural-Use Panels.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Inspection and Testing Agency.
 - c. Contractor.
 - d. Installer.
 - e. Manufacturer's field representative.
 - f. Other installers responsible for adjacent and intersecting work, including mechanical and electrical equipment installers.
 - 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Removal and installation schedule.
 - b. Removal and installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Removal and installation.
 - f. Temporary roofing including daily terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Description of temporary roof system and components.
 - 3. List of patching materials.
 - 4. Recover board fastening requirements.
 - 5. Temporary roofing installation instructions and removal instructions.
 - 6. Existing roofing warrantor's instructions.
- D. Photographs: Document existing conditions potentially affected by roofing operations before work begins.
- E. Field Inspection Reports:
 - 1. Certify warrantor inspected completed roofing and existing warranty remains in effect.
- F. Infrared Roof Moisture Survey Report.

1.6 QUALITY ASSURANCE

- 1. Same installer as Section 07 54 19, POLYVINYL-CHLORIDE (PVC)
- 2. Approved by existing roofing system warrantor when work affects existing roofing system under warranty.

1.7 FIELD CONDITIONS

- A. Building Occupancy: Perform work to minimize disruption to normal building operations.
 - 1. Verify occupants are evacuated from affected building areas when working on structurally impaired roof decking above occupied areas.
 - 2. Provide notice minimum 72 hours before beginning activities affecting normal building operations.
- B. Existing Roofing Available Information:
 - 1. The following are available for Contractor reference:
 - a. Roof moisture survey.
 - b. Test cores analysis.
 - c. Construction drawings and project manual.
 - 2. Examine available information before beginning work of this section.

- C. Weather Limitations: Proceed with reroofing preparation only during dry weather conditions as specified for new roofing installation in Section Section 07 53 23, ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING.
 - 1. Remove only as much roofing in one day as can be made watertight in same day.
- D. Hazardous materials are not expected in existing roofing system.
 - Do not disturb suspected hazardous materials. When discovered, notify Contracting Officer's Representative.
 - 2. Hazardous materials discovered during execution of the work will be removed by Government as work of a separate contract.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Existing Warranties: Perform work to maintain existing roofing warranty in effect.
 - 1. Notify warrantor before beginning, and upon completion of reroofing.
 - 2. Obtain warrantor's instructions for maintaining existing warranty.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Patching Materials: Match existing roofing system materials.
- B. Plywood Sheathing: See Section 06 10 00, ROUGH CARPENTRY.
- C. Metal Flashing: See Section 07 60 00, FLASHING AND SHEET METAL.
- D. Temporary Protection Materials:
 - 1. Expanded Polystyrene (EPS) Insulation: ASTM C578-19.
 - 2. Plywood: NIST DOC PS 1-19, Grade CD Exposure 1-18.
 - 3. Oriented Strand Board (OSB): NIST DOC PS 2-18, Exposure 1.
- E. Temporary Roofing System Materials: Contractor's option.
- F. Recover Board: One of the following:
 - 1. Insulation: See Section 07 22 00, ROOF AND DECK INSULATION.
 - 2. Fiber Board: ASTM C208-12(2017) e2, Type II, fiber board; 13 mm (1/2 inch) thick.
 - 3. Glass Mat Gypsum Board: ASTM C1177/C1177M-17, water-resistant; 13 mm (1/2 inch) thick.
 - 4. Fiber Reinforced Gypsum Board: ASTM C1278/C1278M-17, water-resistant; 13 mm (1/2 inch) thick.
- G. Fasteners: Type and size required by roof membrane manufacturer to resist wind uplift.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Infrared Roof Moisture Survey: Ground-based, walk-over type performed according to ASTM C1153-10(2015).
 - 1. Record the entire survey on DVD and provide one copy to Contracting Officer's Representative with report.
 - 2. Include in report thermograms of suspect areas and corresponding daytime photos of same locations.
 - 3. Conduct inspection by NDT test technician certified to at least Level 2 in Thermal/Infrared test method according to ASNT SNT-TC-1A.
 - 4. Mark out roof areas determined to be wet to indicate minimum areas to be removed.

3.2 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing roofing system indicated to remain.
 - 1. Cover roof membrane with temporary protection materials without impeding drainage.
 - 2. Limit traffic and material storage to protected areas.
 - 3. Maintain temporary protection until replacement roofing is completed.
- C. Protect existing construction and completed work from damage.
- D. Protect landscaping from damage.
- E. Maintain access to existing walkways and adjacent occupied facilities.
- F. Coordinate use of rooftop fresh air intakes with Contracting Officer's Representative to minimize effect on indoor air quality.
- G. Ensure temporary protection materials are available for immediate use in case of unexpected rain.
- H. Ensure roof drainage remains functional.
 - 1. Keep drainage systems clear of debris.
 - 2. Prevent water from entering building and existing roofing system.
- I. Coordinate rooftop utilities remaining active during roofing work with Contacting Officer's Representative.

3.3 RE-ROOFING PREPARATION - GENERAL

- A. Notify Contacting Officer's Representative of planned operations, daily.
 - 1. Identify location and extent of roofing removal.
 - 2. Request authorization to proceed.

3.4 OVERBURDEN REMOVAL

- A. Remove aggregate ballast.
 - 1. Store aggregate ballast for reuse.
- B. Remove loose aggregate from bituminous membrane surface.
- C. Remove pavers and paver support.
 - 1. Store undamaged pavers and paver supports for reuse.
 - 2. Dispose of damaged pavers.
- D. Remove plants, planting medium, water retention mat, nd root barrier from vegetated roof assembly.
 - 1. Store materials and plants for reuse.
 - 2. Protect plants from root exposure and drying.
- E. Remove insulation and drainage board from protected roofing membrane.
 - 1. Store insulation and drainage board for reuse.

3.5 COMPLETE ROOFING SYSTEM REMOVAL

- A. Remove existing roofing system completely, exposing structural roof deck.
 - 1. Removecover board, roof insulation, vapor retarder,.
 - 2. Remove or cut-off roofing system fasteners.

3.6 PARTIAL ROOFING SYSTEM REMOVAL

- A. Remove existing roofing completely, exposing structural roof deck at locations and to extent indicated on drawings.
 - 1. Remove cover board, roof insulation, vapor retarder.
 - 2. Remove or cut-off roofing system fasteners.

3.7 ROOFING MEMBRANE AND SELECTIVE ROOFING SYSTEM COMPONENT REMOVAL

- A. Remove existing roofing membrane, only, in locations and to extent indicated on drawings.
- B. Visually inspect cover board, roof insulation, vapor retarder, for moisture immediately after roof membrane removal.
 - 1. Coordinate with Contracting Officer's Representative to observe inspections.
 - 2. Identify wet roofing system components required to be removed.
 - 3. Mark roofing system removal locations and extents.
- C. Remove wet roofing system components.
 - 1. Remove or cut-off roofing system fasteners when removals expose structural roof deck.
- D. Patch selective roofing system removals immediately after inspection and repair.
- E. Install patching materials to match existing roofing system.

F. Patch roofing membrane to maintain building watertight, unless new roofing membrane is installed same day as removal and repair.

3.8 DECK PREPARATION

- A. Inspect structural roof deck after roofing system removal.
- B. Concrete Roof Decks:
 - 1. Visually confirm concrete roof deck is dry.
 - 2. Perform moisture test according to ASTM D4263-83(2018) each day for each separate roof area.
 - a. Proceed with roofing work only when moisture is not observed.
- C. Steel Roof Decks:
 - 1. Visually inspect structural roof deck installation and fasteners.
 - a. Notify Contracting Officer's Representative of unsuitable conditions and inadequate fastenings potentially affecting roof system performance.
 - 2. Secure roof deck with additional fastenings as indicated on drawings.
 - 3. Replace roof deck as indicated on drawings
 - a. Replacement Roof Deck: See Section 05 31 00, STEEL DECKING. Section 06 10 00, ROUGH CARPENTRY.

3.9 TEMPORARY ROOFING

- A. Install temporary roofing to maintain building watertight.
- B. Remove temporary roofing before installing new roofing.
- C. Prepare temporary roofing to receive new roofing.

3.10 EXISTING MEMBRANE PREPARATION FOR NEW ROOFING

- A. Remove existing roofing surface projections and irregularities. Produce smooth surface to receive recover boards.
 - 1. Broom clean existing surface.

3.11 BASE FLASHING REMOVAL

- A. Expose base flashings to permit removal.
 - 1. Two-Piece Counterflashings: Remove cap flashing and store for reuse.
 - 2. Single Piece Counterflashings: Carefully bend counterflashing.
 - 3. Metal Copings: Remove decorative cap and store for reuse.
- B. Remove existing base flashings.
 - 1. Clean substrates to receive new flashings.
- C. Replace counterflashings damaged during removal.
 - 1. Counterflashings: See Section 07 60 00 FLASHING AND SHEET METAL.
- D. Remove existing parapet sheathing and inspect parapet framing.

- 1. Notify Contracting Officer's Representative of damaged framing.
- E. Install exterior fire-retardant-treated plywood sheathing, 15 mm (19/32 inch) thick.

3.12 RECOVER BOARD INSTALLATION

- A. Install recover boards over existing roof insulation roofing membrane with butted joints. Stagger end joints in adjacent rows.
- B. Fasten recover boards to resist wind-uplift.
 - 1. Fastening Requirements: See Section 07 53 23, ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING.
 - 2. Uplift Resistance: Base on pull out resistance determined by specified field testing.

3.13 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
 - 1. Fastener Pull Out Tests: ANSI/SPRI FX-1(2016).
- B. Existing Roofing System Warrantor Services:
 - 1. Inspect reroofing preparation and roofing installation to verify compliance with existing warranty conditions.
 - 2. Submit reports of field inspections, and supplemental instructions issued during inspections.

3.14 DISPOSAL

- A. Collect waste materials in containers.
- B. Remove waste materials from project site, regularly, to prevent accumulation.
- C. Legally dispose of waste materials.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Thermal insulation.
 - a. Board or block insulation at foundation perimeter.
 - b. Batt or blanket insulation at exterior framed and furred walls.
 - c. Board or block insulation at floor assemblies above unconditioned spaces.
 - d. Board or block insulation at masonry cavity walls.
 - e. Loose fill insulation at exterior hollow masonry walls.
 - 2. Acoustical insulation.
 - a. Semi-rigid insulation at interior framed partitions.
 - b. Batt and blanket insulation at interior framed partitions and ceilings.
 - c. Board insulation at interior concrete and masonry partitions.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Adhesives VOC Limits.
- B. Section 04 20 00, UNIT MASONRY: Insulation for Cavity Face of Masonry.
- C. Section 07 40 00, ROOFING AND SIDING PANELS: Insulation for Insulated Wall Panels.
- D. Section 07 84 00, FIRESTOPPING: Safing Insulation.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

C516-19	Vermiculite	Loose	Fill	Thermal	Insulation.

C549-18Perlite Loose Fill Insulation.

C552-17e1Cellular Glass Thermal Insulation.

C553-13(2019)Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications.

C578-19Rigid, Cellular Polystyrene Thermal Insulation.

C591-20Unfaced Preformed Rigid Cellular

Polyisocyanurate Thermal Insulation.

C612-14(2019)Mineral Fiber Block and Board Thermal Insulation.

C665-17	.Mineral-Fiber Blanket Thermal Insulation for
	Light Frame Construction and Manufactured
	Housing.
C728-17a	.Perlite Thermal Insulation Board.
C954-18	.Steel Drill Screws for the Application of
	Gypsum Panel Products or Metal Plaster Base to
	Steel Studs From 0.033 (0.84 mm) inch to 0.112
	inch (2.84 mm) in thickness.
C1002-18	.Steel Self-Piercing Tapping Screws for
	Application of Gypsum Panel Products or Metal
	Plaster Bases to Wood Studs or Steel Studs.
D312/D312M-16a	.Asphalt Used in Roofing.
E84-20	.Surface Burning Characteristics of Building
	Materials.
F1667-18a	.Driven Fasteners: Nails, Spikes, and Staples.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show insulation type, thickness, and R-value for each location.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Adhesive indicating manufacturer recommendation for each application.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials: Show volatile organic compound types and quantities.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

A. Store products indoors in dry, weathertight facility.

- B. Protect products from damage during handling and construction operations.
- C. Protect foam plastic insulation from UV exposure.

1.7 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL

- A. Insulation Thickness:
 - 1. Match existing roof insulation thickness where tying into existing roofs.
 - 2. For new construction for climate zone 4:
 - a. R-30-continuous roof insulation
 - 3. R-13 interior and R12.5 exterior continuous insulation.
- B. Insulation Types:
 - 1. Provide one insulation type for each application.
- C. Sustainable Construction Requirements:
 - 1. Insulation Recycled Content:
 - a. Polyisocyanurate/polyurethane rigid foam: 9 percent recovered material.
 - b. Polyisocyanurate/polyurethane foam-in-place: 5 percent recovered material.
 - c. Glass fiber reinforced: 6 percent recovered material.
 - d. Phenolic rigid foam: 5 percent recovered material.
 - e. Rock wool material: 75 percent recovered material.
 - 2. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-Flooring Adhesives and Sealants.

2.2 THERMAL INSULATION

- A. Exterior Framing or Furring Insulation:
 - 1. Mineral Fiber: ASTM C665, Type II, Class C, Category I where concealed by thermal barrier.
 - 2. Mineral Fiber: ASTM C665, Type III, Class A at other locations.
- B. Inside Face of Exterior Wall Insulation:
 - 1. Mineral Fiber Board: ASTM C612, Type IB or II.
 - 2. Perlite Board: ASTM C728.
 - 3. Cellular Glass Block: ASTM C552, Type I.

- C. Floor Assemblies Above Unconditioned Spaces:
 - 1. Mineral Fiber Board: ASTM C612, Type IB or Type II.
 - 2. Perlite Board: ASTM C728.
 - 3. Cellular Glass Block: ASTM C552, Type I.

2.3 ACOUSTICAL INSULATION

- A. Semi Rigid, Batts and Blankets:
 - 1. Widths and lengths to fit tight against framing.
 - 2. Mineral Fiber boards: ASTM C553, Type II, flexible, or Type III, semi rigid unfaced.
 - a. Density: nominal 4.5 pound.
 - 3. Mineral Fiber Batt or Blankets: ASTM C665 unfaced.
 - 4. Maximum Surface Burning Characteristics: ASTM E84.
 - a. Flame Spread Rating: 25.
 - b. Smoke Developed Rating: 450.
- B. Sound Deadening Board:
 - 1. Mineral Fiber Board: ASTM C612, Type IB.
 - a. Thickness: 13 mm (1/2 inch).
 - 2. Perlite Board: ASTM C728.
 - a. Thickness: 13 mm (1/2 inch).

2.4 ACCESSORIES

- A. Fasteners:
 - 1. Staples or Nails: ASTM F1667, zinc-coated, size and type to suit application.
 - 2. Screws: ASTM C954 or ASTM C1002, size and length to suit application with washer minimum $50\ \text{mm}$ (2 inches) diameter.
 - 3. Impaling Pins: Steel pins with head minimum 50 mm (2 inches) diameter.
 - a. Length: As required to extend beyond insulation and retain cap washer when washer is placed on pin.
 - b. Adhesive: Type recommended by manufacturer to suit application.
- B. Insulation Adhesive: Nonflammable type recommended by insulation manufacturer to suit application.
- C. Tape: Pressure sensitive adhesive on one face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install insulation with vapor barrier facing the heated side, unless indicated otherwise.
- C. Install board insulation with joints close and flush, in regular courses, and with end joints staggered.
- D. Install batt and blanket insulation with joints tight. Fill framing voids completely. Seal penetrations, terminations, facing joints, facing cuts, tears, and unlapped joints with tape.
- E. Fit insulation tight against adjoining construction and penetrations, unless indicated otherwise.

3.3 THERMAL INSULATION

- A. Perimeter Insulation In Contact with Soil:
 - 1. Vertical insulation:
 - a. Fill joints of insulation with same material used for bonding.
 - b. Bond polystyrene board to surfaces with adhesive.
 - c. Bond cellular glass insulation to surfaces with hot asphalt or adhesive cement.
 - 2. Horizontal insulation under concrete floor slab:
 - a. Lay insulation boards and blocks horizontally on level, compacted and drained fill.
 - b. Extend insulation from foundation walls towards center of building minimum 600 mm (24 inches).
- B. Exterior Framing or Furring Insulation:
 - 1. General:
 - a. Open voids are not acceptable.
 - b. Pack insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
 - c. Pack behind outlets, around pipes, ducts, and services encased in walls.
 - d. Hold insulation in place with pressure sensitive tape.

- e. Lap facing flanges together over framing for continuous surface. Seal penetrations through insulation and facings.
- 2. Metal Studs: Fasten insulation between metal studs, framing, and furring with pressure sensitive tape continuous along flanged edges.
- 3. Roof Rafters and Floor Joists: Friction fit insulation between framing to provide minimum 50 mm (2 inch) air space between insulation and roof sheathing and subfloor.
- 4. Ceilings and Soffits:
 - a. Metal Framing:
 - 1) Fasten insulation between metal framing with pressure sensitive tape continuous along flanged edges.
 - 2) At metal framing and ceilings suspension systems, install insulation above suspended ceilings and metal framing at right angles to main runners and framing.
 - 3) Tape insulation tightly together without gaps. Cover metal framing members with insulation.
 - b. Ceiling Transitions:
 - 1) In areas where suspended ceilings transition to structural ceiling, install blanket or batt insulation.
 - 2) Extend insulation from suspended ceiling to underside of structure above.
 - 3) Secure blanket and batt with continuous cleats to structure above.
- C. Inside Face of Exterior Wall Insulation:
 - 1. Location: On interior face of solid masonry and concrete walls, beams, beam soffits, underside of floors, and to face of studs to support interior wall finish where indicated.
 - 2. Bond insulation to solid vertical surfaces with adhesive. Fill joints with adhesive cement.
 - 3. Fasten board insulation to face of studs with screws, nails or staples. Space fastenings maximum 300 mm (12 inches) on center. Stagger fasteners at board joints. Install fasteners at each corner.
- D. Floor Assemblies Above Unconditioned Spaces:
 - Use impaling pins for attach insulation to underside of horizontal surfaces. Space fastenings as required to hold insulation in place and prevent sagging.
 - a. Bond insulation with adhesive when separate vapor retarder is used.

3.4 ACOUSTICAL INSULATION

A. General:

- 1. Install insulation without voids.
- 2. Pack insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
- 3. Pack behind outlets, around pipes, ducts, and services encased in walls.
- 4. Hold insulation in place with pressure sensitive tape.
- 5. Lap facer flanges together over framing for continuous surface. Seal all penetrations through the insulation and facers.
- 6. Do not compress insulation below required thickness except where embedded items prevent required thickness.

B. Semi Rigid, Batts and Blankets:

 When insulation is not full thickness of cavity, adhere insulation to one side of cavity, maintaining continuity of insulation and covering penetrations or embedments.

a. Wood Framing:

- 1) Fasten blanket insulation between wood framing and joists with nails or staples through flanged edges of insulation.
- 2) Space fastenings maximum 150 mm (6 inches) on center.

b. Metal Framing:

- 1) Fasten insulation between metal framing with pressure sensitive tape continuous along flanged edges.
- 2) At metal framing or ceilings suspension systems, install blanket insulation above suspended ceilings or metal framing at right angles to the main runners or framing.
- 3) Tape insulation tightly together so no gaps occur and metal framing members are covered by insulation.
- C. Sound Deadening Board: Secure with screws to metal framing. Secure sufficiently in place until subsequent cover is installed. Seal all cracks with caulking.

3.5 CLEANING

A. Remove excess adhesive before adhesive sets.

3.6 PROTECTION

- A. Protect insulation from construction operations.
- B. Repair damage.

- - - E N D - - -

SECTION 07 22 00 ROOF AND DECK INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
- B. Roof and deck insulation, substrate board, vapor retarder, and cover board on new and existing gypsum and metal deck substrates ready to receive roofing or waterproofing membrane.
- C. Repairs and alteration work to existing roof insulation.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Non-Flooring Adhesives and Sealants VOC Limits.
- B. Section 06 10 00, ROUGH CARPENTRY: Wood Cants, Blocking, and Edge Strips.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Society of Civil Engineers
 - ASCE 7-16Minimum Design Loads and Associated Criteria for Buildings and Other Structures
- C. American Society of Heating, Refrigeration and Air Conditioning
 (ASHRAE):
 - Standard 90.1-19Energy Standard for Buildings Except Low-Rise Residential Buildings.
- D. ASTM International (ASTM):
 - C208-12(2017)e2Cellulosic Fiber Insulating Board.
 - C552-17e1Cellular Glass Thermal Insulation.
 - C726-17Mineral Fiber Roof Insulation Board.
 - C728-17aPerlite Thermal Insulation Board.
 - C1177/C1177M-17Glass Mat Gypsum Substrate for Use as Sheathing.
 - C1278/C1278M-17Fiber-Reinforced Gypsum Panel.
 - C1289-19Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board.
 - C1396/C1396M-17Gypsum Board.
 - D41/D41M-11 (2016)Asphalt Primer Used in Roofing, Dampproofing, and Waterproofing.
 - D312/D312M-16aAsphalt Used in Roofing.

D1970/D1970M-20Self-Adhering Polymer Modified Bituminous Sheet

Materials Used as Steep Roofing Underlayment

for Ice Dam Protection.

D2178/D2178M-15aAsphalt Glass Felt Used in Roofing and Waterproofing.

D2822/D2822M-05(2011)el Asphalt Roof Cement, Asbestos Containing.

D4586/D4586M-07(2018) .. Asphalt Roof Cement, Asbestos-Free.

E84-20Surface Burning Characteristics of Building Materials.

F1667-18aDriven Fasteners: Nails, Spikes, and Staples.

E. National Roofing Contractors Association (NRCA):

Manual-15The NRCA Roofing Manual: Membrane Roof Systems-

F. UL LLC (UL):

Listed Online Certifications Directory.

G. U.S. Department of Agriculture (USDA):

USDA BioPreferred Program Catalog.

H. U.S. Department of Commerce National Institute of Standards and Technology (NIST):

DOC PS 1-19Structural Plywood.

DOC PS 2-18Performance Standard for Wood-Based Structural-Use Panels.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and installation details.
 - a. Nailers, cants, and terminations.
 - b. Layout of insulation showing slopes, tapers, penetrations, and edge conditions.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
- D. Samples:
 - 1. Roof insulation, each type.
 - 2. Fasteners, each type.
- E. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.

- 2. Biobased Content:
 - a. Show type and quantity for each product.
- 3. Low Pollutant-Emitting Materials:
 - a. Show volatile organic compound types and quantities.
 - b. Certify each composite wood and agrifiber product contain no added urea formaldehyde.
- F. Qualifications: Substantiate qualifications meet specifications.
 - 1. Installer.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Same installer as Division 07 roofing section installer.

1.6 DELIVERY

- A. Comply with recommendations of NRCA Manual.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Comply with recommendations of NRCA Manual.
- B. Store products indoors in dry, weathertight facility.
- C. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Environment: Install products when existing and forecasted weather permit installation according to manufacturer's instructions.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant substrate board, vapor retarder, insulation, and cover board against material and manufacturing defects as part of Division 07 roofing system warranty.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Insulation Thermal Performance:
 - 1. Overall Average R-Value: R30, minimum.
 - 2. Any Location R-Value: R25, minimum.

- B. Fire and Wind Uplift Resistance: Provide roof insulation complying with requirements specified in Division 07 roofing section.
- C. Insulation on Metal Decking: UL labeled indicating compliance with one of the following:
 - 1. UL Listed.
 - 2. Insulation Surface Burning Characteristics: When tested according to ASTM E84.
 - a. Flame Spread Rating: 75 maximum.
 - b. Smoke Developed Rating: 150 maximum.

2.2 PRODUCTS - GENERAL

- A. Provide each product from one manufacturer.
- B. Sustainable Construction Requirements:
 - 1. Insulation Recycled Content:
 - a. Mineral Fiber: 75 percent total recycled content, minimum.
 - b. Fiberglass: 20 percent total recycled content, minimum.
 - c. Cellulose: 75 percent post-consumer recycled content, minimum.
 - d. Perlite Composite Board: 23 percent post-consumer recycled content, minimum.
 - e. Rigid Foam: 9 percent total recycled content, minimum.
 - f. Glass Fiber Reinforced Rigid Foam: 6 percent total recycled content, minimum.
 - 2. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-flooring adhesives and sealants.
 - b. Composite wood and agrifiber.
 - 3. Bio-Based Materials: Where applicable, provide products designated by USDA and meeting or exceeding USDA recommendations for bio-based content, and products meeting Rapidly Renewable Materials and certified sustainable wood content definitions; refer to www.biopreferred.gov.

2.3 ADHESIVES

- A. Primer: ASTM D41/D41M.
- B. Asphalt: ASTM D312, Type III or IV for vapor retarders and insulation.
- C. Modified Asphaltic Insulation Adhesive: Insulation manufacturer's recommended modified asphaltic, asbestos-free, cold-applied adhesive formulated to adhere roof insulation to substrate or to another insulation layer.

- D. Bead-Applied Urethane Insulation Adhesive: Insulation manufacturer's recommended bead-applied, low-rise, one- or multicomponent urethane adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- E. Full-Spread Applied Urethane Insulation Adhesive: Insulation manufacturer's recommended spray-applied, low-rise, two-component urethane adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- F. Roof Cement: Asbestos free, ASTM D2822/D2822M, Type I or Type II; or, ASTM D4586/D4586M, Type I or Type II.

2.4 ROOF AND DECK INSULATION

- A. Roof and Deck Insulation, General: Preformed roof insulation boards approved by roofing manufacturer.
- B. Polyisocyanurate Board Insulation: ASTM C1289, Type II, Class 1, Grade 2, faced with glass fiber reinforced cellulosic felt facers on both major surfaces of the core foam.
- C. Cellular Glass Board Insulation: ASTM C552, Type IV, kraft-paper sheet faced.
- D. Tapered Roof Insulation System:
 - Fabricate of mineral fiberboard, polyisocyanurate, perlite board, or cellular glass. Use only one insulation material for tapered sections. Use only factory-tapered insulation.
 - 2. Cut to provide high and low points with crickets and slopes as shown.
 - 3. Minimum thickness of tapered sections; 38 mm (1-1/2 inch).
 - 4. Minimum slope 1/48 (1/4 inch per 12 inches).
- E. Composite Nail Base Insulated Roof Sheathing:
 - Oriented-Strand-Board-Surfaced, Polyisocyanurate-Foam Sheathing: Polyisocyanurate thermal insulation ASTM C1289, Type V, insulation thickness as shown, with oriented strand board laminated to top surface.
 - 2. Oriented Strand Board: NIST DOC PS 1, Exposure 1, 16 mm (5/8 inch) thick.
 - 3. Bottom surface faced with felt facers.

2.5 INSULATION ACCESSORIES

- A. Glass (Felt): ASTM D2178/D2178M, Type VI, heavy duty ply sheet.
- B. Cants and Tapered Edge Strips:
 - 1. Wood Cant Strips: Refer to Section 06 10 00, ROUGH CARPENTRY.

- 2. Insulation Cant Strips: ASTM C208, Type II, Grade 1, cellulosic-fiber insulation board.
- 3. Tapered Edge Strips: 1/12 (1 inch per 12 inches), from 0 mm (0 inches), 300 mm to 450 mm (12 inches to 18 inches) wide.
 - a. Cellulosic Fiberboard: ASTM C208.
 - b. Mineral Fiberboard: ASTM C726.
 - c. Perlite Board: ASTM C728.

C. Vapor Retarder:

- 1. Glass-Fiber Felts: ASTM D2178/D2178M, Type IV, asphalt impregnated.
- 2. Self-Adhering Sheet Vapor Retarder: ASTM D1970/D1970M, minimum 1.0 mm (40 mils) thick membrane of HDPE film fully coated with asphalt adhesive, or 0.76 to 1.0 mm (30 to 40 mils) thick membrane of butyl rubber-based adhesive backed by a layer of high density cross-laminated polyethylene; maximum permeance rating of 6 ng/Pa/s/sq. m (0.1 perms).

D. Substrate Board:

- 1. Gypsum Board: ASTM C1396/C1396M, 16 mm (5/8 inch) thick, Type X.
- 2. Glass-Mat, Water-Resistant Gypsum Roof Board: ASTM C1177/C1177M, Type X, 16 mm (5/8 inch) thick, factory primed.

E. Cover Board:

1. Glass-Mat, Water-Resistant Gypsum Roof Board: ASTM C1177/C1177M, 16 mm (5/8 inch) thick, factory primed.

2.6 ACCESSORIES

- A. Fasteners: Corrosion-resistant carbon steel fasteners and galvalume-coated steel or plastic round plates for fastening substrate board and insulation to roof deck.
- B. Nails: ASTM F1667; type to suit application.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Comply with requirements of Division 07 roofing section.

3.2 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

3.3 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
 - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

- B. Comply with requirements of UL for insulated steel roof deck.
- C. Attach substrate board and other products to meet requirements of Division 07 roofing section.

3.4 SUBSTRATE BOARD INSTALLATION

- A. Fasten substrate board to top flanges of steel decking to resist uplift pressures according requirements for specified roofing system.
 - 1. Locate the long dimension edge joints solidly bearing on top of decking ribs.

3.5 VAPOR RETARDER INSTALLATION

- A. Vapor Retarder Installation, General:
 - 1. Install continuous vapor retarder on roof decks where indicated.
 - 2. At vertical surfaces, turn up vapor retarder to top of insulation or base flashing.
 - 3. Seal penetrations through vapor retarder with roof cement to prevent moisture entry from below.
- B. Cast in Place Concrete Decks, Except Insulating Concrete:
 - 1. Prime deck as specified.
 - 2. Apply two plies of asphalt saturated felt mopped down to deck.
- C. Precast Concrete Unit Decks Without Concrete Topping:
 - 1. Prime deck as specified.
 - 2. Apply two plies of asphalt saturated felt.
 - 3. Mop to deck, keeping bitumen 100 mm (4 inches) away from joints of precast units. Bridge joints with felt. Mop between plies as specified.

3.6 INSULATION INSTALLATION

- A. Insulation Installation, General:
 - 1. Base Sheet: Where required by roofing system, install one lapped base sheet specified in Division 07 roofing section by mechanically fastening to roofing substrate before installation of insulation.
 - Cant Strips: Install wood cant strips specified in Section 06 10 00 ROUGH CARPENTRY at junctures of roofing system with vertical construction.
 - 3. Use same insulation as existing for roof repair and alterations unless specified otherwise.

B. Insulation Thickness:

1. Thickness of roof insulation shown on drawings is nominal. Provide thickness required to comply with specified thermal performance.

- 2. Insulation on Metal Decks: Provide insulation in minimum thickness recommended by insulation manufacturer to span deck flutes. Support edges of insulation on metal deck ribs.
- 3. When actual insulation thickness differs from drawings, coordinate alignment and location of roof drains, flashing, gravel stops, fascias and similar items.
- 4. Where tapered insulation is used, maintain insulation thickness at high points and roof edges shown on drawings.
 - a. Low Point Thickness: Minimum 38 mm (1-1/2 inches).
- 5. Use minimum two layers of insulation when required thickness is 68 mm (2.7 inch) or greater.
- C. Lay insulating units with close joints, in regular courses and with end joints staggered.
 - 1. Stagger joints between layers minimum 150 mm (6 inches).
- D. Lay units with long dimension perpendicular to the rolled (longitudinal) direction of the roofing felt.
- E. Seal cut edges at penetrations and at edges against blocking with bitumen or roof cement.
- F. Cut to fit tightly against blocking or penetrations.
- G. Cover all insulation installed on the same day; comply with temporary protection requirements of Division 07 roofing section.
- H. Installation Method:
 - 1. Adhered Insulation:
 - a. Prime substrate as required.
 - b. Set each layer of insulation firmly in solid mopping of hot asphalt.
 - c. Set each layer of insulation firmly in ribbons of bead-applied insulation adhesive.
 - d. Set each layer of insulation firmly in uniform application of full-spread insulation adhesive.
 - 2. Mechanically Fastened Insulation:
 - a. Fasten insulation according to requirements in Division 07 roofing section.
 - b. Fasten insulation to resist uplift pressures specified in Division 07 roofing section and ASCE-7.
 - 3. Mechanically Fastened and Adhered Insulation:
 - a. Fasten first layer of insulation according to "Mechanically Fastened Insulation" requirements.

b. Fasten each subsequent layer of insulation according to "Adhered Insulation" requirements.

3.7 COVER BOARD INSTALLATION

- A. Install cover boards over insulation with long joints in continuous straight lines with staggered end joints.
- B. Offset cover board joints from insulation joints 150 mm (6 inches), minimum.
- C. Secure cover boards according to "Adhered Insulation" requirements.

- - - E N D - - -

SECTION 07 40 00 ROOFING AND SIDING PANELS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies insulated metal wall panels and fire rated composite metal wall systems as shown on contract documents.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 07 92 00, JOINT SEALANTS: Sealant.

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Provide metal wall panels and composite metal wall systems products of a manufacturer regularly engaged for not less than five (5) years in the fabrication of metal panels and composite metal wall systems of the type and design indicated.
- B. Installer: A firm with three (3) years of successful experience with installation of roofing and siding panels of type and scope equivalent to Work of this Section. Submit installer qualifications.

1.4 FIRE RATING

A. Composite metal wall systems to have a fire rating of 1 hours when tested in accordance with ASTM E119.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Postconsumer recycled content as specified in PART 2 PRODUCTS.
- C. Samples: Metal panel, 152 mm (6 inch) square, showing finish, each color and texture.
- D. Shop Drawings: Wall panels, showing details of construction and installation. Collateral steel framing, U value, thickness and kind of material, closures, flashing, fastenings and related components and accessories. Show interfaces and relationships to work at other trades and continuity with adjacent thermal, weather, air and vapor barriers.
- E. Manufacturer's Literature and Data: Wall panels
- F. Fire Test Report: Report of fire test by recognized testing laboratory for fire rating specified, showing details of construction.
- G. Manufacturer's Certificates: Indicating manufacturer's qualifications specified.

- H. Installer qualifications.
- I. Manufacturer warranty.

1.6 QUALITY ASSURANCE

- A. Approval by Contracting Officer Representative (COR) is required of products of proposed manufacturer.
- B. Certify manufacturer has five (5) years continuous documented experience in fabrication of metal roofing and siding panels.
- C. Source: For each material type required for work of this section, provide primary materials, which are products of one manufacturer. Provide secondary or accessory materials, which are acceptable to manufacturers of primary materials.
- D. Installer: A firm with a minimum of three (3) years' experience in type of work required by this section and which is acceptable to manufacturers of primary materials.

1.7 WARRANTY

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their metal wall panels for a minimum of ten (10) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.
- C. Warranty on Panel Finishes: Manufacturer's shall warrant their wall panel finish and provide standard agreement to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ${\tt ASTM}$ D2244.
 - b. Chalking in excess of a No. 8 rating when testing according to ASTM D4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 10 years from date of installation and final acceptance by the COR.

1.8 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extend referenced. The publications are referenced in the text by the basic designation only.

В.	American Architecture M	anufacturers Association (AAMA):			
	611-14Anodized Architectural Aluminum				
	621-02	.Voluntary Specifications for High Performance			
		Organic Coatings on Coil Coated Architectural			
		Hot Dipped Galvanized (HDG) and Zinc-Aluminum			
		Coated Steel Substrates			
	2605-13	.Voluntary Specification, Performance			
		Requirements and Test Procedures for Superior			
		Performing Organic Coatings on Aluminum			
		Extrusions and Panels			
C.	American Iron and Steel	Institute (AISI):			
		.Cold-Formed Steel Design Manual			
D.	O. ASTM International (ASTM):				
		.Steel Sheet, Cold-Rolled, Aluminum-Coated, by			
		the Hot-Dip Process			
	A653/A653M-20	.Steel Sheet, Zinc-Coated (Galvanized), or Zinc-			
		Iron Alloy-Coated (Galvannealed) by the Hot-Dip			
		Process.			
	A924/A924M-19	.Steel Sheet, Metallic Coated by the Hot-Dip			
		Process			
	A1008/A1008M-18	.Steel, Sheet, Cold-Rolled, Carbon, Structural,			
		High Strength Low Alloy			
	B209-14	.Aluminum and Aluminum Alloy Sheet and Plate			
	B209M-14Aluminum and Aluminum Alloy Sheet and Plate				
		(Metric)			
	C553-19	.Mineral Fiber Blanket Thermal Insulation for			
		Commercial and Industrial Applications			
	C591-20	.Unfaced Preformed Rigid Cellular			
		Polyisocyanurate Thermal Insulation			
	C612-14(2019)	.Mineral Fiber Block and Board Thermal			
		Insulation			
	C1396/C1396M-17	.Gypsum Board			
	D2244-16	.Calculation of Color Tolerances and Color			
		Differences from Instrumentally Measured Color			
Coordinates		Coordinates			
	D4214-07(2015)	.Test Methods for Evaluating the Degree of			
		Chalking of Exterior Paint Films			

	E119-20Fire Test of Building Construction and			
	Materials			
	E283-19Test Method for Determining Rate of Air Leakage			
	Through Exterior Windows, Curtain Walls, and			
	Doors Under Specified Pressure Differences			
	Across the Specimen			
	E331-00(2016)Test Method for Water Penetration of Exterior			
	Windows, Skylight, Doors, and Curtain Walls by			
	Uniform Static Air Pressure Difference			
	E1592-05(2017)Standard Test Method for Structural Performance			
	of Sheet Metal Roof and Siding Systems by			
	Uniform Static Air Pressure Method			
	E1646-95(2018)Test Method for Water Penetration of Exterior			
	Metal Roof Panel Systems by Uniform Static Air			
	Pressure Difference			
	E1680-16Test Method for Rate of Air Leakage Through			
	Exterior Metal Roof Panel Systems			
	E1980-11(2019)Calculating Solar Reflectance Index of			
	Horizontal and Low-Sloped Opaque Surfaces			
	E2140-01(2017)Test Method for Water Penetration of Metal Roof			
	Panel Systems by Static Water Pressure Head			
Ε.	Cool Roof Rating Council (CRRC):			
	Standard-14			
F.	FM Global:			
	4471-10Class 1 Panel Roofs			
G.	Underwriters Laboratories (UL):			
	580-05(R2018)Tests for Uplift Resistance of Roof Assemblies			
	Fire Resistance Directory			

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS FOR WALL PANELS

- A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E1592.
 - 1. Wind Loads: As indicated in structural drawings.
 - 2. Other Design Loads: As indicated in structural drawings.
 - 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.

- 4. Minimum Panel rib depth: 2 inches.
- 5. Panel width: 36 inches.
- B. Air Infiltration: Air leakage of not more than 0.3 liter/second per square meter (0.06 cfm/square foot) when tested according to ASTM E283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 75 Pa (1.57 pound/square foot).
- C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E331 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 137 Pa (2.86-pound force/square foot).
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joints sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 67 degrees C (120 degrees F), ambient; 100 degrees C (180 degrees F), material surfaces.
- E. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL's Fire Directory or from the listings of another qualified testing agency.

2.2 SHEET STEEL

- A. Minimum 0.8 mm (0.31 inch) thick for wall and roof panels.
- B. Steel, Sheet, Galvanized: ASTM A653/A653M and AISI SG03-3, Structural.
 - 1. Grade 40, galvanized coating conforming to ASTM A924/A924M, Class Z 275 G-90.
- C. Steel, Sheet, Commercial: ASTM A1008, Type C.
- D. Recycled Content of Steel Products: Postconsumer recycled content not less than 30 percent.

2.3 ALUMINUM PLATE AND SHEET

A. ASTM B209M (B209).

2.4 FASTENERS

- A. Fasteners for Steel Panels: Galvanized or cadmium plated steel.
- B. Fasteners of size, type and holding strength as recommended by panel manufacturer.

2.5 GYPSUM BACKING BOARD

A. ASTM C1396/C1396M, Type X, Plain face, square edge.

2.6 THERMAL INSULATING MATERIALS

- A. Urethane or Isocyanurate Board: ASTM C591, Type I.
- B. Mineral Fiber Blankets: ASTM C553, Type I.
- C. Mineral Fiber Board: ASTM C612, Class I.

2.7 FABRICATION

A. General:

- 1. Furnish panels in one continuous length for full height, or at least one-story height for wall panels with no horizontal joints, except at cut-outs or openings as required for the passage of pipes, conduits, vents and the like.
- 2. Construct panels by pressing members together to form a structural unit with closed ends.
- 3. Overall thickness of panels is shown of the contract documents.
- 4. Provide connection between panels by interlocking male and female joints. Seal joints between related components as required to make the work watertight. Refer to Section 07 92 00, JOINT SEALANTS for sealing compounds.
- 5. Provide collateral steel framing, metal and bituminous closures, fastenings, flashing, clip, caulking, panel reinforcements for support of mechanical and electrical work as shown on the contract documents, and related components and accessories.
 - a. Sub-girts: 1.0 mm (0.0396 inches) thick galvanized steel hat channels deigned to receive panel fasteners or clips.
 - b. Accessories, fastenings, and flashings to be the same material and finish as the panels. Thickness and installation of accessories and flashing to be as recommended by the panel manufacturer.

B. Insulated Metal Panels:

- Panels to consist of a structurally reinforced insulated core, fastened between an exterior face sheet and an interior liner sheet.
- 2. Exterior Face Sheets:
 - a. 1.25 mm (0.050 inch) thick aluminum.
 - b. 0.5 mm (0.0239 inch) thick uncoated steel.
 - c. 0.6 mm (0.0247 inch) thick galvanized steel.
 - d. 1.25 mm (0.050 inch) thick aluminized steel.
- 3. Interior Liner Face Sheet:

- a. 1.25 mm (0.050 inch) thick aluminum.
- b. 0.5 mm (0.0239 inch) thick uncoated steel.
- c. 0.6 mm (0.0247 inch) thick galvanized steel.

4. Insulation:

a. Provide isocyanurate or mineral fiber board having a "U" value of 1.2 W/ (square meter x K) (0.21 Btu/ [h x square foot x degrees F]).

C. Composite Metal Wall Systems:

- 1. Panels consisting of an exterior face sheet, sub-girts, gypsum backing board panels, insulation, and interior liner sheet.
- 2. Panel Composition:
 - a. Exterior face sheet of 0.9 mm (0.0359 inch) thick sheet steel of indicated configuration and pattern.
 - b. Gypsum backing board used for wall panels to be of the same type for each layer.
 - c. Interior liner sheet of 0.7 mm (0.0276 inch) thick galvanized sheet steel of flush pattern.
 - d. Insulation to be mineral fiber blankets installed on interior face of liner sheet.
- D. Fabricate wall louvers and frames used in conjunction with walls panels to be of same material, thickness and finish as exterior face sheets of wall system. Louver assembly to be designed and installed to prevent infiltration of water into structure.

2.8 FINISH

- A. For insulated and uninsulated wall and roof panels and composite wall, provide finishes as follows for face sheets. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
- B. Energy Performance: Provide roof panels with solar reflectance index not less than 0.75 when calculated according to ASTM E1980 based on testing identical products by a qualified testing agency.
- C. Provide aluminum alloy for color coating as required to produce specified color. Provide color as specified in drawings. Color for sheet aluminum to not deviate more than the colors of extrusion samples.
 - 1. Three-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish coating not less than 70 percent PVDF resin by weight in both color coat and clear topcoat.

- D. Provide finishes for steel face sheets as follows. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 1. Three-Coat Fluoropolymer: AAMA 2605. Fluoropolymer finish coating not less than 70 percent PVDF resin by weight in both color coat and clear topcoat.
 - 2. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 3 mm (0.5 mil).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Install panels in accordance with the manufacturer's approved erection instructions and diagrams, except as specified otherwise.
- B. Install panels in full and firm contact with supports and with each other at side and end laps.
- C. Where panels are cut in the field, or where factory applied coverings or coatings are abraded or damaged in handling or installation, make finish repairs with material of the same type and color as the weather coating, before being installed.
- D. Seal cut ends and edges, including those at openings through the sheets.
- E. Correct defects or errors in the materials in a manner approved by the COR.
- F. Replace defective materials which cannot be corrected with nondefective material.
- G. Provide molded closure strips where indicated and whenever sheets terminate with open ends after installation.

H. Wall Panels:

- 1. Apply panels with the configuration in a vertical position.
- 2. Provide panels in full heights from base to eave with no horizontal joints except at the junctions of door frames, window frames, louver panels, and similar locations.
- 3. Seal side and end laps with joint sealing material.
- 4. Flash and seal walls at the base, at the top, around windows, door frames, framed louvers, and other similar openings. Install closure strips, flashings, and sealing material in an approved manner that will assure complete weather tightness.

5. Flashing is not required where approved "self-flashing" panels are used.

I. Flashing:

- 1. Provide flashing and related closures and accessories in connection with the preformed metal panels as indicated and as necessary to provide a watertight installation.
- 2. Install details of installation, which are not indicated, in accordance with the panel manufacturer's printed instruction and details, or the approved shop drawings.
- 3. Allow for expansion and contraction of flashing.

J. Fasteners:

- Space fasteners in accordance with the manufacturer's recommendations, and as necessary to withstand the design loads indicated.
- 2. Install fasteners in valleys or crowns as recommended by the manufacturer of the panel being used.
- 3. Install fasteners in straight lines within a tolerance of 13 mm (1/2-inch) in the length of a bay.
- 4. Drive exposed penetrating type fasteners normal to the surface, and to a uniform depth to seat gasketed washers properly and drive so as not to damage factory applied coating.
- 5. Exercise care in drilling pilot holes for fastenings to keep drills perpendicular and centered in valleys, or crowns, as applicable.

 After drilling, remove metal filings and burrs from holes prior to installing fasteners and washers. Do not torque fasteners to exceed values recommended by the manufacturer.
- 6. Remove panels deformed or otherwise damaged by over-torqued fastenings and provide new panels.
- 7. Remove metal shavings and filings from roofs on completion to prevent rusting and discoloration of the panels.

3.2 ISOLATION OF ALUMINUM

- A. Isolate aluminum in contact with or fastened to dissimilar metals other than stainless steel, white bronze, or other metal compatible with aluminum by one of the following:
 - 1. Painting the dissimilar metal with a prime coat of Zinc-Molybdate followed by two coats of aluminum paint.
 - 2. Placing a non-abrasive tape or gasket between the aluminum and the dissimilar metal.

- B. Paint aluminum in contact with, or built into mortar, concrete, plaster, or other masonry materials with a coat of alkali-resistant bituminous paint.
- C. Paint aluminum in contact with wood or other absorptive materials that may become repeatedly wet, with two coats of bituminous paint, or two coats of aluminum paint. Seal joints with caulking material.

3.3 PROTECTION AND CLEANING

- A. Protect panels and other components from damage during and after erection, and until project is accepted by the COR.
- B. After completion of work, all exposed finished surfaces of panels are to be cleaned of soil, discoloration and disfiguration. Touch-up abraded surfaces of panels.

- - - E N D - - -

SECTION 07 54 19 POLYVINYL-CHLORIDE (PVC) ROOFING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Polyvinyl chloride (PVC) sheet roofing adhered to insulated gypsum roof deck.

1.2 RELATED REQUIREMENTS

- A. Non-Flooring Adhesives and Sealants VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Preparation of Existing Membrane Roofs and Repair Areas: Section 07 01 50.19, PREPARATION FOR REROOFING.
- C. Substrate Board, Vapor Retarder, Roof Insulation, and Cover Board: Section 07 22 00, ROOF AND DECK INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Single-Ply Roofing Institute (ANSI/SPRI):
 - 1. FX-1-01(R2006) Standard Field Test Procedure for Determining the Withdrawal Resistance of Roofing Fasteners.
 - 2. RP-4 2013 Wind Design Standard for Ballasted Single-ply Roofing Systems.
- - 1. 7-10 Minimum Design Loads for Buildings and Other Structures.
- D. American Society of Heating, Refrigerating and Air-Conditioning
 Engineers, Inc. (ASHRAE):
 - 1. 90.1-13 Energy Standard for Buildings Except Low-Rise Residential Buildings.

E. ASTM International (ASTM):

- 1. C67-14 Sampling and Testing Brick and Structural Clay Tile.
- C140/C140M-15 Sampling and Testing Concrete Masonry Units and Related Units.
- 3. C578-15b Specification for Rigid, Cellular Polystyrene Thermal Insulation.
- 4. C936/C936M-15 Solid Concrete Interlocking Paving Units.

- 5. C1371-15 Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers.
- 6. C1549-09(2014) Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer.
- 7. D751-06(2011) Test Methods for Coated Fabrics.
- 8. D4263-83(2012) Indicating Moisture in Concrete by the Plastic Sheet Method.
- 9. D4434/D4434M-12 Poly (Vinyl Chloride) Sheet Roofing.
- 10. E96/E96M-15 Water Vapor Transmission of Materials.
- 11. E408-13 Total Normal Emittance of Surfaces Using Inspection-Meter Techniques.
- 12. E1918-06(2015) Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field.
- 13. E1980-11 Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field.
- F. Cool Roof Rating Council (CRRC):
 - 1. 1-15 Product Rating Program.
- G. Florida Department of Business and Professional Regulation (FL):
 - 1. Approved Product Approval.
- H. National Roofing Contractors Association (NRCA):
 - 1. Manual-15 The NRCA Roofing Manual: Membrane Roofing Systems.
- I. U.S. Department of Agriculture (USDA): USDA BioPreferred Catalog.
- J. UL LLC (UL):
 - 1. 580-06 Tests for Uplift Resistance of Roof Assemblies.
 - 2. 1897-15 Uplift Tests for Roof Covering Systems.
- K. U.S. Department of Commerce National Institute of Standards and Technology (NIST):
 - 1. DOC PS 1-09 Structural Plywood.
 - 2. DOC PS 2-04 Performance Standard for Wood-Based Structural-Use Panels.
- L. U.S. Environmental Protection Agency (EPA):
 - nergy Star ENERGY STAR Program Requirements for Roof Products Version 3.0.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at the Project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.

- b. Inspection and Testing Agency.
- c. Contractor.
- d. Installer.
- e. Manufacturer's field representative.
- f. Other installers responsible for adjacent and intersecting work, including roof deck, flashings, roof specialties, roof accessories, utility penetrations, rooftop curbs and equipment, lightning protection.
- 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
 - j. Pull out test of fasteners.
 - k. Material storage, including roof deck load limitations.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Roofing membrane layout.
 - 2. Roofing membrane seaming and joint details.
 - 3. Roof membrane penetration details.
 - 4. Base flashing and termination details.
 - 5. Paver layout.
 - 6. Paver anchoring locations and details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
 - 3. Warranty.

- 4. Product Data for Federally-Mandated Bio-Based Materials: For roof materials, indicating USDA designation and compliance with definitions for bio-based products, Rapidly Renewable Materials, and certified sustainable wood content.
- D. Sustainable Construction Submittals:
 - 1. Solar Reflectance Index (SRI) for roofing membrane.
 - 2. Low Pollutant-Emitting Materials:
 - a. Show volatile organic compound types and quantities.
 - 3. Energy Star label for roofing membrane.
- E. Samples:
 - 1. Roofing Membrane: 150 mm (6 inch) square.
 - 2. Base Flashing: 150 mm (6 inch) square.
 - 3. Fasteners: Each type.
 - 4. Roofing Membrane Seam: 300 mm (12 inches) square.
- F. Certificates: Certify products comply with specifications.
 - 1. Fire and windstorm classification.
 - 2. High wind zone design requirements.
 - 3. Energy performance requirements.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer, including supervisors with project experience list.
 - 2. Manufacturer's field representative with project experience list.
- H. Field quality control reports.
- I. Temporary protection plan. Include list of proposed temporary materials.
- J. Operation and Maintenance Data:
 - 1. Maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Approved by roofing system manufacturer as installer for roofing system with specified warranty.
 - 2. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
 - 4. Employs full-time supervisors experienced installing specified system and able to communicate with Contracting Officer's Representative and installer's personnel.

- B. Manufacturer's Field Representative:
 - 1. Manufacturer's full-time technical employee or independent roofing inspector.
 - 2. Individual certified by Roof Consultants Institute as Registered Roof Observer.

1.7 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.8 STORAGE AND HANDLING

- A. Comply with NRCA Manual storage and handling requirements.
- B. Store products indoors in dry, weathertight facility.
- C. Store adhesives according to manufacturer's instructions.
- D. Protect products from damage during handling and construction operations.
- E. Products stored on the roof deck must not cause permanent deck deflection.

1.9 FIELD CONDITIONS

- A. Environment:
 - 1. Product Temperature: Minimum 4 degrees C (40 degrees F) and rising before installation.
 - 2. Weather Limitations: Install roofing only during dry current and forecasted weather conditions.

1.10 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant roofing system against material and manufacturing defects and agree to repair any leak caused by a defect in the roofing system materials or workmanship of the installer.
 - 1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Roofing System: Adhered roofing membrane, base flashing, roof insulation, fasteners, cover boards, substrate boards vapor retarders copings, edge metal and walkway pads.

2.2 SYSTEM PERFORMANCE

- A. Design roofing system meeting specified performance:
 - Load Resistance: ASCE/SEI 7; Design criteria as indicated on Drawings.
 - a. Uplift Pressures:
 - 1) Corner Uplift Pressure: 1.05 kPa/sq. m (22 psf).
 - 2) Perimeter Uplift Pressure: 0.76 kPa/sq. m (16 psf).
 - 3) Field-of-Roof Uplift Pressure: 1.87 kPa/sq. m (39 psf).

2. Energy Performance:

- a. EPA Energy Star Listed for low-slope roof products.
- b. ASTM E1980; Minimum 78 Solar Reflectance Index (SRI).
- c. CRRC-1; Minimum 0.70 initial solar reflectance and minimum 0.75 emissivity.
- d. Three-Year Aged Performance: Minimum 0.55 solar reflectance tested in according to ASTM C1549 or ASTM E1918, and minimum 0.75 thermal emittance tested in according to ASTM C1371 or ASTM E408.
 - 1) Where tested aged values are not available:
 - a) Calculate compliance adjusting initial solar reflectance according to ASHRAE 90.1.
 - b) Provide roofing system with minimum 64 three-year aged Solar Reflectance Index calculated according to ASTM E1980 with 12 W/sq. m/degree K (2.1 BTU/h/sq. ft.) convection coefficient.

2.3 PRODUCTS - GENERAL

- A. Provide roof system components from one manufacturer.
- B. Sustainable Construction Requirements:
 - 1. Bio-Based Materials: Where applicable, provide products designated by USDA and meeting or exceeding USDA recommendations for bio-based content, and products meeting Rapidly Renewable Materials and certified sustainable wood content definitions; refer to www.biopreferred.gov.

- 2. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-flooring adhesives and sealants.

2.4 PVC ROOFING MEMBRANE

- A. PVC Sheet: ASTM D4434/D4434M, Type III fabric reinforced.
 - 1. Backing: With fabric backing .
 - 2. Thickness: 2.0 mm (80 mils).
 - 3. Color: Match Existing, white.
- B. Additional Properties:
 - Water Vapor Permeance, ASTM E96/E96M: Minimum 8 ng/Pa/s/sq. m
 (0.14 perms) (Water Method).

2.5 MEMBRANE ACCESSORY MATERIALS

- A. Flashing Sheet: Manufacturer's standard; same material, type, reinforcement, thickness, and color as roofing membrane.
- B. Factory Formed Flashings: Inside and outside corners, pipe boots, and other special flashing shapes to minimize field fabrication.
- C. Splice Lap Sealant: Manufacturer's standard for exposed lap edge, matching roof membrane color.
- D. Bonding Adhesive: Manufacturer's standard, solvent based, to suit substrates.
- E. Termination Bars: Manufacturer's standard, stainless steel or aluminum, 25 mm wide by 3 mm thick (1 inch wide by 1/8 inch thick) factory drilled for fasteners.
- F. Battens: Manufacturer's standard, galvannealed or galvanized steel, 25 mm wide by 1.3 mm thick (1 inch wide by 0.05 inch thick) factory punched for fasteners.
- G. Pipe Compression Clamp:
 - 1. Stainless steel drawband.
 - 2. Worm drive clamp device.
- H. Fasteners: Manufacturer's standard coated steel with metal or plastic plates to suit application.
- I. Protection Sheet: UV-resistant fabric and weight recommended by roofing manufacturer for installation under pavers.
- J. Miscellaneous Accessories: Provide other accessories required by manufacturer for complete, watertight installation.

2.6 ACCESSORIES

- A. Temporary Protection Materials:
 - 1. Expanded Polystyrene (EPS) Insulation: ASTM C578.
 - 2. Plywood: NIST DOC PS 1, Grade CD Exposure 1.
 - 3. Oriented Strand Board (OSB): NIST DOC PS 2, Exposure 1.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine and verify substrate suitability for product installation with roofing installer and roofing inspector present.
 - 1. Verify roof penetrations are complete, secured against movement, and firestopped.
 - 2. Verify roof deck is adequately secured to resist wind uplift.
 - 3. Verify roof deck is clean, dry, and in-plane ready to receive roofing system.
- B. Correct unsatisfactory conditions before beginning roofing work.

3.2 PREPARATION

- A. Complete roof deck construction before beginning roofing work:
 - 1. Install curbs, blocking, edge strips, nailers, and other components to which roofing membrane and base flashing are attached.
 - Coordinate roofing membrane installation with flashing work and roof insulation work so insulation and flashing are installed concurrently to permit continuous roofing operations.
 - Document installation of related materials to be concealed before installing roofing work.
- B. Dry out wet substrate surfaces. Apply materials to dry substrates, only.
- C. Broom clean roof decks. Remove dust, dirt and debris.
- D. Remove projections capable of damaging roofing materials.
- E. Concrete Decks, except Insulating Concrete:
 - Test concrete decks for moisture according to ASTM D4263 before installing roofing materials.
 - Prime concrete decks. Keep primer back 100 mm (four inches) from precast concrete deck joints.
 - 3. Allow primer to dry before application of bitumen.
- F. Insulating Concrete Decks:
 - Allow deck to dry out minimum five days after installation before installing roofing materials.

- 2. Allow additional drying time when precipitation occurs before installing roofing materials.
- G. Existing Membrane Roofs and Repair Areas:
 - 1. Comply with Section 07 01 50.19 PREPARATION FOR REROOFING.

3.3 TEMPORARY PROTECTION

- A. Install temporary protection at end of each day's work, when work is halted indefinitely, and when precipitation is imminent. Comply with approved temporary protection plan.
- B. Install temporary cap flashing over top of base flashings where permanent flashings are not in place to protect against water intrusion into roofing system. Securely anchor in place to prevent blow off and damage by construction activities.
- C. Temporarily seal exposed insulation surfaces within roofing membrane.
 - 1. Apply temporary seal and water cut off by extending roofing membrane beyond insulation and securely embedding edge of the roofing membrane in 6 mm (1/4 inch) thick by 50 mm (2 inches) wide strip of temporary closure sealant. Weight roofing membrane edge with sandbags, to prevent displacement; space sandbags maximum 2400 mm (8 feet) on center.
 - 2. Direct water away from work. Provide drainage, preventing water accumulation.
 - 3. Check daily to ensure temporary seal remains watertight. Reseal open areas and weight down.
- D. Before the work resumes, cut off and discard portions of roof membrane in contact with temporary seal.
 - 1. Cut minimum 150 mm (6 inches) back from sealed edges and surfaces.
- E. Remove sandbags and store for reuse.

3.4 INSTALLATION, GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Comply with NRCA Manual installation requirements.
- C. Comply with UL 580 for uplift resistance.

D. Do not allow membrane and flashing to contact surfaces contaminated with asphalt, coal tar, oil, grease, or other substances incompatible with PVC.

3.5 ROOFING INSTALLATION

- A. Install membrane perpendicular to long dimension of insulation boards.
- B. Begin membrane installation at roof low point and work towards high point. Lap membrane shingled in water flow direction.
- C. Position membrane free of buckles and wrinkles.
- D. Roll membrane out; inspect for defects as membrane is unrolled. Remove defective areas.
 - 1. Allow 30 minutes for membrane to relax before proceeding.
 - 2. Lap edges and ends minimum 50 mm (2 inches).
 - Heat weld or solvent weld laps. Apply pressure to develop full adhesion with minimum seam strength according to ASTM D4434/D4434M.
 - 4. Check seams to ensure continuous adhesion and correct defects.
 - 5. Finish seam edges beveled bead of sealant.
 - 6. Finish seams same day as membrane is installed.
 - 7. Anchor membrane perimeter to roof deck and parapet wall as indicated on drawings.

E. Membrane Perimeter Anchorage:

- Install batten with fasteners at perimeter of each roof area, curb flashing, expansion joints and similar penetrations on top of roof membrane as indicated on drawings.
- 2. Space fasteners maximum 300 mm (12 inches) on center, starting 25 mm (1 inch) from ends.
- 3. When battens are cut round corners and eliminate sharp corners.
 - a. Stop batten where batten interferes with drainage. Space ends of batten 150 mm (6 inch) apart.
- 4. Cover batten with 150 mm (6 inch) wide roof membrane strip; heat or solvent weld to roofing membrane and seal edges.
- 5. At gravel stops, fascia-cants, turn roofing membrane down over front edge of blocking or nailer. Secure roofing membrane to vertical portion of nailer with fasteners spaced maximum 150 mm (6 inches) on center.
- 6. At parapet walls, intersecting building walls and curbs, secure roofing membrane to structural deck fasteners 150 mm (6 inches) on center or as shown in NRCA Manual.
- F. Adhered System Installation:

- 1. Apply bonding adhesive in quantities required by roofing membrane manufacturer.
- 2. Fold sheet back on itself after rolling out and coat bottom side of roofing membrane and top substrate with adhesive. Do not coat the lap joint area.
- 3. After adhesive has set according to adhesive manufacturer's instructions, roll roofing membrane into adhesive minimizing voids and wrinkles.
- 4. Repeat for other half of sheet.
- 5. Cut voids and wrinkles to lay flat. Clean and patch cut area.

3.6 FLASHING INSTALLATION

- A. Install flashings on same day as roofing membrane is installed. When flashing cannot be completely installed in one day, complete installation until flashing is watertight and provide temporary covers or seals.
- B. Flashing Roof Drains:
 - Install roof drain flashing according to roofing membrane manufacturer's instruction.
 - a. Install metal drain flashing in asphalt roof cement, holding cement back from edge of metal flange.
 - b. Do not allow roof cement to contact PVC roofing membrane.
 - c. Adhere roofing membrane to metal flashing with bonding adhesive.
 - 2. Turn metal drain flashing and roofing membrane down into drain body. Install clamping ring and strainer.
- C. Installing Base Flashing and Pipe Flashing:
 - Install flashing sheet to pipes, walls and curbs to minimum 200 mm (8 inches) height above roof surfaces and extend roofing manufacturer's standard lap dimension onto roofing membranes.
 - a. Adhere flashing with bonding adhesive.
 - b. Form inside and outside corners of flashing sheet according to NRCA Manual.
 - c. Form pipe flashing according to NRCA Manual.
 - d. Lap ends roofing manufacturer's standard dimension.
 - e. Weld flashing sheets together, and weld flashing sheets to roofing membranes. Finish exposed edges with lap sealant.
 - Anchor top of flashing to walls and curbs with fasteners spaced maximum 150 mm (6 inches) on center. Use surface mounted fastening

strip on ducts. Use pipe clamps on pipes or other round penetrations.

- 3. Apply sealant to top edge of flashing.
- D. Installing Building Expansion Joints:
 - 1. Install base flashing on curbs as specified.
 - 2. Coordinate installation with roof expansion joint system.
 - 3. Install flexible tubing 1-1/2 times width of joint centered over joint. Cover tubing with flashing sheet adhered to base flashing and lapping base flashing roofing manufacturer's standard dimension. Finish edges of laps with lap sealant.
- E. Repairs to Membrane and Flashings:
 - 1. Remove sections of roofing membrane and flashing sheets that are creased, wrinkled, or fishmouthed.
 - 2. Cover removed areas, cuts and damaged areas with patch extending 100 mm (4 inches) beyond damaged, cut, or removed area. Weld patch to roofing membrane or flashing sheet. Finish edge of lap with lap sealant.

3.7 FLEXIBLE WALKWAYS

A. Walkway Pad: PVC walkway pad with slip resistant surface and molded channels on the underside for water drainage.

3.8 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
 - Examine and probe roofing membrane and flashing seams in presence of Contracting Officer's Representative and Manufacturer's field representative.
 - 2. Probe seams to detect marginal welds, voids, skips, and fishmouths.
 - 3. Cut 100 mm (4 inch) wide by 300 mm (12 inch) long samples through seams where directed by Contracting Officer's Representative.
 - 4. Cut one sample for every 450 m (1500 feet) of seams.
 - 5. Cut samples perpendicular to seams.
 - 6. Failure of samples to pass ASTM D751 test will be cause for rejection of work.
 - 7. Repair areas where samples are taken and where marginal bond, voids, and skips occur.
 - 8. Repair fishmouths and wrinkles by cutting to lay flat. Install patch over cut area extending 100 mm (4 inches) beyond cut.

B. Manufacturer Services:

- 1. Inspect initial installation, installation in progress, and completed work.
- 2. Issue supplemental installation instructions necessitated by field conditions.
- 3. Prepare and submit inspection reports.
- 4. Certify completed installation complies with manufacturer's instructions and warranty requirements.

3.9 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed roofing surfaces. Remove contaminants and stains to comply with specified solar reflectance performance.

3.10 PROTECTION

- A. Protect roofing system from traffic and construction operations.
 - 1. Protect roofing system when used for subsequent work platform, materials storage, or staging.
 - 2. Distribute scaffolding loads to exert maximum 50 percent roofing system materials compressive strength.
- B. Loose lay temporary insulation board overlaid with plywood or OSB.
 - 1. Weight boards to secure against wind uplift.
- C. Remove protection when directed by Contacting Officer's Representative.
- D. Repair damage.

- - - E N D - - -

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

A. Formed sheet metal work for wall and roof flashing, copings, roof edge metal, fasciae, drainage specialties, and formed expansion joint covers are specified in this section.

1.2 RELATED WORK

- A. Section 07 54 19 POLYVINYL-CHLORIDE (PVC) ROOFING Membrane base flashings and stripping.
- B. Section 07 71 00 ROOF SPECIALTIES: Manufactured flashing, copings, roof edge metal, and fasciae.
- C. Division 07 ROOFING AND WALL SYSTEM: Flashing components of factory finished roofing and wall systems.
- D. Section 07 92 00, JOINT SEALANTS: Joint Sealants.
- E. Section 09 91 00, PAINTING: Paint materials and application.
- F. : sections and sections.
- G. Division 22, PLUMBING: Integral flashing components of manufactured roof specialties and accessories or equipment.
- H. Section 22 14 00, FACILITY STORM DRAINAGE: Flashing of Roof Drains.
- I. Division 23 HVAC: Integral flashing components of manufactured roof specialties and accessories or equipment.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. Aluminum Association (AA):

AA-C22A41	 Alumin	um Che	mically	etched	medium	matte,	with
	clear	anodic	coating	g, Class	s I Arch	nitectu	ral,
	0.7-mi	1 thic	k				

- AA-C22A42Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick
- AA-C22A44Chemically etched medium matte with
 electrolytically deposited metallic compound,
 integrally colored coating Class I
 Architectural, 0.7-mil thick finish

С.	American National Standa	ards Institute/Single-Ply Roofing
	Institute/Factory Mutual	(ANSI/SPRI/FM):
	4435/ES-1-11	Wind Design Standard for Edge Systems Used with
		Low Slope Roofing Systems
D.	American Architectural M	Manufacturers Association (AAMA):
	AAMA 620-02	Voluntary Specification for High Performance
		Organic Coatings on Coil Coated Architectural
		Aluminum
	AAMA 621-02	Voluntary Specification for High Performance
		Organic Coatings on Coil Coated Architectural
		Hot Dipped Galvanized (HDG) and Zinc-Aluminum
		Coated Steel Substrates
Ε.	ASTM International (ASTM	1):
	A240/A240M-20	Standard Specification for Chromium and
		Chromium-Nickel Stainless Steel Plate, Sheet
		and Strip for Pressure Vessels and for General
		Applications.
	A653/A653M-20	Steel Sheet Zinc-Coated (Galvanized) or Zinc
		Alloy Coated (Galvanized) by the Hot- Dip
		Process
	B32-08(2014)	Solder Metal
	B209-14	Aluminum and Aluminum-Alloy Sheet and Plate
	D173/D173M-03(2018)	Bitumen-Saturated Cotton Fabrics Used in
		Roofing and Waterproofing
	D412-16	Vulcanized Rubber and Thermoplastic Elastomers-
		Tension
	D1187/D1187M-97(2018)	Asphalt Base Emulsions for Use as Protective
		Coatings for Metal
	D1784-20	Rigid Poly (Vinyl Chloride) (PVC) Compounds and
		Chlorinated Poly (Vinyl Chloride) (CPVC)
		Compounds
	D3656/D3656M-13	Insect Screening and Louver Cloth Woven from
		Vinyl-Coated Glass Yarns
	D4586/D4586M-07(2018)	Asphalt Roof Cement, Asbestos Free
F.	Sheet Metal and Air Cond	Aitioning Contractors National Association
	(SMACNA): Architectural	Sheet Metal Manual.
G.		Architectural Metal Manufacturers (NAAMM):
	AMP 500-06	Metal Finishes Manual

H. Federal Specification (Fed. Spec):

A-A-1925AShield, Expansion; (Nail Anchors)
UU-B-790ABuilding Paper, Vegetable Fiber

I. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

- A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:
 - 1. Wind Zone 3: 2.20 to 4.98 kPa (46-to-104-pound force/square foot):
 - 9.96-kPa (208 pound force/square foot) perimeter uplift force,
 - 14.94-kPa (312 pound force/square foot) corner uplift force, and
 - 4.98-kPa (104 pound force/square foot) outward force.
- B. Wind Design Standard: Fabricate and install copings, roof-edge flashings tested per ANSI/SPRI/FM ES-1 to resist design pressure indicated on Structural Drawings.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings
 - 2. Copings
 - 3. Gravel Stop-Fascia
 - 4. Gutter and Conductors
 - 5. Expansion joints
 - 6. Fascia-cant
- C. Manufacturer's Literature and Data: For all specified items, including:
 - 1. Two-piece counterflashing
 - 2. Thru wall flashing
 - 3. Expansion joint cover, each type
 - 4. Nonreinforced, elastomeric sheeting
 - 5. Fascia-cant
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Aluminum Sheet: ASTM B209, alloy 3003-H14 except alloy used for color anodized aluminum shall be as required to produce specified color.

- Alloy required to produce specified color shall have the same structural properties as alloy 3003-H14.
- C. Galvanized Sheet: ASTM, A653.
- D. Nonreinforced, Elastomeric Sheeting: Elastomeric substances reduced to thermoplastic state and extruded into continuous homogenous sheet (0.056 inch) thick. Sheeting shall have not less than 7 MPa (1,000 psi) tensile strength and not more than seven percent tension-set at 50 percent elongation when tested in accordance with ASTM D412. Sheeting shall show no cracking or flaking when bent through 180 degrees over a 1 mm (1/32 inch) diameter mandrel and then bent at same point over same size mandrel in opposite direction through 360 degrees at temperature of -30°C (-20 °F).

2.2 FLASHING ACCESSORIES

- A. Solder: ASTM B32; flux type and alloy composition as required for use with metals to be soldered.
- B. Rosin Paper: Fed-Spec. UU-B-790, Type I, Grade D, Style 1b, Rosin-sized sheathing paper, weighing approximately 3 Kg/10 m² (6 pounds/100 square feet).
- C. Bituminous Paint: ASTM D1187, Type I.
- D. Fasteners:
 - 1. Use galvanized steel or stainless steel for galvanized steel.
 - 2. Nails:
 - a. Minimum diameter for aluminum nails 3 mm (0.105 inch).
 - b. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
 - c. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
 - 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
 - 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. Insect Screening: ASTM D3656, 18 by 18 regular mesh.
- G. Roof Cement: ASTM D4586.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 1. Stainless steel: 0.25 mm (0.010 inch) thick.

- 2. Galvanized steel: 0.5 mm (0.021 inch) thick.
- C. Exposed Locations:
 - 1. Stainless steel: 0.4 mm (0.015 inch).
- D. Thickness of aluminum or galvanized steel is specified with each item.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - 1. Jointing of stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
 - 2. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.
 - c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
 - 3. Flat and lap joints shall be made in direction of flow.
 - 4. Soldering:
 - a. Pre tin both mating surfaces with solder for a width not less than 38 mm (1 1/2 inches) of stainless steel.
 - b. Treat in accordance with metal producers recommendations other sheet metal required to be soldered.
 - c. Completely remove acid and flux after soldering is completed.
- B. Expansion and Contraction Joints:
 - 1. Fabricate in accordance with the Architectural Sheet Metal Manual recommendations for expansion and contraction of sheet metal work in continuous runs.
 - 2. Space joints as shown or as specified.
 - 3. Space expansion and contraction joints for stainless steel at intervals not exceeding 7200 mm (24 feet).
 - 4. Space expansion and contraction joints for aluminum at intervals not exceeding 5400 mm (18 feet), except do not exceed 3000 mm (10 feet) for gravel stops and fascia-cant systems.
 - 5. Fabricate slip-type or loose locked joints and fill with sealant unless otherwise specified.
 - 6. Fabricate joint covers of same thickness material as sheet metal served.
- C. Cleats:

- 1. Fabricate cleats to secure flashings and sheet metal work over 300 mm (12 inches) wide and where specified.
- 2. Provide cleats for maximum spacing of 300 mm (12 inch) centers unless specified otherwise.
- 3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
- 4. Fabricate cleats from 50 mm (2 inch) wide strip. Form end with not less than 19 mm (3/4 inch) wide loose lock to item for anchorage. Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.

D. Edge Strips or Continuous Cleats:

- 1. Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
- 2. Except as otherwise specified, fabricate edge strips or minimum 0.6 mm (0.024 inch) thick stainless steel or 1.25 mm (0.050 inch) thick aluminum.
- 3. Use material compatible with sheet metal to be secured by the edge strip.
- 4. Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.
- 5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19 mm (3/4-inch).
- 6. Fabricate anchor edge maximum width of 75 mm (3 inches) or of sufficient width to provide adequate bearing area to ensure a rigid installation using 0.8 mm (0.031 inch) thick stainless steel.

E. Drips:

- 1. Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, gravel stops, wall copings, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.
- 2. Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.

F. Edges:

1. Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.

- 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
- 3. All metal roof edges shall meet requirements of IBC, current edition.

G. Metal Options:

- 1. Where options are permitted for different metals use only one metal throughout.
- 2. Stainless steel may be used in concealed locations for fasteners of other metals exposed to view.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Stainless Steel: Finish No. 2B or 2D.
 - 2. Aluminum:
 - a. Colored Finish: AA-C22A42 (anodized) or AA-C22A44 (electrolytically deposited metallic compound) medium matte, integrally colored coating, Class 1 Architectural, 18 mm (0.7 mils) thick. Dyes will not be accepted.
 - 3. Steel and Galvanized Steel:
 - a. Finish painted under Section 09 91 00, PAINTING unless specified as prefinished item.
 - b. Manufacturer's finish:
 - 1) Baked-on prime and finish coat over a phosphate coating.

2.6 THROUGH-WALL FLASHINGS

- A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2 mm (1/16 inch) deep transverse channels spaced four to every 25 mm (one inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 - 1. Fabricate in not less than 2400 mm (8 feet) lengths; 3000 mm (10 feet) maximum lengths.
 - 2. Fabricate so keying nests at overlaps.
- B. For Masonry Work When Concealed Except for Drip:

- 1. Stainless steel.
- 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
- 3. Form exposed portions of flashing with drip, approximately 6 mm (1/4 inch) projection beyond wall face.
- C. For Masonry Work When Exposed Edge Forms a Receiver for Counter Flashing:
 - 1. Use same metal and thickness as counter flashing.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - 3. Form exposed portion as snap lock receiver for counter flashing upper edge.
- D. Windowsill Flashing and Lintel Flashing:
 - 1. Use stainless steel plane flat sheet, or nonreinforced elastomeric sheeting.
 - 2. Fabricate flashing at ends with folded corners to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening.
 - 3. Turn up back edge as shown.
 - 4. Form exposed portion with drip as specified or receiver.
- E. Door Sill Flashing:
 - 1. Where concealed, use 0.5 mm (0.018 inch) thick stainless steel.
 - 2. Where shown on drawings as combined counter flashing under threshold, sill plate, door sill, or where subject to foot traffic, use 0.6 mm (0.024 inch) stainless steel.
 - 3. Fabricate flashing at ends to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening with folded corners.

2.7 BASE FLASHING

- A. Use metal base flashing at vertical surfaces intersecting built-up roofing without cant strips or where shown.
 - 1. Use either stainless steel, thickness specified unless specified otherwise.
 - 2. When flashing is over 250 mm (10 inches) in vertical height or horizontal width use 0.5 mm (0.018 inch) stainless steel.
 - 3. Use stainless steel at aluminum roof curbs where flashing contacts the aluminum.
 - 4. Use stainless steel at pipe flashings.
- B. Fabricate metal base flashing up vertical surfaces not less than 200 mm (8 inch) nor more than 400 mm (16 inch).

- C. Fabricate roof flange not less than 100 mm (4 inches) wide unless shown otherwise. When base flashing length exceeds 2400 mm (8 feet) form flange edge with 13 mm (1/2 inch) hem to receive cleats.
- D. Form base flashing bent from strip except pipe flashing. Fabricate ends for riveted soldered lap seam joints. Fabricate expansion joint ends as specified.
- E. Pipe Flashing: (Other than engine exhaust or flue stack)
 - 1. Fabricate roof flange not less than 100 mm (4 inches) beyond sleeve on all sides.
 - 2. Extend sleeve up and around pipe and flange out at bottom not less than 13 mm (1/2 inch) and solder to flange and sleeve seam to make watertight.
 - 3. At low pipes 200 mm (8 inch) to 450 mm (18 inch) above roof:
 - a. Form top of sleeve to turn down into the pipe at least 25 mm (one inch).
 - b. Allow for loose fit around and into the pipe.
 - 4. At high pipes and pipes with goosenecks or other obstructions which would prevent turning the flashing down into the pipe:
 - a. Extend sleeve up not less than 300 mm (12 inch) above roofing.
 - b. Allow for loose fit around pipe.

2.8 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. Stainless steel, unless specified otherwise.
- B. Fabricate to lap base flashing a minimum of 100 mm (4 inches) with drip:
 - 1. Form lock seams for outside corners. Allow for lap joints at ends and inside corners.
 - 2. In general, form flashing in lengths not less than 2400 mm (8 feet) and not more than 3000 mm (10 feet).
 - 3. Two-piece, lock in type flashing may be used in-lieu-of one-piece counterflashing.
 - 4. Manufactured assemblies may be used.
 - 5. Where counterflashing is installed at new work use an integral flange at the top designed to be extended into the masonry joint or reglet in concrete.
 - 6. Where counterflashing is installed at existing work use surface applied type, formed to provide a space for the application of sealant at the top edge.
- C. One-piece Counterflashing:

- 1. Back edge turned up and fabricate to lock into reglet in concrete.
- 2. Upper edge formed to extend full depth of masonry unit in mortar joint with back edge turned up 6 mm (1/4 inch).

D. Two-Piece Counterflashing:

- 1. Receiver to extend into masonry wall depth of masonry unit with back edge turned up 6 mm (1/4 inch) and exposed edge designed to receive and lock counterflashing upper edge when inserted.
- 2. Counterflashing upper edge designed to snap lock into receiver.

E. Surface Mounted Counterflashing; one or two pieces:

- 1. Use at existing or new surfaces where flashing cannot be inserted in vertical surface.
- 2. One piece fabricate upper edge folded double for 65 mm (2 1/2 inches) with top 19 mm (3/4 inch) bent out to form "V" joint sealant pocket with vertical surface. Perforate flat double area against vertical surface with horizontally slotted fastener holes at 400 mm (16 inch) centers between end holes. Option: One piece surface mounted counterflashing (cap flashing) may be used. Fabricate as detailed on Plate 51 of SMACNA Architectural Sheet Metal Manual.
- 3. Two pieces: Fabricate upper edge to lock into surface mounted receiver. Fabricate receiver joint sealant pocket on upper edge and lower edge to receive counterflashing, with slotted fastener holes at 400 mm (16 inch) centers between upper and lower edge.

F. Pipe Counterflashing:

- 1. Form flashing for water-tight umbrella with upper portion against pipe to receive a draw band and upper edge to form a "V" joint sealant receiver approximately 19 mm (3/4 inch) deep.
- 2. Fabricate 100 mm (4 inch) overlap at end.
- 3. Fabricate draw band of same metal as counter flashing. Use 0.33 mm (0.013 inch) thick stainless steel.
- 4. Use stainless steel bolt on draw band tightening assembly.
- 5. Vent pipe counter flashing may be fabricated to omit draw band and turn down 25 mm (one inch) inside vent pipe.
- G. Where vented edge decks intersect vertical surfaces, form in one piece, shape to slope down to a point level with and in front of edge-set notched plank; then, down vertically, overlapping base flashing.

2.9 GRAVEL STOPS

- 1. Fabricate in lengths not less than 2400 mm (8 feet) long and maximum of 3000 mm (10 feet).
- 2. Fabricate internal and external corners as one-piece with legs not less than 600 mm (2 feet) or more than 1200 mm (4 feet) long.
- 3. Fabricate roof flange not less than 100 mm (4 inches) wide.
- 4. Fabricate top edge to extend above roof not less than 25 mm (one inch) for embedded gravel aggregate and not less than 100 mm (4 inches) for loose laid ballast.
- 5. Fabricate lower edge outward at an angle of 45 degrees to form drip and as fascia or as counter flashing as shown:
 - a. Fabricate of one-piece material of suitable width for fascia height of 250 mm (10 inch) maximum or counterflashing lap of not less than 100 mm (4 inch) over base flashing.
 - b. Fabricate bottom edge of formed fascia to receive edge strip.
 - c. When fascia bottom edge forms counter flashing over roofing lap roofing not less than 150 mm (6 inches).
- B. Formed Flat Sheet Metal Gravel Stops and Fascia:
 - Fabricate as shown of .05 mm (0.018 inch) thick stainless steel1 or
 .25 mm (0.050 inch) thick aluminum.
 - 2. When fascia exceeds 150 mm (6 inches) in depth, form one or more horizontal stops not less than 13 mm (1/2 inch) high in the fascia.
 - 3. Fabricate as two-piece fascia when fascia depth exceeds 250 mm (10 inches).
 - 4. At joint between ends of sheets, provide a concealed clip soldered or welded near one end of each sheet to hold the adjoining sheet in lapped position. The clip shall be approximately 100 mm (4 inches) wide and shall be the full depth of the fascia less 25 mm (one inch) at top and bottom. Clip shall be of the same thickness as the fascia.
 - 5. Provide edge strip as specified with lower hooked edge bent outward at an angle of 45 degrees.

2.10 BITUMEN STOPS

- A. Fabricate bitumen stops for bituminous roofing edges for use with formed sheet metal gravel stops, pipe penetrations, and other penetrations through roof deck without a curb.
- B. Fabricate with 19 mm (3/4 inch) vertical legs and 75 mm (3 inch) horizontal legs.

C. When used with gravel stop or metal base flashing use same metal for bitumen stop in thickness specified for concealed locations.

2.11 CONDUCTORS (DOWNSPOUTS)

- A. Fabricate conductors of same metal and thickness as gutters in sections approximately 3000 mm (10 feet) long with 19 mm (3/4 inch) wide flat locked seams.
 - 1. Fabricate open face channel shape with hemmed longitudinal edges.
- B. Fabricate elbows by mitering, riveting, and soldering except seal aluminum in lieu of solder. Lap upper section to the inside of the lower piece.
- C. Fabricate conductor brackets or hangers of same material as conductor, 2 mm (1/16 inch) thick by 25 mm (one inch) minimum width. Form to support conductors 25 mm (one inch) from wall surface in accordance with Architectural Sheet Metal Manual for rectangular and round shapes.
- D. Conductor Heads:
 - 1. Fabricate of same material as conductor.
 - 2. Fabricate conductor heads to not less than 250 mm (10 inch) wide by 200 mm (8 inch) deep by 200 mm (8 inches) from front to back.
 - 3. Form front and side edges channel shape not less than 13 mm (1/2 inch) wide flanges with edge hemmed.
 - 4. Slope bottom to sleeve to conductor or downspout at not less than 60-degree angle.
 - 5. Extend wall edge not less than 25 mm (one inch) above front edge.
 - 6. Solder joints for watertight assembly.
 - 7. Fabricate outlet tube or sleeve at bottom not less than 50 mm (2 inches) long to insert into conductor.

2.12 SPLASHPANS

- A. Fabricate splashpans from the following:
 - 1. 0.4 mm (0.015 inch) thick stainless steel.
 - 2. 1.25 mm (0.050 inch) thick aluminum.
- B. Fabricate in accordance with Architectural Sheet Metal Manual Plate 35 with not less than two ribs as shown in alternate section.

2.13 REGLETS

- A. Fabricate reglets of one of the following materials:
 - 1. Stainless steel, not less than 0.3 mm (0.012 inch) thick.
 - 2. Plastic coated extruded aluminum, not less than 1.4 mm (0.055 inch) thick prefilled with butyl rubber sealer and complete with plastic wedges inserted at 1000 mm (40 inches) on centers.

- B. Fill open-type reglets with fiberboard or other suitable separator, to prevent crushing of the slot during installation.
- C. Bend edges of reglets for setting into concrete to an angle of not less than 45-degrees and make wide enough to provide firm anchorage in the concrete
- D. Fabricate reglets for building into horizontal masonry mortar joints not less than 19 mm (3/4 inch) deep, nor more than 25 mm (one inch) deep.
- E. Fabricate mitered corners, fittings, and special shapes as may be required by details.
- F. Reglets for concrete may be formed to receive flashing and have a 10 mm (3/8 inch), 45-degree snap lock.

2.14 INSULATED EXPANSION JOINT COVERS

- A. Either type optional, use only one type throughout.
- B. Types:
 - 1. Construct of two preformed, stainless steel strips, not less than 0.4 mm (0.015 inch) thick, mechanically and adhesively bonded to both sides of a 2 mm (1/16 inch) thick neoprene or butyl sheet, or to a 0.4 mm (32 mil) thick reinforced chlorinated polyethylene sheet. Adhesively attach a 10 mm (3/8 inch) thick sheet of closed cell, neoprene foam insulation, to the underside of the neoprene, butyl, or chlorinated polyethylene sheet.
 - 2. Constructed of a 2 mm (1/16 inch) thick vinyl sheet, flanged at both sides with stainless steel strips not less than 0.4 mm (0.015 inch) thick. Vinyl sheet locked and encased by the stainless-steel strip and prepunched for nailing. A 10 mm (3/8 inch) thick closed cell polyvinyl chloride foam insulating strip shall be heat laminated to the underside of the vinyl sheet between the stainless-steel strips.
- C. Expansion joint covers shall have factory fabricated mitered corners, crossing tees, and other necessary accessories. Furnish in the longest available lengths.
- D. Metal flange of sufficient width to extend over the top of the curb and down curb sides 50 mm (2 inches) with hemmed edge for lock to edge strip.

2.15 ENGINE EXHAUST PIPE OR FLUE OR STACK FLASHING

A. Flashing at penetrations through roofing shall consist of a metal collar, sheet metal flashing sleeve and hood.

- B. Fabricate collar with roof flange of 1.2 mm (0.047 inch) minimum thick black iron or galvanized steel sheet.
 - 1. Fabricate inside diameter of collar 100 mm (4 inches) larger than the outside diameter of the item penetration the roofing.
 - Extend collar height from structural roof deck to not less than 350 mm (14 inches) above roof surface.
 - 3. Fabricate collar roof flange not less than 100 mm (4 inches) wide.
 - 4. Option: Collar may be of steel tubing 3 mm (0.125 inch) minimum wall thickness, with not less than four, 50 mm x 100 mm x 3 mm (2 inch by 4 inch by 0.125 inch) thick tabs bottom edge evenly spaced around tube in lieu of continuous roof flange. Full butt weld joints of collar.
- C. Fabricate sleeve base flashing with roof flange of stainless steel or clad stainless steel.
 - 1. Fabricate sleeve roof flange not less than 100 mm (4 inches) wide.
 - 2. Extend sleeve around collar up to top of collar.
 - 3. Flange bottom of sleeve out not less than 13 mm (1/24 inch) and soldered to 100 mm (4 inch) wide flange to make watertight.
 - 4. Fabricate interior diameter 50 mm (2 inch) greater than collar.
- D. Fabricate hood counter flashing from same material and thickness as sleeve.
 - 1. Fabricate the same as pipe counter flashing except allow not less than 100 mm (4 inch) lap below top of sleeve and to form vent space minimum of 100 mm (4 inch) wide.
 - 2. Hem bottom edge of hood 13 mm (1/2 inch).
 - 3. Provide a 50 mm (2 inch) deep drawband.
- E. Fabricate insect screen closure between sleeve and hood. Secure screen to sleeve with sheet metal screws.

2.16 SCUPPERS

- A. Fabricate scuppers with minimum of 100 mm (4 inch) wide flange.
- B. Provide flange at top on through wall scupper to extend to top of base flashing.
- C. Fabricate exterior wall side to project not less than 13 mm (1/2 inch) beyond face of wall with drip at bottom outlet edge.
- D. Fabricate not less than 100 mm (4 inch) wide flange to lap behind gravel stop fascia.
- E. Fabricate exterior wall flange for through wall scupper not less than 25 mm (one inch) wide on top and sides with edges hemmed.

- F. Fabricate gravel stop bar of $25 \text{ mm} \times 25 \text{ mm}$ (one by one inch) angle strip soldered to bottom of scupper.
- G. Fabricate scupper not less than 200 mm (8 inch) wide and not less than 125 mm (5 inch) high for through wall scupper.
- H. Solder joints watertight.

2.17 GOOSENECK ROOF VENTILATORS

- A. Form of 1.3 mm (0.0508 inch) thick sheet aluminum, reinforce as necessary for rigidity, stiffness, and connection to curb, and to be watertight.
 - 1. Form lower edge to sleeve to curb.
 - 2. Curb:
 - a. Form for 100 mm (4 inch) high sleeve to ventilator.
 - b. Form for concealed anchorage to structural curb and to bear on structural curb.
 - c. Form bottom edge of curb as counterflashing to lap base flashing.
- B. Provide open end with 1.6 mm (16 gage), stainless steel wire guard of 13 mm (1/2 inch) square mesh.
 - 1. Construct suitable aluminum angle frame to retain wire guard.
 - 2. Rivet angle frame to end of gooseneck.

PART 3 - EXECUTION

3.1 INSTALLATION

- Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
- 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
- 3. Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
- 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.
- 5. Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.

- 6. Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
- 7. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 8. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
- 9. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
- 10. Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.
- 11. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a watertight installation.
- 12. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 13. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.
- 14. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 15. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.
- 16. Bitumen Stops:
 - a. Install bitumen stops for built-up roof opening penetrations through deck and at formed sheet metal gravel stops.

b. Nail leg of bitumen stop at 300 mm (12 inch) intervals to nailing strip at roof edge before roofing material is installed.

3.2 THROUGH-WALL FLASHING

- 1. Install continuous through-wall flashing between top of concrete foundation walls and bottom of masonry building walls; at top of concrete floors; under masonry, concrete, or stone copings and elsewhere as shown.
- 2. Where exposed portions are used as a counterflashings, lap base flashings at least 100 mm (4 inches) and use thickness of metal as specified for exposed locations.
- 3. Exposed edge of flashing may be formed as a receiver for two-piece counter flashing as specified.
- 4. Terminate exterior edge beyond face of wall approximately 6 mm (1/4 inch) with drip edge where not part of counter flashing.
- 5. Turn back edge up 6 mm (1/4 inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
- 6. Terminate interior raised edge in masonry backup unit approximately 38 mm (1 1/2 inch) into unit unless shown otherwise.
- 7. Under copings terminate both edges beyond face of wall approximately 6 mm (1/4 inch) with drip edge.
- 8. Lap end joints at least two corrugations, but not less than 100 mm (4 inches). Seal laps with sealant.
- 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.
- 10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.
- 11. Where ends of flashing terminate turn ends up 25 mm (1 inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.
- 12. Turn flashing up not less than 200 mm (8 inch) between masonry or behind exterior veneer.
- 13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150 mm (6 inch) on center.
- 14. Continue flashing around columns:

- a. Where flashing cannot be inserted in column reglet hold flashing vertical leg against column.
- b. Counterflash top edge with 75 mm (3 inch) wide strip of saturated cotton unless shown otherwise. Secure cotton strip with roof cement to column. Lap base flashing with cotton strip 38 mm (1 1/2 inch).
- B. Flashing at Cavity Wall Construction: Where flashing occurs in cavity walls turn vertical portion up against backup under waterproofing, if any, into mortar joint. Turn up over insulation, if any, and horizontally through insulation into mortar joint.
- C. Flashing at Veneer Walls:
 - 1. Install near line of finish floors over shelf angles or where shown.
 - 2. Turn up against sheathing.
 - 3. At stud framing, hem top edge 19 mm (3/4 inch) and secure to each stud with stainless steel fasteners through sheathing.
 - 4. At concrete backing, extend flashing into reglet as specified.
 - 5. Coordinate with installation of waterproofing or asphalt felt for lap over top of flashing.
- D. Lintel Flashing when not part of shelf angle flashing:
 - Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
 - 2. Turn ends up 25 mm (one inch) and fold corners to form dam and extend end to face of wall.
 - 3. Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.
- E. Windowsill Flashing:
 - 1. Install flashing to extend not less than 100 mm (4 inch) beyond ends of sill into vertical joint of masonry or veneer.
 - 2. Turn back edge up to terminate under window frame.
 - 3. Turn ends up 25 mm (one inch) and fold corners to form dam and extend to face of wall.
- F. Door Sill Flashing:
 - Install flashing under bottom of plate sills of doors over curbs opening onto roofs. Extend flashing out to form counter flashing or receiver for counter flashing over base flashing. Set in sealant.
 - 2. Extend sill flashing 200 mm (8 inch) beyond jamb opening. Turn ends up one inch in vertical masonry joint, extend end to face of wall.

 Join to counter flashing for watertight joint.

- 3. Where doors thresholds cover over waterproof membranes install sill flashing over waterproof membrane under thresholds. Extend beyond opening to cover exposed portion of waterproof membrane and not less than 150 mm (6 inch) beyond door jamb opening at ends. Turn up approximately 6 mm (1/4 inch) under threshold.
- G. Flashing at Masonry, Stone, or Precast Concrete Copings:
 - 1. Install flashing with drips on both wall faces unless shown otherwise.
 - 2. Form penetration openings to fit tight against dowel or other item with edge turned up. Seal penetrations with sealant.

3.3 BASE FLASHING

- A. Install where roof membrane type base flashing is not used and where shown.
 - 1. Install flashing at intersections of roofs with vertical surfaces or at penetrations through roofs, to provide watertight construction.
 - 2. Install metal flashings and accessories having flanges extending out on top of the built-up roofing before final bituminous coat and roof aggregate is applied.
 - 3. Set flanges in heavy trowel coat of roof cement and nail through flanges into wood nailers over bituminous roofing.
 - 4. Secure flange by nailing through roofing into wood blocking with nails spaced 75 mm (3 inch) on centers or, when flange over 100 mm (4 inch) wide terminate in a 13 mm (1/2 inch) folded edge anchored with cleats spaced 200 mm (8 inch) on center. Secure one end of cleat over nail heads. Lock other end into the seam.
- B. For long runs of base flashings install in lengths of not less than 2400 mm (8 feet) nor more than 3000 mm (ten feet). Install a 75 mm (3 inch) wide slip type, loose lock expansion joint filled with sealant in joints of base flashing sections over 2400 mm (8 feet) in length. Lock and solder corner joints at corners.
- C. Extend base flashing up under counter flashing of roof specialties and accessories or equipment not less than 75 mm (3 inch).

3.4 COUNTERFLASHING (CAP FLASHING OR HOODS)

- 1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
- 2. Install counterflashing to lap base flashings not less than 100 mm (4 inch).

- 3. Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.
- 4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.
- 5. Use surface applied counterflashing on existing surfaces and new work where not possible to integrate into item.
- 6. When fastening to concrete or masonry, use screws driven in expansion shields set in concrete or masonry. Use screws to wood and sheet metal. Set fasteners in mortar joints of masonry work.

B. One Piece Counterflashing:

- 1. Where flashing is installed at new masonry, coordinate to insure proper height, embed in mortar, and end lap.
- 2. Where flashing is installed in reglet in concrete insert upper edge into reglet. Hold flashing in place with lead wedges spaced not more than 200 mm (8 inch) apart. Fill joint with sealant.
- 3. Where flashing is surface mounted on flat surfaces.
 - a. When top edge is double folded anchor flat portion below sealant "V" joint with fasteners spaced not over 400 mm (16 inch) on center:
 - 1) Locate fasteners in masonry mortar joints.
 - 2) Use screws to sheet metal or wood.
 - b. Fill joint at top with sealant.
- 4. Where flashing or hood is mounted on pipe.
 - a. Secure with draw band tight against pipe.
 - b. Set hood and secure to pipe with a one by 25 mm \times 3 mm (1 \times 1/8 inch) bolt on stainless steel draw band type clamp, or a stainless worm gear type clamp.
 - c. Completely fill joint at top with sealant.

C. Two-Piece Counterflashing:

- 1. Where receiver is installed at new masonry coordinate to ensure proper height, embed in mortar, and lap.
- 2. Surface applied type receiver:
 - a. Secure to face construction in accordance, with manufacturers' instructions.
 - b. Completely fill space at the top edge of receiver with sealant.
- 3. Insert counter flashing in receiver in accordance with fabricator or manufacturer's instructions and to fit tight against base flashing.

- D. Where vented edge occurs, install so lower edge of counterflashing is against base flashing.
- E. When counter flashing is a component of other flashing install as shown.

3.5 REGLETS

- A. Install reglets in a manner to provide a watertight installation.
- B. Locate reglets not less than 225 mm (9 inch) nor more than 400 mm (16 inch) above roofing, and not less than 125 mm (5 inch) nor more than 325 mm (13 inch) above cant strip.
- C. Butt and align end joints or each section of reglet and securely hold in position until concrete or mortar are hardened:
 - 1. Coordinate reglets for anchorage into concrete with formwork construction.
 - 2. Coordinate reglets for masonry to locate horizontally into mortar joints.

3.6 GRAVEL STOPS

A. General:

- 1. Install gravel stops and fascias with allowance for expansion at each joint; minimum of 6 mm (1/4 inch).
- 2. Extend roof flange of gravel stop and splice plates not less than four inches out over roofing and nail or screw to wood nailers. Space fasteners on 75 mm (3 inch) centers in staggered pattern.
- 3. Install continuous cleat for fascia drip edge. Secure with fasteners as close to lower edge as possible on 75 mm (3 inch) centers.
- 4. Where ends of gravel stops and fascias abut a vertical wall, provide a watertight, flashed and sealant filled joint.
- 5. Set flange in roof cement when installed over built-up roofing.
- 6. Edge securement for low-slope roofs: Low-slope membrane roof systems metal edge securement, except gutters, shall be designed in accordance with ANSI/SPRI/FM ES-1, except the basic wind speed shall be determined from Figure 1609, of IBC 2003.
- B. Sheet metal gravel stops and fascia:
 - 1. Install with end joints of splice plates sheets lapped three inches.
 - 2. Hook the lower edge of fascia into a continuous edge strip.
 - 3. Lock top section to bottom section for two-piece fascia.

C. Scuppers:

1. Install scupper with flange behind gravel stops; leave 6 mm (1/4 inch) joint to gravel stop.

- 2. Set scupper at roof water line and fasten to wood blocking.
- 3. Use sealant to seal joint with fascia gravel stops at ends.
- 4. Coordinate to lap over conductor head and to discharge water into conductor head.

3.7 COPINGS

A. General:

- 1. On walls topped with a wood plank, install a continuous edge strip on the front and rear edge of the plank. Lock the coping to the edge strip with a 19 mm (3/4 inch) loose lock seam.
- 2. Where shown turn down roof side of coping and extend down over base flashing as specified for counterflashing. Secure counterflashing to lock strip in coping at continuous cleat.
- Install ends adjoining existing construction so as to form space for installation of sealants. Sealant is specified in Section 07 92 00, JOINT SEALANTS.

B. Aluminum Coping:

- 1. Install with 6 mm (1/4 inch) joint between ends of coping sections.
- 2. Install joint covers, centered at each joint, and securely lock in place.

C. Stainless-steel Copings:

- 1. Join ends of sheets by a 19 mm (3/4 inch) locked and soldered seam, except at intervals of 9600 mm (32 feet), provide a 38 mm (1 1/2 inch) loose locked expansion joint filled with sealant or mastic.
- 2. At straight runs between 7200 mm (24 feet) and 19200 mm (64 feet) locate expansion joint at center.
- 3. At straight runs that exceed 9600 mm (32 feet) and form the leg of a corner locate the expansion joint not more than 4800 mm (16 feet) from the corner.

3.8 EXPANSION JOINT COVERS, INSULATED

- A. Install insulated expansion joint covers at locations shown on curbs not less than 200 mm (8 inch) high above roof surface.
- B. Install continuous edge strips of same metal as expansion joint flange, nailed at not less than 75 mm (3 inch) centers.
- C. Install insulated expansion joint covers in accordance with manufacturer's directions locking edges to edge strips.

3.9 ENGINE EXHAUST PIPE OR STACK FLASHING

A. Set collar where shown and secure roof tabs or flange of collar to structural deck with 13 mm (1/2 inch) diameter bolts.

- B. Set flange of sleeve base flashing not less than 100 mm (4 inch) beyond collar on all sides as specified for base flashing.
- C. Install hood to above the top of the sleeve 50 mm (2 inch) and to extend from sleeve same distance as space between collar and sleeve beyond edge not sleeve:
 - 1. Install insect screen to fit between bottom edge of hood and side of sleeve.
 - 2. Set collar of hood in high temperature sealant and secure with one by 3 mm (1/8 inch) bolt on stainless steel draw band type, or stainless-steel worm gear type clamp. Install sealant at top of head.

3.10 CONDUCTORS (DOWNSPOUTS)

- A. Where scuppers discharge into downspouts install conductor head to receive discharge with back edge up behind drip edge of scupper. Fasten and seal joint. Sleeve conductors to gutter outlet tubes and fasten joint and joints between sections.
- B. Set conductors plumb and clear of wall, and anchor to wall with two anchor straps, located near top and bottom of each section of conductor. Strap at top shall be fixed to downspout, intermediate straps and strap at bottom shall be slotted to allow not less than 13 mm (1/2 inch) movement for each 3000 mm (10 feet) of downspout.
- C. Install elbows, offsets and shoes where shown and required. Slope not less than 45 degrees.

3.11 SPLASH PANS

- A. Install where downspouts discharge on low slope roofs unless shown otherwise.
- B. Set in roof cement prior to pour coat installation or sealant compatible with single ply roofing membrane.

3.12 GOOSENECK ROOF VENTILATORS

- A. Install on structural curb not less than 200 mm (8 inch) high above roof surface.
- B. Securely anchor ventilator curb to structural curb with fasteners spaced not over 300 mm (12 inch) on center.
- C. Anchor gooseneck to curb with screws having neoprene washers at 150 mm (6 inch) on center.

- - - E N D - - -

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 07 92 00, JOINT SEALANTS: Sealants and application.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS: Fire and smoke damper assemblies in ductwork.
- D. Section 23 37 00, AIR OUTLETS AND INLETS: Fire and smoke damper assemblies in ductwork.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Volatile organic compounds per volume as specified in PART 2 PRODUCTS.
- C. Installer qualifications.
- D. Inspector qualifications.
- E. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- F. List of FM, UL, or WH classification number of systems installed.
- G. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- H. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

E84-20	.Surface Burning Characteristics of Building
	Materials
E699-16	.Standard Specification for Agencies Involved in
	Testing, Quality Assurance, and Evaluating of
	Manufactured Building Components

E814-13a(2017)Fire Tests of Penetration Firestop Systems
E2174-20aStandard Practice for On-Site Inspection of
Installed Firestop Systems

E2393-20Standard Practice for On-Site Inspection of

Installed Fire Resistive Joint Systems and

Perimeter Fire Barriers

C. FM Global (FM):

Annual Issue Approval Guide Building Materials
4991-13Approval of Firestop Contractors

- D. Underwriters Laboratories, Inc. (UL):
 Annual Issue Building Materials Directory
- E. Annual Issue Fire Resistance Directory

1479-04(2015)Fire Tests of Penetration Firestops

- F. Intertek Testing Services Warnock Hersey (ITS-WH):
 Annual Issue Certification Listings
- G. Environmental Protection Agency (EPA):

40 CFR 59(2014)National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 inches) nominal pipe or 0.01 square meter (16 square inches) in overall cross-sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
 - 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.

- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 inches) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS

- A. Provide silicone sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.

D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.

C. Install smoke stopping seals in smoke partitions.

3.4 CLEAN-UP

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which openings and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A.C. Masonry Control and Expansion Joint: Section 04 20 00, UNIT MASONRY. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- B. Glazing: Section 08 80 00, GLAZING.
- C. Sound Rated Gypsum Partitions/Sound Sealants: Section 09 29 00, GYPSUM BOARD.
- D. Mechanical Work: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION .

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
 - 3. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor

tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Volatile organic compounds per volume as specified in PART 2 PRODUCTS.
- C. Installer qualifications.
- D. Contractor certification.
- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
 - 1. Primers
 - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - 1. Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below 4.4 degrees C (40 degrees F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.

C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):

C509-06Elastomeric Cellular Preformed Gasket and
Sealing Material
C612-14Mineral Fiber Block and Board Thermal
Insulation
C717-14aStandard Terminology of Building Seals and
Sealants
C734-06(R2012)Test Method for Low-Temperature Flexibility of
Latex Sealants after Artificial Weathering
C794-10Test Method for Adhesion-in-Peel of Elastomeric
Joint Sealants
C919-12Use of Sealants in Acoustical Applications.
C920-14aElastomeric Joint Sealants.
C1021-08(R2014)Laboratories Engaged in Testing of Building
Sealants
C1193-13Standard Guide for Use of Joint Sealants.
C1248-08(R2012)Test Method for Staining of Porous Substrate by
Joint Sealants
C1330-02(R2013)Cylindrical Sealant Backing for Use with Cold
Liquid Applied Sealants

C1521-13	.Standard Practice for Evaluating Adhesion of
	Installed Weatherproofing Sealant Joints
D217-10	.Test Methods for Cone Penetration of
	Lubricating Grease
D1056-14	.Specification for Flexible Cellular Materials-
	Sponge or Expanded Rubber
E84-09	.Surface Burning Characteristics of Building
	Materials

- C. Sealant, Waterproofing and Restoration Institute (SWRI).

 The Professionals' Guide
- D. Environmental Protection Agency (EPA):

 40 CFR 59(2014)National Volatile Organic Compound Emission

 Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. Exterior Sealants:
 - 1. Vertical surfaces, provide non-staining ASTM C920, Type S or M, Grade NS, Class 25, Use NT.
 - 2. Horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class 25, Use T.
 - 3. Provide location(s) of exterior sealant as follows:
 - a. Joints formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames. Provide sealant at exterior surfaces of exterior wall penetrations.
 - b. Metal to metal.
 - c. Masonry to masonry or stone.
 - d. Stone to stone.
 - e. Cast stone to cast stone.
 - f. Masonry expansion and control joints.
 - g. Wood to masonry.
 - h. Masonry joints where shelf angles occur.
 - i. Voids where items penetrate exterior walls.
 - j. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.
- B. Floor Joint Sealant:
 - 1. ASTM C920, Type S or M, Grade P, Class 25, Use T.
 - 2. Provide location(s) of floor joint sealant as follows.

- a. Seats of metal thresholds exterior doors.
- b. Control and expansion joints in floors, slabs, ceramic tile, and walkways.

C. Interior Sealants:

- 1. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
- 2. Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25, Use NT.
- 3 Use Pick-proof sealant at patient spaces.. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.
 - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces.
 - c. Interior surfaces of exterior wall penetrations.
 - d. Joints at masonry walls and columns, piers, concrete walls or exterior walls.
 - e. Perimeter of lead faced control windows and plaster or gypsum wallboard walls.
 - f. Exposed isolation joints at top of full height walls.
 - g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet.
 - h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.
 - i. Behind escutcheon plates at valve pipe penetrations and showerheads in showers.

D. Acoustical Sealant:

1. Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant have a consistency of 250 to 310 when tested in accordance with ASTM D217; remain flexible and adhesive

after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining.

- 2. Provide location(s) of acoustical sealant as follows:
 - a. Exposed acoustical joint at sound rated partitions.
 - b. Concealed acoustic joints at sound rated partitions.
 - c. Joints where item pass-through sound rated partitions.

2.2 COLOR:

- A. Sealants used with exposed masonry are to match color of mortar joints.
- B. Sealants used with unpainted concrete are to match color of adjacent concrete.
- C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.
- D. Submit color samples to COR and Architect for selection and approval of all sealants to be used at counter areas.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

2.4 WEEPS:

A. Weep/Vent Products: Provide the following unless otherwise indicated or approved.

1. Round Plastic Tubing: Medium-density polyethylene, 10 mm (3/8-inch) OD by thickness of stone or masonry veneer.

2.5 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
 - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 a. Concrete.

- b. Masonry.
- c. Unglazed surfaces of ceramic tile.
- 3. Remove laitance and form-release agents from concrete.
- 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
 - 2. Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.

E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

A. General:

- 1. Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
- 2. Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- 3. Do not install sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
- 8. Finish paving or floor joints flush unless joint is otherwise detailed.
- 9. Apply compounds with nozzle size to fit joint width.
- 10. Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
- 11. Replace sealant which is damaged during construction process.
- B. Weeps: Place weep holes and vents in joints where moisture may accumulate, including at base of cavity walls, above shelf angles, at all flashing, and as indicated on construction documents.

- 1. Use round plastic tubing to form weep holes.
- 2. Space weep holes formed from plastic tubing not more than 406 mm (16 inches) o.c.
- 3. Trim tubing material used in weep holes flush with exterior wall face after sealant has set.
- C. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- D. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - 1. Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

- - - E N D - - -

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Hollow metal doors hung in hollow metal frames at interior locations.
 - 2. Hollow metal door frames for wood doors at interior locations.
 - 3. Glazed openings and louvers in hollow metal doors.

1.2 RELATED REQUIREMENTS

- A. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- B. Glazing: Section 08 80 00, GLAZING.
- A. Card Readers and Biometric Devices: Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEM.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standard Institute (ANSI):
 - 1. A250.8-2014 Standard Steel Doors and Frames.
- C. ASTM International (ASTM):
 - 1. A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
 - 2. A653/A653M-15 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip.
 - 3. A1008/A1008M-15 Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability, Solution Hardened, and Bake Hardenable.
 - 4. B209-14 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 5. B209M-14 Aluminum and Aluminum-Alloy Sheet and Plate (Metric).
 - 6. B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 7. B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).
 - 8. D3656/D3656M-13 Insect Screening and Louver Cloth Woven from Vinyl Coated Glass Yarns.
 - 9. E90-09 Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. Federal Specifications (Fed. Spec.):
 - 1. L-S-125B Screening, Insect, Nonmetallic.
- E. Master Painters Institute (MPI):

- 1. No. 18 Primer, Zinc Rich, Organic.
- F. National Association of Architectural Metal Manufacturers (NAAMM):
 - 1. AMP 500-06 Metal Finishes Manual.
- G. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
- H. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
 - 2. 1784-15 Air Leakage Tests of Door Assemblies and Other Opening Protectives.
- B. Department of Veterans Affairs

VA Physical Security and Resiliency Design Manual October 1, 2020

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Include schedule showing each door and frame requirements fire label and smoke control label for openings.
 - 3. Installation instructions.
- C. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- D. Test reports: Certify each product complies with specifications.
 - 1. Sound rated door and frame.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - Manufactured specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.

1.6 DELIVERY

- A. Fasten temporary steel spreaders across the bottom of each door frame before shipment.
- B. Deliver products in manufacturer's original sealed packaging.

- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight, facility.
- B. Protect products from damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design hollow metal doors and frames complying with specified performance:
 - 1. Fire Doors and Frames: UL 10C; NFPA 80 labeled.
 - a. Fire Ratings: See drawings.
 - 2. Smoke Control Doors and Frames: UL 1784; NFPA 80 labeled, maximum 0.15424 cu. m/s/sq. m (3.0 cfm/sf) at 24.9 Pa (0.10 inches water gage) pressure differential.
 - 3. Sound Rated Doors and Frames: Minimum 45 sound transmission class (STC) when tested according to ASTM E90.

2.2 MATERIALS

- A. Stainless Steel: ASTM A240/A240M; Type 304
- B. Sheet Steel: ASTM A1008/A1008M, cold-rolled.
- C. Galvanized Sheet Steel: ASTM A653.
- D. Insect Screening: ASTM D3656/D3656M, 18 by 18 aluminum wire mesh.
- E. Aluminum Sheet: ASTM B209M (ASTM B209).
- F. Aluminum Extrusions: ASTM B221M (ASTM B221).

2.3 PRODUCTS - GENERAL

- A. Basis of Design: See Drawings.
- B. Provide hollow metal doors and frames from one manufacturer.

2.4 HOLLOW METAL DOORS

- A. Hollow Metal Doors: ANSI A250.8; 44 mm (1-3/4 inches) thick. See drawings for sizes and designs.
 - 1. Interior Doors: Level 1 and Physical Performance Level C, standard duty; Model 2, seamless.

- B. Door Faces:
 - 1. Interior Doors: Galvanized sheet steel minimum Z180 or ZF180 (G60 or A60).
- C. Door Cores:
 - 1. Interior Doors: Kraft paper honeycomb or vertical steel stiffeners.
 - 2. Fire Doors: Manufacturer's standard complying with specified fire rating performance.

2.5 HOLLOW METAL FRAMES

- A. Hollow Metal Frames: ANSI A250.8; face welded. See drawings for sizes and designs.
 - 1. Interior Frames:
 - a. Level 3 Hollow Metal Doors: 1.3 mm (0.053 inch) thick.
 - b. Wood Doors: 1.3 mm (0.053 inch) thick.
 - 2. Interior Borrowed Light Frames: 1.3 mm (0.051 inch) thick.
- B. Frame Materials:
 - 1. Interior Frames: Galvanized sheet steel minimum Z180 or ZF180 (G60 or A60) coating.

2.6 FABRICATION

- A. Hardware Preparation: ANSI A250.8; for hardware specified in Section 08 71 00, DOOR HARDWARE.
- B. Hollow Metal Door Fabrication:
 - Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 2. Fill spaces between vertical steel stiffeners with insulation.
- C. Fire and Smoke Control Doors:
 - 1. Close top and vertical edges flush.
 - 2. Apply steel astragal to active leaf at pair and double egress doors.
 - a. Exception: Where vertical rod exit devices are specified for both leaves swinging in same direction.
 - 3. Fire and Smoke Control Door Clearances: NFPA 80.
- D. Sound Rated Doors:
 - 1. Seals: Integral spring type automatic door bottom seal.
 - 2. Fabricate vision panel cutouts and frames to receive double glazing as shown on drawings.
 - 3. Terminated Stops: ANSI A250.8.
 - 4. Borrowed Light and Panel Opening Frames:
 - a. Provide integral stop on exterior, corridor, or secure side of door.

- b. Design rabbet width and depth to receive glazing material or panel shown on drawings.
- c. Jamb anchors:
 - 1) Place anchors on jambs:
 - a) Near top and bottom of each frame.
 - b) At intermediate points at maximum 600 mm (24 inches) spacing.
 - 2) Form jamb anchors from steel minimum 1 mm (0.042 inch) thick.
 - 3) Anchors for stud partitions: Provide tabs for securing anchor to sides of studs. Provide one of the following:
 - a) Welded type.
 - b) Lock-in snap-in type.
 - 4) Anchors for frames set in prepared openings:
 - a) Steel pipe spacers 6 mm (1/4 inch) inside diameter, welded to plate reinforcing at jamb stops, or hat shaped formed strap spacers 50 mm (2 inches) wide, welded to jamb near stop.
 - b) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass through frame and spacers.
 - c) Two-piece frames: Subframe or rough buck drilled for 6 mm (1/4 inch) bolts.
 - 5) Anchors for observation windows and other continuous frames set in stud partitions.
 - a) Weld clip anchors to sills and heads of continuous frames over 1200 mm (4 feet) long.
 - b) Space maximum 600 mm (24 inches) on centers.
 - 6) Modify frame anchors to fit special frame and wall construction.
 - 7) Provide special anchors where shown on drawings and where required to suit application.
- E. Sound Rated Door Frames:
 - 1. Seals: Integral continuous gaskets on frames.
- F. Louver Fabrication:
 - 1. Fabricate louvers as complete units.
 - 2. Weld stationary blades to frames.
 - 3. Factory install louvers in door cutouts, welded to door.

2.7 FINISHES

A. Steel and Galvanized Steel: ANSI A250.8; shop primed.

- B. Stainless Steel: NAAMM AMP 500; No. 4 polished finish.
 - 1. Blend welds to match adjacent finish.
- C. Finish exposed surfaces after fabrication.
- D. Aluminum Anodized Finish: NAAMM AMP 500.
 - 1. Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.

2.8 ACCESSORIES

- A. Primers: ANSI A250.8.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Clips Connecting Members and Sleeves: Match door faces.
- E. Fasteners: Galvanized steel.
 - 1. Metal Framing: Steel drill screws.
 - 2. Masonry and Concrete: Expansion bolts and power actuated drive pins.
- F. Anchors: Galvanized steel.
- G. Galvanizing Repair Paint: MPI No. 18.
- H. Insulation: Unfaced mineral wool.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Apply barrier coating to metal surfaces in contact with cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
 - 2. Install fire doors and frames according to NFPA 80.
 - 3. Install smoke control doors and frames according to NFPA 105.

3.3 FRAME INSTALLATION

- A. Apply barrier coating to concealed surfaces of frames built into masonry.
- B. Plumb, align, and brace frames until permanent anchors are set.

- 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
- 2. Use wood spreaders at bottom of frame when shipping spreader is removed.
- 3. Where construction permits concealment, leave shipping spreaders in place after installation, otherwise remove spreaders when frames are set and anchored.
- 4. Remove wood spreaders and braces when walls are built and jamb anchors are secured.

C. Floor Anchors:

- 1. Anchor frame jambs to floor with two expansion bolts.
 - a. Lead Lined Frames: Use 9 mm (3/8 inch) diameter bolts.
 - b. Other Frames: Use 6 mm (1/4 inch) diameter bolts.
- 2. Power actuated drive pins are acceptable to secure frame anchors to concrete floors.

D. Jamb Anchors:

- 1. Masonry Walls:
 - a. Embed anchors in mortar.
 - b. Fill space between frame and masonry with grout or mortar as walls are built.
- 2. Metal Framed Walls: Secure anchors to sides of studs with two fasteners through anchor tabs.
- 3. Prepared Masonry and Concrete Openings:
 - a. Direct Securement: 6 mm (1/4 inch) diameter expansion bolts through spacers.
 - b. Subframe or Rough Buck Securement:
 - 1) 6 mm (1/4 inch) diameter expansion bolts on 600 mm (24 inch) centers.
 - 2) Power activated drive pins on 600 mm (24 inches) centers.
 - c. Secure two-piece frames to subframe or rough buck with machine screws on both faces.
- E. Frames for Sound Rated Doors: Fill frames with insulation.
- F. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.4 DOOR INSTALLATION

- A. Install doors plumb and level.
- B. Adjust doors for smooth operation.

- C. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.5 CLEANING

A. Clean exposed door and frame surfaces. Remove contaminants and stains.

3.6 PROTECTION

- A. Protect doors and frames from traffic and construction operations.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.

- - - E N D - - -

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior flush wood doors transparent finish.
 - a. Fire rated doors.
 - b. Smoke rated doors.

1.2 RELATED REQUIREMENTS

- A. Door Hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE.
- B. Installation of Doors and Hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES Section 08 71 00, DOOR HARDWARE .

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Window and Door Manufacturers Association (ANSI/WDMA):
 - 1. I.S. 1A-13 Architectural Wood Flush Doors
- C. ASTM International (ASTM):
 - 1. E90-09 Laboratory Measurements of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
 - 2. 252-12 Fire Tests of Door Assemblies.
- E. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
- F. Window and Door Manufacturers Association (WDMA):
 - 1. TM 7-14 Cycle-Slam Test.
 - 2. TM 8-14 Hinge Loading Test.
 - 3. TM 10-14 Screw Holding Capacity.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Include details of glazing louvers.
 - Indicate project specific requirements not included in Manufacturer's Literature and Data submittal.

- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Fire rated doors showing conformance with NFPA 80.

D. Samples:

- 1. Corner section of flush veneered door 300 mm (12 inches) square, showing details of construction, labeled to show grade and type number and conformance to specified standard.
- 2. Veneer sample 200 mm by 275 mm (8 inch by 11 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted.
- E. Sustainable Construction Submittals:
 - 1. Low Pollutant-Emitting Materials: Show volatile organic compound types and quantities.
- F. Test Reports: Indicate each product complies with specifications.
 - 1. Screw Holding Capacity Test.
 - 2. Cycle-Slam Test.
 - 3. Hinge-Loading Test.
- G. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly and presently manufactures specified products.
 - 2. Manufactures specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
 - 1. Minimum $0.15 \ \text{mm}$ (6 mil) polyethylene bags or cardboard packaging to remain unbroken during delivery and storage.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, and manufacture date.
 - 1. Identify door opening corresponding to Door Schedule.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.
 - 1. Store doors according to ANSI/WDMA I.S. 1A.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Environment:

- 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
- 2. Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
- 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.
 - a. Comply with door manufacturer's instructions for relative humidity.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant interior factory finished flush wood doors against material and manufacturing defects.
 - 1. Warranty Period: Lifetime of original installation.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

A. Provide each product from one manufacturer.

2.2 FLUSH WOOD DOORS

- A. General:
 - 1. ANSI/WDMA I.S. 1A, Extra Heavy Duty.
 - 2. Adhesive: Type II.
 - 3. Core: Structural composite lumber, except when mineral core is required for fire rating.
 - 4. Thickness: 44 mm (1-3/4 inches) unless otherwise shown or specified.

B. Faces:

- 1. ANSI/WDMA I.S. 1A.
- 2. One species throughout project unless scheduled or otherwise shown.
- 3. Transparent Finished Faces: Premium Grade. rotary cut, white Birch by Marshfield or approved equal. Book matched and balanced.
 - a. AA Grade face veneer.
 - b. Match face veneers for doors for uniform effect of color and grain at joints.
 - c. Door Edges: Same species as door face veneer, except maple is acceptable for stile face veneer on birch doors.

- d. In existing buildings, where doors are required to have transparent finish, use wood species, grade, and assembly of face veneers to match adjacent existing doors.
- 4. Factory sand doors for finishing.
- C. Wood For Stops, Louvers, Muntins and Moldings For Flush Doors Required to Have Transparent Finish:
 - Solid wood of same species as face veneer, except maple is acceptable on birch doors.

2. Glazing:

a. On non-fire-rated doors, use applied wood stops nailed tightly on room side and attached on opposite side with flathead, countersunk wood screws, spaced approximately 125 mm (5 inches) on center.

3. Wood Louvers:

- a. Door manufacturer's standard product, fabricated of solid wood sections.
- b. Wood Slats: minimum 5 mm (3/16 inch) thick.
- c. Stiles routed out to receive slats.
- d. Secure louvers in prepared cutouts with wood stops.

D. Fire-Rated Wood Doors:

- 1. Fire Resistance Rating:
 - a. B Label: 1-1/2 hours.
 - b. C Label: 3/4 hour.
- 2. Provide 20-minute smoke-rated doors in smoke-rated barriers.
- 3. Labels:
 - a. Comply with NFPA 252, UL 10C, and labeled by qualified testing and inspection agency showing fire resistance rating.
 - b. Metal labels with raised or incised markings.
- 4. Performance Criteria for Stiles of Doors Utilizing Standard Mortise Leaf Hinges:
 - a. Hinge Loading: WDMA TM 8. Average of 10 test samples for Extra $\mbox{Heavy-Duty doors}$.
 - b. Direct Screw Withdrawal: WDMA TM 10 for Extra Heavy-Duty doors. Average of 10 test samples using a steel, fully threaded #12 wood screw.
 - c. Cycle-Slam: 1,000,000 cycles with no loose hinge screws or other visible signs of failure when tested according to WDMA TM 7.
- 5. Hardware Reinforcement:

- a. Provide fire smoke rated doors with hardware reinforcement blocking.
- b. Size of lock blocks as required to secure hardware specified.
- c. Top, Bottom and Intermediate Rail Blocks: Minimum 125 mm (5 inches) by full core width.
- d. Reinforcement blocking in compliance with labeling requirements.
- e. Mineral material similar to core is not acceptable.
- 6. Other Core Components: Manufacturer's standard as allowed by labeling requirements.
- 7. Glazed Vision Panel Frame: Steel approved for use in labeled doors.
- E. Astragal: Steel type for pairs of doors. Smoke Barrier Doors:
 - 1. Glazed Vision Panel Frame: Steel approved for use in labeled doors.
 - 2. Astragal: Steel type for pairs of doors, including double egress doors.

F. Sound Rated Doors:

- Fabricated as specified for flush wood doors with additional construction requirements to comply with specified sound transmission class (STC).
- STC Rating of door assembly in place when tested according to ASTM E90 by independent acoustical testing laboratory minimum 35.
- 3. Accessories:
 - a. Frame Gaskets and Automatic Door Bottom Seal: As specified in Section 08 71 00, DOOR HARDWARE.

2.3 FABRICATION

- A. Factory machine interior wood doors to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
 - 1. Factory fit fire rated doors according to NFPA 80.
- B. Rout doors for hardware using templates and location heights specified in Section 08 71 00, DOOR HARDWARE.
- C. Factory fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (2 inches) of door thickness undercut where shown.
- D. Clearances between Doors and Frames and Floors:
 - 1. Fire Rated Doors: Comply with NFPA 80.
 - a. Doors with Automatic Bottom Seal: Maximum clearance 10 mm (3/8 inch) at threshold.
 - b. Other Door Bottoms: Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.

- 2. Door Jambs, Heads, and Meeting Stiles: Maximum 3 mm (1/8 inch).
- E. Provide cutouts for glazed and louver openings.
- F. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- G. Identify each door on top edge.
 - Mark with stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, date of manufacture and quality.
 - 2. Mark door or provide separate certification including name of inspection organization.
 - 3. Identify door manufacturing standard, including glue type.
 - 4. Identify veneer and quality certification.

2.4 FINISHES

- A. Factory Transparent Finish:
 - 1. Factory finish flush wood doors.
 - a. ANSI/WDMA I.S. 1A Section F-3 Finish System Descriptions for System 5, Conversion Varnish or System 7, Catalyzed Vinyl.
 - b. Use stain when required to produce finish specified in Drawings.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify door frames are properly anchored.
 - 2. Verify door frames are plumb, square, in plane, and within tolerances for door installation.
- B. Protect existing construction and completed work from damage.
- C. Install astragal on active leaf of pair of smoke doors and one leaf of double egress smoke doors.

3.2 INSTALLATION

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. Install fire rated doors according to NFPA 80.
 - 2. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 PROTECTION

- A. After installation, place shipping container over door and tape in place.
 - 1. Do not apply tape to door faces and edges.

- B. Provide protective covering over exposed hardware in addition to covering door.
- C. Maintain covering in good condition until removal is directed by Contracting Officer's Representative.

- - - E N D - - -

SECTION 08 31 13 ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Access doors and panels installed in walls and ceilings.

1.2 RELATED REQUIREMENTS

- A. Lock Cylinders: Section 08 71 00, DOOR HARDWARE.
- B. Field Painting: Section 09 91 00, PAINTING.
- C. Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS: Access Doors for Control or Drain Valves.
- D. Section 22 40 00, PLUMBING FIXTURES: Access Doors for Plumbing Valves.
- A. Locations of Access Doors for Ductwork Cleanouts: Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Welding Society (AWS):
 - D1.3/D1.3M-2018Structural Welding Code Sheet Steel (6th Edition.
- C. ASTM International (ASTM):
 - A653/A653M-20Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Sip Process.
 - A1008/A1008M-18Steel, Sheet, Cold-Rolled, Carbon, Structural,
 High-Strength Low-Alloy, High-Strength
 Low-Alloy with Improved Formability, Solution
 Hardened, and Bake Hardenable.
 - A666-15Annealed or Cold-Worked Austenitic Stainless-Steel sheet, Strip, Plate, and Flat Bar.
 - E119-20Fire Test of Building Construction and Materials.
- D. National Fire Protection Association (NFPA):
 - 80-2019 EditionFire Doors and Other Opening Protectives.
 - 252-2017 EditionFire Tests of Door Assemblies.
- E. National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-06Metal Finishes Manual.
- F. UL LLC (UL):

ListedOnline Certifications Directory.

10B-08 (Edition 10)Standard for Fire Tests of Door Assemblies.

263-11 (Edition 14)Fire Tests of Building Construction and

Materials.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.7 FIELD CONDITIONS

- A. Field Measurements: Verify field conditions affecting access door fabrication and installation. Show field measurements on Submittal Drawings.
 - Coordinate field measurement and fabrication schedule to avoid delay.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Steel Sheet: ASTM A1008/A1008M.
- B. Galvanized Steel: ASTM A 653/A 653M.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: See Drawings.
- B. Provide each product from one manufacturer.

2.3 ACCESS DOORS, FIRE-RATED

- A. Door Construction:
 - 1. Ceiling Access Door Construction: ASTM E119 or UL 263.
 - 2. Wall Access Doors: NFPA 252 or UL 10B.
- B. Label: Class B opening according to UL 10B or test by another nationally recognized laboratory. 1 hour fire-rated with maximum temperature rise of 120 degrees C (216 degrees F).
- C. Door Panel: Minimum 0.9 mm (0.0359 inch) thick steel sheet, with mineral-fiber insulation core, insulated sandwich type construction.
- D. Frame: Minimum 1.5 mm (0.0598 inch) thick steel sheet, depth and configuration to suit material and construction type where installed.
 - 1. Frame Flange: Provide at units installed in concrete, masonry, or gypsum board.
 - 2. Exposed Joints in Flange: Weld and grind smooth.
- E. Provide automatic closing device.
- F. Hinge: Continuous steel hinge with stainless steel pin.
- G. Lock: Self-latching, mortise type with provision for fitting flush a standard screw-in type lock cylinder.
 - 1. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Latch release device operable from inside of door.
- H. Anchors for Fire-Rated Access Doors: Comply with requirements of applicable fire test.

2.4 ACCESS DOORS, FLUSH PANEL, NON-RATED

- A. Door Panel:
 - 1. 1.9 mm (0.07 inch) thick steel sheet.
 - 2. Reinforce to maintain flat surface.
- B. Frame:
 - 1. 1.5 mm (0.06 inch) thick steel sheet, depth and configuration to suit material and construction type where installed.
 - 2. Frame Flange: Provide at units installed in concrete, masonry, and gypsum board.
 - 3. Exposed Joints in Flange: Weld and grind smooth.
- C. Hinge:
 - 1. Concealed spring hinge, 175 degrees of opening.

- 2. Removable hinge pin to allow removal of door panel from frame.
- D. Lock:
 - 1. Tamper proof screws (spanner head locks) for access panels in Behavioral Health Areas.

2.5 FABRICATION - GENERAL

- A. Size: Minimum 600 mm (24 inches) square door unless otherwise shown.
- B. Component Fabrication: Straight, square, flat and in same plane where required.
 - 1. Exposed Edges: Slightly rounded, without burrs, snags and sharp edges.
 - 2. Exposed Welds: Continuous, ground smooth.
 - 3. Welding: AWS D1.3/D1.3M.
- C. Locks and Non-Continuous Hinges: Provide in numbers required to maintain alignment of door panel with frame. For fire-rated doors, provide hinges and locks as required by fire test.
- D. Anchoring: Make provisions in frame for anchoring to adjacent construction. Provide anchors in size, number and location on four sides to secure access door to substrate. Provide anchors as required by fire test.

2.6 FINISHES

- A. Steel Paint Finish:
 - 1. Powder-Coat Finish: Manufacturer's standard two-coat finish system consisting of the following:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: Refer to Drawings.
- B. Stainless Steel Exposed Surfaces: NAAMM AMP 500; No. 4 polished finish.

2.7 ACCESSORIES

- A. Fasteners: Type and size recommended by access door manufacturer, to suit application.
 - 1. Stainless Steel Access Doors: Stainless steel fasteners.
 - 2. Other Access Doors: Galvanized steel fasteners.

PART 3 - EXECUTION

3.1 PREPARATION

A. Examine and verify substrate suitability for product installation.

- 1. Verify access door locations and sizes provide required maintenance access to installed building services components.
- B. Protect existing construction and completed work from damage.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install access doors and panels permitting access to service valves, traps, dampers, cleanouts, and other mechanical, electrical and conveyor control items concealed in walls and partitions and concealed above gypsum board and plaster ceilings.
- C. Install fire rated access door according to NFPA 80.
- D. Install fire-rated doors in fire-rated partitions and ceilings.
- E. Install flush access panels in partitions and in gypsum board and plaster ceilings.

3.3 ACCESS DOOR AND FRAME INSTALLATION

- A. Wall Installations: Install access doors in openings with sides vertical.
- B. Ceiling Installations: Install access doors parallel to ceiling suspension grid or room partitions.
- C. Frames without Flanges: Install frame flush with surrounding finish surfaces.
- D. Frames with Flanges: Overlap opening, with face uniformly spaced from finish surface.
- E. Recessed Panel Access Doors: Install with face of surrounding materials flush with door panel installed finish.
- F. Secure frames to adjacent construction with fasteners.
- G. Install type, size and quantity of anchoring device suitable for material surrounding opening to maintain alignment, and resist displacement, during normal use of access door.
- H. Field Painting Primed Access Doors: Comply with the requirements of Section 09 91 00, PAINTING.

3.4 ADJUSTMENT

- A. Adjust hardware so door panel opens freely.
- B. Adjust door when closed so door panel is centered in frame.

---END---

SECTION 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Replacement of Glazing in Aluminum-framed entrances.

1.2 RELATED REQUIREMENTS

A. Glass and Glazing: Section 08 80 00, GLAZING.

1.3 APPLICABLE PUBLICATIONS

A. Comply with references to extent specified in this section.

B. American Architectural Manufacturers Associations (AAMA):

- - 2604-13Performance Requirements and Test Procedures or

 High Performance Organic Coatings on

 Architectural Extrusions and Panels

Extrusions and Panels

- 2605-13Performance Requirements and Test Procedures

 for Superior Performing Organic Coatings on

 Aluminum Extrusions and Panels
- C. American Welding Society (AWS):

D1.2/D1.2M-14Structural Welding Code - Aluminum

- D. ASTM International (ASTM):
 - A240/A240M-20Chromium and Chromium-Nickel Stainless Steel

 Plate, Sheet, and Strip for Pressure Vessels

 and for General Applications
 - B209-14Aluminum and Aluminum-Alloy Sheet and Plate.
 - B209M-14Aluminum and Aluminum-Alloy Sheet and Plate (Metric)
 - B221-14Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
 - B221M-13Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric)
 - D1187/D1187M-97(2018) ..Asphalt-Base Emulsions for Use as Protective Coatings for Metal

	E283/E283M-19	Rate of Air Leakage Through Exterior Windows,
		Curtain Walls, and Doors Under Specified
		Pressure Differences Across the Specimen
	E330/E330M-14	Structural Performance of Exterior Windows,
		Doors, Skylights and Curtain Walls by Uniform
		Static Air Pressure Difference
	E331-00(2016)	Water Penetration of Exterior Windows, Curtain
		Walls, and Doors by Uniform Static Air Pressure
		Difference
	E1886-19	Performance of Exterior Windows, Curtain Walls,
		Doors, and Impact Protective Systems Impacted
		by Missiles and Exposes to Cyclic Pressure
		Differentials
	E1996-17	Performance of Exterior Windows, Curtain Walls,
		Doors, and impact Protective Systems Impacted
		by Windborne Debris in Hurricanes
	F468-16	Nonferrous Bolts, Hex Cap Screws, and Studs for
		General Use
	F593-17	Stainless Steel Bolts, Hex Cap Screws, and
		Studs
Ε.	National Association of	Architectural Metal Manufacturers (NAAMM):
	AMP 500-06	Metal Finishes Manual
F.	National Fenestration Ra	ating Council (NFRC):
	500-14(E1A0)	Determining Fenestration Product Condensation
		Resistance Values

- G. Department of Veterans Affairs (VA):
 - 1. VA Physical Security and Resiliency Design Manual October 1, 2020

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect/Engineer.
 - c. Contractor.
 - d. Installer.
 - e. Manufacturer's field representative.
 - f. Other installers responsible for adjacent and intersecting work.

- 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - q. Transitions and connections to other work.
 - h. Other items affecting successful completion.
- Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings: Minimum 1 (half size) scale.
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show anchorage and reinforcement.
 - 3. Show interface and relationship to adjacent work, including thermal, air, and water barrier continuity.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Doors, each type.
 - 3. Entrance and Storefront construction.
 - 4. Installation instructions.
 - 5. Warranty.

D. Samples:

- Aluminum Anodized Finish: wo sample extrusions minimum 150 mm (6 inches) long for each specified color in sets of three showing maximum color range.
- E. Test reports: Certify each product complies products comply with specifications.
- F. Certificates: Certify each product complies products comply with specifications.
 - 1. Certify anodized finish thickness.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list.
 - 2. Welders and welding procedures.

- 3. Show location and magnitude of loads applied to building structural frame.
- 4. Identify deviations from details shown on drawings.
- H. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
- B. Installer Qualifications: Manufacturer authorized representative.
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
- C. Welders and Welding Procedures Qualifications: AWS D1.2/D1.2M.

1.7 DELIVERY, STORAGE AND HANDLING

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.
- D. Store products indoors in dry, weathertight conditioned facility.
- E. Protect products from damage during handling and construction operations.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
 - 1. Warranty Period: 20 years.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

A. Provide aluminum framed entrances and storefronts from one manufacturer and from one production run.

2.2 FRAMES

- A. Framing Members: Extruded aluminum, thermally broken.
- B. Stops: Provide integral fixed stops and glass rebates and snap-on removable stops.
- C. Provide concealed screws, bolts and other fasteners.
- D. Secure cover boxes to frames in back of lock strike cutouts.

2.3 STILE AND RAIL DOORS

- A. Glass Rebates: Integral with stiles and rails.
- B. Glazing Beads: Extruded aluminum, 1.3 mm (0.050 inch) thick. Integral with stiles and rails or applied type, snap-fit secured.
- C. Stile and Rail Joints: Welded or interlocking dovetail joints between stiles and rails.
 - Clamp door together through top and bottom rails with 9 mm (3/8 inch) primed steel tie rod extending into stiles and having self-locking nut and washer at both ends.

2.4 FABRICATION

- A. Form metal parts and fit and assemble joints, except joints designed to accommodate movement. Seal joints to resist air infiltration and water penetration.
- B. Welding:

2.5 FINISHES

- A. Aluminum Anodized Finish: NAAMM AMP 500.
 - 1. Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 2. Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 3. Clear Anodized Finish: AA-C22A31; Class II Architectural, 0.01 mm (0.4 mil) thick.

2.6 ACCESSORIES

- A. Dielectric Tape: Plastic, non-absorptive, with pressure sensitive adhesive; 0.18 to 0.25 mm (7 to 10 mils) thick.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Fasteners:
 - 1. Aluminum: ASTM F468, Alloy 2024.
 - 2. Stainless Steel: ASTM F593, Alloy Groups 1, 2 and 3.
- D. Anchors: Aluminum or stainless steel; type to suit application.
- E. Galvanizing Repair Paint: MPI No. 18.

F. Touch-Up Paint: Match shop finish.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Coordinate floor closer installation recessed into concrete slabs.
 - 2. Coordinate anchor installation built into masonry and concrete.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
- D. Apply dielectric tape or barrier coating to aluminum surfaces in contact with dissimilar metals to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install aluminum framed entrances and storefronts plumb and true, in alignment and to lines shown on drawings.
- C. Anchor frames to adjoining construction at heads, jambs and sills.
- D. Provide concealed aluminum clips to connect adjoining frame sections.
- E. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.3 PROTECTION, CLEANING AND REPAIRING

- A. Clean exposed aluminum and glass surfaces. Remove contaminants and stains.
- B. Protect aluminum-framed entrances and storefronts from construction operations.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

---END---

SECTION 08 51 13 ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Aluminum windows for renovation work.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing Joints.
- B. Section 08 80 00, GLAZING: Glazing.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.

 B. American Architectural Manufacturers Associations (AAMA):

AAMA 505-17Dry Shrinkage and Composite Performance Thermal Cycle Test Procedures.

AAMA 2605-20Performance Requirements and Test Procedures for Superior Performing Organic Coatings on Aluminum Extrusions and Panels.

AAMA TIR A8-16Structural Performance of Composite Thermal Barrier Framing System.

- A. American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI):
 - 7-16Minimum Design Loads for Buildings and Other Structures.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 - 90.1-19Energy Standard for Buildings Except Low-Rise Residential Buildings.
- C. ASTM International (ASTM):

B209-14Aluminum and Aluminum-Alloy Sheet and Plate.

B209M-14Aluminum and Aluminum-Alloy Sheet and Plate (Metric).

B221-14Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.

B221M-13Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).

E283-19Determining Rate of Air Leakage Through

Exterior Windows, Curtain Walls, and Doors

Under Specified Pressure Differences Across the Specimen.

E331-00(2016)Water Penetration of Exterior Windows,

Skylights, Doors, and Curtain Walls by Uniform

Static Air Pressure Difference.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect/Engineer.
 - c. Inspection and Testing Agency.
 - d. Contractor.
 - e. Installer.
 - f. Manufacturer's field representative.
 - 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Transitions and connections to other work.
 - ${\tt g.}$ Other items affecting successful completion.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTAL

- A. Submit according to Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- A. Submittal Drawings:
 - 1. Indicate window types required for project.
 - 2. Identify window unit components by name and type of metal or material, show construction, locking systems, mechanical operators, trim, installation and anchorages.
 - 3. Include glazing details and standards for factory glazed units.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.

- 3. Warranty.
- C. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- D. Samples:
 - 1. Window Frame: 150 mm (6 inch) long samples showing finishes, specified.
- E. Test reports: Indicate each product complies with specifications.
 - 1. Windows.
 - 2. Operating hardware.
- F. Certificates: Indicate each product complies with requirements (window characteristics may be on window schedule or other drawings).

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
- B. Provide contact names and addresses for completed projects when requested by Contracting Officer's Representative.
- C. Quality Certified Labels or Certificates:
 - 1. AAMA Label affixed to each window indicating compliance with specification.
 - 2. Certificates in lieu of label with copy of test report maximum 4 years old from independent testing laboratory and certificate signed by window manufacturer stating that windows provided comply with specified requirements and AAMA/WDMA/CSA 101/I.S.2/A440 for type of window specified.

1.7 STORAGE AND HANDLING

- A. Protect windows from damage during handling and construction operations before, during and after installation.
- A. Store windows under cover, setting upright.
- B. Do not stack windows flat.
- C. Do not lay building materials or equipment on windows.

1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
 - 1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design windows complying with specified performance:
 - 1. Load Resistance: ASCE/SEI 7.
 - a. Performance Grade: AAMA/WDMA/CSA 101/I.S.2/A440 required to resist maximum positive and negative wind load.
 - 2. Thermal Transmittance: Maximum U-value watt/square meter/degree K (Btu/square foot/hour/degree F).
 - a. Insulating Glass Windows: U-2.8 (U-0.5).
 - b. Dual Glazed Windows: $U-4.0 \ (U-0.7)$, or as required by ASHRAE 90.1.
 - 3. Condensation Resistance Factor (CRF): NFRC 500 Minimum CRF of C 55.
 - 4. Water Resistance: ASTM E331; No uncontrolled penetration at 390 Pa (8.00-pound square foot), minimum, pressure differential.
 - 5. Air Infiltration Resistance: ASTM E283; 1.5 liter/second/square meter (0.3 cubic foot/minute/square foot.), maximum at 75 Pa (1.57-pound square foot), minimum, pressure differential.
 - 6. Simulated Human Impact Tests:
 - a. Conduct tests in accordance with AAMA501.8, to simulate a purposeful shoulder impact from the interior. Test units shall be representative of windows on the project in details of frame connections, glazing and anchorage.
 - b. Test units shall be representative of the largest unit on the project (both width and height).
 - c. Interior of each test unit shall be impacted with a heavy shot bag swung from a vertical height sufficient to generate 2000 ftlb of impact, directed at the locations specified in AAMA 501.8. Center-of-glass impact shall be repeated if any plies break upon impact.
 - d. At the conclusion of impact testing, the window shall remain intact as a barrier to egress and meet the performance requirements of AAMA 501.8.
 - 7. Acoustic Performance Requirements
 - a. Perform acoustical tests in accordance with ASTM E90 and ASTM E1425 on the glass types specified, rigidly supported in aluminum frame of same product type.
 - b. Outdoor-Indoor Transmission Class shall not be less than STC 33.

- 8. Provide the following operation types for locations indicated on the Drawings.
 - a. Casement Windows: At Interior Accessory Window locations
 - 1) Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440, minimum AW-40.
 - 2) Operation:
 - 3) Awning Sash: Project-out and slide down from top.
 - b. Fixed Windows: At New Exterior window locations.
 - 1) Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440, minimum AW-40.

2.2 MATERIALS

- A. Aluminum Extrusions: ASTM B221M (ASTM B221); 6063 alloy, T5 temper.
- A. Aluminum Sheet: ASTM B209M (ASTM B209); 5005 alloy, H15 or H34 temper.

2.3 PRODUCTS - GENERAL

- A. Basis of Design:
 - 1. Exterior Window:
 - a. Wausau 400i-DT Series Behavioral Care Exterior Windows Fixed.
 - 2. Interior Accessory Window:
 - a. Wausau 2187-DT S.E.A.L Series Behavioral Care Accessory Window.
- B. Other manufacturers products that meet or exceed specified design requirements may be considered if submitted 10 days prior to bid date.
- C. Provide windows from one manufacturer.
- D. Sustainable Construction Requirements:
 - 1. Aluminum Recycled Content: 80 total recycled content, minimum.

2.4 ALUMINUM WINDOWS

- A. Frames and Sashes: Aluminum extrusions, AAMA/WDMA/CSA 101/I.S.2/A440.
 - 1. Extruded aluminum billet, 6063-T5 or T6 alloy for primary non-radius components; 6063-T5 or T6, 6005-T5, 6105-T5 or 6061-T6 for anchor components; all meeting the requirements of ASTM B221.
 - 2. Aluminum sheet alloy 5005-H32 (for anodic finishing), or alloy 3003-H14 (for painted or unfinished sheet) meeting the requirements of ASTM B209.
 - 3. Principal window frame and sash ventilator members will be a minimum 0.125" in thickness at glazing legs, hardware mounting webs and section flanges.
 - 4. (4000i-DT only) Extruded aluminum security glazing stops will be a minimum 0.125" in thickness.

- 5. Extruded or formed trim components will be a minimum 0.060 inch in thickness.
- 6. Perimeter frame depth 4 inch minimum.
- 7. Sash ventilator and fixed lite access panel sections must be tubular and overlap framing members.
- 8. Vented areas shall be indistinguishable in sightline from fixed areas from the exterior, with vents in the closed position.
- 9. Sash ventilator joinery shall not be exposed to the exterior with vents in the closed position.
- 10. Sash ventilator edges shall be filleted.
- 11. Exterior sightlines at perimeter framing members will not exceed 3-1/2 inch unless detailed otherwise on architectural drawings.
- B. Thermal-Break Window Construction:
 - 1. Manufacturer's Standard.
 - 2. Low conductance thermal barrier.
 - 3. Capable of structurally holding sash in position and together.
 - 4. Thermal Break Assemblies: Tested according to AAMA TIR A8 and AAMA 505.
 - Design location of thermal break so that, in closed position, outside air does not come in direct contact with interior frame of window.
- C. Mullions: Match window units.
- D. Provide anchors and other related accessories required for installation.

2.5 GLAZING

- A. Glass and Glazing: 7/16 inch tempered, laminated glass.
 - 1. Factory glaze windows.
 - Glazing method shall be in general accordance with the GANA Glazing Manual for specified glass type, or as approved by the glass fabricator.
 - 3. Glazing stops retaining security glazing shall be secured at 12 inch on center using ¼ inch -20 plated or stainless-steel thread-rolling fasteners.
 - 4. Glazing materials at the interior must be rendered tamper-resistant by a continuous extruded hood projection or other tested and approved method.
 - 5. Provide minimum glazing bite as recommended by the security glazing infill fabricator.

- 6. Provide windows factory-glazed wherever practical.
- 7. Provide open cell baffles in all vents to exterior ambient air to help prevent entry of insects and dust.

B. Glazing Materials

- 1. Setting Blocks/Edge Blocking: Provide in sizes and locations recommended by GANA Glazing Manual. Setting blocks used in conjunction with soft-coat low-e glass shall be silicone.
- Back-bedding tapes, expanded cellular glazing tapes, toe beads, heel beads and cap beads shall meet the requirements of applicable specifications cited in AAMA 800.
- 3. Glazing gaskets shall be non-shrinking, weather-resistant, and compatible with all materials in contact.
- 4. Structural silicone sealant where used shall meet the requirements of ASTM C1184.
- 5. Spacer tape in continuous contact with structural silicone shall be tested for compatibility and approved by the sealant manufacturer for the intended application.
- 6. Gaskets in continuous contact with structural silicone shall be extruded silicone or compatible material.

C. Glazed Access Panel

- Lift off access panel provided with Allen locks for custodial operation.
- 2. Finish to match window frames.

D. Integral Venetian Blinds

- 1. 5/8 inch wide aluminum slat blinds. Blind color shall be selected from standard color chart.)
- 2. Blind to be integrally mounted between the existing glass and interior glazing.
- 3. Removable tilt-control knob will be located on the operable face and incorporate a slip clutch feature.
- 4. Raise and lower pull cords will be located between glass for access only when glazed access panel is opened.

2.6 HARDWARE

A. Locks: Two position locking bolts or cam type tamperproof custodial locks with a single point control located not higher than 1500 mm (60 inches) from floor level. Locate locking devices in vent side rail. Provide concealed or non-removable fastenings for locks and keepers.

Provide cam type locks on single hung and double windows to pull window sashes together in a locked and secured position.

- A. Locking Device Strikes: Locate adjustable strikes in frame jamb. Fabricate strikes from Type 304 stainless steel or white bronze.
- B. Counterbalancing: Primary window sash shall be equipped with counterbalancing mechanisms meeting the requirements of AAMA 902 or AAMA 908. Counterbalancing mechanism shall be of appropriate size and capacity to hold the sash stationary at any open position shall be used for the weights of sash to be counterbalanced.
- C. Fabricate hinges of noncorrosive metal. Hinges may be either fully concealed when window is closed or semi-concealed with exposed knuckles and hospital tips. Surface mounted hinges are not acceptable.
- D. Guide Blocks: Fabricate guide blocks of injection molded nylon. Install guide block fully concealed in vent/frame sill.
- E. Hardware for Emergency Ventilation of Windows:
 - 1. Provide windows with hold open linkage.
 - 2. Provide hold open hardware for maximum 150 mm (6 inches) of window opening with adjustable friction shoe to provide resistance when closing window.
 - 3. Handles: Removable type.
- F. Hardware for Maintenance Opening of Windows: Opening beyond limit stop position accomplished by maintenance key captured by release device when window is in open position.
 - 1. Design operating device to prevent opening with standard tools, coins or bent wire devices.
- G. Weather Stripping: AAMA/WDMA/CSA 101/I.S.2/A440; leaf type weather-stripping is not acceptable.
- H. Provide wrenches, keys, or removable locking operating handles, as specified to operate windows.
 - 1. Provide one emergency ventilating operating handle for every four windows.
 - 2. Provide maintenance or window washer operating handles as required.

2.7 FABRICATION

- A. Fabricate windows to comply specified performance class and grade.
 - 1. Assemble frame and sash so fasteners are concealed when window is closed.
 - 2. Attach locking and hold-open devices to windows with concealed fasteners.

- 3. Where extrusion wall thickness is less than 3 mm (0.125 inch) thick, provide backup plates or similar reinforcements for fasteners.
- 4. Use stainless steel fasteners to secure Venetian blind hanger clips, vent guide blocks, friction adjuster, and limit opening device.

B. Aluminum Trim:

- 1. Trim includes casings, closures, and panning.
- 2. Fabricate to shapes shown, minimum 1.6 mm (0.062 inch) thick.
- 3. Extruded or formed sections, straight, true, and smooth on exposed surfaces.
- 4. Exposed external corners mitered and internal corners coped; fitted with hairline joints.
- 5. Reinforce 1.6 mm (0.062 inch) thick members with minimum 3 mm (1/8 inch) thick aluminum.
- 6. Except for strap anchors, provide reinforcing for fastening near ends and spaced maximum 300 mm (12 inches) on center.
- 7. Design to allow unrestricted expansion and contraction of members and window frames.
- 8. Secure to window frames with machine screws or expansion rivets.
- 9. Exposed screws, fasteners or pop rivets are not acceptable on exterior of casing or trim cover system.

C. Aluminum Subsills and Stools:

- 1. Fabricate to shapes shown, minimum 2 mm (0.080 inch) thick extrusion.
- 2. One-piece full length of opening with concealed anchors.
- 3. Sills turned up back edge minimum 6 mm (1/4 inch). Front edge provide with drip.
- 4. Sill back edge behind face of window frame. Do not extend to interior surface or bridge thermal breaks.
- 5. Do not perforate for anchorage, clip screws, or other requirements.

2.8 FINISHES

- A. Finish window units according to NAAMM AMP 500 series.
- B. Anodized Aluminum:
 - 1. Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 2. Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.

2.9 ACCESSORIES

A. Fasteners: AAMA/WDMA/CSA 101/I.S.2/A440; non-magnetic stainless steel.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify openings are within acceptable tolerances.
- B. Protect existing construction and completed work from damage.
- C. Remove existing windows to permit new installation when replacement window is available, and ready for immediate installation.
 - 1. Remove existing work carefully; avoid damage to existing work indicated to remain.
 - 2. Perform other operations as necessary to prepare openings for proper installation and operation of new windows.
 - 3. Do not leave openings uncovered at end of working day, during precipitation or temperatures below 16 degrees C (60 degrees F).

3.2 INSTALLATION, GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Where type, size or spacing of fastenings for securing window accessories or equipment to building construction is not shown or specified, provide expansion or toggle bolts or screws, as best suited to construction material.
 - 1. Provide bolts or screws minimum 6 mm (1/4 inch) in diameter.
 - 2. Sized and spaced to resist tensile and shear loads imposed.
 - 3. Do not install exposed fasteners on exterior, except when unavoidable for application of hardware.
 - 4. Provide non-magnetic stainless-steel Phillips flat-head machine screws for exposed fasteners, where required, or special tamper-proof fasteners.
 - 5. Locate fasteners to avoid disturbing window thermal break.
- C. Set windows plumb, level, true, and in alignment; without warp or rack of frames or sash.
- D. Anchor windows on four sides with anchor clips or fin trim.
 - 1. Do not allow anchor clips to bridge thermal breaks.
 - 2. Use separate clips for both sides of thermal breaks.
 - 3. Make connections to allow for thermal and other movements.
 - 4. Do not allow building load to bear on windows.

- 5. Use manufacturer's standard clips at corners and maximum 600 mm (24 inches) on center.
- 6. Where fin trim anchorage is indicated build into adjacent construction, anchoring at corners and maximum 600 mm (24 inches) on center.

E. Sills and Stools:

- 1. Set in bed of mortar or other compound to fully support, true to line shown.
- 2. Do not extend sill to inside window surface or past thermal break.
- 3. Leave space for sealants at ends and to window frame unless indicated otherwise.

3.3 MULLIONS CLOSURES, TRIM, AND PANNING

- A. Closures, Trim, and Panning: External corners mitered and internal corners coped, fitted with hairline, tightly closed joints.
 - 1. Secure to concrete and solid masonry with expansion bolts, expansion rivets, split shank drive bolts, or powder actuated drive pins.
 - 2. Toggle bolt to hollow masonry units.
 - 3. Screw to wood and metal.
- B. Fasten except for strap anchors, near ends and corners and maximum 300 mm (12 inches) on center.
- C. Seal units following installation to provide weathertight system.

3.4 FIELD TESTING

- A. Test Specimen:
 - Include window assembly and construction. Affix test chamber to interior side of test specimen and the conduct testing using positive static air pressure (Test method A).
 - 2. Test specimens to be selected by the Contracting Officer's Representative after windows have been installed according to the drawings and specification.

3.5 CLEANING

- A. Lubricate hardware and moving parts.
- A. Remove excess glazing and sealant compounds.
- B. Clean exposed aluminum and glass surfaces. Remove contaminants and stains.
- C. Keep windows locked except while adjusting and testing.

---END---

SECTION 08 71 00 DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, INTERIOR WOOD DOORS; Section 08 11 13, HOLLOW METAL DOORS AND FRAMES; Section 08 41 13, ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS.
- C. Painting: Section 09 91 00, PAINTING.
- D. Electrical: Division 26, ELECTRICAL.

1.3 GENERAL

- A. All hardware shall comply with ABAAS, (Architectural Barriers Act Accessibility Standard) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.
 - 3. Surface applied overhead door closers.
 - 4. Exit devices.
 - 5. Floor closers.

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: AHC certified hardware consultant to prepare and submit hardware schedule in the following form:

Hardware Item	Quantity	Size	Reference Publication Type No.	Finish	Mfr. Name and Catalog No.	Key Control Symbols	UL Mark (if fire rated and listed)	ANSI/BHMA Finish Designation

- C. Ligature Resistant Door Alarm Riser Diagram: Prepare and submit 6 copies of shop drawings of electric riser diagram complete with all required equipment components. Submission shall be in accordance with requirements per Section 01 33 23 for review and approval by project CO. Along with shop drawing submittal provide installation data. At completion of project provide CO with operation and maintenance manuals.
- D. Samples and Manufacturers' Literature:
 - 1. Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers

- Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.
- 2. Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.
- E. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to COR for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in COR's office until all other similar items have been installed in project, at which time the COR will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Project Engineer and VA Locksmith, Hardware Consultant, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

- A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.
- B. Keying: All cylinders shall be keyed into existing Grand Master Key System. Provide removable core cylinders that are removable only with a special key or tool without disassembly of knob or lockset. Cylinders shall match existing. Keying information shall be furnished at a later date by the COR.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. ASTM International (ASTM):

F883-13Padlocks

E2180-18......Standard Test Method for Determining the

Activity of Incorporated Antimicrobial Agent(s)

In Polymeric or Hydrophobic Materials

C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-06Butts and Hinges

A156.2-03Bored and Pre-assembled Locks and Latches

A156.3-08Exit Devices, Coordinators, and Auto Flush Bolts

A156.4-08Door Controls (Closers)

A156.6-05Architectural Door Trim

A156.8-05Door Controls-Overhead Stops and Holders

A156.12-05Interconnected Locks and Latches

A156.13-05Mortise Locks and Latches Series 1000

A156.14-07Sliding and Folding Door Hardware

	A156.15-06Release Devices-Closer Holder, Electromagnetic
	and Electromechanical
	A156.16-08Auxiliary Hardware
	A156.17-04Self-Closing Hinges and Pivots
	A156.18-06Materials and Finishes
	A156.20-06Strap and Tee Hinges, and Hasps
	A156.21-09Thresholds
	A156.22-05Door Gasketing and Edge Seal Systems
	A156.23-04Electromagnetic Locks
	A156.24-03Delayed Egress Locking Systems
	A156.25-07Electrified Locking Devices
	A156.26-06Continuous Hinges
	A156.28-07Master Keying Systems
	A156.29-07Exit Locks and Alarms
	A156.30-03High Security Cylinders
	A156.31-07Electric Strikes and Frame Mounted Actuators
	A156.36-10Auxiliary Locks
	A250.8-03Standard Steel Doors and Frames
D.	National Fire Protection Association (NFPA):
	80-10Fire Doors and Other Opening Protectives
	101-09Life Safety Code
Ε.	Underwriters Laboratories, Inc. (UL):
	Building Materials Directory (2008)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - 1. Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless-steel material.
 - 2. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet

rooms, kitchens, janitor rooms, etc. shall be of stainless-steel material.

- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - 2. Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
 - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm \times 114 mm (4-1/2 inches \times 4-1/2 inches) hinges.
 - 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
 - 7. Provide heavy-weight hinges where specified.
 - 8. At doors weighing 330 kg (150 pounds) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

- A. ANSI/BHMA A156.26, Grade 1-600.
 - 1. Listed under Category N in BHMA's "Certified Product Directory."
- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Base Metal for Interior Hinges: Stainless steel.
 - 3. Base Metal for Hinges for Fire-Rated Assemblies: Stainless steel.
 - 4. Provide with non-removable pin (hospital tip option) at lockable outswing doors.
 - 5. Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.

- 6. Provide with manufacturer's cut-outs for separate mortised power transfers and/or mortised automatic door bottoms where they occur.
- 7. Where thru-wire power transfers are integral to the hinge, provide hinge with easily removable portion to allow easy access to wiring connections.
- 8. Where models are specified that provide an integral wrap-around edge guard for the hinge edge of the door, provide manufacturer's adjustable threaded stud and machine screw mechanism to allow the door to be adjusted within the wrap-around edge guard.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - 1. The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
 - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless-steel material.
 - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
 - 8. Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
 - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bullnose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms,

- drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
- 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
- 11. Provide parallel arm closers with heavy duty rigid arm.
- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 $\frac{1}{2}$ " (38mm) minimum piston diameter.

2.5 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use expansion shields for mounting door stops.

2.6 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed hold-open on/off control at all other doors requiring overhead door stops.

2.7 LOCKS AND LATCHES

A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall match existing. Cylinders for all locksets shall be removable core type. Cylinders shall be furnished with construction removable cores and construction master keys. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw unless shorter throw allowed by the door manufacturer's fire label. Provide temporary keying

- device or construction core to allow opening and closing during construction and prior to the installation of final cores.
- B. In addition to above requirements, locks and latches shall comply with following requirements:
 - 1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets, except on designated doors in Psychiatric (Mental Health) areas, shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching existing. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.
 - 2. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Provide lever design to match design selected by Architect or to match existing lever design. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool.)
 - 3. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.36.
 - 4. Locks on designated doors in Psychiatric (Mental Health) areas shall be paddle type with arrow projection covers and be UL Listed. Provide these locks with paddle in the down position on both sides of the door. Locks shall be fabricated of wrought stainless steel.

SPEC WRITER NOTES:

2.8 PUSH-BUTTON COMBINATION LOCKS

- A. ANSI/BHMA A156.5, Grade 1. Battery operated pushbutton entry.
- B. Construction: Heavy duty mortise lock housing conforming to ANSI/BHMA A156.13, Grade 1. Lever handles and operating components in compliance with the ABAAS and the ADA Accessibility Guidelines. Match lever handles of locks and latchsets on adjacent doors.
- C. Special Features: Key override to permit a master keyed security system and a pushbutton security code activated passage feature to allow access without using the entry code.

2.9 ELECTROMAGNETIC LOCKS

- A. ANSI/BHMA A156.23; electrically powered, of strength and configuration indicated; with electromagnet attached to frame and armature plate attached to door. Listed under Category E in BHMA's "Certified Product Directory."
 - 1. Type: Full exterior or full interior, as required by application indicated.
 - 2. Strength Ranking: 1500-pound force (6672 N.
 - 3. Inductive Kickback Peak Voltage: Not more than 53V.
 - 4. Residual Magnetism: Not more than 4-pound force (18 N) to separate door from magnet.
- B. Delayed-Egress Locks: BHMA A156.24. Listed under Category G in BHMA's "Certified Product Directory".
 - 1. Means of Egress Doors: Lock releases within 15 seconds after applying a force not more than 15-pound force (67 N) for not more than 3 seconds, as required by NFPA 101.
 - 2. Security Grade: Activated from secure side of door by initiating device.
 - 3. Movement Grade: Activated by door movement as initiating device.
 - 4. The lock housing shall not project more than 4-inches (101mm) from the underside of the frame head stop.

2.10 ELECTRIC STRIKES

- A. ANSI/ BHMA A156.31 Grade 1.
- B. General: Use fail-secure electric strikes at fire-rated doors.

2.11 KEYS

A. Stamp all keys with change number and key set symbol. Furnish keys in quantities as follows:

Locks/Keys	Quantity
Cylinder locks	2 keys each
Cylinder lock change key blanks	100 each different keyway
Master-keyed sets	6 keys each
Grand Master sets	6 keys each
Great Grand Master set	5 keys
Control key	2 keys

B. Psychiatric keys shall be cut so that first two bittings closest to the key shoulder are shallow to provide greater strength at point of greatest torque.

2.12 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates and door edging as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high. Mop plates shall be 152 mm (6 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.
 - 3. Kick plates and/or mop plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Exterior side of exterior doors;
 - c. Closet side of closet doors;
 - d. Both sides of aluminum entrance doors.
 - 4. Armor plates for doors are listed under Article "Hardware Sets".

 Armor plates shall be thickness as noted in the hardware set, 875 mm

(35 inches) high and 38 mm (1-1/2 inches) less than width of doors, except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar.

- 5. Where louver or grille occurs in lower portion of doors, substitute stretcher plate and kick plate in place of armor plate. Size of stretcher plate and kick plate shall be 254 mm (10 inches) high.
- 6. Provide stainless steel edge guards where so specified at wood doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow. Provide edge guards of bevel and thickness to match wood door. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide full-height edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front. Forward edge guards to wood door manufacturer for factory installation on doors.

2.13 EXIT DEVICES

- A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.
- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels. Do not provide surface vertical rod panics at exterior doors.
- C. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels. Where concealed vertical rod panics are specified at exterior doors, provide with both top and bottom rods.
- D. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.

- E. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- F. Exit devices for fire doors shall comply with Underwriters Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof of compliance.

2.14 FLUSH BOLTS (LEVER EXTENSION)

- A. Conform to ANSI A156.16. Flush bolts shall be Type L24081 unless otherwise specified. Furnish proper dustproof strikes conforming to ANSI A156.16, for flush bolts required on lower part of doors.
- B. Lever extension manual flush bolts shall only be used at non-fire-rated pairs for rooms only accessed by maintenance personnel.
- C. Face plates for cylindrical strikes shall be rectangular and not less than 25 mm by 63 mm (1 inch by 2-1/2 inches).
- D. Friction-fit cylindrical dustproof strikes with circular face plate may be used only where metal thresholds occur.
- E. Provide extension rods for top bolt where door height exceeds 2184 mm (7 feet 2 inches).

2.15 FLUSH BOLTS (AUTOMATIC)

- A. Conform to ANSI A156.3. Dimension of flush bolts shall conform to ANSI A115. Bolts shall conform to Underwriters Laboratories, Inc., requirements for fire door hardware. Flush bolts shall automatically latch and unlatch. Furnish dustproof strikes conforming to ANSI A156.16 for bottom flushbolt. Face plates for dustproof strike shall be rectangular and not less than 38 mm by 90 mm (1-1/2 by 3-1/2 inches).
- B. At interior doors, provide auto flush bolts less bottom bolt, unless otherwise specified, except at wood pairs with fire-rating greater than 20 minutes; provide fire pins as required by auto flush bolt and door fire labels.

2.16 LIGATURE RESISTANT DOOR ALARM:

- A. Provide ligature resistant, monitoring and notification system capable of detecting a ligature-initiated event at a patient bedroom door. An alarm system will trigger audio and visual notification devices at the bedroom door and nurse's station to alert staff of a ligature emergency. The system shall be addressable, self-monitoring, and able to diagnose alarm and system problems. The system shall be capable of documenting ligature-initiated events
- B. Components of Alarm System:
 - 1. Ligature-initiating Alarm:

a. Pressure alarm assembly: Nominal 1 pound pressure activated alarm.

Door alarm assembly must be constructed of stainless steel and made by the door alarm manufacturer.

2. Hinge and Power Transfer

- a. Power transfer section of hinge shall be housed at the top end of the continuous hinge to eliminate the potential of exposed wires or flex conduit.
- b. The power transfer section of the hinge shall be field removable to eliminate the need to remove the door when addressing electrical service issues.

3. Local Visual Alarm (Strobe)

- a. Install in corridor above monitored room doors throughout facility.
- b. Alarm unit shall be anti-ligature with a sloped top, made of resilient material and fastened with tamper resistant hardware.
- c. Door alarm units shall flash when any monitored door alarm is triggered at a ligature point initiated event.
- d. The door alarm strobe shall be turned off when a user's code is entered at the keypad at the room door.

4. Local Keyswitch:

- a. Wall mounted, shall be flush mounted or designed to be antiligature.
- b. Coordinate specific location with COR and Unit Manager
- c. Designed for momentary actuation with spring return.

5. Keypad:

- a. Provide an LCD display notification for activation of all monitored patient bedroom doors.
- b. Flush mounted or designed to be anti-ligature

6. Remote Monitoring Panel and Audible Alarm:

- a. The remote monitoring panel shall allow monitoring of each patient bedroom door from the nurse's station with a visual indicator of the location of the ligature-initiated event.
- b. The remote audible alarm will be a distinct tone not to be confused with other alarms located in the vicinity.

7. Control Panel:

a. Panel and all elements of the alarm system shall be equipped with a dedicated battery backup system and emergency power feed for

maintaining power to the control panel in the event of a power failure due to a power outage.

b. Provide software for printing documented alarm events//

2.17 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm CTC (6 inches CTC) length by 19 mm (3/4 inches) diameter minimum with plate Type J302, 90 mm by 381 mm (3-1/2 inches by 15 inches), unless otherwise specified. Provide pull with projection of 57.2 mm (2 1/4 inches) minimum and a clearance of 38.1 mm (1 1/2 inches) minimum. Cut plates of door pull plate for cylinders, or turn pieces where required.

2.18 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 203 mm (8 inches) wide by 406.4 mm (16 inches) high. Provide metal Type J302 plates 102 mm (4 inches) wide by 406.4 mm (16 inches) high where push plates are specified for doors with stiles less than 203 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.19 COMBINATION PUSH AND PULL PLATES

A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (3-1/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (1-1/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down.

2.20 COORDINATORS

A. Conform to ANSI A156.16. Coordinators, when specified for fire doors, shall comply with Underwriters Laboratories, Inc., requirements for fire door hardware. Coordinator may be omitted on exterior pairs of doors where either door will close independently regardless of the position of the other door. Coordinator may be omitted on interior pairs of non-labeled open where open back strike is used. Open back strike shall not be used on labeled doors. Paint coordinators to match door frames, unless coordinators are plated. Provide bar type coordinators, except where gravity coordinators are required at acoustic pairs. For bar type coordinators, provide filler bars for full width and, as required, brackets for push-side surface mounted closers, overhead stops, and vertical rod panic strikes.

2.21 THRESHOLDS

A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be

installed in a bed of sealant with $\frac{1}{4}$ -20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.

- B. For thresholds at elevators entrances see other sections of specifications.
- C. At exterior doors and any interior doors exposed to moisture, provide threshold with non-slip abrasive finish.
- D. Provide with miter returns where threshold extends more than 12 mm (0.5 inch) beyond face of frame.

2.22 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types):
 Except for fire-rated doors and doors to Temperature Control Cabinets,
 equip each single or double metal access door with Lock Type E07213,
 conforming to ANSI A156.11. Key locks as directed. Ship lock prepaid to
 the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Cylinders for Various Partitions and Doors: Key cylinders same as entrance doors of area in which partitions and door occur, except as otherwise specified. Provide cylinders to operate locking devices where specified for following partitions and doors:
 - 1. Folding doors and partitions.
 - 2. Wicket door (in roll-up door assemblies).
 - 3. Slide-up doors.
 - 4. Swing-up doors.
 - 5. Fire-rated access doors-Engineer's key set.
 - 6. Doors from corridor to electromagnetic shielded room.
 - 7. Day gate on vault door.
- C. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.23 FINISHES

A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds,

- etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.
 - 2. Hinges --interior doors: 652 or 630.
 - 3. Pivots: Match door trim.
 - 4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 5. Thresholds: Mill finish aluminum.
 - 6. Cover plates for floor hinges and pivots: 630.
 - 7. Other primed steel hardware: 600.
- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces except where otherwise specified.
- E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.24 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
652	Steel
626	Brass or bronze
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval.
- B. Hardware Heights from Finished Floor:

- 1. Exit devices centerline of strike (where applicable) 1024 mm (40-5/16 inches).
- 2. Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
- 3. Deadlocks centerline of strike 1219 mm (48 inches).
- 4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.
- 5. Centerline of door pulls to be 1016 mm (40 inches).
- 6. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
- 7. Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike
- 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

- A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors except security bedroom, bathroom and anteroom doors which shall have closer installed parallel arm on exterior side of doors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on doors they shall be mounted with hex nuts and bolts; foot shall be fastened to frame with machine screws.
- B. Hinge Size Requirements:

Door Thickness	Door Width	Hinge Height	
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)	
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but not more than 1200 mm (4 feet)	125 mm (5 inches)	
35 mm (1-3/8 inch) (hollow core wood doors)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)	

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of

existing hinges; or contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by COR. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.

E. Hinges Required Per Door:

Door Description	Number butts
Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high	3 butts
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high or less	2 butts
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- G. After locks have been installed; show in presence of COR that keys operate their respective locks in accordance with keying requirements. (All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also a copy of the invoice shall be sent to the COR for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA Resident/Project Engineer that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

 ELECTRIC HARDWARE ABBREVIATIONS LEGEND:

ADO = Automatic Door Operator

EMCH = Electro-Mechanical Closer-Holder

MHO = Magnetic Hold-Open (wall- or floor-mounted)

C. INTERIOR SINGLE DOORS

HW-3B

OMIT VIEWER IF DOOR PROVIDED WITH VISION LITE.

Each Door to Have:	NON-RATED/RATED
Hinges	QUANTITY & TYPE AS REQUIRED
1 Office Lock	F04
1 Closer	C02011/C02021
1 Floor Stop	L02121 x 3 FASTENERS
1 Door Viewer	L03221 - 190° (VIEW INTO CORRIDOR)
1 Set Self-Adhesive Seals	R0Y154

HW-3G

Each Door to Have: NON-RATED

Hinges QUANTITY & TYPE AS REQUIRED

1 Office Lock F04

1 Floor Stop L02121 x 3 FASTENERS

1 Coat Hook L03121

1 Door Viewer (Mental Health Only) L03221 90 degree (VIEW INTO CORRIDOR)

1 Threshold J32300 x 57 MM WIDTH (2-1/4 INCHES)

1 Auto Door Bottom R0Y346 - HEAVY DUTY

2 Sets Self-Adhesive Seals R0Y154

OMIT VIEWER IF DOOR PROVIDED WITH VISION LITE.

OMIT COAT HOOK WHERE GLASS LITE PREVENTS INSTALLATION.

HW-4F

Each Door to Have: RATED

Hinges QUANTITY & TYPE AS REQUIRED

1 Utility Lock F09

1 Closer C02011/C02021

1 Armor Plate J101 x 1.275 MM (0.050 INCH) THICKNESS

1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY), CUT: HARDWARE

1 Floor Stop (@ Outswing Doors) L02121 x 3 FASTENERS

1 Wall Stop (@ Inswing Doors) L02101 CONVEX

1 Set Self-Adhesive Seals R0Y154

HW-4N

Each Door to Have: NON-RATED

1 Continuous Hinge x INTEGRAL HINGE GUARD CHANNEL

X ADJUSTA-SCREWS

1 Utility Lock F09

1 Closer (@ rated doors) C02011/C02021

1 Kick Plate J102

1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY), CUT: HARDWARE

1 Floor Stop L02121 x 3 FASTENERS

1 Threshold J32300 x 57 MM WIDTH (2-1/4 INCHES)

1 Auto Door Bottom R0Y346 - HEAVY DUTY

2 Sets Self-Adhesive Seals R0Y154

HW-5B

Each Door to Have: RATED

Hinges QUANTITY & TYPE AS REQUIRED

1 Storeroom Lock F07

1 Closer C02011/C02021

1 Armor Plate J101 x 1.275 MM (0.050 INCH) THICKNESS 1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY), CUT: HARDWARE

1 Floor Stop L02121 x 3 FASTENERS

1 Set Self-Adhesive Seals R0Y154

D. EXTERIOR SINGLE DOORS

HW-E1

Each Door to Have: NON-RATED

1 Continuous Hinge

1 Entry Lock F11

1 Latch Protector (outswing dr)

1 Closer C02011/C02021

1 Kick Plate J102

1 Floor Stop L02121 x 3 FASTNERS

1 Threshold (outswing door) J32120 x SILICONE GASKET

1 Door Sweep R0Y416
1 Set Frame Seals R0Y164
1 Drip R0Y976

E. INTERIOR SINGLE SECURITY DOORS

HW-SH-3C

Each [PB] Door to Have: RATED

Hinges QUANTITY & TYPE AS REQUIRED

1 Push-button Combination Lock N3 - A156.13 F07 G1 E06

1 Closer C02011/C02021

1 Armor Plate J101 x 1.275 MM (0.050 INCH)

THICKNESS

1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY), CUT:

HARDWARE

1 Floor Stop L02121 x 3 FASTENERS

1 Set Self-Adhesive Seals R0Y154

HW-SH-3D

Each [AC, EL, REX, DPS] Door to Have: RATED

1 Continuous Hinge x INTEGRAL HINGE GUARD CHANNEL

X ADJUSTA-SCREWS X 4-THRUWIRE

TRANSFER X IN-HINGE ACCESS PANEL

1 Electrified Lock F07 (E01-REX, E06) 24VDC

1 Power Supply REGULATED, FILTERED, 24VDC, AMPERAGE

AS REQUIRED

1 Closer C02011/C02021

1 Armor Plate J101 x 1.275 MM (0.050 INCH)

THICKNESS

1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY), CUT: HARDWARE

1 Threshold J32300 x 57 MM WIDTH (2-1/4 INCHES)

1 Auto Door Bottom R0Y346 - HEAVY DUTY

2 Sets Self-Adhesive Seals R0Y154

1 Alarm Contact

120VAC POWER, CONDUIT, AND WIRING BY DIVISION 26.

CARD READER BY DIVISION 28.

F. MENTAL HEALTH AREAS

HW-MH1

Each Door to Have:

1 Continuous Transfer Hinge

X INTEGRAL HINGE GUARD

CHANNEL X HOSPITAL TIP X

ADJUSTA-SCREWS

1 Passage Latch F01 x LESS TRIM

1 Set Anti-Ligature Trim

1 Ligature Resistant Door Alarm

1 Armor Plate J101 x 1.275 MM (0.050

INCH) THICKNESS

1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY),

CUT: HARDWARE

1 Floor Stop L02121 x 3 FASTENERS

1 Set Seals R0Y164

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

NO CLOSER REQUIRED DUE TO EXEMPTION FOR PATIENT ROOM DOORS.

120VAC POWER TO MFR. SUPPLIED TRANSFORMER FOR DOOR ALARM
PROVIDE WIRING AND CONDUIT FOR CONTROL PANEL, AUDIABLE ALARM, STROBES,
KEYPAD, HINGE TRANSFER AND KEY SWITCH AS PROVIDED FOR IN LIGATURE
RESISTANT DOOR ALARM DESIGN. (ADD LIGATURE RESISTANT DOOR ALARM AT
PATIENT BEDROOM DOORS)

HW-MH1B

Each Door to Have:

1 Continuous Hinge

1 Passage Latch

RATED/NON-RATED

x HOSPITAL TIP

1 Set Anti-Ligature Trim

1 Kick Plate J102

1 Closer (@ rated doors) C02011/C02021 1 Wall Stop L02101 CONVEX

1 Threshold J32300 \times 57 MM WIDTH (2-

1/4 INCHES)

1 Auto Door Bottom ROY346 - HEAVY DUTY

2 Sets Self-Adhesive Seals R0Y154

INSTALL CLOSER OUTSIDE ROOM.

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

HW-MH2

Each Door to Have: NON-RATED

Hinges QUANTITY & TYPE AS

REQUIRED x HOSPITAL TIP

1 Keyed Privacy Lock F12 x LESS TRIM

1 Set Anti-Ligature Trim Anti-Ligature Thumbturns

1 Kick Plate J102 1 Mop Plate (@ Inswing Doors) J103

1 Floor Stop L02121 x 3 FASTENERS
1 Auto Door Bottom R0Y346 - HEAVY DUTY

1 Set Seals R0Y164

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

STONE THRESHOLD BY OTHER TRADES.

HW-MH3

Each Door to Have: x INTEGRAL HINGE GUARD 1 Continuous Hinge CHANNEL X HOSPITAL TIP X ADJUSTA-SCREWS 1 Classroom Lock F05 x LESS TRIM CH (Accurate Lock), or 1 Set Anti-Ligature Trim equal $J101 \times 1.275 MM (0.050$ 1 Armor Plate INCH) THICKNESS

1 Mop Plate J103

1 Edge Guard (@ Wood Doors) J208M / J211 (VERIFY),

CUT: HARDWARE

NON-RATED

L02121 x 3 FASTENERS 1 Floor Stop

3 Silencers L03011

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

${\tt HW-MH4}$

1111 1	
Each [AC, RR, EL, REX, DPS] Door to Have:	RATED
1 Continuous Transfer Hinge	x INTEGRAL HINGE GUARD
	CHANNEL X ADJUSTA-SCREWS
	imes 4-THRUWIRE TRANSFER $ imes$
	IN-HINGE ACCESS PANEL
1 Electrified Lock	F07 (E01-REX, E06) 24VDC
	x LESS TRIM
1 Set Anti-Ligature Trim	
1 Power Supply	REGULATED, FILTERED,
	24VDC, AMPERAGE
	AS REQUIRED
1 Ligature Resistant Door Alarm	REUSE EXISTING
1 Closer	C02011/C02021
1 Kick Plate	J102
1 Stretcher Plate	J101
1 Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY),
	CUT: HARDWARE
1 Floor Stop	L02121 x 3 FASTENERS
1 Door Viewer	L03221 - 190° (VIEW INTO
	WAITING ROOM)
1 Door Viewer	L03221 - 190° (VIEW INTO
	TREATMENT AREA)
1 Set Self-Adhesive Seals	R0Y154
1 Alarm Contact	1078-G (G.E. SECURITY),
	OR EQUAL
ONTE DOOD HITCHDO DE DOODS HITHU HITCHON I THESS	

OMIT DOOR VIEWERS AT DOORS WITH VISION LITES.

INSTALL DOOR CLOSER ON WAITING ROOM SIDE.

120VAC POWER TO MFR. SUPPLIED TRANSFORMER FOR DOOR ALARM
PROVIDE WIRING AND CONDUIT FOR CONTROL PANEL, AUDIABLE ALARM, STROBES,
KEYPAD, HINGE TRANSFER AND KEY SWITCH AS PROVIDED FOR IN LIGATURE
RESISTANT DOOR ALARM DESIGN. (ADD LIGATURE RESISTANT DOOR ALARM AT
PATIENT ROOM ISOLATION)

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

120VAC POWER, CONDUIT, AND WIRING BY DIVISION 26.

CARD READER BY DIVISION 28.

HW-MH5

Each Door to Have:	RATED/NON-RATED
1 Continuous Transfer Hinge	x INTEGRAL HINGE GUARD
	CHANNEL X HOSPITAL TIP X
	ADJUSTA-SCREWS
2 Anti-Ligature Pulls	
1 Deadlatch	F30 LESS TRIM BOTH SIDES
1 Ligature Resistant Door Alarm	REUSE EXISTING
1 Armor Plate	$J101 \times 1.275 MM (0.050$
	INCH) THICKNESS
1 Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY),
	CUT: HARDWARE
1 Floor Stop	L02121 x 3 FASTENERS
1 Threshold	J32300 x 57 MM WIDTH (2-
	1/4 INCHES)
1 Auto Door Bottom	R0Y346 - HEAVY DUTY
1 Set Seals	R0Y164

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

NO CLOSER REQUIRED AT RATED DOORS DUE TO EXEMPTION FOR PATIENT ROOM DOORS.

120VAC POWER TO MFR. SUPPLIED TRANSFORMER FOR DOOR ALARM
PROVIDE WIRING AND CONDUIT FOR CONTROL PANEL, AUDIABLE ALARM, STROBES,
KEYPAD, HINGE TRANSFER AND KEY SWITCH AS PROVIDED FOR IN LIGATURE
RESISTANT DOOR ALARM DESIGN. (ADD LIGATURE RESISTANT DOOR ALARM AT
PATIENT ROOM SECLUSION)

HW-MH6A

Each Pair to Have:	NON-RATED/RATED
2 Continuous Hinge	x INTEGRAL HINGE GUARD
	CHANNEL X HOSPITAL TIP X
	ADJUSTA-SCREWS
2 Manual Flush Bolts	L04251/L04261 (VERIFY)
1 Dust Proof Strike	L04021
1 Passage Latch	F01 x LESS TRIM
1 Set Anti-Ligature Trim	
1 Overlapping Astragal	R0Y634 x R0Y154 x THRU-
	BOLTS
2 Armor Plate	J101 x 1.275 MM (0.050
	INCH) THICKNESS
2 Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY),
	CUT: HARDWARE
2 Floor Stop	CUT: HARDWARE L02121 x 3 FASTENERS
2 Floor Stop 1 Set Seals	

PROVIDE SECURITY FASTENERS FOR ALL HARDWARE ITEMS.

NO CLOSER REQUIRED DUE TO EXEMPTION FOR PATIENT ROOM DOORS.

- - - E N D - - -

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the following:
 - 1. Glass.
 - 2. Plastic glazing.
 - 3. Glazing materials and accessories for both factory and field glazed assemblies.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS: Sustainable Design Requirements.
- B. Section 08 11 13, HOLLOW METAL DOORS AND FRAMES, and Section 08 14 00, WOOD DOORS: Sound resistant doors.
- C. Section 08 51 13, ALUMINUM WINDOWS: Aluminum Windows.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass and plastic material identifying manufacturer or brand and glass type, quality and nominal thickness.
 - 2. Label in accordance with NFRC label requirements.
 - Temporary labels are to remain intact until glass and plastic material is approved by Contracting Officer Representative (COR).

B. Permanent labels:

- 1. Locate in corner for each pane.
- 2. Label in accordance with ANSI Z97.1 and SGCC label requirements.
 - a. Tempered glass.
 - b. Laminated glass or have certificate for panes without permanent label.
 - c. Organic coated glass.
- 3. Bullet resistance glass or plastic assemblies:

1.4 PERFORMANCE REQUIREMENTS

A. General: Design glazing system consistent with guidance and practices presented in the GANA Glazing Manual, GANA Laminated Glazing Manual, and GANA Sealant Manual, as applicable to project. Installed glazing is to withstand applied loads, thermal stresses, thermal movements, building movements, permitted tolerances, and combinations of these conditions without failure, including loss or glass breakage

attributable to defective manufacture, fabrication, or installation; failure of sealants or gaskets to remain watertight and airtight; deterioration of glazing materials; unsafe engagement of the framing system; deflections beyond specified limits; or other defects in construction.

- B. Glazing Unit Design: Design glass, including engineering analysis meeting requirements of authorities having jurisdiction. Thicknesses listed are minimum. Coordinate thicknesses with framing system manufacturers.
 - 1. Design glass in accordance with ASTM E1300, and for conditions beyond the scope of ASTM E1300, by a properly substantiated structural analysis.
 - 2. Design Wind Pressures: In accordance with ASCE 7.
 - 3. Wind Design Data: In accordance with ASCE 7 /.
 - 4. Maximum Lateral Deflection: For glass supported on all four edges, limit center-of-glass deflection at design wind pressure to not more than the structural capacity of the glazing unit, the threshold at which frame engagement is no longer safely assured, 1/100 times the short-side length, or 19 mm (0.75 inch), whichever is less.
- C. Ballistic- and Blast- resistant glass or plastic glazing assemblies:
 - 1. For blast-resistant and ballistic-resistant units comply with requirements in Physical Security Design Manual for VA Life Safety Protected Facilities, and project-specific criteria provided on the drawings and specifications.
 - 2. Spall Resistance: Laminated glazing is not permitted to produce spall to interior (protected side) when impacted with scheduled ballistics.

3. Tolerances:

- a. Outside dimensions: Overall outside dimensions (height and width) of laminated security glazing is to maintain tolerance of \pm 3 mm (\pm 0.12 inch).
- b. Warpage: Out-of-flat (warpage or bowing) condition of laminates is not to exceed 2.5 mm per lineal meter (0.10 inch per 3.3 lineal foot). The condition, if present, is to be localized to extent not greater than 0.75 mm (0.03 inch) for any 0.3-meter (0.98 feet) section.
- D. Building Enclosure Vapor Retarder and Air Barrier:

- 1. Utilize the inner pane of multiple pane sealed units for the continuity of the air barrier and vapor retarder seal.
- 2. Maintain a continuous air barrier and vapor retarder throughout the glazed assembly from glass pane to heel bead of glazing sealant.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Volatile organic compounds per volume as specified in PART 2 PRODUCTS.
- C. Manufacturer's Certificates:
 - 1. Certificate stating that fire-protection and fire-resistive glazing units meet code requirements for fire-resistance-rated assembly and applicable safety glazing requirements.
 - 2. Certificate on solar heat gain coefficient when value is specified.
 - 3. Certificate on "R" value when value is specified.
- D. Manufacturer Warranty.
- E. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Insulating glass units.
 - 3. Transparent (one-way vision glass) mirrors.
 - 4. Elastic compound for metal sash glazing.
 - 5. Putty, for wood sash glazing.
 - 6. Glazing cushion.
 - 7. Sealing compound.
 - 8. Plastic glazing material, each type required.

F. Samples:

- 1. Size: 305 mm by 305 mm (12 inches by 12 inches).
- 2. Tinted glass.
- 3. Reflective glass.
- 4. Transparent (one-way vision glass) mirrors.
- G. Preconstruction Adhesion and Compatibility Test Report: Submit glazing sealant manufacturer's test report indicating glazing sealants were tested for adhesion to glass and glazing channel substrates and for compatibility with glass and other glazing materials.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.
- D. Protect laminated security glazing units against face and edge damage during entire sequence of fabrication, handling, and delivery to installation location. Provide protective covering on exposed faces of glazing plastics, and mark inside as "INTERIOR FACE" or "PROTECTED FACE":
 - 1. Treat security glazing as fragile merchandise, and packaged and shipped in export wood cases with width end in upright position and blocked together in a mass. Storage and handling to comply with manufacturer's directions and as required to prevent edge damage or other damage to glazing resulting from effects of moisture, condensation, temperature changes, direct exposure to sun, other environmental conditions, and contact with chemical solvents.
 - 2. Protect sealed-air-space insulating glazing units from exposure to abnormal pressure changes, as could result from substantial changes in altitude during delivery by air freight. Provide temporary breather tubes which do not nullify applicable warranties on hermetic seals.
 - 3. Temporary protections: The glass front and polycarbonate back of glazing are to be temporarily protected with compatible, peelable, heat-resistant film which will be peeled for inspections and re-applied and finally removed after doors and windows are installed at destination. Since many adhesives will attack polycarbonate, the film used on exposed polycarbonate surfaces is to be approved and applied by manufacturer.
 - 4. Edge protection: To cushion and protect glass clad, and polycarbonate edges from contamination or foreign matter, the four (4) edges are to be sealed the depth of glazing with continuous standard-thickness thermoplastic rubber tape. Alternatively,

- continuous channel shaped extrusion of thermoplastic rubber are to be used, with flanges extending into face sides of glazing.
- 5. Protect "Constant Temperature" units including every unit where glass sheet is directly laminated to or directly sealed with metal-tube type spacer bar to polycarbonate sheet, from exposures to ambient temperatures outside the range of 16 to 24 degrees C (60 to 75 degrees F), during the fabricating, handling, shipping, storing, installation, and subsequent protection of glazing.

1.7 PROJECT CONDITIONS:

A. Field Measurements: Field measure openings before ordering tempered glass products to assure for proper fit of field measured products.

1.8 WARRANTY

- A. Construction Warranty: Comply with the FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their glazing from the date of installation and final acceptance by the Government as follows. Submit manufacturer warranty.
 - 1. Insulating glass units to remain sealed for ten (10) years.
 - 2. Laminated glass units to remain laminated for five (5) years.
 - 3. Polycarbonate to remain clear and ultraviolet light stabilized for five (5) years.
 - 4. Insulating plastic to not have more than 6 percent decrease in light transmission and be ultraviolet light stabilized for ten (10) years.

1.9 APPLICABLE PUBLICATIONS:

Α.	Publications	s listed	below fo	orm a	part	of	this	speci	ficati	on t	0	extent
	referenced.	Publicat	cions are	ref	erence	ed i	n tex	t by	basic	desi	ign	ation
	only.											

	only.
В.	American Architectural Manufacturers Association (AAMA):
	800 Test Methods for Sealants
	810.1-77Expanded Cellular Glazing Tape
C.	American National Standards Institute (ANSI):
	Z97.1-14Safety Glazing Material Used in Building -
	Safety Performance Specifications and Methods
	of Test
D.	American Society of Civil Engineers (ASCE):
	7-10Wind Load Provisions
Ε.	ASTM International (ASTM):

C542-05(2017)Lock-Strip Gaskets

C716-06(2020)Installing Lock-Strip Gaskets and Infill
Glazing Materials
C794-18Adhesion-in-Peel of Elastomeric Joint Sealants
C864-05(2019)Dense Elastomeric Compression Seal Gaskets,
Setting Blocks, and Spacers
C920-18Elastomeric Joint Sealants
C964-20Standard Guide for Lock-Strip Gasket Glazing
C1036-16Flat Glass
C1048-18
and Uncoated Glass.
C1172-19Laminated Architectural Flat Glass
C1349-17Standard Specification for Architectural Flat
Glass Clad Polycarbonate
C1376-15Pyrolytic and Vacuum Deposition Coatings on
Flat Glass
D635-18Rate of Burning and/or Extent and Time of
Burning of Self-Supporting Plastic in a
Horizontal Position
D4802-16Poly (Methyl Methacrylate) Acrylic Plastic
Sheet
Silect
E84-20Surface Burning Characteristics of Building
E84-20Surface Burning Characteristics of Building
E84-20Surface Burning Characteristics of Building Materials
E84-20Surface Burning Characteristics of Building Materials E119-20Standard Test Methods for Fire Test of Building
E84-20Surface Burning Characteristics of Building Materials E119-20Standard Test Methods for Fire Test of Building Construction and Material
E84-20
E84-20 Surface Burning Characteristics of Building Materials E119-20 Standard Test Methods for Fire Test of Building Construction and Material E1300-16 Load Resistance of Glass in Buildings E1886-19 Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials E1996-17 Standard Specification for Performance of
E84-20 Surface Burning Characteristics of Building Materials E119-20 Standard Test Methods for Fire Test of Building Construction and Material E1300-16 Load Resistance of Glass in Buildings E1886-19 Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials E1996-17 Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and
E84-20 Surface Burning Characteristics of Building Materials E119-20 Standard Test Methods for Fire Test of Building Construction and Material E1300-16 Load Resistance of Glass in Buildings E1886-19 Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials E1996-17 Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborn
E84-20 Surface Burning Characteristics of Building Materials E119-20 Standard Test Methods for Fire Test of Building Construction and Material E1300-16 Load Resistance of Glass in Buildings E1886-19 Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials E1996-17 Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborn Debris in Hurricanes
E84-20 Surface Burning Characteristics of Building Materials E119-20 Standard Test Methods for Fire Test of Building Construction and Material E1300-16 Load Resistance of Glass in Buildings E1886-19 Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials E1996-17 Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborn Debris in Hurricanes E2141-14 Test Methods for Assessing the Durability of

	E2240-06Test Method for Assessing the Current-Voltage
	Cycling Stability at 90 Degree C (194 Degree F)
	of Absorptive Electrochromic Coatings on Sealed
	Insulating Glass Units
	E2241-06Test Method for Assessing the Current-Voltage
	Cycling Stability at Room Temperature of
	Absorptive Electrochromic Coatings on Sealed
	Insulating Glass Units
	E2354-10Assessing the Durability of Absorptive
	Electrochromic Coatings within Sealed
	Insulating Glass Units
	E2355-10Test Method for Measuring the Visible Light
	Transmission Uniformity of an Absorptive
	Electrochromic Coating on a Glazing Surface
	F1233-08(2019)Standard Test Method for Security Glazing
	Materials and Systems
	F1642/F1642M-17Test Method for Glazing and Glazing Systems
	Subject to Airblast Loadings
F.	Code of Federal Regulations (CFR):
	16 CFR 1201-10Safety Standard for Architectural Glazing
	Materials
G.	Glass Association of North America (GANA):
	2010 EditionGANA Glazing Manual
	2008 EditionGANA Sealant Manual
	2009 EditionGANA Laminated Glazing Reference Manual
	2010 EditionGANA Protective Glazing Reference Manual
Н.	International Code Council (ICC):
	IBCInternational Building Code
I.	Insulating Glass Certification Council (IGCC)
J.	Insulating Glass Manufacturer Alliance (IGMA):
	TB-3001-13Guidelines for Sloped Glazing
	TM-3000North American Glazing Guidelines for Sealed
	Insulating Glass Units for Commercial and
	Residential Use
К.	Intertek Testing Services - Warnock Hersey (ITS-WHI)
L.	National Fire Protection Association (NFPA):
	80-16Fire Doors and Windows
	252-12Fire Tests of Door Assemblies

257-12Standard on Fire Test for Window and Glass
Block Assemblies

- M. National Fenestration Rating Council (NFRC)
- N. Safety Glazing Certification Council (SGCC) 2012:

 Certified Products Directory (Issued Semi-Annually).
- O. Underwriters Laboratories, Inc. (UL):

9-08 (R2009)Fire Tests of Window Assemblies
263-14Fire Tests of Building Construction and
Materials

752-11Bullet-Resisting Equipment.

- P. Department of Veterans Affairs:
- Q. Physical Security Design Manual for VA Mission Critical Protected Facilities January 2015
- R. Architectural Design Manual for VA Facilities (VASDM)
- S. Environmental Protection Agency (EPA):

40 CFR 59(2014)National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCT

2.1 GLASS

- A. Provide minimum thickness stated and as additionally required to meet performance requirements.
 - 1. Provide minimum 6 mm (1/4 inch) thick glass units unless otherwise indicated.
- B. Obtain glass units from single source from single manufacturer for each glass type.
- C. Clear Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3.
- D. Ultra-clear-Low-Iron Float Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3 and with visible light transmission of not less than 90 percent.

2.2 HEAT-TREATED GLASS

- A. Roller Wave Limits for Heat-Treated Glass: Orient all roller wave distortion parallel to bottom surface of glazing, and provide units complying with the following limitations:
 - 1. Measurement Parallel to Line: Maximum peak to valley 0.203 mm (0.008 inch).
 - 2. Measurement Perpendicular to Line: Maximum 0.0254 mm (0.001 inch).
 - 3. Bow/Warp: Maximum 50 percent of bow and warp allowed by ASTM C1048.

- B. Clear Heat Strengthened Glass:
 - 1. ASTM C1048, Kind HS, Condition A, Type I, Class 1, Quality q3.
- C. Clear Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.

2.3 LAMINATED GLASS

- A. Laminated Glass: ASTM C1172. Two or more lites of heat-treated glass bonded with polyvinyl butyral, ionomeric polymer, or cast-in-place and cured-transparent-resin interlayer complying with interlayer manufacturer's written instructions. Minimum total laminated thickness of 1/4" for blast resistant glazing.
- B. Interlayer: Use min. 0.75 mm (0.030 inch) thick interlayer for vertical glazing.
- C. Interlayer: Use 1.5 mm (0.060 inch) thick interlayer for:
 - 1. Horizontal or sloped glazing.
 - 2. Acoustical glazing.
 - 3. Assemblies requiring heat strengthened or fully tempered glass.
- D. Interlayer: Use 2.28 mm (0.090 inch) thick interlayer where required to meet performance requirements.
- E. Interlayer Color: Clear.

2.4 INSULATING GLASS UNITS

- A. Provide factory fabricated, hermetically sealed glass unit consisting of two panes of glass separated by a dehydrated air space and comply with ASTM E2190. The exterior glass unit shall be fully tempered, and the inner glass unit shall be laminated annealed at a minimum for all blast resistant glazing.
- B. Assemble units using glass types specified in Insulating Glass Schedule and Blast Glazing assembly requirements

2.5 FIRE PROTECTION AND FIRE RESISTANCE GLAZING

- A. Fire-Resistance-Rated Glazing: Glazing units tested for use in fire wall assemblies, UL, ITS-WHI or equivalent listed and labeled by testing agency in accordance with IBC for fire-resistance ratings of wall assemblies as indicated on construction documents, based upon testing according to NFPA 252 and ASTM E119 or UL 263.
 - 1. Labeling: Permanently label fire-resistance-rated glazing units in accordance with IBC.
 - 2. Safety Glazing: Comply with 16 CFR 1201, Category II.
 - 3. Fire-Resistance-Rated Laminated Glass with Intumescent Interlayers:
 Units made from multiple lites of uncoated, ultra-clear low-iron

float glass, in intumescent interlayers, of thickness and rating scheduled.

2.6 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work are to have a finish that will not corrode or stain while in service. Fire rated glazing to be installed with glazing accessories in accordance with the manufacturer's installation instructions.
- B. Setting Blocks: ASTM C864:
 - 1. Silicone type.
 - 2. Channel shape; having 6 mm (1/4 inch) internal depth.
 - 3. Shore A hardness of 80 to 90 Durometer.
 - 4. Block lengths: 50 mm (2 inches) except 100 to 150 mm (4 to 6 inches) for insulating glass.
 - 5. Block width: Approximately 1.6 mm (1/16 inch) less than the full width of the rabbet.
 - 6. Block thickness: Minimum 4.8 mm (3/16 inch). Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 6 mm (1/4 inch) internal depth.
 - 2. Flanges not less 2.4 mm (3/32 inch) thick and web 3 mm (1/8 inch) thick.
 - 3. Lengths: 25 to 76 mm (1 to 3 inches).
 - 4. Shore A hardness of 40 to 50 Durometer.
- D. Glazing Tapes:
 - Semi-solid polymeric based closed cell material exhibiting pressure-sensitive adhesion and withstanding exposure to sunlight, moisture, heat, cold, and aging.
 - 2. Shape, size and degree of softness and strength suitable for use in glazing application to prevent water infiltration.
 - 3. Complying with AAMA 800 for the following types:
 - a. AAMA 810.1, Type 1, for glazing applications in which tape acts as the primary sealant.
 - b. AAMA 810.1, Type 2, for glazing applications in which tape is used in combination with a full bead of liquid sealant.
- E. Spring Steel Spacer: Galvanized steel wire or strip designed to position glazing in channel or rabbeted sash with stops.

- F. Glazing Gaskets: ASTM C864:
 - 1. Firm dense wedge shape for locking in sash.
 - 2. Soft, closed cell with locking key for sash key.
 - 3. Flanges may terminate above the glazing-beads or terminate flush with top of beads.
- G. Lock-Strip Glazing Gaskets: ASTM C542, shape, size, and mounting as indicated.
- H. Glazing Sealants: ASTM C920, silicone neutral cure:
 - 1. Type S.
 - 2. Class 25 or 50 as recommended by manufacturer for application.
 - 3. Grade NS.
 - 4. Shore A hardness of 25 to 30 Durometer.
 - 5. VOC Content: For sealants used inside the weatherproofing system, not more than 250 g/L or less when calculating according to 40 CFR 59, (EPA Method 24).

I. Color:

- Color of glazing compounds, gaskets, and sealants used for aluminum color frames to match color of the finished aluminum and be nonstaining.
- Color of other glazing compounds, gaskets, and sealants which will be exposed in the finished work and unpainted are to be black, gray, or neutral color.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer is approved shop drawings.
- B. Review for conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation. Do not proceed with installation until unsatisfactory conditions have been corrected.
- C. Verify that wash down of adjacent masonry is completed prior to erection of glass and glazing units.

3.2 PREPARATION

A. For sealant glazing, prepare glazing surfaces in accordance with GANA Sealant Manual.

- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA Glazing Manual, GANA Sealant Manual, IGMA TB-3001, and IGMA TM-3000 unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.
- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze doors and operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.
- G. Laminated Glass:
 - 1. Tape edges to seal interlayer and protect from glazing sealants.
 - 2. Do not use putty or glazing compounds.
- H. Insulating Glass Units:
 - 1. Glaze in compliance with glass manufacturer's written instructions.
 - 2. When glazing gaskets are used, they are to be of sufficient size and depth to cover glass seal or metal channel frame completely.
 - 3. Do not use putty or glazing compounds.
 - 4. Do not grind, nip, cut, or otherwise alter edges and corners of fused glass units after shipping from factory.
 - 5. Install with tape or gunnable sealant in wood sash.
- I. Fire Protective and Fire Resistance Glass:
 - 1. Wire Glass: Glaze in accordance with NFPA 80.
 - 2. Other fire protective and fire-resistant glass: Glaze in accordance with manufacturer's installation instructions and NFPA 80.

3.4 INSTALLATION - DRY METHOD (TAPE AND GASKET SPLINE GLAZING)

A. Cut glazing tape to length; install on glazing pane. Seal corners by butting and sealing junctions with butyl sealant.

- B. Place setting blocks at 1/4 points with edge block no more than 150 mm (6 inches) from corners.
- C. Rest glazing on setting blocks and push against fixed stop with sufficient pressure to attain full contact.
- D. Install removable stops without displacing glazing spline. Exert pressure for full continuous contact.
- E. Do not exceed edge pressures stipulated by glass manufacturers for installing glass lites.
- F. Trim protruding tape edge.

3.5 INSTALLATION - WET METHOD (SEALANT AND SEALANT)

- A. Place setting blocks at 1/4 points and install glazing pane or unit.
- B. Install removable stops with glazing centered in space by inserting spacer shims both sides at 600 mm (24 inch) intervals, 6 mm (1/4 inch) below sight line.
- C. Fill gaps between glazing and stops with sealant to depth of bite on glazing, but not more than 9 mm (3/8 inch) below sight line to ensure full contact with glazing and continue the air and vapor seal.
- D. Apply sealant to uniform line, flush with sight line. Tool or wipe sealant surface smooth.

3.6 INSTALLATION - INTERIOR WET/DRY METHOD (TAPE AND SEALANT)

- A. Cut glazing tape to length and install against permanent stops, projecting 1.6 mm (1/16 inch) above sight line.
- B. Place setting blocks at 1/4 points with edge block no more than 150 mm (6 inches) from corners.
- C. Rest glazing on setting blocks and push against tape to ensure full contact at perimeter of pane or unit.
- D. Install removable stops, spacer shims inserted between glazing and applied stops at 600 mm (24 inch) intervals, 6 mm (1/4 inch) below sight line.
- E. Fill gaps between pane and applied stop with sealant to depth equal to bite on glazing, to uniform and level line. Sealant type is to be compatible with glazing tape.
- F. Trim protruding tape edge.

3.7 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by COR.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.

C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.8 PROTECTION

A. Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

3.9 LAMINATED GLASS SCHEDULE (PHYSICAL SAFETY)

- A. Glass Type LG#1: 5/16" Clear laminated glass with two (2) lites of fully tempered float glass.
 - 1. Minimum Thickness of Each Glass Lite: 2.8 mm (0.12 inch).
 - 2. Interlayer Thickness: 2.29 mm (0.090 inch).
 - 3. Safety glazing label required.
 - 4. Application: Interior glazing units in locked patient units and security rooms per VAADM.
- B. Glass Type LG#2: 7/16'' Clear laminated glass with two (2) lites of fully tempered float glass.
 - 1. Minimum Thickness of Each Glass Lite: 4.3 mm (0.17 inch).
 - 2. Interlayer Thickness: 2.29 mm (0.090 inch).
 - 3. Safety glazing label required.
 - 4. Application: Interior glazing units in locked patient units and security rooms per VAADM.

3.10 INSULATING LAMINATED GLASS SCHEDULE (PHYSICAL SAFETY)

A. Glass Type IL#1: Clear insulating laminated glass.

- 1. Overall Unit Thickness: 38.1 mm (1.5 inch).
- Outdoor Lite: Clear annealed float glass, except heat-strengthened float glass where required, and fully tempered float glass where indicated.
 - a. Minimum Thickness of Outdoor Lite: 6 mm (0.23 inch).
- 3. Interspace Content: Argon filled.
- 4. Indoor Lite: Clear laminated glass with two lites of annealed float glass, except heat-strengthened float glass where required, and fully tempered float glass where indicated.
 - a. Minimum Thickness of Each Glass Lite: 4.3 mm (0.17 inch).
 - b. Interlayer Thickness: 2.29 mm (0.090 inch).
- 5. Visible Light Transmittance: 85 percent minimum.
- 6. Solar Heat Gain Coefficient: 0.30 maximum.
- 7. Safety glazing label required.
- B. Glass Type IL#2: Clear insulating laminated glass.

- 1. Overall Unit Thickness: 53.3 mm (2.1 inch).
- Outdoor Lite: Clear annealed float glass, except heat-strengthened float glass where required, and fully tempered float glass where indicated.
 - a. Minimum Thickness of Outdoor Lite: 6 mm (0.23 inch).
- 3. Interspace Content: Argon filled, 5/8" integral blind.
- 4. Indoor Lite: Clear laminated glass with two lites of annealed float glass, except heat-strengthened float glass where required, and fully tempered float glass where indicated.
 - a. Minimum Thickness of Each Glass Lite: 4.3 mm (0.17 inch).
 - b. Interlayer Thickness: 2.29 mm (0.090 inch).
- 5. Visible Light Transmittance: 85 percent minimum.
- 6. Solar Heat Gain Coefficient: 0.30 maximum.
- 7. Safety glazing label required.
- C. Glass Type IL#3: Clear insulating laminated glass.
 - 1. Overall Unit Thickness: 19.1 mm (.75 inch).
 - 2. Outdoor Lite: Clear annealed float glass, except heat-strengthened float glass where required, and fully tempered float glass where indicated.
 - a. Minimum Thickness of Outdoor Lite: 6 mm (0.23 inch).
 - 3. Interspace Content: Argon filled.
 - 4. Indoor Lite: Clear laminated glass with two lites of annealed float glass, except heat-strengthened float glass where required, and fully tempered float glass where indicated.
 - a. Minimum Thickness of Each Glass Lite: 4.3 mm (0.17 inch).
 - b. Interlayer Thickness: 2.29 mm (0.090 inch).
- 5. Visible Light Transmittance: 85 percent minimum.
- 6. Solar Heat Gain Coefficient: 0.30 maximum.
- 7. Safety glazing label required.

3.11 FIRE-PROTECTIVE AND FIRE-RESISTANCE GLAZING SCHEDULE

- A. Glass Type FR#1: Fire-resistance-rated, laminated glass with intumescent interlayers.
- 1. Thickness: 7/16 inch.
- 2. Rating: 45- minute.
 - 3. Application: Fire-protection-rated door and window assemblies.

a.

- - - E N D - - -

SECTION 09 05 16 SUBSURFACE PREPARATION FOR FLOOR FINISHES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies subsurface preparation requirements for areas to
- B. receive the installation of applied and resinous flooring. This section includes removal of existing floor coverings, testing concrete for moisture and pH, remedial floor coating for concrete floor slabs having unsatisfactory moisture or pH conditions, floor leveling and repair as required.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS.
- B. Section 09 65 16, RESILIENT SHEET FLOORING
- C. Section 09 65 19, RESILIENT TILE FLOORING
- D. Section 09 67 23.20, RESINOUS EPOXY BASE WITH VINYL CHIP BROADCAST (RES-2

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and TEST DATA.
- B. Written approval confirming product compatibility with subfloor material manufacturer and the flooring manufacturer
- C. Product Data:
 - 1. Moisture remediation system
 - 2. Underlayment Primer
 - 3. Cementitious Self-Leveling Underlayment
 - 4. Cementitious Trowel-Applied Underlayment (Not suitable for resinous floor finishes)

D. Test Data:

 Moisture test and pH results performed by a qualified independent testing agency or warranty holding manufacturer's technical representative.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.

B. ASTM International (ASTM):

•	ASIM International (ASIM):				
	D638-14(2014)Standard Test Method for Tensile Properties of				
	Plastics				
	D4259-18(2019)Standard Practice for Preparation of Concrete				
	by Abrasion Prior to Coating Application.				
	C109/C109M-20b(2020)Standard Test Method for Compressive Strength				
	of Hydraulic Cement Mortars (Using 2-in. or				
	[50-mm] Cube Specimens				
	7234-19(2020)Standard Test Method for Pull-Off Adhesion				
	Strength of Coatings on Concrete Using Portable				
	Pull-Off Adhesion Testers				
	E96/E96M-16(2016)Standard Test Methods for Water Vapor				
	Transmission of Materials				
	F710-1e1(2020)Standard Practice for Preparing Concrete Floors				
	to Receive Resilient Flooring				
	F1869-16aStandard Test Method for Measuring Moisture				
	Vapor Emission Rate of Concrete Subfloor Using				
	Anhydrous Calcium Chloride				
	F2170-19a(2020)Standard Test Method for Determining Relative				
	Humidity in Concrete Floor Slabs Using in situ				
	Probes				
	C348-20(2020)Standard Test Method for Flexural Strength of				
	Hydraulic-Cement Mortars				
	C191-19(2020)Standard Test Method for Time of Setting of				

PART 2 - PRODUCTS

2.1 MOISTURE REMEDIATION COATING

- A. System Descriptions:
 - High-solids, epoxy system designed to suppress excess moisture in concrete prior to an overlayment. For use under resinous products, VCT, tile and carpet where issues caused by moisture vapor are a concern.

Hydraulic Cement by Vicat Needle

- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify build up layers and installation method. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows:
 - 1. Liquid applied coating:
 - a. Resin: epoxy.
 - b. Formulation Description: Multiple component high solids.
 - c. Application: Per manufacturer's written installation requirements.
 - d. Thickness: minimum 10 mils
- D. Material Vapor Permeance: Application shall achieve a permeance rating of less than 0.1 perm in accordance with ASTM E96/E96M.
- E. Maximum RH requirement: 100% testing in accordance with ASTM F2170.

Property	Test	Value
Tensile Strength	ASTM D638	4,400 psi
Volatile Organic Compound Limits (V.O.C.)	SCAMD Rule 1113 (Ammended 02/05/2016)	25 grams per liter
Permeance	ASTM E96	0.1 perms
Tensile Modulus	ASTM D638	1.9X10 ⁵ psi
Percent Elongation	ASTM D638	12%
Cure Rate	Per manufacture's Data	4 hours Tack free with 24hr recoat window
Bond Strength	ASTM D7234	100% bond to concrete failure

2.2 CEMENTITIOUS SELF-LEVELING UNDERLAYMENT

- A. System Descriptions:
 - High performance self-leveling underlayment resurfacer. Single component, self-leveling, cementitious material designed for easy application as an underlayment for all types of flooring materials. It is used for substrate repair and leveling.
- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up. Gypsum-based products are unacceptable.
- C. System Characteristics:
 - 1. Wearing Surface: smooth
 - 2. Thickness: Per architectural drawings, ranging from feathered edge to 1", per application. Applications greater than 1" require additional 3/8" aggregate to mix or as recommended by manufacturer.
- D. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- E. Compressive Strength: Minimum 4100 psi in 28 days in accordance with ASTM C109/C109M.
- F. Flexural Strength: Minimum 1000 psi in 28 days in accordance with ASTM C348
- G. Dry Time: Underlayment shall receive the application of moisture insensitive tile in 6 hours, floor coverings in 16 hours, and resinous flooring in 3-7 days.
- H. Primer: compatible and as recommended by manufacturer for use over intended substrate
- I. System Components: Manufacturer's standard components that are compatible with each other and as follows:
 - 1. Primer:
 - a. Resin: copolymer
 - b. Formulation Description: single component ready to use.
 - c. Application Method: Squeegee and medium nap roller.
 - d. All puddles shall be removed, and material shall be allowed to dry, 1-2 hours at 70F/21C.
 - e. Number of Coats: (1) one.
 - 2. Grout Resurfacing Base:

- a. Formulation Description: Single component, cementitious selfleveling high-early and high-ultimate strength grout.
- b. Application Method: colloidal mix pump, cam rake, spike roll.
 - 1) Thickness of Coats: Per architectural scope, 1" lifts.
 - 2) Number of Coats: More than one if needed.
- c. Aggregates: for applications greater than linch, require additional 3/8" aggregate to mix.

	Property	Test	Value				
2.3	Compressive Strength	ASTM C109/C109M	2,200 psi @ 24 hrs 3,000 psi @ 7 days				
	Initial set time Final Set time	ASTM C191	30-45 min. 1 to 1.5 hours				
	Bond Strength	ASTM D7234	100% bond to concrete failure				

CEMENTITIOUS TROWEL-APPLIED UNDERLAYMENT (NOT SUITABLE FOR RESINOUS FLOOR FINISHES)

- A. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- B. Compressive Strength: Minimum 4000 psi in 28 days
- C. Trowel-applied underlayment shall not contain silica quartz (sand).
- D. Dry Time: Underlayment shall receive the application of floor covering in 15-20 minutes.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before testing and not less than three days after testing.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation.
- C. Do not install materials when the temperatures of the substrate or materials are not within 60-85 degrees F/ 16-30 degrees C.

3.2 SURFACE PREPARATION

- A. Existing concrete slabs with existing floor coverings:
 - 1. Conduct visual observation of existing floor covering for adhesion, water damage, alkaline deposits, and other defects.

- 2. Remove existing floor covering and adhesives. Comply with local, state and federal regulations and the RFCI Recommended Work Practices for Removal of Resilient Floor Coverings, as applicable to the floor covering being removed.
- B. Concrete shall meet the requirements of ASTM F710 and be sound, solid, clean, and free of all oil, grease, dirt, curing compounds, and any substance that might act as a bond-breaker before application. As required prepare slab by mechanical methods. No chemicals or solvents shall be used.
- C. General: Prepare and clean substrates according to flooring manufacturer's written instructions for substrate indicated.
- D. Prepare concrete substrates per ASTM D4259 as follows:
 - 1. Dry abrasive blasting.
 - 2. Wet abrasive blasting.
 - 3. Vacuum-assisted abrasive blasting.
 - 4. Centrifugal-shot abrasive blasting.
 - 5. Comply with manufacturer's written instructions.
- E. Repair damaged and deteriorated concrete according to flooring manufacturer's written recommendations.
- F. Verify that concrete substrates are dry.
- G. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisture-vapor-emission rate of per flooring manufactures formal and project specific written recommendation.
- H. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity per flooring manufacture's formal and project specific written recommendation.
- I. Provide a written report showing test placement and results.
- J. Alkalinity: Measure surface pH in accordance with procedures provided in ASTM F710 or as outlined by qualified testing agency or flooring manufacturer's technical representative.
- K. Tolerances: Subsurface shall meet the flatness and levelness tolerance specified on drawings or recommended by the floor finish manufacturer. Tolerance shall also not to exceed 1/4" deviation in 10'. As required, install underlayment to achieve required tolerance.

L. Other Subsurface: For all other subsurface conditions, such as wood or metal, contact the floor finish or underlayment manufacturer, as appropriate, for proper preparation practices.

3.3 MOISTURE REMEDIATION COATING

- A. Where results of relative humidity testing (ASTM F2170) exceed the requirements of the specified flooring manufacturer, apply remedial coating as specified to correct excessive moisture condition.
- B. Prior to remedial floor coating installation mechanically prepare the concrete surface to provide a concrete surface profile in accordance with ASTM D4259.
- C. Mix and apply moisture remediation coating in accordance with manufacturer's instructions.

3.4 CEMENTITOUS UNDERLAYMENT

- A. Install cementitious self-leveling underlayment as required to correct surface defects, address non-moving cracks or joints, provide a smooth surface for the installation of floor covering.
- B. Mix and apply in accordance with manufacturer's instructions.

3.5 PROTECTION

A. Prior to the installation of the finish flooring, the surface of the underlayment should be protected from abuse by other trades by the use of plywood, tempered hardwood, or other suitable protection course

3.6 FIELD QUALITY CONTROL

A. Where specified, field sampling of products shall be conducted by a qualified, independent testing facility.

- - - E N D - - -

SECTION 09 22 16 NON-STRUCTURAL METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, plaster bases or other building boards.

1.2 RELATED WORK

- A. Load bearing framing: Section 05 40 00, COLD-FORMED METAL FRAMING.
- B. Support for wall mounted items: Section 05 50 00, METAL FABRICATIONS.
- C. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 29 00, GYPSUM BOARD.

1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Studs, runners and accessories.
 - 2. Hanger inserts.
 - 3. Channels (Rolled steel).
 - 4. Furring channels.
 - 5. Screws, clips and other fasteners.

C. Shop Drawings:

- 1. Typical ceiling suspension system.
- 2. Typical metal stud and furring construction system including details around openings and corner details.
- 3. Typical shaft wall assembly

- 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.
- D. Test Results: Fire rating test designation, each fire rating required for each assembly.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM) A641-09Zinc-Coated (Galvanized) Carbon Steel Wire A653/653M-11Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by Hot-Dip Process. C11-10Terminology Relating to Gypsum and Related Building Materials and Systems C635-07Manufacture, Performance, and Testing of Metal Suspension System for Acoustical Tile and Lay-in Panel Ceilings C636-08Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels C645-09Non-Structural Steel Framing Members C754-11Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products C841-03(R2008)Installation of Interior Lathing and Furring C954-10Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness E580-11Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint.

PART 2 - PRODUCTS

2.1 PROTECTIVE COATING

A. Galvanize steel studs, runners (track), rigid (hat section) furring channels, "Z" shaped furring channels, and resilient furring channels, with coating designation of G40 or equivalent.

2.2 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
 - 1. Use C 645 steel, 0.75 mm (0.0296-inch) minimum base-metal (30 mil).
 - 2. Runners same thickness as studs.
 - 3. Exception: Members that can show certified third-party testing with gypsum board in accordance with ICC ES AC86 (Approved May 2012) need not meet the minimum thickness limitation or minimum section properties set forth in ASTM C 645. The submission of an evaluation report is acceptable to show conformance to this requirement. Use C 645 steel, 0.48mm (0.019 inch) minimum base-metal (19 mil).
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
 - 1. Conform to rated wall construction.
 - 2. C-H Studs or C-T Studs.
 - 3. E Studs.
 - 4. J Runners.
 - 5. Steel Jamb-Strut.

2.3 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
 - 1. Not less than 0.45 mm (0.0179-inch) thick bare metal.
 - 2. Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. "Z" Furring Channels:
 - 1. Not less than 0.45 mm (0.0179-inch)-thick base metal, with 32 mm (1-1/4 inch) and 19 mm (3/4-inch) flanges.
 - 2. Web furring depth to suit thickness of insulation.
- D. Rolled Steel Channels: ASTM C754, cold rolled; or ASTM C841, cold rolled.

2.4 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

A. ASTM C754, except as otherwise specified.

- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items. Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
 - 1. ASTM A641, soft temper, Class 1 coating.
 - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
- 1. Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
- 2. For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
- H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

2.5 SUSPENDED CEILING SYSTEM FOR GYPSUM BOARD (OPTION)

- A. Conform to ASTM C635, heavy duty, with not less than 35 mm (1-3/8 inch) wide knurled capped flange face designed for screw attachment of gypsum board.
- B. Wall track channel with 35 mm (1-3/8 inch) wide flange.

PART 3 - EXECUTION

3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

3.2 INSTALLING STUDS

- A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.
- B. Space studs not more than 610 mm (24 inches) on center.
- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for fire, rated partitions, smoke partitions, shafts, and sound rated partitions and insulated exterior wall furring.
- F. At existing plaster ceilings and where shown, studs may terminate at ceiling as shown.

G. Openings:

- 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
- 2. Fasten back to back studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
- 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.

H. Fastening Studs:

- 1. Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
- 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.

I. Chase Wall Partitions:

- Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
- 2. Use studs or runners as cross bracing not less than 63 mm (2-1/2 inches wide).
- J. Form building seismic or expansion joints with double studs back to back spaced 75 mm (three inches) apart plus the width of the seismic or expansion joint.
- K. Form control joint, with double studs spaced 13 mm (1/2-inch) apart.

3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:
 - 1. Framed with 63 mm (2-1/2 inch) or narrower studs, 600 mm (24 inches) on center.
 - 2. Brace as specified in ASTM C754 for Wall Furring-Stud System or brace with sections or runners or studs placed horizontally at not less than three foot vertical intervals on side without finish.
 - 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
 - 1. Install rigid (hat section) furring channels at 600 mm (24 inches) on center, horizontally or vertically.
 - Install "Z" furring channels vertically spaced not more than 600 mm (24 inches) on center.
 - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
 - 4. Ends of spliced furring channels shall be nested not less than 200 mm (8 inches).
 - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
 - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400 mm (16 inches) on center.

3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

A. Provide for attachment and support of electrical outlets, plumbing, laboratory or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, wood seats, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.

B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

3.5 INSTALLING SHAFT WALL SYSTEM

- A. Conform to UL Design No. U438 for two-hour fire rating.
- B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 600 mm (24 inches) on center.
- C. After liner panels have been erected, cut C-H studs and E studs, from 9 mm (3/8-inch) to not more than 13 mm (1/2-inch) less than floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.
- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:
 - 1. Provide necessary liner fillers and shims to conform to label frame requirements.
 - 2. Frame openings cut within a liner panel with E studs around perimeter.
 - 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.

3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings and for plaster ceilings or soffits.
 - 1. Space framing at 400 mm (16-inch) centers for metal lath anchorage.
 - 2. Space framing at 600 mm (24-inch) centers for gypsum board anchorage.
- B. New exposed concrete slabs:
 - 1. Use metal inserts required for attachment and support of hangers or hanger wires with tied wire loops for embedding in concrete.
 - 2. Furnish for installation under Division 3, CONCRETE.
 - 3. Suspended ceilings under concrete rib construction shall have runner channels at right angles to ribs and be supported from ribs with hangers at ends and at 1200 mm (48-inch) maximum intervals along channels. Stagger hangers at alternate channels.
- C. Concrete slabs on steel decking composite construction:

- 1. Use pull down tabs when available.
- 2. Use power activated fasteners when direct attachment to structural framing cannot be accomplished.
- D. Where bar joists or beams are more than 1200 mm (48 inches) apart, provide intermediate hangers so that spacing between supports does not exceed 1200 mm (48 inches). Use clips, bolts, or wire ties for direct attachment to steel framing.
- E. Existing concrete construction exposed or concrete on steel decking:
 - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
 - 2. Install fasteners at approximate mid height of concrete beams or joists. Do not install in bottom of beams or joists.
- F. Steel decking without concrete topping:
 - 1. Do not fasten to steel decking 0.76 mm (0.0299-inch) or thinner.
 - 2. Toggle bolt to decking 0.9 mm (0.0359-inch) or thicker only where anchorage to steel framing is not possible.
- G. Installing suspended ceiling system for gypsum board (ASTM C635 Option):
 - 1. Install only for ceilings to receive screw attached gypsum board.
 - 2. Install in accordance with ASTM C636.
 - a. Install main runners spaced 1200 mm (48 inches) on center.
 - b. Install 1200 mm (four foot) tees not over 600 mm (24 inches) on center; locate for edge support of gypsum board.
 - c. Install wall track channel at perimeter.
- H. Installing Ceiling Bracing System:
 - 1. Construct bracing of 38 mm (1-1/2 inch) channels for lengths up to 2400 mm (8 feet) and 50 mm (2 inch) channels for lengths over 2400 mm (8 feet) with ends bent to form surfaces for anchorage to carrying channels and overhead construction. Lap channels not less than 600 mm (2 feet) at midpoint back-to-back. Screw or bolt lap together with two fasteners.
 - 2. Install bracing at an approximate 45-degree angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.

3.7 TOLERANCES

A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.

- B. Plumb and align vertical members within 3 mm (1/8-inch.)
- C. Level or align ceilings within 3 mm (1/8-inch.)

- - - E N D - - -

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies installation and finishing of gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: and Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Sound deadening board: Section 07 21 13, THERMAL INSULATION.
- C. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.

D. 1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.

C. Shop Drawings:

- 1. Typical gypsum board installation, showing corner details, edge trim details and the like.
- 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
- 3. Typical shaft wall assembly.
- 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.

D. Samples:

1. Cornerbead.

- 2. Edge trim.
- 3. Control joints.
- E. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.
 - 2. Sound rating test.
- F. Certificates: Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos material.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

A. In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

A. In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): C11-15Terminology Relating to Gypsum and Related Building Materials and Systems C475-15Joint Compound and Joint Tape for Finishing Gypsum Board C840-13Application and Finishing of Gypsum Board C919-12Sealants in Acoustical Applications C954-15Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. (0.84mm) to 0.112 in. (2.84mm) in thickness C1002-14Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-14Accessories for Gypsum Wallboard and Gypsum Veneer Base C1178/C1178M-18Specification for Coated Glass Mat Water Resistant Backing Panel C1658-13Glass Mat Gypsum Panels

- C. Underwriters Laboratories Inc. (UL):
 - Latest EditionFire Resistance Directory
- D. Inchcape Testing Services (ITS):
 - Latest EditionsCertification Listings

PART 2 - PRODUCTS

2.1 IMPACT-RESISTANT GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Impact Reistant, Type X, 16 mm (5/8 inch) thick unless shown otherwise.
- B. Coreboard or Shaft Wall Liner Panels.
 - 1. ASTM C1396, Type X.
 - 2. ASTM C1658: Glass Mat Gypsum Panels,
 - 3. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Water Resistant Gypsum Backing Board: ASTM C1178, Type X, 16 mm (5/8 inch) thick.
- D. Paper facings shall contain 100 percent post-consumer recycled paper content.

2.2 GYPSUM SHEATHING BOARD

- A. ASTM C1396, Type X, water-resistant core, 16 mm (5/8 inch) thick.
- B. ASTM C1177, Type X.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

A. ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Smoke partitions.
 - c. Sound rated partitions.
 - d. Full height partitions shown (FHP).
 - e. Corridor partitions.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
 - 3. Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.

- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):
 - 1. When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - 2. When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
 - 7. No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
 - 8. Installing Two Layer Assembly Over Sound Deadening Board:
 - a. Apply face layer of wallboard vertically with joints staggered from joints in sound deadening board over framing members.

- b. Fasten face layer with screw, of sufficient length to secure framing, spaced 300 mm (12 inches) on center around perimeter, and 400 mm (16 inches) on center in the field.
- 9. Control Joints ASTM C840 and as follows:
 - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
 - b. Not required for wall lengths less than 9000 mm (30 feet).
 - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:
 - 1. Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
 - 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
 - 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. At both sides of expansion and control joints unless shown otherwise.
 - b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.

- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.

3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9 mm (3/8 inch) from ends and edges of sheathing and 200 mm (8 inches) on center. Space screws a maximum of 200 mm (8 inches) on center on intermediate framing members.
- D. Apply 600 mm by 2400 mm (2 foot by 8 foot) sheathing boards horizontally with tongue edge up.
- E. Apply 1200 mm by 2400 mm or 2700 mm (4 ft. by 8 ft. or 9 foot) gypsum sheathing boards vertically with edges over framing.

3.4 CAVITY SHAFT WALL

- A. Coordinate assembly with Section 09 22 16, NON-STRUCTURAL METAL FRAMING, for erection of framing and gypsum board.
- B. Conform to UL Design No. U438 or FM WALL CONSTRUCTION 12-2/HR (Nonbearing for two-hour fire rating. Conform to FM WALL CONSTRUCTION 25-1/HR (Non-loadbearing) for one-hour fire rating where shown.
- C. Cut coreboard (liner) panels 25 mm (one inch) less than floor-to-ceiling height and erect vertically between J-runners on shaft side.
 - 1. Where shaft walls exceed 4300 mm (14 feet) in height, position panel end joints within upper and lower third points of wall.
 - 2. Stagger joints top and bottom in adjacent panels.
 - 3. After erection of J-struts of opening frames, fasten panels to J-struts with screws of sufficient length to secure framing staggered from those in base, spaced 300 mm (12 inches) on center.

D. Gypsum Board:

- 1. Two-hour wall:
 - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 600 mm (24 inches) on center.
 - b. Use laminating adhesive between plies in accordance with UL or FM if required by fire test.
 - c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of

sufficient length to secure framing staggered from those in base, spaced 300 mm (12 inches) on center.

- 2. One-hour wall with one layer on finish side of wall: Apply face layer of gypsum board vertically. Attach to studs with screws of sufficient length to secure to framing, spaced 300 mm (12 inches) on center in field and along edges.
- 3. Where coreboard is covered with face layer of gypsum board, stagger joints of face layer from those in the coreboard base.
- E. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.

F. Elevator Shafts:

- 1. Protrusions including fasteners other than flange of shaft wall framing system or offsets from vertical alignments more than 3 mm (1/8-inch) are not permitted unless shown.
- 2. Align shaft walls for plumb vertical flush alignment from top to bottom of shaft.

3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non-decorated smoke barrier, fire rated, and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the smoke barrier, fire rated, and sound rated construction. Sanding is not required of non-decorated surfaces.

3.6 REPAIRS

A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.

- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non-decorated surface to provide smoke tight construction, fire protection equivalent to the fire rated construction and STC equivalent to the sound rated construction.

3.7 UNACCESSIBLE CEILINGS

At Mental Health and Behavioral Nursing Units, areas accessible to patients and not continuously observable by staff (e.g., patient bedrooms, day rooms), ceilings should be a solid material such as gypsum board. This will limit patient access. Access doors are needed to access electrical and mechanical equipment above the ceiling. These doors should be locked to prevent unauthorized access and secured to ceiling using tamper resistant fasteners.

- - - E N D - - -

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies interior ceramic, porcelain and quarry tile, marble thresholds and window stools, terrazzo divider strips, waterproofing membranes for thin-set applications, crack isolation membranes, and tile backer board.

1.2 RELATED WORK

- A. Color Schedule Key in Drawings: Color, Texture, Pattern, and Size of Field Tile and Trim Shapes, and Color of Grout Specified.
- B. Section 09 65 19, RESILIENT TILE FLOORING: Metal and Resilient Edge Strips at Joints with New Resilient Flooring.
- C. Section 09 68 00, CARPETING: Metal and Resilient Edge Strips at Joints with Carpeting.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals as described below:
 - 1. Volatile organic compounds per volume as specified in PART 2 PRODUCTS.

C. Samples:

- 1. Porcelain tile, each type and color.
- D. Product Data:
 - Ceramic and porcelain tile, marked to show each type, size, and shape required.
 - 2. Chemical resistant mortar and grout (epoxy and furan).
 - 3. Cementitious backer unit.
 - 4. Dry-set portland cement mortar and grout.
 - 5. Divider strip.
 - 6. Elastomeric membrane and bond coat.
 - 7. Reinforcing tape.
 - 8. Leveling compound.
 - 9. Latex-portland cement mortar and grout.
 - 10. Commercial portland cement grout.
 - 11. Organic adhesive.
 - 12. Slip resistant tile.
 - 13. Waterproofing isolation membrane.

14. Fasteners.

E. Certification:

- 1. Master grade certificate, ANSI A137.1.
- 2. Manufacturer's certificates indicating that the following materials comply with specification requirements:
 - a. Chemical resistant mortar and grout (epoxy and furan).
 - b. Modified epoxy emulsion.
 - c. Commercial portland cement grout.
 - d. Cementitious backer unit.
 - e. Dry-set portland cement mortar and grout.
 - f. Elastomeric membrane and bond coat.
 - g. Reinforcing tape.
 - h. Latex-portland cement mortar and grout.
 - i. Leveling compound.
 - j. Organic adhesive.
 - k. Waterproof isolation membrane.
 - 1. Factory back mounted tile documentation for suitability for application in wet area.
- F. Installer Qualifications:
 - 1. Submit letter stating installer's experience.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 QUALITY ASSURANCE

- A. Installers to be from a company specializing in performing installation of products specified and have a minimum of three (3) years' experience.
- B. Each type and color of tile to be provided from a single source.
- C. Each type and color of mortar, adhesive, and grout to be provided from the same source.

1.6 WARRANTY

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

В.	American National Standards Institute (ANSI):		
	A10.20-06(R2016)	.Safe Operating Practices for Tile, Terrazzo and	
		Marble Work	
	A108/A118/A136.1:2019 .	.Installation of Ceramic Tile	
	A108.01-18	.Subsurfaces and Preparations by Other Trades	
	A108.02-19	.Materials, Environmental, and Workmanship	
	A108.1A-17	.Installation of Ceramic Tile in the Wet-Set	
		Method with Portland Cement Mortar	
	A108.1B-17	.Installation of Ceramic Tile on a Cured	
		Portland Cement Mortar Setting Bed with Dry-Set	
		or Latex-Portland Cement Mortar	
	A108.1C-17	.Contractors Option; Installation of Ceramic	
		Tile in the Wet-Set method with Portland Cement	
		Mortar or Installation of Ceramic Tile on a	
		Cured Portland Cement Mortar Setting Bed with	
		Dry-Set or Latex-Portland Cement Mortar	
	A108.4-09	.Ceramic Tile with Organic Adhesives or Water	
		Cleanable Tile-Setting Epoxy Adhesive	
	A108.5-10	.Ceramic Tile with Dry-Set Portland Cement	
		Mortar or Latex-Portland Cement Mortar	
	A108.6-10	.Ceramic Tile with Chemical Resistant, Water	
		Cleanable Tile-Setting and -Grouting Epoxy	
	A108.8-10	.Ceramic Tile with Chemical Resistant Furan	
		Resin Mortar and Grout	
	A108.9-10	.Ceramic Tile with Modified Epoxy Emulsion	
		Mortar/Grout	
	A108.10-17	.Grout in Tilework	
	A108.11-18	.Interior Installation of Cementitious Backer	
		Units	
	A108.12-10	.Installation of Ceramic Tile with EGP (Exterior	
		Glue Plywood) Latex-Portland Cement Mortar	
	A108.13-16	.Load Bearing, Bonded, Waterproof Membranes for	
		Thin-Set Ceramic Tile and Dimension Stone	
	A108.14-10	.Paper-Faced Glass Mosaic Tile	

	A108.15-19	.Alternate Method: Paper-Faced Glass Mosaic Tile
	A108.17-16	.Crack Isolation Membranes for Thin-Set Ceramic
		Tile and Dimension Stone
	A118.1-19	.Dry-Set Portland Cement Mortar
	A118.3-13	.Chemical Resistant, Water Cleanable Tile-
		Setting and -Grouting Epoxy and Water Cleanable
		Tile-Setting Epoxy Adhesive
	A118.4-19	.Modified Dry-Set Cement Mortar
	A118.5-16	.Chemical Resistant Furan Mortars and Grouts
	A118.6-19	.Standard Cement Grouts for Tile Installation
	A118.7-1	.High Performance Cement Grouts for Tile
		Installation
	A118.8-16	.Modified Epoxy Emulsion Mortar/ Grout
	A118.9-19	.Cementitious Backer Units
	A118.10-14	.Load Bearing, Bonded, Waterproof Membranes for
		Thin-Set Ceramic Tile and Dimension Stone
		Installation
	A118.11-17	.EGP (Exterior Glue Plywood) Modified Dry-set
		Mortar
	A118.12-14	.Crack Isolation Membranes for Thin-Set Ceramic
		Tile and Dimension Stone Installation
	A118.13-14	.Bonded Sound Reduction Membranes for Thin-Set
		Ceramic Tile Installation
	A118.15-19	.Improved Modified Dry-Set Cement Mortar
	A136.1-13	Organic Adhesives for Installation of Ceramic
		Tile
	A137.1-17	.American National Standard Specifications for
		Ceramic Tile
С.	ASTM International (AST	M):
	A666-15	.Annealed or Cold-Worked Austenitic Stainless-
		Steel Sheet, Strip, Plate and Flat Bar
	A1064/A1064M-18a	.Carbon-Steel Wire and Welded Wire
		Reinforcement, Plain and Deformed, for Concrete
	C109/C109M-20b	.Standard Test Method for Compressive Strength
		of Hydraulic Cement Mortars (Using 2 inch. or
		[50-mm] Cube Specimens)
	C241/C241M-15e1	.Abrasion Resistance of Stone Subjected to Foot
		Traffic

C348-20	.Standard Test Method for Flexural Strength of
	Hydraulic-Cement Mortars
C627-18	.Evaluating Ceramic Floor Tile Installation
0027 10	Systems Using the Robinson-Type Floor Tester
C051_10	.Steel Drill Screws for the Application of
0904-10	
	Gypsum Board on Metal Plaster Base to Steel
	Studs from 0.033 in (0.84 mm) to 0.112 in (2.84
	mm) in thickness
	.Pigments for Integrally Colored Concrete
C1002-18	.Steel Self-Piercing Tapping Screws for the
	Application of Panel Products
C1027-19	.Test Method for Determining Visible Abrasion
	Resistance of Glazed Ceramic Tile
C1127/C1127M-15	.Standard Guide for Use of High Solids Content,
	Cold Liquid-Applied Elastomeric Waterproofing
	Membrane with an Integral Wearing Surface
C1178/C1178M-18	.Standard Specification for Coated Glass Mat
	Water-Resistant Gypsum Backing Panel
C1325-19	.Non-Asbestos Fiber-Mat Reinforced Cementitious
	Backer Units
C1353/C1353M-20e1	.Abrasion Resistance of Dimension Stone
	Subjected to Foot Traffic Using a Rotary
	Platform, Double-Head Abraser
D1204-14(2020)	.Test Method for Linear Dimensional Changes of
	Nonrigid Thermoplastic Sheeting or Film at
	Elevated Temperature
D2240-15e1	.Test Method for Rubber Property - Durometer
	Hardness
D2497-07(2018)	.Tolerances for Manufactured Organic-Base
	Filament Single Yarns
D3045-2018	.Heat Aging of Plastics Without Load
D4397-16	.Standard Specification for Polyethylene
	Sheeting for Construction, Industrial and
	Agricultural Applications
D5109-12(Withdrawn2020)	Standard Test Methods for Copper-Clad
	Thermosetting Laminates for Printed Wiring
	Boards (recommend deletion)

D. Code of Federal Regulation (CFR):

- 40 CFR 59Determination of Volatile Matter Content, Water

 Content, Density Volume Solids, and Weight

 Solids of Surface Coating
- E. Marble Institute of America (MIA) / Building Stone Institute (BSI): Dimension Stone Design Manual VIII-2016
- F. Tile Council of North America, Inc. (TCNA):
 Handbook for Ceramic Tile Installation (2020)
- G. TCNA DCOF AcuTest-2012, Dynamic Coefficient of Friction Test

PART 2 - PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - c. Class IV, 6000 revolutions for remaining areas.
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ANSI A137.1 and measured per the TCNA DCOF AcuTest.
 - 1) Equal to or greater than .42 for level interior tile floors that will be walked on when wet.
 - b. Porcelain Paver Tile: Matte surface finish.
 - 4. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and package so tile units taken from one (1) package show the same range in colors as those taken from other packages and match approved samples.
- B. Glazed Wall Tile: Cushion edges, glazing.
- C. Porcelain Paver Tile: Nominal 8 mm (5/16 inch) thick, with cushion edges. Porcelain tile produced by the dust pressed method are to be made of approximately 50 percent feldspar; the remaining 50 percent is to be made up of various high-quality light firing ball clays yielding a tile with a water absorption rate of 0.5 percent or less and a breaking strength of between 176 to 181 kg (390 to 400 pounds).
- D. Trim Shapes:
 - 1. Schluter Systems, "Rondec", vertical and horizontal applications.

- a. Standard finish shall be satin anodized aluminum, unless noted otherwise.
- b. Other manufactured standard finish colors; chrome-plated solid brass, anodized aluminum, color-coated aluminum, stainless steel. Provide accessory trim pieces in finish specified.
- Non-Ceramic Trim: Satin natural anodized extruded aluminum, style
 and dimensions to suit application, for setting using tile mortar or
 adhesive.

1. Applications:

- a. Wall tile exposed edges, wall corners (inside and outside):
 - Schluter Systems, "Rondec" or approved equal, vertical and horizontal applications.
 - Standard finish shall be satin anodized aluminum, unless noted otherwise.
 - 3) Provide accessory trim pieces in finish specified.
- b. Transition between floor finishes of different heights.
 - Schluter Systems, "Reno-tk" or approved equal, straight and/or radius applications.
 - 2) Standard finish shall be satin anodized aluminum, unless noted otherwise.
- c. Same height transitions at floors.
 - Schluter Systems, "Schiene" or approved equal, straight and/or radius applications.
 - 2) Standard finish shall be satin anodized aluminum.
- d. Cove transitions between wall and floors:
 - 1) Schluter Systems "Dilex-AHK" or approved equal, coved perimeter joint profile with a single trapezoid-perforated anchoring leg for inside corners where limited movement is expected.
 - 2) 3/8" radius prevents accumulation of dirt and makes cleaning simple.
 - 3) Note: 90 degree outside corners required when using Rondec or Quadec corner trims for a smooth transition with coved trim.

2.2 SETTING MATERIALS

- A. Manufacturers:
 - 1. Basis of Design: Mapei
 - 2. Approved Equal to all products listed below.

- B. Iso 13007 performance requirements for adhesives (mortars or mortar adhesives).
- C. Performance requirements for adhesives cementitious mortars (thin set).
 - 1. C1 normal: tensile bond strength of greater than or equal to 72.5 psi.
 - a. C2 improved: tensile bond strength of greater than or equal to 145 psi.
 - 2. Performance characteristics for adhesives
 - a. F fast setting/fast drying
 - b. T thixotropic (non-slip/non-sag)
 - c. S1 normal deformity greater than or equal to 0.1" and 0.2".
 - d. S2 improved deformity greater than or equal to 0.2".
 - e. P1 normal plywood adhesion bond strength.
 - f. P2 improved plywood adhesion bond strength.
- D. Premium, Rapid-Setting, Flexible Tile Mortar
 - 1. Fast setting mortar for use with thin set installation method of large and heavy tile:
 - a. Latex modified hydraulic cement mortar; two-component system, of hydraulic mortar and flexible liquid polymer additive complying with ANSI Al18.4, ANSI Al18.15 and ISO 13007 C2FS2P2, equal to Mapei Corp., "Granirapid System".
 - b. Product is ready for light traffic after approximately 3 hours and completely cured in 24 hours. It is resistant to impact, vibration, temperature changes, aging and mild cleaning chemicals.

E. Mortar Bed

- Factory blended, cement-based, polymer-modified thick-bed and render mortar complying with ANSI A108.1, equal to Mapei Corp., "Modified Mortar Bed".
 - a. Applications: Interior floor installation at shower and /or wet area(s). Refer to architectural details in construction document set.
 - b. Install wire reinforcement in areas greater than 65 square feet.
- F. Improved Latex-Portland Cement Mortar Bond Coat: ANSI A118.15.
 - 1. Applications:

- a. Use this type of bond coat where Large and Heavy Tile (LHT) mortar is indicated.
- b. Interior floor and wall tile installations.

2. Products:

a. ANSI A118.11, A118.4, A118.15HTE and ISO 13007 C2TES1P1, equal to Mapei Corp., "Ultraflex LFT or Keraflex Super".

2.2 BACKER UNITS

- A. Glass Mat Water Resistant Backing Board:
 - 1. Use in showers or wet areas.
 - 2. Conform to ASTM C1178/C1178M, equal to Georgia Pacific DensShield, or approved equal.
 - 3. 3. Mold Resistance of 10 per ASTM test method D3273.
 - 4. 4. Use in maximum lengths available to minimize end to end butt joints.
 - 5. Shower walls and ceiling: coated glass mat water-resistant backer board equal to Georgia Pacific, "DensShield".
 - 6. Non-wet walls at toilet rooms with showers: moisture resistant gypsum board and/or type "X" fire rated moisture resistant gypsum board.
 - 7. Non-wet walls: gypsum wall board.
 - 8. Prefabricated substrates:
 - a. Install prefabricated substrate sheet similar to Schluter Systems, "Kerdi-board", when tiles abutting to each other of dissimilar thicknesses. Install prefabricated substrate sheet behind tile of lesser thickness so for it to be level and flush with adjacent tile.
 - 9. Prefabricated shower niche:
 - a. Must be installed to work with water-proof membranes to ensure watertight installation.
 - b. Must include an integrated bonding flange; caulked around edges.
 - c. Overall size 12"x12"x 4" deep.
 - d. Stainless Steel with integrated slope for draining water.

2.3 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS

- A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave, 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing will not be permitted.
- B. Tape Embedding Material: Latex-portland cement mortar complying with ANSI A108.01.

C. Joint material, including reinforcing tape, and tape embedding material, are to be as specifically recommended by the backer unit manufacturer.

2.4 FASTENERS

- A. Screws for Cementitious Backer Units.
 - 1. Standard screws for gypsum board are not acceptable.
 - 2. Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers.
 - 3. ASTM C954 for steel 1 mm (0.033 inch) thick.
 - 4. ASTM C1002 for steel framing less than 0.0329 inch thick.
- B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter.

2.5 SETTING MATERIALS OR BOND COATS

- A. Conform to TCNA Handbook for Ceramic Tile Installation.
- B. Portland Cement Mortar: ANSI A108.02.
- C. Latex-Portland Cement Mortar: ANSI A118.4.
 - 1. For wall applications, provide non-sagging, latex-portland cement mortar complying with ANSI A118.4.
 - 2. Prepackaged Dry-Mortar Mix: Factory-prepared mixture of portland cement; dry, redispersible, ethylene vinyl acetate additive; and other ingredients to which only water needs to be added at Project site
- D. Dry-Set Portland Cement Mortar: ANSI A118.1. For wall applications, provide non-sagging, latex-portland cement mortar complying with ANSI A118.1.
- E. Organic Adhesives: ANSI A136.1, Type 1.
- F. Chemical-Resistant Bond Coat:
 - 1. Epoxy Resin Type: ANSI A118.3.
 - 2. Furan Resin Type: ANSI A118.5.
- G. Elastomeric Waterproofing Membrane and Bond Coat:
 - 1. TCNA F122-14 (on ground concrete) and TCNA F112A-14 (above ground concrete).
 - 2. ANSI A118.10.
 - 3. One component polyurethane, liquid applied material having the following additional physical properties:
 - a. Hardness: Shore "A" between 40-60.
 - b. Elongation: Between 300-600 percent.
 - c. Tensile strength: Between .27 .41 Newton per square millimeter (40-60 pounds per square inch gauge).

- 4. Coal tar modified urethanes are not acceptable.
- H. A "bond coat" is different from a "mortar bond coat" as specified in the TCNA installation methods. This bond coat acts as a bonding agent to existing concrete, thereby increasing the adhesion of the setting or leveling mortar.
- I. Modified dry-set mortar for use with tile, premium grade single component, high performance, polymer-modified mortar complying with ANSI A118.4E, ANSI A118.11 and ANSI A118.15E, ISO 13007 C2ES1P1, equal to Mapei Corp., "LFT or Keraflex Super"
 - 1. Applications:
 - a. On structural concrete slab and with interior floor tile installations.
 - b. Clear glass with opaque color backing Mapei Corp., "Keraflex Super", color: white.
 - c. Where called for by (TCNA) tile Council of North America.
- J. Chemical cure resilient high-bond adhesive: white, flexible, two-component urethane adhesive, complying with iso 13007 R2, Mapei Corp., "Planicrete W".
- K. Applications: for use with interior non-vitreous, semi-vitreous, vitreous and impervious mosaic wall tiles over non-porous and metal substrates. Do not use at showers and pools.

2.6 GROUTING MATERIALS

- A. Coloring Pigments:
 - 1. Pure mineral pigments, lime proof and nonfading, complying with ASTM C979/C979M.
 - 2. Coloring pigments may only be added to grout by the manufacturer.
 - 3. Job colored grout is not acceptable.
 - 4. Use is required in Commercial Portland Cement Grout, Dry-Set Grout, and Latex-Portland Cement Grout.
- B. Epoxy Grout: ANSI A118.3 chemical resistant and water-cleanable epoxy grout.
 - 1. Applications: Where indicated.
 - 2. Color(s): As selected by Architect from manufacturer's full line.
 - 3. Products:
 - a. Mapei Corp.
 - b. Approved Equal
 - 1) Single component grout: ready to use color-coated quartz aggregate, non-porous composition assists to prevent water-

based stains, grout joints from 1/16" to 1/16", no sealer required, maintains color consistency and stain resistance complying with ANSI All8.3 and All8.6, equal to Mapei Corp., "Flexcolor CQ".

- 2) Applications:
 - a) COM1 interior walls.
 - b) COM1 interior floor(s), non-toilet areas.
- C. Premium epoxy grout and mortar: 100% solids epoxy grout and mortar with color-coated quartz, non-sagging/nonslumping in joints up to 3/8" in width, water cleanable, high stain resistance, no sealer required, complying with ANSI Al18.3 and ISO 13007 RG classification R2/RG, equal to Mapei Corp., "Kerapoxy CQ".
 - 1. Applications: interior floor and wall tile installations of moisture sensitive materials that may cup or curl when using water additive mortars.
 - 2. Applications for interior floor and wall tile installations at the following areas:
 - a) Commercial COM2 and COM3 installations at shower and/or wet area(s) on floors and walls. Refer to architectural details in construction document set.
 - b) Commercial COM1 floors at restrooms (non-shower and/or non-wet areas).
 - c) No sealer required.
 - d) Do not use on porous natural stones; such as, marble, limestone, travertine, epoxy resins will stain stone.
- D. Industrial-grade epoxy grout: 100% solids epoxy grout with color-coated quartz, non-shrinking, non-sagging, fast-curing, efflorescence-free, water cleanable, resistant to chemicals, stains and high temperatures, grout joints from 1/8 to 5/8" in width, complying with ANSI Al18.3 (exceeds), ANSI Al18.5 (exceeds) and ISO 13007 RG classification, equal to Mapei Corp., "Kerapoxy IEG CQ".
 - 1. Applications: commercial COM3 installations at interior floor and wall tile at wet area(s) of kitchen, serving area(s) and/or dining area(s).
 - 2. Applications: interior floor and wall tile installations as indicated in the color schedule key.

2.7 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Provide a patching and leveling compound with the following minimum physical properties:
 - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M.
 - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value).
 - 3. Tensile strength 4.1 MPa (600 psi) per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 101 mm (4 inches) thick with fillers, being brought to a feather edge, and being troweled to a smooth finish.
- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.
- F. Patching Compound:
 - 1. Fill cracks, holes and depressions in concrete substrates for tile floors with trowelable patching compound or self-leveling underlayment specifically recommended by tile-setting material manufacturer. For tiles larger than 15 inches, flatten floor to within 1/8 inch in 10 feet prior to installing tile. For tiles less than 15 inches flatten floor to within ¼ inch in 10 feet prior to installing tile.
 - 2. Trowel grade patch equal to Mapei Corp., "Mapecem Quickpatch".
 - 3. Self-leveling underlayment equal to Mapei Corp., "Ultraplan Easy".
 - 4. Wall render and repair equal to Mapei Corp., "Planitop 330 Fast".
 - 5. Follow manufacturer's recommendations for product usage at specific locations/conditions.
- G. Concrete Floor Slab Crack Isolation Membrane: Material complying with ANSI A118.12; not intended as waterproofing.
 - 1. Thickness: 20 mils, maximum.
 - 2. Crack Resistance: No failure at 1/8-inch gap, minimum.
 - 3. Products:
 - a. Premixed, liquid-rubber, quick-drying membrane, equal to Mapei Corp., "Mapelastic CI".
 - b. Sheet membrane equal to Mapei Corp., "Mapeguard 2".
 - c. Primer equal to Mapei Corp., "SM Fast".

- 4. Full spread application unless otherwise noted in construction documents. Compliant with TCNA F125.
- I. Waterproofing Membrane: Specifically designed for bonding to cementitious substrate under thick mortar bed or thin-set tile; complying with ANSI Al18.10.
 - 1. Crack Resistance: No failure at 1/16-inch gap, minimum; comply with ANSI A118.12.
 - 2. Install waterproof membranes under thin set tile installations complying with ANSI A118.10, TCNA B421C-16 shower/wet area floor and TCNA B420-16 for shower/wet area walls. Include reinforcement and accessories as recommended by manufacture for the application.
 - a. Fluid-applied membrane: premixed, advanced liquid-rubber, quick-drying waterproofing and crack-isolation membrane, equal to Mapei Corp., "Mapelastic Aquadefense".
 - b. In conjunction with fluid-applied waterproofing membrane use Mapei Corp., "Reinforcing Fabric" and/or Mapei Corp., "Mapeband" waterproofing membranes at corners, coves, drains, expansion and movement joints.
 - 3. Do not use where excessive substrate moisture and/or where negative hydrostatic pressure exists. Maximum allowable moisture is 8 lbs per 1,000 sq. Ft. Per 24 hours per ASTM F1869 or up to 85% relative humidity as measured with moisture probes.
 - 4. Concrete substrates should have a concrete surface profile of #2 per the international concrete repair institute (ICRI). Mechanically clean and profile by diamond-cup grinding or other engineer-approved method.
 - 5. Substrate and room temperatures above 50-degree Fahrenheit to 100 degree Fahrenheit during and at least 24 hours after application per ANSI A108.02.2.2.
 - 6. Refer to architectural detail for shower and/or wet areas.
 - 7. Membranes must be protected to prevent punctures resulting from traffic on the membrane before the tile is installed.
 - 8. Preform flood testing per ASTM D5957, allow waterproof membranes to cure per Mapei Corporation instructions.

2.7 METAL TRIM PIECES

- A. Refer to construction documents for specific types and locations as noted.
- B. Manufactured by Schluter Systems or similar approved equal.

- C. Finish to be selected at time of submittal from manufacturer's standard finish options.
- D. Sizes to be determined by material thickness.
 - 1. At floor tile to resilient sheet or carpet: Similar to Schluter Jolly style trim
 - 2. At outside corners of wall tile: Similar to Schluter Quadec style trim.
 - 3. At top of wainscot trim: Similar to Schluter Quadec style trim.
 - 4. At tile and wall intersection: Similar to Dilex-AHK with trim pieces to coordinate with Quadec.
 - 5. At wall tile to Epoxy Resinous Cove joint: Schluter Shiene trim.

2.8 WATER

A. Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.9 CLEANING COMPOUNDS

- A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat.
- B. Materials containing acid or caustic Material are not acceptable.

2.10 FLOOR MORTAR BED REINFORCING

A. ASTM A1064/A1064M welded wire fabric without backing, MW3 x MW3 (2 x 2-W0.5 x W0.5).

2.11 POLYETHYLENE SHEET

- A. Polyethylene sheet conforming to ASTM D4397.
- B. Nominal thickness: 0.15 mm (6 mils).

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degrees C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three (3) days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 38 degrees C (100 degrees F).

- D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F).
- E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after third day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - 1. Not more than 6 mm in 3048 mm (1/4 inch in 10 feet) from required elevation where portland cement mortar setting bed is used.
 - 2. Not more than 3 mm in 3048 mm (1/8 inch in 10 feet) where dry-set portland cement, and latex-portland cement mortar setting beds and chemical-resistant bond coats are used.
- B. Variation in Plane of Wall Surfaces:
 - 1. Not more than 6 mm in 2438 mm (1/4 inch in 8 feet) from required plane where portland cement mortar setting bed is used.
 - 2. Not more than 3 mm in 2438 mm (1/8 inch in 8 feet) where dry-set or latex-portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

- A. Cleaning New Concrete or Masonry:
 - Chip out loose material, clean off all oil, grease dirt, adhesives, curing compounds, and other deterrents to bonding by mechanical method, or by using products specifically designed for cleaning concrete and masonry.
 - 2. Use self-contained power blast cleaning systems to remove curing compounds and steel trowel finish from concrete slabs where ceramic tile will be installed directly on concrete surface with thin-set materials.
 - Steam cleaning or the use of acids and solvents for cleaning will not be permitted.
- B. Patching and Leveling:
 - 1. Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
 - 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.
 - a. Thickness of compound as required to bring finish tile system to elevation shown on construction documents.
 - b. Float finish except finish smooth for elastomeric waterproofing.

- c. At substrate expansion, isolation, and other moving joints, allow joint of same width to continue through underlayment.
- 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.
- 4. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.

C. Mortar Bed for Slopes to Drains:

- 1. Slope compound to drain where drains are shown on construction documents.
- 2. Install mortar bed in depressed slab sloped to drains not less than 3.2 mm in 305 mm (1/8 inch per foot).
- 3. Allow not less than 50 mm (2 inch) depression at edge of depressed slab.
- 4. Screed for slope to drain and float finish.
- 5. Cure mortar bed for not less than seven (7) days. Do not use curing compounds or coatings.
- 6. Perform flood test to verify mortar bed slopes to drain before installing tile. Contracting Officer Representative (COR) to be present during flood test.
- D. Additional preparation of concrete floors for tile set with epoxy, or furan-resin is to be in accordance with the manufacturer's printed instructions.

E. Cleavage Membrane:

- Install polythene sheet as cleavage membrane in depressed slab when waterproof membrane is not scheduled or indicated.
- 2. Turn up at edge of depressed floor slab to top of floor.

F. Walls:

- 1. In showers or other wet areas cover studs with polyethylene sheet.
- 2. Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane.
- 3. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- 4. Apply metal lath to framing in accordance with ANSI A108.1:
 - a. Use fasteners specified in paragraph "Fasteners." Use washers when lath opening is larger than screw head.

- b. Apply scratch and leveling coats to metal lath in accordance with ANSI A108.1C.
- c. Total thickness of scratch and leveling coats:
 - 1) Apply 9 mm to 16 mm (3/8 inch to 5/8 inch) thick over solid backing.
 - 2) 16 mm to 19 mm (5/8 to 3/4 inch) thick on metal lath over stude
 - 3) Where wainscots are required to finish flush with wall surface above, adjust thickness required for flush finish.
- d. Apply scratch and leveling coats more than 19 mm (3/4 inch) thick in two (2) coats.

G. Existing Floors and Walls:

- Remove existing composition floor finishes and adhesive. Prepare surface by grinding, chipping, self-contained power blast cleaning or other suitable mechanical methods to completely expose uncontaminated concrete or masonry surfaces. Follow safety requirements of ANSI A10.20.
- 2. Remove existing concrete fill or topping to structural slab. Clean and level the substrate for new setting bed and waterproof membrane or cleavage membrane.
- 3. Where new tile bases are required to finish flush with plaster above or where they are extensions of similar bases in conjunction with existing floor tiles, cut channel in floor slab and expose rough wall construction sufficiently to accommodate new tile base and setting material.

3.4 CEMENTITIOUS BACKER UNITS

- A. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile.
- B. Install in accordance with ANSI Al18.9 except as specified otherwise.
- C. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a "V" joint for joint treatment.
- D. Secure cementitious backer units to each framing member with screws spaced not more than 203 mm (8 inches) on center and not closer than 13 mm (1/2 inch) from the edge of the backer unit or as recommended by

- backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit.
- E. Where backer unit joins shower pans or waterproofing, lap backer unit over turned up waterproof system. Install fasteners only through top one inch of turned up waterproof systems.
- F. Do not install joint treatment for seven (7) days after installation of cementitious backer unit.
- G. Joint Treatment:
 - Fill horizontal and vertical joints and corners with latex-portland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar.
 - 2. Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors.

3.5 GLASS MAT WATER-RESISTANT BACKING BOARD

- A. Install in accordance with manufacturer's instructions. TCNA Systems W245-1.
- B. Treat joints with tape and latex-portland cement mortar or adhesive.

3.6 CERAMIC TILE - GENERAL

- A. Comply with ANSI A108/A118/A136 series of tile installation standards applicable to methods of installation and TCNA Installation Guidelines.
- B. Installing Mortar Beds for Floors:
 - 1. Install mortar bed in a manner that does not damage cleavage or waterproof membrane; 32 mm (1-1/2 inch) minimum thickness.
 - 2. Install floor mortar bed reinforcing centered in mortar fill.
 - 3. Screed finish to level plane or slope to drains shown on construction documents, float finish.
 - 4. For thin set systems cure mortar bed not less than seven (7) days.

 Do not use curing compounds or coatings.
 - 5. For tile set with portland cement paste over plastic mortar bed coordinate to set tile before mortar bed sets.
- C. Setting Beds or Bond Coats:
 - 1. Where recessed or depressed floor slabs are filled with portland cement mortar bed, set ceramic mosaic floor tile in either portland cement paste over plastic mortar bed or latex-portland cement mortar over cured mortar bed except as specified otherwise, ANSI A108-1C, TCNA System F121-14 or F111-14.

- 2. Set floor tile in elastomeric bond coat over elastomeric membrane per ANSI 108.13, TCNA System F122-14 where indicated on construction documents.
- 3. Set wall tile installed over concrete or masonry in dry-set portland cement mortar, or latex-portland cement mortar, ANSI 108.1B and TCNA System W211-14, W221-14 or W222-14.
- 4. Set wall tile installed over concrete backer board in latex-portland cement mortar, ANSI A108.1B.
- 5. Set wall tile installed over portland cement mortar bed on metal lath base in portland cement paste over plastic mortar bed, or dry-set portland cement mortar or latex-portland cement mortar over a cured mortar bed, ANSI A108.1C, TCNA System W231-14, W241-14.
- 6. Set tile installed over gypsum board and gypsum plaster in organic adhesive, ANSI A108.1, TCNA System W242-14.
- 7. Set trim shapes in same material specified for setting adjoining tile.

D. Workmanship:

- 1. Lay out tile work so that no tile less than one-half full size is used. Make all cuts on the outer edge of the field.
- 2. Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise on construction documents.
- 3. Form intersections and returns accurately.
- 4. Cut and drill tile neatly without marring surface.
- 5. Cut edges of tile abutting penetrations, finish, or built-in items:
 - a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.
 - b. Seal tile joints watertight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
- 6. Completed work is to be free from hollow sounding areas and loose, cracked or defective tile.
- 7. Remove and reset tiles that are out of plane or misaligned.
- 8. Floors:
 - a. Extend floor tile beneath casework and equipment, except those units mounted in wall recesses.

- b. Align finish surface of new tile work flush with other and existing adjoining floor finish where indicated in construction documents.
- c. In areas where floor drains occur, slope tile to drains.
- d. Push and vibrate tiles over 203 mm (8 inches) square to achieve full support of bond coat.

9. Walls:

- a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns from floor to ceiling, or from floor to nominal wainscot heights as indicated in construction documents with tile.
- b. Finish reveals of openings with tile, except where other finish materials are indicated in construction documents.
- c. Finish wall surfaces behind and at sides of casework and equipment, except those units mounted in wall recesses, with same tile as scheduled for room proper.

10. Joints:

- a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise on construction documents.
- b. Make joints 2 mm (1/16 inch) wide for glazed wall tile and mosaic tile work.
- c. Make joints in quarry tile work not less than 6 mm (1/4 inch) nor more than 9 mm (3/8 inch) wide. Finish joints flush with surface of tile.
- d. Make joints in paver tile, porcelain type; maximum 3 mm (1/8 inch) wide.
- 11. Back Buttering: For installations indicated below, obtain 100 percent mortar coverage by complying with applicable special requirements for back buttering of tile in referenced ANSI A108/A118/A136 series of tile installation standards:
 - a. Tile wall installations in wet areas, including showers, tub enclosures, laundries and swimming pools.
 - b. Tile installed with chemical-resistant mortars and grouts.
 - c. Tile wall installations composed of tiles 203 by 203 mm (8 by 8 inches) or larger.
 - d. Exterior tile wall installations.

3.7 CERAMIC TILE INSTALLED WITH PORTLAND CEMENT MORTAR

- A. Mortar Mixes for Floor, Wall and Base Tile (including Showers):
 ANSI A108.1A. except specified otherwise.
- B. Installing Wall and Base Tile: ANSI A108.1A, except specified otherwise.
- C. Installing Floor Tile: ANSI A108.1A, except as specified otherwise. Slope mortar beds to floor drains at a minimum of 3 mm in 305 mm (1/8 inch per foot).

3.8 PORCELAIN TILE INSTALLED WITH LATEX PORTLAND CEMENT BONDING MORTAR

A. Due to the denseness of porcelain tile use latex portland cement bonding mortar that meets the requirements of ANSI A108.01. Mix bonding mortars in accordance with manufacturer's instructions. Provide liquid ratios and comply with dwell times during the placement of bonding mortar and tile.

3.9 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH DRY-SET PORTLAND CEMENT AND LATEX-PORTLAND CEMENT MORTAR

- A. Installation of Tile: ANSI A108.1B, except as specified otherwise.
- B. Slope tile work to drains at not less than 3 mm in 305 mm (1/8 inch per foot).

3.10 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH ORGANIC ADHESIVE

A. Installation of Tile: ANSI A108.4.

3.11 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH CHEMICAL-RESISTANT BOND COAT

- A. Epoxy Resin Type: Install tile in accordance with Installation of Tile with Epoxy Mortar; ANSI A108.6.
- B. Furan Resin Type: Proportion, mix and place in accordance with the manufacturer's printed instructions. Set tile in accordance with ANSI A108.8.

3.12 CERAMIC AND PORCELAIN TILE INSTALLED WITH ELASTOMERIC BOND COAT

- A. Surface Preparation: Prepare surfaces as specified.
- B. Installation of Elastomeric Membrane: ANSI A108.10 and TCNA F122-14 (on ground concrete) and F122A-14 (above-ground concrete).
 - 1. Prime surfaces, where required, in accordance with manufacturer's instructions.
 - 2. Install first coat of membrane material in accordance with manufacturer's instructions, in thickness of 0.76 to 1.3 mm (30 to 50 mils).
 - 3. Extend material over flashing rings of drains and turn up vertical surfaces not less than 101 mm (4 inches) above finish floor surface.

- 4. When material has set, recoat areas with a second coat of elastomeric membrane material for a total thickness of 1.3 to 1.9 mm (50 to 75 mils).
- 5. After curing test for leaks with 25 mm (1 inch) of water for 24 hours
- C. Installation of Tile in Elastomeric Membrane:
 - Spread no more material than can be covered with tile before material starts to set.
 - 2. Apply tile in second coat of elastomeric membrane material in accordance with the coating manufacturer's instructions in lieu at aggregate surfacing specified in ASTM C1127. Do not install topcoat over tile.

3.13 GROUTING

- A. Grout Type and Location:
 - Grout for glazed wall and base tile, paver tile and unglazed mosaic tile portland cement grout, latex-portland cement grout, dry-set grout, or commercial portland cement grout.

B. Workmanship:

- 1. Install and cure grout in accordance with the applicable standard.
- 2. Sand Portland Cement Grout: ANSI A108.10.
- 3. Standard Cement Grout: ANSI A118.6.
- 4. High Performance Grout: ANSI A118.7.
- 5. Epoxy Grout: ANSI A108.6.
- 6. Water-Cleanable Epoxy Grout: ANSI A118.3.
- 7. Furan and Commercial Portland Cement Grout: ANSI A118.5 and in accordance with the manufacturer's printed instructions.

3.14 MOVEMENT JOINTS

- A. Prepare tile expansion, isolation, construction and contraction joints for installation of sealant. Refer to Section 07 92 00, JOINT SEALANTS.
- B. TCNA details EJ 171-14.
- C. At expansion joints, rake out joint full depth of tile and setting bed and mortar bed. Do not cut waterproof or isolation membrane.
- D. Rake out grout at joints between tile, at toe of base, and where indicated in construction documents not less than 6 mm (1/4 inch) deep.

3.15 CLEANING:

A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.

- B. Methods and materials used are not permitted to damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.
- D. Clean tile grouted with epoxy, furan and commercial portland cement grout and tile set in elastomeric bond coat as recommended by the manufacturer of the grout and bond coat.

3.16 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is fully set and cured.
- B. Where traffic occurs over tile floor is unavoidable, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains.

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

1.1 SUMMARY

- A. Section Includes:
 - 1. Resilient base (RB) adhered to interior walls and partitions.

1.2 RELATED REQUIREMENTS

A. Sheet Flooring Base: Section 09 65 16, RESILIENT SHEET FLOORING.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):

F1344-15Rubber Floor Tile.

F1859-14elRubber Sheet Floor Covering without Backing.

F1860-14e1Rubber Sheet Floor Covering with Backing.

D4259-18Preparation of Concrete by Abrasion Prior to Coating Application.

C. Federal Specifications (Fed. Spec.):

RR-T-650E (1994)Treads, Metallic and Non-Metallic, Skid-Resistant.

D. International Concrete Repair Institute (ICRI):

310.2R-2013Selecting and Specifying Concrete Surface
Preparation for Sealers, Coatings, Polymer
Overlays, and Concrete Repair.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Adhesives and primers indicating manufacturer's recommendation for each application.
 - 3. Installation instructions.
- C. Samples:
 - 1. Resilient Base: 150 mm (6 inches) long, each type and color.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials:
 - a. Stair Treads and Sheet Rubber Flooring: Submit Floor Score label.

- b. Show volatile organic compound types and quantities.
- E. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage when handling and during construction operations.

1.7 FIELD CONDITIONS

- A. Environment:
 - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
 - 2. Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 PRODUCTS

- A. Basis of Design: Color Schedule Key in Drawings.
- B. Provide each product from one manufacturer and from one production run.
- C. Provide resilient stair treads and sheet rubber flooring from same manufacturer.
- D. Sustainable Construction Requirements:
 - 1. Sheet Rubber Flooring Recycled Content: 90 percent total recycled content, minimum.
 - 2. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Flooring Adhesives and Sealants.

2.2 RESILIENT BASE

- A. Resilient Base: 3 mm (1/8 inch) thick, 100 mm (4 inches) high.
 - 1. Type: Rubber; use one type throughout.
 - 2. ASTM F1861, Type TP thermoplastic rubber
- B. Applications:
 - 1. All Locations: Style B Cove.

2.3 PRIMER (FOR CONCRETE FLOORS)

A. Primer: Type recommended by adhesive manufacturer.

2.4 LEVELING COMPOUND (FOR CONCRETE FLOORS)

A. Leveling Compound: Provide products mixed with latex or polyvinyl acetate resins.

2.5 ADHESIVES

A. Adhesives: Low pollutant-emitting, non-toxic water-based type recommended by adhered product manufacturer for each application.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing base to permit new installation.
 - 1. Dispose of removed materials.
- D. Correct substrate deficiencies.
 - 1. Fill cracks, pits, and depressions with leveling compound.
 - 2. Remove protrusions; grind high spots.
 - 3. Apply leveling compound to achieve 3 mm (1/8 inch) in 3 m (10 feet) maximum surface variation.
- E. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
 - 2. Surface Profile: ICRI Guideline No. 310.2R.
- F. Allow substrate to dry and cure.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.

3.2 INSTALLATION GENERAL

- A. Install products according to manufacturer's instructions.
 - 1. When instructions deviate from specifications, submit proposed resolution for Contracting Officer consideration.

3.3 RESILIENT BASE INSTALLATION

A. Applications:

- 1. Install resilient base in rooms scheduled on Drawings.
- 2. Install resilient base on casework , and other curb supported fixed equipment.
- 3. Extend resilient base into closets, alcoves, and cabinet knee spaces, and around columns within scheduled room.
- B. Lay out resilient base with minimum number of joints.
 - 1. Length: 600 mm (24 inches) minimum, each piece.
 - 2. Locate joints 150 mm (6 inches) minimum from corners and intersection of adjacent materials.

C. Installation:

- 1. Apply adhesive uniformly for full contact between resilient base and substrate.
- 2. Set resilient base with hairline butted joints aligned along top edge.
- D. Field form corners and end stops.
 - 1. V-groove back of outside corner.
 - 2. V-groove face of inside corner and notch cove for miter joint.
- E. Roll resilient base ensuring complete adhesion.

3.4 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed resilient base surfaces. Remove contaminants and stains.
 - 1. Clean with mild detergent. Leave surfaces free of detergent residue.
- C. Polish exposed resilient base to gloss sheen.

3.5 PROTECTION

- A. Replace damaged products and re-clean.
 - 1. Damaged Products include cut, gouged, scraped, torn, and unbonded products.

- - - E N D - - -

SECTION 09 65 16 RESILIENT SHEET FLOORING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Welded seam sheet flooring (WSF) with heat welded seams.

1.2 RELATED REQUIREMENTS

- A. Adhesive VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REOUIREMENTS.
- B. Color, Pattern and Texture: Color Schedule Key in Drawings.
- C. Resilient Base over Base of Lockers, Equipment and Casework: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - 1. D4259-88(2012) Abrading Concrete.
 - 2. E648-15e1 Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source.
 - E662-15a Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials.
 - 4. F1303-04(2014) Sheet Vinyl Floor Covering with Backing.
 - 5. F1860-14 Rubber Sheet Floor Covering With Backing.
 - 6. F1913-04(2014) Vinyl Sheet Floor Covering Without Backing.
- C. International Concrete Repair Institute (ICRI):
 - 1. 310.2R-13 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays, and Concrete Repair.
- D. SCS Global Services (SCS):
 - 1. FloorScore.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
 - 1. Show size, configuration, and fabrication and installation details.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Warranty.
- C. Samples:
 - 1. Sheet material, 38 mm by 300 mm (1-1/2 inch by 12 inch), of each color and pattern with welded seam using specified welding rod 300 mm (12 inches) square for each type, pattern and color.

- 2. Shop Drawings and Certificates: Layout of joints showing patterns where joints are expressed, and type and location of obscure type joints. Indicate orientation of directional patterns.
- 3. Certificates: Quality Control Certificate Submittals and lists specified in paragraph, QUALIFICATIONS.
- D. Sustainable Construction Submittals:
 - 1. Low Pollutant-Emitting Materials:
 - a. Sheet Flooring: Submit FloorScore label.
 - b. Identify volatile organic compound types and quantities.
- E. Certificates: Certify each product complies with specifications.
 - Heat welded seaming is manufacturer's prescribed method of installation.
- F. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Manufacturer with project experience list.
 - 2. Installer with project experience list.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A company specializing in installation with minimum three (3) years' experience and employs experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program.
 - 1. Installers to be certified by INSTALL or a comparable certification program with the following minimum criteria:
 - a. US Department of Labor approved four (4) year apprenticeship program, 160 hours a year.
 - b. Career long training.
 - c. Manufacturer endorsed training.
 - d. Fundamental journeyman skills certification.
- B. Furnish product type materials from the same production run.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

A. Store products indoors in dry, weathertight conditioned facility.

B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

A. Environment:

- Work Area Ambient Temperature Range: Minimum 18 to 38 degrees C (65 to 100 degrees F) continuously, beginning 48 hours before installation. Maintain room temperature above 18 degrees C (65 degrees F) after installation.
- 2. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant resilient sheet flooring against material and manufacturing defects.
 - 1. Warranty Period: 2 years.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Sheet Flooring:
 - 1. Critical Radiant Flux: ASTM E648; 0.45 watts per sq.cm or more, Class I.
 - 2. Smoke Density: ASTM E662; less than 450.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Color Schedule Key in Drawings.
- B. Provide vinyl sheet color and pattern from one production run.
- C. Sustainable Construction Requirements:

2.3 WELDED SEAM SHEET FLOORING

- 1. non-cushioned, directional commercial resilient Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Flooring Adhesives and Sealants.
 - b. Vinyl Sheet Flooring.
- B. sheet flooring.
 - 1. Wear Surface: Embossed and/or Smooth.
 - 2. Wear Layer Thickness: 20 mils.
 - 3. Total Thickness: 2.3 mm (1/8 inches).
 - 4. Topcoat: HP Urethane Coating with Ceramic Bead

- 5. Antimicrobial: Nano Silver or TekDefend- incorporated into the wear layer.
- 6. Backing Class B per ASTM F 1303: Fused backing system
- 7. Residual Indentation: ASTM F-970 Fed. St. 501A-3231 Type 1 (1000 p.s.i.)
- 8. Resistance to solvents: Complies with ASTM F1303
- 9. Smoke Density ASTM-662-03 <Pass
- C. Sheet Size: Provide maximum size sheet produced by manufacturer to minimize joints.
 - 1. Size: 96" x 75 feet roll.

2.4 ACCESSORIES

- A. Bonding Chemical: Flooring manufacturer's standard seam bonding chemical.
- B. Welding Rod: Flooring manufacturer's standard, in color matching field color of sheet flooring.
- C. Adhesives: Water resistant type recommended by flooring manufacturer to suit application.
- D. Base Accessories:
 - 1. Fillet Strip: 19 mm (3/4 inch) radius fillet strip compatible with flooring material.
 - 2. Cap Strip: J-Shape extruded flanged reducer strip compatible with flooring material approximately 25 mm (1 inch) exposed height with 13 mm (1/2 inch) flange.
- E. Leveling Compound:
 - 1. Provide cementitious type with latex or polyvinyl acetate resins additive.
- F. Primer:
 - 1. Type recommended by adhesive or flooring manufacturer.
- G. Edge Strips:
 - 1. Extruded aluminum, mill finish, mechanically cleaned.
 - 2. 28 mm (1-1/8 inch) wide, 6 mm (1/4 inch) thick, bevel one edge to 3 mm (1/8 inch) thick.
 - 3. Drill and counter sink edge strips for flat head screws. Space holes near ends and approximately 225 mm (9 inches) on center.
 - 4. Fasteners: Stainless steel, type to suit application.
- H. Polish: Type recommended by flooring manufacturer to suit application and anticipated traffic.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing sheet flooring to permit new installation.
 - 1. Do not use solvents for removing adhesives.
 - 2. Dispose of removed materials.
- D. Ensure interior finish work such as plastering, drywall finishing, concrete, terrazzo, ceiling work, and painting work is complete and dry before installation.
 - 1. Complete mechanical, electrical, and other work above ceiling line.
 - Ensure heating, ventilating, and air conditioning systems are installed and operating in order to maintain temperature and humidity requirements.
- E. Correct substrate deficiencies.
 - 1. Fill cracks, pits, and dents with leveling compound.
 - 2. Grind, sand, or cut away protrusions. Grind high spots.
 - 3. Level flooring substrate to 3 mm (1/8 inch) maximum variation.
- F. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
 - 2. Surface Profile: ICRI 310.2R CSP 3 to CSP 4.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.
- H. Broom or vacuum clean substrates immediately before flooring installation.
- I. Primer: Apply primer according to manufacturer's instructions.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 INSTALLATION OF FLOORING

- A. Flooring Layout:
 - Arrange pattern in one direction with side and end joints pattern matched

- 2. Extend flooring wall-to-wall, under cabinets, casework, laboratory and pharmacy furniture, and other equipment for seamless flooring installation.
- 3. Arrange sheets to minimize seams.
- 4. Locate seams in inconspicuous and low traffic areas, minimum 150 mm (6 inches) away from parallel joints in flooring substrates.
- B. Match edges of flooring for color shading and pattern at seams.
- C. Install flooring flush with adjacent floor finishes.
- D. Extend flooring into toe spaces, door reveals, closets, and similar openings.
- E. Install flooring fully adhered to substrate.
 - 1. Air pockets or loose edges are not acceptable.
 - 2. Trim sheet materials tight to flooring penetrations; seal joints at pipe with waterproof sealant specified in Section 07 92 00, JOINT SEALANTS.
- F. Butt joints tight, without gaps and bulges.
- G. Installation of Edge Strips:
 - 1. Install edge strips at flooring terminations and transitions to other floor finishes.
 - Locate edge strips under center lines of doors unless otherwise indicated.
 - 3. Set edge strips in adhesive and mechanically fasten to substrate.
- H. SPECIAL INSTALLATION NOTE: Due to the high vinyl content of this product, it is recommended to be acclimated to the space, backrolled and weighted during installation due to roll memory of the product. Contact manufacturer for specific installation instructions.

3.4 INTEGRAL COVE BASE INSTALLATION

- A. Set preformed fillet strip at floor intersection with walls and other vertical surfaces.
- B. Extend flooring over fillet strip and 150 mm (6 inches) up wall surface.
- C. Form straight or radius internal and external corners to suit Application.
- D. Adhere base to wall surface.
- E. Terminate base exposed top edge with cap strip. Seal cap strip to wall with sealant.
- F. Weld joints as specified for flooring.

3.5 HEAT WELDING

- A. Heat weld joints of flooring and base using welding rod.
- B. Rout joint, insert welding rod into routed space, and fuse flooring and welding rods for seamless, watertight installation.
 - 1. Fuse joints for seamless weld.
- C. Finish joints flush, free from voids, and recessed or raised areas.

3.6 CHEMICAL WELDING

- A. Chemically weld joints of flooring and base using bonding chemical.
 - 1. Avoid excess bonding chemical and damage to flooring surfaces.
- B. Apply bonding chemical to fuse flooring for seamless, watertight installation.
- C. Finish joints flush, free from voids, and recessed or raised areas.

3.7 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean and polish materials.
- C. Vacuum floor thoroughly.
- D. Perform initial maintenance according to flooring manufacturer's instructions.
 - 1. Delay washing flooring until adhesive is fully set and welded joints can contain wash water.

3.8 PROTECTION

- A. Protect flooring from traffic and construction operations.
- B. Keep traffic off sheet flooring for minimum 24 hours after installation.
- C. Cover flooring with reinforced kraft paper, and plywood or hardboard.
- D. Remove protective materials immediately before acceptance.
- E. Repair damage.

---END---

SECTION 09 65 19 RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the installation of solid vinyl tile flooring, rubber tile, and accessories required for a complete installation.

1.2 RELATED WORK:

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Resilient Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.
- C. Subfloor Testing and Preparation: Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.
- D. Removal of Existing Construction Containing Asbestos:

 Section 02 82 13.19, ASBESTOS FLOOR TILE AND MASTIC ABATEMENT.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals as described below:
 - Volatile organic compounds per volume as described in PART 2 - PRODUCTS.
 - Postconsumer and preconsumer recycled content as described in PART 2 - PRODUCTS.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Resilient material manufacturer's recommendations for adhesives, underlayment, primers, and polish.
 - 3. Application, installation and maintenance instructions.

D. Samples:

- 1. Tile: Each type, color, thickness and finish.
- 2. Edge Strips: Each type, color, thickness and finish.
- 3. Feature Strips: Each type, color, thickness and finish.

E. Shop Drawings:

- 1. Layout of patterns as shown on the construction documents.
- 2. Edge strip locations showing types and detail cross sections.

F. Test Reports:

 Abrasion resistance: Depth of wear for each tile type and color and volume loss of tile, certified by independent laboratory. Tested per ASTM F510/F510M. 2. Moisture and pH test results as per Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

1.4 DELIVERY:

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation are not acceptable.

1.5 STORAGE:

A. Store materials in a clean, dry, enclosed space off the ground, protected from harmful weather conditions and at temperature and humidity conditions recommended by the manufacturer. Protect adhesives from freezing. Store flooring, adhesives, and accessories in the spaces where they will be installed for at least 48 hours before beginning installation.

1.6 QUALITY ASSURANCE:

- A. Installer Qualifications: A company specializing in installation with minimum three (3) years' experience and employs experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program.
 - 1. Installers to be certified by INSTALL or a comparable certification program with the following minimum criteria:
 - a. US Department of Labor approved four (4) year apprenticeship program, 160 hours a year.
 - b. Career long training.
 - c. Manufacturer endorsed training.
 - d. Fundamental journeyman skills certification.
- B. Furnish product type materials from the same production run.

1.7 WARRANTY:

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.8 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

	D2047-11	.Test Method for Static Coefficient of Friction
		of Polish-Coated Flooring Surfaces as Measured
		by the James Machine
	D2240-05 (R2010)	.Test Method for Rubber Property-Durometer
		Hardness
	D4078-02 (R2008)	.Water Emulsion Floor Finish
	E648-14c	.Critical Radiant Flux of Floor Covering Systems
		Using a Radiant Energy Source
	E662-14	.Specific Optical Density of Smoke Generated by
		Solid Materials
	E1155/E1155M-14	.Determining Floor Flatness and Floor Levelness
		Numbers
	F510/F510M-14	.Resistance to Abrasion of Resilient Floor
		Coverings Using an Abrader with a Grit Feed
		Method
	F710-11	.Preparing Concrete Floors to Receive Resilient
		Flooring
	F925-13	.Test Method for Resistance to Chemicals of
		Resilient Flooring
	F1344-12 (R2013)	.Rubber Floor Tile
		.Solid Vinyl Floor Tile
	F1869-11	.Test Method for Measuring Moisture Vapor
		Emission Rate of Concrete Subfloor Using
		Anhydrous Calcium Chloride
	F2170-11	.Test Method for Determining Relative Humidity
		in Concrete Floor Slabs Using in Situ Probes
	F2195-13	
С.	Code of Federal Regulat	
	40 CFR 59	.Determination of Volatile Matter Content, Water
		Content, Density Volume Solids, and Weight
		Solids of Surface Coating

D. International Standards and Training Alliance (INSTALL):

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS:

- A. Provide adhesives, underlayment, primers, and polish recommended by resilient floor material manufacturer.
- B. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E648.

- C. Smoke Density: Less than 450 per ASTM E662.
- D. Slip Resistance Not less than 0.5 when tested with ASTM D2047.

2.2 RUBBER TILE:

- A. Tile Standard: ASTM F1344, Class I-A, homogeneous rubber tile, solid color.
- B. Hardness: Not less than 85 as required by ASTM F1344 , measured using Shore, Type A durometer per ASTM D2240.
- C. Wearing Surface: Smooth .
- D. Thickness: 3.2 mm (0.125 inch).
- E. Size: $610 \times 610 \text{ mm} (24 \times 24 \text{ inches})$.

2.4 SOLID VINYL-TILE:

- A. Tile Standard: ASTM F1700.
 - 1. Class: Class I, monolithic vinyl tile.
 - 2. Type: A, smooth surface .
- B. Thickness: 3.2 mm (0.125 inch) .
- C. Size: .

2.6 ADHESIVES:

A. Provide water resistant type adhesive for flooring, base and accessories as recommended by the manufacturer to suit substrate conditions. VOC content to be less than the 50 grams/L when calculated according to 40 CFR 59 (EPA Method 24). Submit manufacturer's descriptive data, documentation stating physical characteristics, and mildew and germicidal characteristics.

2.7 PRIMER FOR CONCRETE SUBFLOORS:

A. Provide in accordance with Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

2.8 LEVELING COMPOUND FOR CONCRETE FLOORS:

A. Provide cementitious products with latex or polyvinyl acetate resins in the mix in accordance with Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.

2.9 POLISH AND CLEANERS:

- A. Cleaners: As recommended in writing by floor tile manufacturer.
- B. Polish: ASTM D4078.

2.10 MOULDING:

A. Provide tapered mouldings of rubber and types as indicated on the construction documents for both edges and transitions of flooring materials specified. Provide vertical lip on moulding of maximum 6 mm

- (1/4 inch). Provide bevel change in level between 6 and 13 mm (1/4 and 1/2 inch) with a slope no greater than 1:2.
- B. Fasteners for Aluminum Mouldings: Stainless steel of type required for substrate condition.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS:

- A. Maintain flooring materials and areas to receive resilient flooring at a temperature above 20 degrees C (68 degrees F) for three (3) days before application, during application and two (2) days after application, unless otherwise directly by the flooring manufacturer for the flooring being installed. Maintain a minimum temperature of 13 degrees C (55 degrees F) thereafter. Provide adequate ventilation to remove moisture from area and to comply with regulations limiting concentrations of hazardous vapors.
- B. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR TESTING AND PREPARATION:

- A. Prepare and test surfaces to receive resilient tile and adhesive as per Section 09 05 16, SUBSURFACE PREPARATION FOR FLOOR FINISHES.
 - 1. Remove existing resilient floor and existing adhesive.
- B. Prepare concrete substrates in accordance with ASTM F710.

3.3 INSTALLATION:

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance is not acceptable.
- C. Tile Layout:
 - 1. If layout is not shown on construction documents, lay tile symmetrically about center of room or space with joints aligned.
 - 2. Vary edge width as necessary to maintain full size tiles in the field, no edge tile to be less than 1/2 the field tile size, except where irregular shaped rooms make it impossible.
 - 3. Place tile pattern in the same direction; do not alternate tiles unless specifically indicated in the construction documents to the contrary.
- D. Application:

- 1. Adhere floor tile to flooring substrates using a full spread of adhesive applied to substrate to produce a completed installation without open cracks, voids, raising and puckering at joints, telegraphing of adhesive spreader marks, and other surface imperfections.
- Scribe, cut, and fit floor tiles to butt neatly and tightly to vertical surfaces and permanent fixtures including built-in furniture, cabinets, pipes, outlets, and door frames.
- 3. Extend floor tiles into toe spaces, door reveals, closets, and similar openings. Extend floor tiles to center of door openings.
- 4. Roll tile floor with a minimum 45 kg (100 pound) roller.
- E. Seal joints at pipes with sealants in accordance with Section 07 92 00, JOINT SEALANTS.
- F. Installation of Edge Strips:
 - 1. Locate edge strips under center line of doors unless otherwise shown on construction documents.
 - 2. Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws.
 - 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
 - 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

3.4 CLEANING AND PROTECTION:

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean flooring as recommended in accordance with manufacturer's printed maintenance instructions and within the recommended time frame. As required by the manufacturer, apply the recommended number of coats and type of polish and/or finish in accordance with manufacturer's written instructions.
- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by COR. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by COR.

E. When protective materials are removed and immediately prior to acceptance, replace damaged tile and mouldings, re-clean resilient materials.

3.5 LOCATION:

- A. Unless otherwise indicated in construction documents, install tile flooring, under areas where casework, laboratory and pharmacy furniture and other equipment occur.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

SECTION 09 67 23.20 RESINOUS (EPOXY BASE) WITH VINYL CHIP BROADCAST (RES-2)

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies Resinous (Resinous epoxy base with vinyl chip flake broadcast) flooring with integral cove base:
 - 1. Res-2 Resinous (epoxy) vinyl chip flake broadcast flooring system.

1.2 RELATED WORK

- A. Concrete and Moisture Vapor Barrier: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Substrate Preparation for Floor Finishes: Section 09 05 16.
- C. Color and location of each type of resinous flooring: As indicated in drawings.
- D. Floor Drains: Division 22, PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product to be provided.
 - 2. Application and installation instructions.
 - 3. Maintenance Instructions: Submit manufacturer's written instructions for recommended maintenance practices.
- C. Qualification Data: For Installer.
- D. Sustainable Submittal:
 - Product data for products having recycled content, submit documentation indicating percentages by weight of post-consumer and pre-consumer recycled content.
 - a. Include statements indicating costs for each product having recycled content.
 - Product data for field applied, interior, paints, coatings, and primers, include printed statement of VOC content indicating compliance with environmental requirements.

E. Samples:

- 1. Samples for verification: For each (color and texture) resinous flooring system required, 6 inches (152 mm) square, applied to a rigid backing by installer for this project.
- 2. Sample showing construction from substrate to finish surface in thickness specified and color and texture of finished surfaces.

Finished flooring must match the approved samples in color and texture.

- F. Shop Drawings: Include plans, sections, component details, and attachment to other trades. Indicate layout of the following:
 - 1. Patterns.
 - 2. Edge configurations.
- G. Certifications and Approvals:
 - 1. Manufacturer's certification of material and substrate compliance with specification.
 - 2. Manufacturer's approval of installers.
 - 3. Contractor's certificate of compliance with Quality Assurance requirements.
- H. Warranty: As specified in this section.

1.4 QUALITY ASSURANCE

- A. Manufacture Certificate: Manufacture shall certify that a particular resinous flooring system has been manufactured and in use for a minimum of five (5) years.
- B. Installer Qualifications: Engage an experienced installer (applicator) who is experienced in applying resinous flooring systems similar in material, design, and extent to those indicated for this project for a minimum period of five (5) years, whose work has resulted in applications with a record of successful in-service performance, and who is acceptable to resinous flooring manufacturer.
 - Engage an installer who is certified in writing by resinous flooring manufacturer as qualified to apply resinous flooring systems indicated.
 - 2. Contractor shall have completed at least ten (10) projects of similar size and complexity. Include list of at least five (5) projects. List must include owner (purchaser); address of installation, contact information at installation project site; and date of installation.
 - 3. Installer's Personnel: Employ persons trained for application of specified product.

C. Source Limitations:

 Obtain primary resinous flooring materials including primers, resins, hardening agents, grouting coats and finish or sealing coats from a single manufacturer.

- 2. Provide secondary materials, including patching and fill material, joint sealant, and repair material of type and from source recommended by manufacturer of primary materials.
- D. Pre-Installation Conference:
 - 1. Convene a meeting not less than thirty days prior to starting work.
 - 2. Attendance:
 - a. Contractor
 - b. VA COR
 - c. Manufacturer and Installer's Representative
 - 3. Review the following:
 - a. Environmental requirements
 - 1) Air and surface temperature
 - 2) Relative humidity
 - 3) Ventilation
 - 4) Dust and contaminates
 - b. Protection of surfaces not scheduled to be coated
 - c. Inspect and discus condition of substrate and other preparatory work performed
 - d. Review and verify availability of material; installer's personnel, equipment needed
 - e. Design and pattern and edge conditions.
 - f. Performance of the coating with chemicals anticipated in the area receiving the resinous (urethane and epoxy mortar/cement) flooring system
 - g. Application and repair
 - h. Field quality control
 - i. Cleaning
 - j. Protection of coating systems
 - k. One-year inspection and maintenance
 - 1. Coordination with other work
- E. Manufacturer's Field Services: Manufacturer's representative shall provide technical assistance and guidance for surface preparation and application of resinous flooring systems.
- F. Contractor Job Site Log: Contractor shall document daily; the work accomplished environmental conditions and any other condition event significant to the long-term performance of the urethane and epoxy mortar/cement flooring materials installation. The Contractor shall maintain these records for one year after Substantial Completion.

1.5 MATERIAL PACKAGING DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Protect materials from damage and contamination in storage or delivery, including moisture, heat, cold, direct sunlight, etc.
- C. Maintain temperature of storage area between 60- and 80-degrees F (15 and 26 degrees C).
- D. Keep containers sealed until ready for use.
- E. Do not use materials beyond manufacturer's shelf-life limits.
- F. Package materials in factory pre-weighed and in single, easy to manage batches sized for ease of handling and mixing proportions from entire package or packages. No On site weighing or volumetric measurements are allowed.

1.6 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with resinous flooring manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous flooring application.
 - 1. Maintain material and substrate temperature between 65- and 85- degrees F (18 and 30 degrees C) during resinous flooring application and for not less than 24 hours after application.
 - 2. Concrete substrate shall be properly cured per referenced section 03 30 00, CAST-IN-PLACE CONCRETE. Standard cure time a minimum of 30 days. A vapor barrier must be present for concrete subfloors on or below grade.
 - a. Resinous flooring applications where moisture testing resulting in readings exceeding limits as defined in this specification under part 3, section 3.4, paragraph B, shall employ an multiple component 15 mil thick system designed to suppress excess moisture in concrete.
 - b. Application at a minimum thickness of 15 mils, over properly prepared concrete substrate as defined in section 3.4.
 - c. Moisture suppression system must meet the design standards as follows:

rioperty

Tensile Strength	ASTM D638	4,400 psi
Volatile Organic Compound Limits (V.O.C.)	EPA & LEED	25 grams per liter
Permeance	ASTM E96 @ 16mils/ 0.4mm on concrete	0.1 perms
Tensile Modulus	ASTM D638	1.9X10 ⁵ psi
Percent Elongation	ASTM D638	12%
Cure Rate	Per manufactures Data	4 hours Tack free with 24hr recoat window
Bond Strength	ASTM D7234	100% bond to concrete failure

- B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous flooring application.
- C. Close spaces to traffic during resinous flooring application and for not less than 24 hours after application, unless manufacturer recommends a longer period.

1.7 WARRANTY

- A. Work subject to the terms of the Article "Warranty of Construction" FAR clause 52.246-21.
- B. Warranty: Manufacture shall furnish a single, written warranty covering the full assembly (including substrata) for both material and workmanship for a extended period of three (3) full years from date of installation, or provide a joint and several warranty signed on a single document by manufacturer and applicator jointly and severally warranting the materials and workmanship for a period of three (3) full years from date of installation. A sample warranty letter must be included with bid package or bid may be disqualified.

1.8 APPLICABLE PUBLICATIONS

A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. ASTM Standard C722-04 (2012), "Standard Specification for Chemical-Resistant Monolithic Floor Surfacings," ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/C0722-04R12, www.astm.org.

C413-18Absorption of Chemical-Resistant Mortars,

1. Specification covers the requirements for aggregate-filled, resinbased, monolithic surfacings for use over concrete.

C. ASTM International (ASTM):

	-
	Grouts, Monolithic Surfacings, and Polymer
	Concretes
C531-18	.Linear Shrinkage and Coefficient of Thermal
	Expansion of Chemical-Resistant Mortars,
	Grouts, Monolithic Surfacings, and Polymer
	Concretes
D638-14	.Tensile Properties of Plastics
D790-17	.Flexural Properties of Unreinforced and
	Reinforced Plastics and Electrical Insulating
	Materials
D1308-02	.Effect of Household Chemicals on Clear and
	Pigmented Organic Finishes
D2240-15e1	.Rubber Property-Durometer Hardness
D4060-19	.Abrasion Resistance of Organic Coatings by the
	Taber Abraser
D4226-19	.Impact Resistance of Rigid (Poly-Vinyl
	Chloride) (PVC) Building Products
D4259-18	.Abrading Concrete to alter the surface profile

E96/E96M-16)Water Vapor Transmission of Materials

F1869-16aMeasuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium

of the concrete and to remove foreign materials

Chloride

F2170-19aDetermining Relative Humidity in Concrete Floor Slabs Using in situ Probes

and weak surface laitance

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION FOR RES-2 (BROADCAST VINYL CHIP FLAKE)

- A. System Descriptions:
 - Monolithic, multi-component epoxy chemistry resinous flooring system. Primer with broadcast quartz aggregates, High performance

multi-component solvent free epoxy undercoat, Vinyl chip flake broadcast media in desired flake size (1/8"). High performance multi component epoxy and solvent free sealers. System overall thickness 2-3mm.

- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up.
- C. System Components: Verify specific requirements as systems vary by manufacturer. Verify build up layers of broadcast and installation method. Verify compatibility with substrate. Use manufacturer's standard components, compatible with each other and as follows:
 - 1. Primer with Broadcast quartz (primer coat):
 - a. Resin: epoxy.
 - b. Formulation Description: Multiple component high solids.
 - c. Application Method: squeegee, back roll and broadcast.
 - d. Thickness of coat(s): 10-20 mil.
 - e. Number of Coats: One.
 - f. Aggregates: Quartz broadcast into wet epoxy primer.
 - 2. Undercoat: (body coat)
 - a. Resin: Epoxy.
 - b. Formulation Description: Pigmented multi-component, high solids.
 - c. Application Method: Notched squeegee and Back roll
 - d. Number of Coats: One.
 - e. Aggregates: vinyl chip flake broadcast into wet Undercoat.
 - f. Thickness of coat(s): 30-60 mils.
 - q. Number of Coats: One.
 - 3. Sealer coat:
 - a. Resin: Epoxy.
 - b. Formulation Description: Multiple component high solids, no solvent UV stable.
 - c. Type/Finish: Clear Gloss.
 - d. Thickness of coat(s): 5-10 mils.
 - e. Number of Coats: (2) two.
 - f. Application: Squeegee and finish roll.
- D. System Characteristics:
 - 1. Color and Pattern: As selected by COR from manufacturer's standard colors.

- 2. Integral cove base: ½ inch radius epoxy mortar cove keyed into concrete substrate and or resinous flooring mortar system. No fillers integral cove base must be troweled in place with specified resinous mortar base.
- 3. Overall System Thickness: Nominal 1/8", 2 to 3 mm.
- 4. Finish: slip resistant.
- 5. Temperature Range: Systems vary by manufacturer; approximate range from a minimum of 45 to 150 degrees F.
- E. Physical Properties:
 - 1. Physical Properties of flooring system when tested as follows:
- F. Chemical Resistance in accordance ASTM D1308 02(2007) "Standard Test

. Chemical Resistance in ac	COLUMNICC ADIA DISOC	02 (2007) Scandard IV
Property	Test	Value
Tensile Strength	ASTM D638	5,200 psi
Volatile Organic Compound Limits (V.O.C.)	EPA & LEED	Below 100 g/l
Flexural Strength	ASTM D790	4,000 psi
Water Absorption	ASTM C413	0.056%
Impact Resistance	ASTM D4226	> 160 in. lbs
Abrasion Resistance	ASTM D4060 CS-17	0.03 gm maximum weight loss
Thermal Coefficient of Linear Expansion	ASTM C531	17 x 10-6 in/in °F
Hardness Shore D	ASTM D2240	85 to 90
Bond Strength	ASTM D7234	100% bond to concrete failure

Method for Effect of Household Chemicals on Clear and Pigmented Organic Finishes". ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/D1308-02R07, www.astm.org. No effect to the following exposures:

- 1. Acetic acid (5 percent)
- 2. Ammonium hydroxide (10 percent)
- 3. Citric Acid (50 percent)
- 4. Fatty Acid
- 5. Motor Oil, 20W
- 6. Hydrochloric acid (20 percent)

- 7. Sodium Chloride
- 8. Sodium Hypochlorite (10 percent)
- 9. Sodium Hydroxide (30 percent)
- 10. Sulfuric acid (25 percent)
- 11. Urine, Feces
- 12. Hydrogen peroxide (10 percent)

2.2 SUPPLEMENTAL MATERIALS

- A. Textured Topcoat: Type recommended or produced by manufacturer of seamless resinous flooring system, slip resistance for desired final finish
- B. Joint Sealant: Type recommended or produced by resinous flooring manufacturer for type of service or joint conditioned indicated.
- C. Waterproof Membrane: Type recommended or produced by manufacturer of resinous floor coatings for type of service and conditions as indicated in Drawings.
- D. Provide a chemical resistant epoxy novolac top-coat capable of resisting sustained temperatures up to 120 degrees C (250 degrees F).
- E. Crack Isolation Membrane: Type recommended or produced by manufacturer of resinous flooring for conditions as indicated in Drawings.
- F. Anti-Microbial Additive: Incorporate anti-microbial chemical additive to prevent growth of most bacteria, algae, fungi, mold, mildew, yeast, etc.
- G. Patching and Fill Material: Resinous product of or approved by resinous coating manufacturer for application indicated. Resinous based materials only. Cementitious or single component product are not expectable.

PART 3 - EXECUTION

3.1 INSPECTION

- A. Examine the areas and conditions where monolithic resinous system with integral base is to be installed with the VA COR.
- B. Moisture Vapor Emission Testing: Perform moisture vapor transmission testing in accordance with ASTM F1869 to determine the MVER of the substrate prior to commencement of the work. See section 3.4, 3.

3.2 PROJECT CONDITIONS

A. Maintain temperature of rooms (air and surface) where work occurs, between 70- and 90-degrees F (21 and 32 degrees C) for at least 48 hours, before, during, and 24 hours after installation. Maintain temperature at least 70 degrees F (21 degrees C) during cure period.

- B. Maintain relative humidity less than 75 percent.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.
- D. Maintain proper ventilation of the area during application and curing time period.
 - 1. Comply with infection control measures of the VA Medical Center.

3.3 INSTALLATION REQUIREMENTS

- A. The manufacturer's instructions for application and installation shall be reviewed with the VA COR for the seamless resinous (urethane and epoxy mortar) flooring system with integral cove base.
- B. Substrate shall be approved by manufacture technical representative.

3.4 PREPARATION

- A. General: Prepare and clean substrates according to resinous flooring manufacturer's written instructions for substrate indicated. Provide clean, dry, and neutral Ph substrate for resinous flooring application.
- B. Concrete Substrates: Provide sound concrete surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible with resinous flooring.
 - 1. Prepare concrete substrates as follows:
 - a. Shot-blast surfaces with an apparatus that abrades the concrete surface, contains the dispensed shot within the apparatus, and re circulates the shot by vacuum pickup.
 - b. Comply with ASTM D4259 requirements, unless manufacturer's written instructions are more stringent.
 - 2. Repair damaged and deteriorated concrete according to resinous flooring manufacturer's written recommendations.
 - 3. Verify that concrete substrates are dry.
 - a. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisturevapor-emission rate of [3 lb of water/1000 square feet (1.36 kg of water/92.9 square meters) in 24 hours. Per manufacturers recommendations.
 - b. MVT threshold for monolithic resinous flooring shall not exceed 3 lbs/1000 square feet (0.0001437 kPa) in a 24-hour period.
 - c. When MVT emission exceeds this limit, apply manufacturer's recommended vapor control primer or other corrective measures as

- recommended by manufacturer prior to application of flooring or membrane systems.
- d. Perform in situ probe test, ASTM F2170. Proceed with application only after substrates do not exceed a maximum potential equilibrium relative humidity of 85 percent.
- e. Provide a written report showing test placement and results.
- 4. Verify that concrete substrates have neutral Ph and that resinous flooring will adhere to them. Perform tests recommended by manufacturer. Proceed with application only after substrates pass testing.
- C. Resinous Materials: Mix components and prepare materials according to resinous flooring manufacturer's written instructions.
- D. Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.
- E. Treat control joints and other nonmoving substrate cracks to prevent cracks from reflecting through resinous flooring according to manufacturer's written recommendations. Allowances should be included for flooring manufacturer recommended joint fill material, and concrete crack treatment.
- F. Prepare wall to receive integral cove base:
 - Verify wall material is acceptable for resinous flooring application, if not, install material (e.g. cement board) to receive base.
 - 2. Fill voids in wall surface to receive base, install undercoats (e.g. water proofing membrane, and/or crack isolation membrane) as recommended by resinous flooring manufacturer.
 - 3. Install base prior to flooring if required by resinous flooring manufacturer.
 - 4. Grind, cut or sand protrusions to receive base application.

3.5 APPLICATION

- A. General: Apply components of resinous flooring system according to manufacturer's written instructions to produce a uniform, monolithic wearing surface of thickness indicated.
 - Coordinate application of components to provide optimum adhesion of resinous flooring system to substrate, and optimum intercoat adhesion.

- Cure resinous flooring components according to manufacturer's written instructions. Prevent contamination during application and curing processes.
- 3. At substrate expansion and isolation joints, provide joint in resinous flooring to comply with resinous flooring manufacturer's written recommendations.
 - a. Apply joint sealant to comply with manufacturer's written recommendations.
- B. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate for all areas to receive integrated cove base.
- C. Apply cove base: Trowel to wall surfaces at a 1-inch radius, before applying flooring. Apply according to manufacturer's written instructions and details including those for taping, mixing, priming, and troweling, sanding, and top coating of cove base. Round internal and external corners.
- D. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate.
- E. Trowel mortar base: Mix mortar material according to manufacturer's recommended procedures. Climatic and non-climatic resinous flooring systems may vary slightly on mode of application. Application should be based upon the following: Uniformly spread mortar over substrate using a specially designed screed box adjusted to manufacturer's recommended height. Metal trowel (hand or power) single mortar coat in thickness indicated for flooring system, grout to fill substrate voids. When cured, sand to remove trowel marks and roughness.
- F. Broadcast: Immediately broadcast quartz silica aggregate into the primer using manufacturer's spray caster. Strict adherence to manufacturer's installation procedures and coverage rates is imperative.
- G. Under Coat: Mix base material according to manufacturer's recommended procedures. Uniformly spread mixed material over previously primed substrate using manufacturer's installation tool. Roll material with strict adherence to manufacturer's installation procedures and coverage rates.
- H. Broadcast: Immediately broadcast vinyl flakes into the body coat. Strict adherence to manufacturer's installation procedures and coverage rates is imperative.

- I. First Sealer: Remove excess un-bonded flakes by lightly brushing and vacuuming the floor surface. Mix and apply sealer with strict adherence to manufacturer's installation procedures.
- J. Second Sealer: Lightly sand first sealer coat. Mix and apply second sealer coat with strict adherence to manufacturer's installation procedures.

3.6 TOLERANCE

- A. From line of plane: Maximum 1/8 inch (3.18 mm) in total distance of flooring and base. Broadcast resinous flooring system will contour substrate. Deviation and tolerance are subject to concrete tolerance.
- B. From radius of cove: Maximum of 1/8 inch (3.18 mm) plus or 1/16-inch (1.59 mm) minus.

3.7 ENGINEERING DETAILS

- A. Chase edges to "lock" the flooring system into the concrete substrate along lines of termination.
- B. Penetration Treatment: Lap and seal resinous system onto the perimeter of the penetrating item by bridging over compatible elastomer at the interface to compensate for possible movement.
- C. Trenches: Continue flooring system into trenches to maintain monolithic protection. Treat cold joints to assure bridging of potential cracks.
- D. Treat floor drains by chasing the flooring system to lock in place at point of termination.
- E. Treat control joints to bridge potential cracks and to maintain monolithic protection. Treat cold joints and construction joints to bridge potential cracks and to maintain monolithic protection on horizontal and vertical surfaces as well as horizontal and vertical interfaces.
- F. Discontinue Resinous floor system at vertical and horizontal contraction and expansion joints by installing backer rod and compatible sealant after coating installation is completed. Provide sealant type recommended by manufacturer for traffic conditions and chemical exposures to be encountered.

3.8 CURING, PROTECTION AND CLEANING

- A. Cure resinous flooring materials in compliance with manufacturer's directions, taking care to prevent contamination during stages of application and prior to completion of curing process.
- B. Close area of application for a minimum of 24 hours.

- C. Protect resinous flooring materials from damage and wear during construction operation.
 - 1. Cover flooring with kraft type paper.
 - 2. Optional 6 mm (1/4 inch) thick hardboard, plywood, or particle board where area is in foot or vehicle traffic pattern, rolling or fixed scaffolding and overhead work occurs.
- D. Remove temporary covering and clean resinous flooring just prior to final inspection. Use cleaning materials and procedures recommended by resinous flooring manufacturer.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the painting and finishing as shown on the construction documents and/or specified herein, including, but not limited to, the following:
 - 1. Prime coats which may be applied in shop under other sections.
 - 2. Prime painting unprimed surfaces to be painted under this Section.
 - 3. Painting items furnished with a prime coat of paint, including touching up of or repairing of abraded, damaged or rusted prime coats applied by others.
 - 4. Painting ferrous metal (except stainless steel) exposed to view.
 - 5. Painting galvanized ferrous metals exposed to view.
 - 6. Painting interior concrete block exposed to view.
 - 7. Painting gypsum drywall exposed to view.
 - 8. Painting of wood exposed to view, except items which are specified to be painted or finished under other Sections of these specifications. Back painting of all wood in contact with concrete, masonry or other moisture areas.
 - 9. Painting pipes, pipe coverings, conduit, ducts, insulation, hangers, supports and other mechanical and electrical items and equipment exposed to view.
 - 10. Painting surfaces above, behind or below grilles, gratings, diffusers, louvers lighting fixtures, and the like, which are exposed to view through these items.
 - 11. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.
 - 12. Incidental painting and touching up as required to produce proper finish for painted surfaces, including touching up of factory finished items
 - 13. Painting of any surface not specifically mentioned to be painted herein or on construction documents, but for which painting is obviously necessary to complete the job, or work which comes within the intent of these specifications, is to be included as though specified.

1.2 **RELATED WORK**

A. Division 05 METALS: Shop prime painting of steel and ferrous metals.

- B. Division 08 OPENINGS: Shop prime painting of steel and ferrous metals.
- C. Section 08 14 00, INTERIOR WOOD DOORS: Prefinished flush doors with transparent finishes.
- D. Section 09 96 59, RESINOUS SPECIALTY GLAZED COATING SYSTEMS FOR WALLS, CEILINGS, WALLBOARD, AND BLOCK CMU (RES-W1, RES-W2): Glazed wall surfacing or tile like coatings.
- E. Section 09 96 59, RESINOUS SPECIALTY GLAZED COATING SYSTEMS FOR WALLS, CEILINGS, WALLBOARD, AND BLOCK CMU (RES-W1, RES-W2): Glazed wall surfacing or tile like coatings.
- F. Division 10 SPECIALTIES: Shop prime painting of steel and ferrous metals.
- G. Division 21 FIRE SUPPRESSION: Shop prime painting of steel and ferrous metals.
- H. Division 22 PLUMBING: Shop prime painting of steel and ferrous metals.
- I. Division 23 HEATING; VENTILATION AND AIR-CONDITIONING: Shop prime painting of steel and ferrous metals.
- J. Division 26 ELECTRICAL: Shop prime painting of steel and ferrous metals.
- K. Division 27 COMMUNICATIONS: Shop prime painting of steel and ferrous metals.
- L. Division 28 ELECTRONIC SAFETY AND SECURITY: Shop prime painting of steel and ferrous metals.
- M. Division 32 EXTERIOR IMPROVEMENTS: Shop prime painting of steel and ferrous metals.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Painter qualifications.
- C. Manufacturer's Literature and Data:
 - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature and technical data, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one (1) list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

D. Sample Panels:

- After painters' materials have been approved and before work is started, submit sample panels showing each type of finish and color specified.
- 2. Panels to Show Color: Composition board, 100 x 250 mm (4 x 10 inch).
- 3. Panel to Show Transparent Finishes: Wood of same species and grain pattern as wood approved for use, 100 x 250 mm (4 x 10 inch face) minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 x 50 mm (2 x 2 inch) minimum or actual wood member to show complete finish.
- 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Color Schedule Key in Drawings.
 - c. Product type and color.
 - d. Name of project.
- 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- E. Sample of identity markers if used.
- F. Manufacturers' Certificates indicating compliance with specified requirements:
 - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.
 - 2. High temperature aluminum paint.
 - 3. Epoxy coating.
 - 4. Intumescent clear coating or fire-retardant paint.
 - 5. Plastic floor coating.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
 - 6. Designation of paint code from COLOR SCHEDULE KEY in drawings.

- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. Specify Coat Types: Prime; body; finish; etc.
- C. Maintain space for storage, and handling of painting materials and equipment in a ventilated, neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 7 and 30 degrees C (45 and 85 degrees F).

1.5 QUALITY ASSURANCE

- A. Qualification of Painters: Use only qualified journeyman painters for the mixing and application of paint on exposed surfaces. Submit evidence that key personnel have successfully performed surface preparation and application of coating on a minimum of three (3) similar projects within the past three (3) years.
- B. Paint Coordination: Provide finish coats which are compatible with the prime paints used. Review other Sections of these specifications in which prime paints are to be provided to ensure compatibility of the total coatings system for the various substrates. Upon request from other subcontractors, furnish information on the characteristics of the finish materials proposed to be used, to ensure that compatible prime coats are used. Provide barrier coats over incompatible primers or remove and reprime as required. Notify the Contracting Officer Representative (COR) in writing of any anticipated problems using the coating systems as specified with substrates primed by others.

1.6 REGULATORY REQUIREMENTS

- A. Paint materials are to conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - 1. Volatile Organic Compounds (VOC) Emissions Requirements: Field-applied paints and coatings that are inside the waterproofing system to not exceed limits of authorities having jurisdiction.

2. Lead-Base Paint:

- a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
- b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of

- residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
- c. Do not use coatings having a lead content over 0.06 percent by weight of non-volatile content.
- 3. Asbestos: Provide materials that do not contain asbestos.
- 4. Chromate, Cadmium, Mercury, and Silica: Provide materials that do not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
- 5. Human Carcinogens: Provide materials that do not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints.

1.7 **SAFETY AND HEALTH**

- A. Apply paint materials using safety methods and equipment in accordance with the following:
 - 1. Comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis (AHA) as specified in Section 01 35 26, SAFETY REQUIREMENTS. The AHA is to include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.
- B. Safety Methods Used During Paint Application: Comply with the requirements of SSPC PA Guide 10.
- C. Toxic Materials: To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:
 - 1. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
 - 2. 29 CFR 1910.1000.
 - 3. ACHIH-BKLT and ACGHI-DOC, threshold limit values.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

 ACGIH TLV-BKLT-2012 Threshold Limit Values (TLV) for Chemical

 Substances and Physical Agents and Biological

 Exposure Indices (BEIs)
 - ACGIH TLV-DOC-2012Documentation of Threshold Limit Values and
 Biological Exposure Indices, (Seventh Edition)

C. ASME International (ASME):	
A13.1-07(R2013)Scheme for the Identification of Piping Syst	ems
D. Code of Federal Regulation (CFR):	
40 CFR 59Determination of Volatile Matter Content, Wa	ter
Content, Density Volume Solids, and Weight S	olids
of Surface Coating	
E. Commercial Item Description (CID):	
A-A-1272APlaster Gypsum (Spackling Compound)	
F. Federal Specifications (Fed Spec):	
TT-P-1411APaint, Copolymer-Resin, Cementitious (For	
Waterproofing Concrete and Masonry Walls) (C	EP)
G. Master Painters Institute (MPI):	
1Aluminum Paint	
3 Primer, Alkali Resistant, Water Based	
4Interior/ Exterior Latex Block Filler	
5Exterior Alkyd Wood Primer	
6 Exterior, Latex for Exterior Wood Primer	
7Exterior Oil Wood Primer	
8Exterior Alkyd, Flat MPI Gloss Level 1	
9 Exterior Alkyd Enamel MPI Gloss Level 6	
10Exterior Latex, Flat	
11Exterior Latex, Semi-Gloss	
15Exterior Latex, Low Sheen (MPI Gloss Level 3	-4)
17Primer, Bonding, Waterbased	
18Organic Zinc Rich Primer	
22Aluminum Paint, High Heat (up to 590% - 1100	F)
23Primer, Metal, Surface Tolerant	
27Exterior / Interior Alkyd Floor Enamel, Glos	S
31 Polyurethane, Moisture Cured, Clear Gloss	
36Knot Sealer	
39 Primer, Latex, for Interior Wood	
40 Exterior, Latex High Build	
42 Textured Coating, Latex, Flat	
43 Interior Satin Latex, MPI Gloss Level 4	
44	
45Interior Primer Sealer	
46Interior Enamel Undercoat	

47Interior Alkyd, Semi-Gloss, MPI Gloss Level 5	
48Interior Alkyd, Gloss, MPI Gloss Level 6	
50Interior Latex Primer Sealer	
51Interior Alkyd, Eggshell, MPI Gloss Level 3	
52Interior Latex, MPI Gloss Level 3	
53Interior Latex, Flat, MPI Gloss Level 1	
54Interior Latex, Semi-Gloss, MPI Gloss Level 5	
59Interior/Exterior Alkyd Porch & Floor Enamel, Low	r
Gloss	
60 Interior/Exterior Latex Porch & Floor Paint, Low	
Gloss	
66	ıC
Approved)	
67 Interior Latex Fire Retardant, Top-Coat (ULC	
Approved)	
68 Interior/ Exterior Latex Porch & Floor Paint,	
Gloss	
71 Polyurethane, Moisture Cured, Clear, Flat	
77Epoxy Cold Cured, Gloss	
79Marine Alkyd Metal Primer	
90Interior Wood Stain, Semi-Transparent	
91Wood Filler Paste	
94Exterior Alkyd, Semi-Gloss	
95Fast Drying Metal Primer	
98High Build Epoxy Coating	
99Sealer, Water-based, for Concrete Floors	
101 Epoxy Anti-Corrosive Metal Primer	
107 Primer, Rust-Inhibitive, Water-based	
108 High Build Epoxy Coating, Low Gloss	
113 Elastomeric, Pigmented, Exterior, Water-based,	
Flat	
114Interior Latex, Gloss	
115 Epoxy-Modified Latex, Interior Gloss (MPI gloss	
level 6)	
118Dry Fall, Latex Flat	
119 Exterior Latex, High Gloss (acrylic)	
134 Galvanized Water Based Primer	

```
135 ..... Non-Cementitious Galvanized Primer
  138 ...... Interior High Performance Latex, MPI Gloss Level 2
  139 ...... Interior High Performance Latex, MPI Gloss Level 3
  Level 5
  144 ......Latex, Interior, Institutional Low Odor / VOC,
                      (MPI Gloss Level 2)
  145 ......Latex, Interior, Institutional Low Odor / VOC,
                      (MPI Gloss Level 3)
  146 .....Latex, Interior, Institutional Low Odor / VOC,
                      (MPI Gloss Level 4)
  151 .....Light Industrial Coating, Interior, Water-based,
                      (MPI Gloss Level 3)
  153 .....Light Industrial Coating, Interior, Water-based,
                      (MPI Gloss Level 4)
  163 .....Exterior Water Based Semi-Gloss Light Industrial
                      Coating, MPI Gloss Level 5
  164 .....Exterior, Water Based, Gloss, Light Industrial
                      Coating, MPI Gloss Level 6
H. Society for Protective Coatings (SSPC):
  SSPC SP 1-82(R2004) ....Solvent Cleaning
  SSPC SP 2-82(R2004) .... Hand Tool Cleaning
  SSPC SP 3-28(R2004) ....Power Tool Cleaning
  SSPC SP 10/NACE No.2 ... Near-White Blast Cleaning
  SSPC PA Guide 10 ......Guide to Safety and Health Requirements
I. Maple Flooring Manufacturer's Association (MFMA):
J. U.S. National Archives and Records Administration (NARA):
  29 CFR 1910.1000 .....Air Contaminants
K. Underwriter's Laboratory (UL)
```

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents.

2.2 PAINT PROPERTIES:

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.
- C. Provide undercoat paint produced by the same manufacturer as the finish coats. Use only thinners approved by the paint manufacturer and use only to recommended limits.
- D. VOC Content: For field applications that are inside the weatherproofing system, paints and coating to comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
 - 1. Flat Paints and Coatings: 50 gram/liter.
 - 2. Non-flat Paints and Coatings: 150 gram/liter.
 - 3. Dry-Fog Coatings: 400 gram/liter.
 - 4. Primers, Sealers, and Undercoaters: 200 gram/liter.
 - 5. Anticorrosive and Antirust Paints applied to Ferrous Metals: 250 gram/liter.
 - 6. Zinc-Rich Industrial Maintenance Primers: 340 gram/liter.
 - 7. Pretreatment Wash Primers: 420 gram/liter.
- E. VOC test method for paints and coatings is to be in accordance with 40 CFR 59 (EPA Method 24). Part 60, Appendix A with the exempt compounds' content determined by Method 303 (Determination of Exempt Compounds) in the South Coast Air Quality Management District's (SCAQMD) "Laboratory Methods of Analysis for Enforcement Samples" manual.

2.3 PLASTIC TAPE:

- A. Pigmented vinyl plastic film in colors as specified in Color Schedule Key in Drawings or specified.
- B. Pressure sensitive adhesive back.
- C. Widths as shown on construction documents.

2.4 BIOBASED CONTENT

A. Paint products shall comply with following bio-based standards for biobased materials:

Material Type	Percent by Weight
Interior Paint	20 percent biobased material
Interior Paint- Oil Based and Solvent Alkyd	67 percent biobased material

Exterior Paint	20 percent biobased material
Wood & Concrete Stain	39 percent biobased content
Polyurethane Coatings	25 percent biobased content
Water Tank Coatings	59 percent biobased content
Wood & Concrete Sealer- Membrane Concrete Sealers	11 percent biobased content
Wood & Concrete Sealer- Penetrating Liquid	79 percent biobased content

B. The minimum-content standards are based on the weight (not the volume) of the material.

PART 3 - EXECUTION

3.1 JOB CONDITIONS:

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the COR and the product manufacturer. Under no circumstances are application conditions to exceed manufacturer recommendations.
 - c. When the relative humidity exceeds 85 percent; or to damp or wet surfaces; unless otherwise permitted by the paint manufacturer's printed instructions.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will warm.
 - 5. Apply only on clean, dry and frost-free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces only when allowed by manufacturer's printed instructions.

b. Concrete and masonry when permitted by manufacturer's recommendations, dampen surfaces to which water thinned acrylic and cementitious paints are applied with a fine mist of water on hot dry days to prevent excessive suction and to cool surface.

3.2 **INSPECTION:**

A. Examine the areas and conditions where painting and finishing are to be applied and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

3.3 GENERAL WORKMANSHIP REQUIREMENTS:

- A. Application may be by brush or roller. Spray application only upon acceptance from the COR in writing.
- B. Furnish to the COR a painting schedule indicating when the respective coats of paint for the various areas and surfaces will be completed. This schedule is to be kept current as the job progresses.
- C. Protect work at all times. Protect all adjacent work and materials by suitable covering or other method during progress of work. Upon completion of the work, remove all paint and varnish spots from floors, glass and other surfaces. Remove from the premises all rubbish and accumulated materials of whatever nature not caused by others and leave work in a clean condition.
- D. Remove and protect hardware, accessories, device plates, lighting fixtures, and factory finished work, and similar items, or provide in place protection. Upon completion of each space, carefully replace all removed items by workmen skilled in the trades involved.
- E. When indicated to be painted, remove electrical panel box covers and doors before painting walls. Paint separately and re-install after all paint is dry.
- F. Materials are to be applied under adequate illumination, evenly spread and flowed on smoothly to avoid runs, sags, holidays, brush marks, air bubbles and excessive roller stipple.
- G. Apply materials with a coverage to hide substrate completely. When color, stain, dirt or undercoats show through final coat of paint, the surface is to be covered by additional coats until the paint film is of uniform finish, color, appearance and coverage, at no additional cost to the Government.
- H. All coats are to be dry to manufacturer's recommendations before applying succeeding coats.

- I. All suction spots or "hot spots" in plaster after the application of the first coat are to be touched up before applying the second coat.
- J. Do not apply paint behind frameless mirrors that use mastic for adhering to wall surface.

3.4 SURFACE PREPARATION:

A. General:

- 1. The Contractor shall be held wholly responsible for the finished appearance and satisfactory completion of painting work. Properly prepare all surfaces to receive paint, which includes cleaning, sanding, and touching-up of all prime coats applied under other Sections of the work. Broom clean all spaces before painting is started. All surfaces to be painted or finished are to be completely dry, clean and smooth.
- 2. See other sections of specifications for specified surface conditions and prime coat.
- 3. Perform preparation and cleaning procedures in strict accordance with the paint manufacturer's instructions and as herein specified, for each particular substrate condition.
- 4. Clean surfaces before applying paint or surface treatments with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall in wet, newly painted surfaces.
- 5. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - a. Concrete: 12 percent.
 - b. Fiber-Cement Board: 12 percent.
 - c. Masonry (Clay and CMU's): 12 percent.
 - d. Wood: 15 percent.
 - e. Gypsum Board: 12 percent.
 - f. Plaster: 12 percent.

B. Wood:

- 1. Sand to a smooth even surface and then dust off.
- 2. Sand surfaces showing raised grain smooth between each coat.
- 3. Wipe surface with a tack rag prior to applying finish.

- 4. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
- 5. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
- 6. Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
- 7. Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.

C. Ferrous Metals:

- Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning).
- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. Fill flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- D. Zinc-Coated (Galvanized) Metal Surfaces Specified Painted:

- 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non-Cementitious Galvanized Primer) depending on finish coat compatibility.
- E. Masonry, Concrete, Cement Board, Cement Plaster and Stucco:
 - 1. Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - 2. Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.
 - 4. Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified in Section 04 05 13, MASONRY MORTARING. Do not fill weep holes. Finish to match adjacent surfaces.
 - 5. Neutralize Concrete floors to be painted by washing with a solution of 1.4 Kg (3 pounds) of zinc sulfate crystals to 3.8 L (1 gallon) of water, allow to dry three (3) days and brush thoroughly free of crystals.
 - 6. Repair broken and spalled concrete edges with concrete patching compound to match adjacent surfaces as specified in Division 03, CONCRETE Sections. Remove projections to level of adjacent surface by grinding or similar methods.
- F. Gypsum Plaster and Gypsum Board:
 - 1. Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.5 PAINT PREPARATION:

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.

- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two (2) component and two (2) part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.6 APPLICATION:

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three (3) coats; prime, body, and finish. When two (2) coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.
- E. Apply by brush or roller. Spray application for new or existing occupied spaces only upon approval by acceptance from COR in writing.
 - 1. Apply painting materials specifically required by manufacturer to be applied by spraying.
 - 2. In new construction and in existing occupied spaces, where paint is applied by spray, mask or enclose with polyethylene, or similar air tight material with edges and seams continuously sealed including items specified in "Building and Structural Work Field Painting"; "Work not Painted"; motors, controls, telephone, and electrical equipment, fronts of sterilizes and other recessed equipment and similar prefinished items.
- F. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

3.7 **PRIME PAINTING:**

- A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.

- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rabbets for stop and face glazing of wood, and for face glazing of steel.
- E. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Steel and iron: MPI 95 (Fast Drying Metal Primer). Use MPI 101 (Cold Curing Epoxy Primer) where finish is specified.
 - 2. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer).

F. Gypsum Board:

- 1. Surfaces scheduled to have MPI 52 (Interior Latex, MPI Gloss Level 3) and MPI 139 (Interior High Performance Latex, MPI 139 (Interior High Performance Latex MPI Gloss Level 5)
- 2. Primer: MPI 50 (Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) in shower and bathrooms.
- G. Concrete Floors: MPI 99 (Water-based Acrylic Curing and Sealing Compound).

3.8 EXTERIOR FINISHES:

- A. Apply following finish coats where specified in Color Schedule Key in Drawings.
- B. Steel and Ferrous Metal:
 - 1. Two (2) coats of MPI 94 (Exterior Alkyd, Semi-Gloss) on exposed surfaces, except on surfaces over 94 degrees C (201 degrees F).
 - 2. One (1) coat of MPI 22 (High Heat Resistant Coating) on surfaces over 94 degrees K (290 degrees F) and on surfaces of stacks and engine exhaust pipes.
- C. Machinery without factory finish except for primer: One (1) coat MPI 8 (Exterior Alkyd, Flat).
- D. Concrete Masonry Units Brick and Concrete:
 - 1. General:
 - a. Where specified in Color Schedule Key in Drawings or shown.
 - b. Mix as specified in manufacturer's printed directions.
 - c. Do not mix more paint than can be used within four (4) hours after mixing. Discard paint that has started to set.
 - d. Dampen warm surfaces above 24 degrees C (75 degrees F) with fine mist of water before application of paint. Do not leave free water on surface.
 - e. Cure paint with a fine mist of water as specified in manufacturer's printed instructions.

2. Use two (2) coats of TT-P-1411 (Paint, Co-polymer-Resin, Cementitious), unless specified otherwise.

3.9 INTERIOR FINISHES:

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Color Schedule Key in Drawings.
 - 1. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
- B. MPI 51 (Interior Alkyd, Eggshell) Gypsum Board:
 - 1. One (1) coat of MPI 50 (Interior Latex Primer Sealer) plus two (2) coats of MPI 51 (Interior High-Performance Latex, Eggshell) in toilets and Isolation Rooms.
 - One (1) coat of MPI 50 (Interior Latex Primer Sealer) MPI 46 (Interior Enamel Undercoat) plus two (2) coats of MPI 51 (Interior Latex, Eggshell.
 - 3. Two (2) coats of MPI 51 (Interior Alkyd, Eggshell).
 - a. Two (2) coats of MPI 51 (Interior Alkyd, Eggshell).
- C. Concrete Floors: One (1) coat of MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss).
- D. Miscellaneous:
 - 1. Apply where specified in Color Schedule Key in Drawings.
 - 2. MPI 1 (Aluminum Paint): Two (2) coats of aluminum paint.

3.10 REFINISHING EXISTING PAINTED SURFACES:

- A. Clean, patch and repair existing surfaces as specified under "Surface Preparation". No "telegraphing" of lines, ridges, flakes, etc., through new surfacing is permitted. Where this occurs, sand smooth and re-finish until surface meets with COR's approval.
- B. Remove and reinstall items as specified under "General Workmanship Requirements".
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.

- H. Sand or dull glossy surfaces prior to painting.
- I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.11 PAINT COLOR:

- A. Color and gloss of finish coats is specified in Color Schedule Key in Drawings.
- B. For additional requirements regarding color see Articles, "REFINISHING EXISTING PAINTED SURFACE" and "MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE".
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.12 BUILDING AND STRUCTURAL WORK FIELD PAINTING:

- A. Painting and finishing of interior and exterior work except as specified here-in-after.
 - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Color Schedule Key in Drawings.
 - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.
 - 4. Painting of wood with fire retardant paint exposed in attics, when used as mechanical equipment space (except shingles).
 - 5. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:

- a. Hardware except ferrous metal.
- b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
- c. Signs, fixtures, and other similar items integrally finished.

3. Concealed surfaces:

- a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
- b. Inside walls or other spaces behind access doors or panels.
- c. Surfaces concealed behind permanently installed casework and equipment.

4. Moving and operating parts:

- a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
- b. Tracks for overhead or coiling doors, shutters, and grilles.

5. Labels:

- a. Code required label, such as Underwriters Laboratories Inc.,

 Intertek Testing Service or Factory Mutual Research Corporation.
- b. Identification plates, instruction plates, performance rating, and nomenclature.

6. Galvanized metal:

- a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
- b. Gas Storage Racks.
- c. Except where specifically specified to be painted.
- 7. Metal safety treads and nosings.
- 8. Gaskets.

3.13 IDENTITY PAINTING SCHEDULE:

- A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing.
 - 1. Legend may be identified using snap-on coil plastic markers or by paint stencil applications.
 - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories

such as valves, regulators, strainers and cleanouts a minimum of 12.2 M (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.

- 3. Locate Legends clearly visible from operating position.
- 4. Use arrow to indicate direction of flow using black stencil paint.
- 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on construction documents where asterisk appears for High, Medium, and Low-Pressure designations as follows:
 - a. High Pressure 414 kPa (60 psig) and above.
 - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
 - c. Low Pressure 103 kPa (14 psig) and below.
 - d. Add Fuel oil grade numbers.
- 6. Legend name in full or in abbreviated form as follows:

	COLOR OF	COLOR OF	COLOR OF	LEGEND
PIPING	EXPOSED PIPING	BACKGROUND	LETTERS	ABBREVIATIONS
Blow-off		Green	White	Blow-off
Boiler Feedwater		Green	White	Blr Feed
A/C Condenser Wate	er			
Supply		Green	White	A/C Cond Wtr Sup
A/C Condenser Wate	er			
Return		Green	White	A/C Cond Wtr Ret
Chilled Water Supp	oly	Green	White	Ch. Wtr Sup
Chilled Water Retu	ırn	Green	White	Ch. Wtr Ret
Shop Compressed Ai	r	Blue	White	Shop Air
Air-Instrument Cor	ntrols	Green	White	Air-Inst Cont
Drain Line		Green	White	Drain
Emergency Shower		Green	White	Emg Shower
High Pressure Stea	am	Green	White	H.P*
High Pressure Cond	lensate			
Return		Green	White	H.P. Ret*
Medium Pressure St	ceam	Green	White	M. P. Stm*
Medium Pressure Co	ondensate			
Return		Green	White	M.P. Ret*
Low Pressure Steam	n	Green	White	L.P. Stm*
Low Pressure Conde	ensate			
Return		Green	White	L.P. Ret*
High Temperature W	Nater			
Supply		Green	White	H. Temp Wtr Sup
High Temperature W	Nater			

Return		Green	White	H. Temp Wtr Ret	
Hot Water Heating Supply		Green	White	H. W. Htg Sup	
Hot Water Heating Return		Green	White	H. W. Htg Ret	
Gravity Condensate Retu	ırn	Green	White	Gravity Cond Ret	
Pumped Condensate Retur	n	Green	White	Pumped Cond Ret	
Vacuum Condensate Retur	n	Green	White	Vac Cond Ret	
Boiler Water Sampling		Green	White	Sample	
Chemical Feed		Green	White	Chem Feed	
Continuous Blow-Down		Green	White	Cont. B D	
Pumped Condensate		Green	White	Pump Cond	
Pump Recirculating		Green	White	Pump-Recirc.	
Vent Line		Green	White	Vent	
Alkali		Orange	Black	Alk	
Bleach		Orange	Black	Bleach	
Detergent		Yellow	Black	Det	
Liquid Supply		Yellow	Black	Liq Sup	
Reuse Water		Yellow	Black	Reuse Wtr	
Cold Water (Domestic)	White	Green	White	C.W. Dom	
Hot Water (Domestic)					
Supply	White	Yellow	Black	H.W. Dom	
Return	White	Yellow	Black	H.W. Dom Ret	
Tempered Water	White	Yellow	Black	Temp. Wtr	
Ice Water					
Supply	White	Green	White	Ice Wtr	
Return	White	Green	White	Ice Wtr Ret	
Reagent Grade Water		Green	White	RG	
Reverse Osmosis		Green	White	RO	
Sanitary Waste		Green	White	San Waste	
Sanitary Vent		Green	White	San Vent	
Storm Drainage		Green	White	St Drain	
Pump Drainage		Green	White	Pump Disch	
Chemical Resistant Pipe	2				
Waste		Orange	Black	Acid Waste	
Vent		Orange	Black	Acid Vent	
Atmospheric Vent		Green	White	ATV	
Silver Recovery		Green	White	Silver Rec	
Oral Evacuation		Green	White	Oral Evac	
Fuel Gas		Yellow	Black	Gas	
Fire Protection Water					
Sprinkler	Red	Red	White	Auto Spr	
Standpipe Red Red White Stand		Stand			
Sprinkler	Red	Red	White	Drain	

B. Fire and Smoke Partitions:

- 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
- 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.
- 3. Locate not more than 6096 mm (20 feet) on center on corridor sides of partitions, and with a least one (1) message per room-on-room side of partition.
- 4. Use semi-gloss paint of color that contrasts with color of substrate.
- C. Identify columns in pipe basements and interstitial space:
 - 1. Apply stenciled number and letters to correspond with grid numbering and lettering indicated on construction documents.
 - 2. Paint numbers and letters 101 mm (4 inches) high, locate 45 mm (18 inches) below overhead structural slab.
 - 3. Apply on four (4) sides of interior columns and on inside face only of exterior wall columns.
 - 4. Color:
 - a. Use black on concrete columns.
 - b. Use white or contrasting color on steel columns.

3.14 PROTECTION CLEAN UP, AND TOUCH-UP:

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 09 96 59

RESINOUS SPECIALTY GLAZED COATING SYSTEMS FOR WALLS, CEILINGS, WALLBOARD, AND BLOCK CMU (RES-W1, RES-W2)

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Section includes surface preparation and application of highperformance seamless glazed wall coating system on new or existing surfaces including masonry CMU and wall board substrates.
 - 1. Interior substrates:
 - a. Concrete, vertical surfaces.
 - b. Clay masonry.
 - c. Concrete masonry units (CMU).
 - d. Wall board substrates.
- B. Wall systems consist of multi component epoxy and or urethane resins, primer base and finishing coats.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product to be provided.
 - 2. Application and installation instructions.
 - 3. Maintenance Instructions: Submit manufacturer's written instructions for recommended maintenance practices.
- C. Qualification Data: For Installer.
- D. Sustainable Submittal:
 - Product data for field applied, interior, paints, coatings, and primers, include printed statement of VOC content indicating compliance with environmental requirements.

E. Samples:

- Samples for verification: For each (color and texture) resinous wall/ceiling system required, 6 inches (152 mm) square, applied to a rigid backing by installer for this project.
- 2. Sample showing construction from substrate to finish surface in thickness specified and color and texture of finished surfaces. Finished resinous coating must match the approved samples in color and texture.
- F. Shop Drawings: Include plans, sections, component details, and attachment to other trades. Indicate layout of the following:

- 1. Patterns.
- 2. Edge configuration.
- G. Certification and Approval:
 - 1. Manufacturer's certification of material and substrata compliance.
 - 2. Manufacturer's approval of installer.
 - 3. Contractor's certificate of compliance with Quality Assurance requirements.
- H. Warranty: As specified in this section.

1.3 QUALITY ASSURANCE

- A. Manufacture Certificate: Manufacture shall certify that a particular resinous coating for wall/ceiling system has been in use for a minimum of five years.
- B. Manufacturer Field Technical Service Representatives: Resinous flooring manufacture shall retain the services of Field Technical Service Representatives who are trained specifically on installing the system to be used on the project.
 - 1. Field Technical Services Representatives shall be employed by the system manufacture to assist in the quality assurance and quality control process of the installation and shall be available to perform field problem solving issues with the installer.
- C. Installer Qualifications: Engage an installer who is certified in writing by resinous product manufacturer, who is experienced in applying resinous coating for wall/ceiling systems similar in material, design, and extent to those indicated for this project for a minimum period of 5 years, whose work has resulted in applications with a record of successful in-service performance, and who is acceptable to resinous coating for wall/ceiling manufacturer.
- D. Source Limitations:
 - Obtain resinous coating materials including primers, resins, hardening agents, grouting coats and finish or sealing coats from a single manufacturer.
- E. Mockups: Apply mockups of each coating system indicated to verify preliminary selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - Architect will select one surface to represent surfaces and conditions for application of each coating system specified in Part 3.

- a. Wall and Ceilings provide samples of at least 100 square feet
- b. Other Items: Architect will designate items or areas required.
- 2. Test mock-up with anticipated chemicals to be used in the designated area.
- 3. Approved mockups not damaged during the testing may become part of the completed work if undisturbed at time of Substantial Completion.
- 4. Sign off from VA COR on texture must be complete before installation of wall/ceiling system.
- 5. Final approval of color selections will be based on mockups.
 - a. Preliminary color selections are not approved; apply additional mockups of additional colors selected by Architect at no added cost to Owner.

F. Pre-Installation Conference

- 1. Convene a meeting not less than thirty days prior to starting work.
- 2. Attendance:
 - a. Contractor
 - b. VA COR
 - c. Manufacturer and Installer's Representative
- 3. Review the following:
 - a. Environmental requirements
 - 1) Air and surface temperature
 - 2) Relative humidity
 - 3) Ventilation
 - 4) Dust and contaminates
 - b. Protection of surfaces not scheduled to be coated
 - c. Inspect and discus condition of substrate and other preparatory work performed
 - d. Review and verify availability of material; installer's personnel, equipment needed
 - e. Design and pattern and edge conditions.
 - f. Performance of the coating with chemicals anticipated in the area receiving the resinous coating system
 - g. Application and repair
 - h. Field quality control
 - i. Cleaning
 - j. Protection of coating systems
 - k. One-year inspection and maintenance
 - 1. Coordination with other work

1.4 MATERIAL PACKAGING DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number, date of manufacture and mixing/thinning instructions.
- B. Protect materials from damage and contamination in storage or delivery, including moisture, heat, cold, direct sunlight, etc.
- C. Maintain temperature of storage area between 60- and 80-degrees F (15 and 26 degrees C).
- D. Keep containers sealed until ready for use.
- E. Do not use materials beyond manufacturer's shelf-life limits.
- F. Package materials in factory pre-weighed and in single, easy to manage batches sized for ease of handling and mixing proportions from entire package or packages.

1.5 PROJECT CONDITIONS

- A. Environmental Limitations: Comply with resinous wall/ceiling manufacturer's written instructions for substrate temperature, ambient temperature, moisture, ventilation, and other conditions affecting resinous wall/ceiling applications.
 - 1. Maintain material and substrate temperature between 65- and 85-degrees F (18 and 30 degrees C) during resinous wall/ceiling application and for not less than 24 hours after application.
- B. Lighting: Provide permanent lighting or, if permanent lighting is not in place, simulate permanent lighting conditions during resinous wall/ceiling application.
- C. Close spaces to traffic during resinous wall/ceiling application and for not less than 24 hours after application, unless manufacturer recommends a longer period.

1.6 WARRANTY

A. Warranty: Manufacture shall furnish a single, written warranty covering the full assembly (including substrata) for both material and workmanship for an extended period of (3) full years from date of installation or provide a joint and several warranty signed on a single document by manufacturer and applicator jointly and severally warranting the materials and workmanship for a period of (3) full years from date of installation. A sample warranty letter must be included with bid package or bid may be disqualified.

1.7 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

D412-16	.Vulcanized	Rubber	and	Thermoplastic	Elastomers-
	Tension				

D2240-15e1Rubber Property-Durometer Hardness

D4060-19Abrasion Resistance of Organic Coatings by the

Taber Abrader

C531-18-Linear Shrinkage and Coefficient of Thermal
Expansion of Chemical-Resistant Mortars,
Grouts, Monolithic Surfacings, and Polymer
Concretes

- C. Chemical Resistance in accordance ASTM D1308 02(2007) "Standard Test Method for Effect of Household Chemicals on Clear and Pigmented Organic Finishes". ASTM International, West Conshohocken, PA, 2006, DOI: 10.1520/D1308-02R07, www.astm.org. No effect to the following exposures:
 - 1. Acetic acid (5%)
 - 2. Ammonium hydroxide (10%)
 - 3. Citric Acid (50%)
 - 4. Fatty Acid
 - 5. Motor Oil, 20W
 - 6. Hydrochloric acid (20%)
 - 7. Sodium Chloride
 - 8. Sodium Hypochlorite (10%)
 - 9. Sodium Hydroxide (30%)
 - 10. Sulfuric acid (25%)
 - 11. Urine, Feces
 - 12. Hydrogen peroxide (10%)

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION (RES-W1)

A. Epoxy resinous wall system includes: High performance, high solids, high gloss pigmented wall system consisting of two component epoxy primers, and base coats. Optional: aliphatic polyurethane sealer finish

coat for higher UV stability, and chemical resistance. Formulated for long service, cures to a hard tile like finish.

- B. System Characteristics.
 - 1. Color and pattern: As indicated on drawings.
 - 2. Wearing Surface: Smooth
 - 3. Overall System Thickness: 10-15 mils.
- C. System Components: Manufactures standard components that are compatible with each other including primer, sealer, and finish coats as standard with manufacture of resinous system and as follows:
 - 1. Primer Formulation Description: Multi-component 100% solids epoxy.
 - 2. Body Coat:
 - a. Resin: Epoxy.
 - b. Formulation Description: Two component 100% solids.
 - c. Application Method: Dip and roll.
 - d. Coats: One.
 - e. Thickness: 10 mils (wet).
 - 3. Sealer Finish Coat:
 - a. Resin: epoxy
 - b. Formulation Description: Two Component 100% solids
 - c. Type: clear
 - d. Finish: Gloss
 - e. Number of coats: One or two
 - f. Application Method: back roll nap roller.
 - g. Optional 100% solids urethane for UV and increased chemical protection.
- D. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction.
 - 1. Flat Paints and Coatings: 50 grams/liter.
 - 2. Nonflat Paints and Coatings: 150 grams/liter.
 - 3. Primers, Sealers: 200 gram/liter.

2.2 SPECIAL WALL COATING SYSTEM.

A. Physical Properties of flooring system when tested as follows:

Property	Test	Value
Hardness	ASTM D2240	80-85
Abrasion Resistance	ASTM D4060	0.03 gm maximum weight loss
Fire Resistance of dry film	ASTM E84	Class A

Temperature Limitations	Continuous exposure Intermittent exposure	140°F/60°C 200°F/93°C
VOC		< 50 G/L
Bond Strength		100% to Substrate Failure

2.3 SYSTEM DESCRIPTION (RES-W2)

- A. Multi-layer, liquid applied flexible urethane wall system for high abuse applications. The system is designed for use on vertical services to provide a seamless, smooth, tough surface that promotes a sanitary environment. The system consists of a two-component, urethane elastomeric urethane base coat and two topcoats of two-component waterborne polyurethane.
- B. System Characteristics.
 - 1. Color and pattern: As indicated on drawings.
 - 2. Wearing Surface: Smooth
 - 3. Overall System Thickness: 12-15 mils.
- C. System Components: Manufactures standard components that are compatible with each other including primer, sealer, and finish coats as standard with manufacture of resinous system and as follows:
 - 1. Primer Formulation Description: Multi-component 100% solids epoxy.
 - 2. Formulation Description: Body Coat:
 - a. Resin: Urethane.
 - b. Formulation Description: Two component urethane membrane.
 - c. Application Method: Roller.
 - d. Coats: One
 - e. Thickness: 10 mils (wet).
 - 3. First Topcoat:
 - a. Resin: Waterborne aliphatic.
 - b. Formulation Description: Two Component, high solids.
 - c. Type: Pigmented.
 - d. Finish: Gloss.
 - e. Number of coats: One.
 - f. Application Method: back roll or spray apply.
 - 4. Second Topcoat:
 - a. Resin: Waterborne aliphatic.
 - b. Formulation Description: Two Component high solids.
 - c. Type: Pigmented.

- d. Finish: Gloss.
- e. Number of coats: One.
- f. Application Method: back roll or spray apply.
- g. Optional 100% solids urethane for UV and increased chemical protection.
- D. VOC Content: Products shall comply with VOC limits of authorities having jurisdiction.
 - 1. Flat Paints and Coatings: 50 g/L.
 - 2. Nonflat Paints and Coatings: 150 g/L.
 - 3. Primers, Sealers: 200 g/L.

2.4 SPECIAL WALL COATING SYSTEM.

A. Physical Properties of flooring system when tested as follows:

Property	Test	Value
Hardness	ASTM D2240	70
Elongation	ASTM D412	200%
Tensile Strength	ASTM D412	1200 psi
Abrasion Resistance	ASTM D4060 (CS-17 Wheel)	0.03 gm maximum weight loss
Fire Resistance of dry film	ASTM E84	Class B Flame Spread 40 Smoked developed 115
Temperature Limitations	Continuous exposure Intermittent exposure	140°F/60°C 200°F/93°C
VOC		< 50 G/L
Bond Strength		100% to substrate failure

2.5 ACCESORY MATERIALS

A. Patching and Fill Material: Resinous product of or approved by resinous manufacturer for application indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

A. General: Prepare and clean substrates according to resinous flooring manufacturer's written instructions for substrate indicated. Provide clean, dry, and neutral Ph substrate for resinous wall coating application.

- B. Clean sub-surface of all contaminants.
- C. Examine surfaces for defects that cannot be corrected by procedures specified herein.
- D. Any wall board application must have a (1) one, (2) two, or (3) three finish level. With an appropriate spackle compound. Finish Level (4) four, or (5) five is not acceptable and result in wall system failures, due to gypsum mud poor cohesive strengths.
- E. Concrete block walls (CMU) must be given sufficient time for the mortar to fully cure. Excess mortar and any residual laitance or debris must be removed by mechanical means prior to installing Stonglaze.
- F. Formed or poured concrete walls must be prepared by mechanical means to remove any laitance or efflorescence and provide a sandpaper texture suitable for bonding.
- G. Commencement of application implies acceptance of surface conditions.

3.2 PROJECT CONDITIONS

- A. Maintain temperature of materials above 21 degrees C (70 degrees F), for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs, between 21 and 32 degrees C (70 and 90 degress F) for at least 48 hours, before, during, and 24 hours after installation. Maintain temperature at least 21 degrees C (70 degrees F) thereafter.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.
- D. Area free of other trades during and for a period of 24 hours after installation.

3.3 INSTALLATION REQUIREMENTS

- A. The respective manufacturer's instructions for application and installation will be considered for use when approved by the COR.
- B. Submit proposed installation deviation from this specification to the COR indicating the differences in the method of installation.

3.4 PREPARATION

- A. General: Prepare and clean substrates according to manufacturer's written instructions for substrate indicated. Provide clean, dry, and neutral Ph substrate for resinous application.
- B. Substrates: Provide sound surfaces free of laitance, glaze, efflorescence, curing compounds, form-release agents, dust, dirt, grease, oil, and other contaminants incompatible.
 - 1. Prepare substrates as follows:

- a. Mechanically sand or hand grind if previously applied coating is present.
- b. Comply requirements of manufacturer's written instructions.
- 2. Repair damaged and deteriorated substrate according to manufacturer's written recommendations.
- 3. Verify that substrates are dry.

to continue through them once cured.

- B. Resinous Materials: Mix components and prepare materials according to manufacturer's written instructions.
- C. Use patching and fill material to fill holes and depressions in substrates according to manufacturer's written instructions.

3.5 APPLICATION

- A. General: Apply components of resinous wall system according to manufacturer's written instructions to produce a uniform, monolithic surface of thickness indicated.
 - 1. Coordinate application of components to provide optimum adhesion of resinous system to substrate, and optimum inter-coat adhesion.
 - Cure resinous components according to manufacturer's written instructions. Prevent contamination during application and curing processes.
- B. Apply Primer: over prepared substrate at manufacturer's recommended spreading rate.
- C. Base coat(s): Apply according to manufacturer's written instructions and details including those for taping, mixing, priming, and troweling, sanding, and top coating.
- D. Topcoat: Mix and roller apply the topcoat(s) with strict adherence to manufacturer's installation procedures and coverage rates.

3.6 CURING, PROTECTION AND CLEANING

- A. Cure resinous materials in compliance with manufacturer's directions, taking care to prevent contamination during stages of application and prior to completion of curing process.
- B. Close area of application for a minimum of 24 hours.
- C. Protect resinous materials from damage and wear during construction operation.

- - - END - - -

SECTION 10 21 23 CUBICLE CURTAIN TRACKS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cubicle curtain track (C.C.T.) and shower curtain tracks RELATED WORK
- B. Section 05 50 00, METAL FABRICATIONS: Steel shapes for suspending track assembly.

1.2 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Showing layout of tracks and method of anchorage.
- C. Manufacturer's Literature and Data:
 - 1. Cubicle curtain track.

1.3 DELIVERY, STORAGE AND HANDLING

- A. Deliver material in original package marked to identify the contents, brand name, and the name of the manufacturer or supplier.
- B. Store in dry and protected location. Store so as to not bend or warp the tracks.
- C. Do not open packages until contents are needed for installation, unless verification inspection is required.

1.4 WARRANTY

A. Construction Warranty: Cubicle curtain tracks are subject to the terms of the Article "Warranty of Construction," FAR clause 52.246-21.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

B221-14 .	Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Profiles, and Tubes
B221M-13	Aluminum and Aluminum-Alloy Extruded Bars,

Rods, Wire, Profiles, and Tubes (Metric)

B456-17Electrodeposited Coatings for Copper Plus

Nickel Plus Chromium and Nickel Plus Chromium

C. Aluminum Association (AA):

DAF 45-09Designation System for Aluminum Finishes

- D. American Architectural Manufacturers Association (AAMA):
 2603-20Voluntary Specification, Performance
 Requirements and Test Procedures for Pigmented
 Organic Coatings on Aluminum Extrusions and
 Panels (with Coil Coating Appendix)
- E. The National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-06 SeriesMetal Finishes Manual

PART 2 - PRODUCTS

2.1 CUBICLE CURTAIN TRACKS

- A. Channel Tracks (Surface Mounted Type): Extruded aluminum,
 ASTM B221M (B221), alloy 6063, temper T5 or T6, channel shaped, with
 smooth inside raceway for curtain carriers.
- B. Curtain Carriers: Nylon carriers, with nylon wheels on metal or nylon axles.
 - Equip each carrier with either stainless steel, chromium plated brass or steel hooks with swivel, or nickel chromium plated brass or stainless-steel bead chain
 - 2. Hook for bead chain may be the same material and finish as the bead chain or may be chromium plated steel.
 - 3. Provide 2.2 carriers for every 305 mm (1 foot) of each section of each track length, plus one (1) additional carrier.
- C. End Stop Connectors, Ceiling Flanges and Other Accessories: Fabricate from the same material with the same finish as the tracks or from nylon.
- D. Hangers and Fittings: Fabricate from the same material with the same finish as the tracks. Hangers may be round or square for channel tracks and round for tubular tracks. Design fittings to be compatible with design of tracks and to safely transmit the track load to the hangers.
- E. At end of each section of track, make provision for insertion and removal of carriers. Design to prevent accidental removal of carrier. Provide operating mechanism shall be removable with common tools.

2.2 SHOWER CURTAIN TRACK

A. Provide water/corrosion resistant aluminum surface mounted track system /and glider hooks at per meter (3.28 feet).

2.3 FASTENERS

A. Exposed Fasteners, Screws and Bolts: Stainless steel or chromium/nickel plated brass.

- B. Metal Clips: Anchor curtain tracks to exposed grid of lay-in acoustical tile ceilings, with concealed metal (butterfly) type or two piece snap locking type ceiling clip of high strength spring steel.
 - 1. When it is not possible to install the metal ceiling clip, the cubicle curtain track may be screwed to the ceiling grid.

2.4 FINISHES

- A. Aluminum: Finish numbers for aluminum specified are in accordance with AA DAF 45. AA-C22A31 finish, chemically etched medium matte with clear anodic coating, Class II Architectural, .01 mm (0.4 mils) thick.
- B. Chrome/Nickel Plating: Satin or polished finish, ASTM B546, minimum thickness of chromium plate as follows:
 - 1. 0.005 mm (0.2 mil) on copper alloys.
 - 2. 0.01 mm (0.4 mil) on steel.
- C. Stainless Steel: No. 4 in accordance with NAAMM AMP 500.
- D. Baked Enamel or Powder Coat Finish: AAMA 2603.

2.5 FABRICATION

- A. Weld and grind smooth joints of fabricated components.
- B. Form tracks and bends of lengths that will produce the minimum number of joints. Make track sections up to 4877 mm (16 feet) without joints. Form corner bend on a 305 mm (12 inch) radius.
- C. Provide steel anchor plates, supports, and anchors for securing components to building construction.
- D. Form flat surface without distortion.
- E. Shop assemble components and package complete with anchors and fittings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install tracks after finish painting and ceiling finishing operations are complete.
- B. Install track level and hangers plumb and securely anchor to the ceiling to form a rigid installation.
- C. Anchor surface mounted curtain tracks directly to exposed grid of lay-in acoustical tile ceilings with suitable fasteners, spaced approximately 610 mm (24 inches) on center.
- D. Anchor surface mounted curtain tracks to concrete, plaster and gypsum board ceilings with a minimum of 3 mm (1/8-inch) diameter fastenings or concealed clips spaced not more than 914 mm (3 feet) on center.

- E. Install suspended track 2210 mm (87 inches) above the finished floor, with hangers spaced no more than 1219 mm (4 feet) on center. At ceiling line, provide flange fittings secured to hangers with set screws. Secure track to walls with flanged fittings and to hangers with special fittings.
- F. Fasten end stop caps to prevent them from being forced out by the striking weight of carriers.
- G. Remove damaged or defective components and replace with new components or repair to the original condition.
- H. Install track rigid, plumb, level and true, and securely anchored to the overhead construction.
- I. Verify that carrier units operate smoothly and easily over the full range of travel.

- - - E N D - - -

SECTION 10 26 00 WALL AND DOOR PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies base rails, handrails, wall guards, , corner guards and high impact wall covering.

1.2 RELATED WORK

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Armor plates and kick plates not specified in this section: Section 08 71 00, DOOR HARDWARE.
- C. Color and texture of aluminum and resilient material: COLOR SCHEDULE KEY in drawings.

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer with a minimum of three (3) years' experience in providing items of type specified.
 - 1. Obtain wall and door protection from single manufacturer.
- B. Installer's Qualifications: Installers are to have a minimum of three (3) years' experience in the installation of units required for this project.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1. Volatile organic compounds per volume as specified in PART 2 PRODUCTS.
- C. Shop Drawings: Show design and installation details.
- D. Manufacturer's Literature and Data:
 - 1. Handrails.
 - 2. Wall Guards.

Corner Guards.

- 3. High Impact Wall covering.
- 4. Base Rails
- E. Test Report: Showing that resilient material complies with specified fire and safety code requirements.
- F. Manufacturer's qualifications.
- G. Manufacturer's warranty.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to the site in original sealed packages or containers marked with the name and brand, or trademark of the manufacturer.
- B. Protect from damage from handling and construction operations before, during and after installation.
- C. Store in a dry environment of approximately 21 degrees C (70 degrees F) for at least 48 hours prior to installation.

1.6 WARRANTY

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their wall and door protection for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):

A240/A240M-20	.Chromium and Chromium-Nickel Stainless Steel
	Plate, Sheet, and Strip for Pressure Vessels
	and For General Applications
B221-14	.Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Shapes, and Tubes
B221M-13	.Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Shapes, and Tubes (Metric)
D256-10(2018)	.Determining the Izod Pendulum Impact Resistance
	of Plastics
D635-18	.Rate of Burning and/or Extent and Time of
	Burning of Self-Supporting Plastics in a
	Horizontal Position
E84-20	.Surface Burning Characteristics of Building
	Materials

- C. Aluminum Association (AA):
 - DAF 45-09 Designation System for Aluminum Finishes
- D. American Architectural Manufacturers Association (AAMA):
- E. Code of Federal Regulation (CFR):

40 CFR 59(2020) Subpart D National Volatile Organic Compound

Emission Standards for Architectural Coatings

- F. The National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-06Metal Finishes Manual
- G. National Fire Protection Association (NFPA):

80-2019Standard for Fire Doors and Other Opening
Protectives

SAE International (SAE):

J 1545-2014-10Instrumental Color Difference Measurement for Exterior Finishes, Textiles and Colored Trim.

Underwriters Laboratories Inc. (UL):

Annual IssueBuilding Materials Directory

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum Extruded: ASTM B221M (B221), Alloy 6063, Temper T5 or T6.

 Provide aluminum alloy used for colored anodizing coating as required
- B. Resilient Material:
 - 1. Provide resilient material consisting of high impact resistant extruded acrylic vinyl, polyvinyl chloride, or injection molded thermal plastic conforming to the following:
 - a. Minimum impact resistance of 960.8 N-m/m (18 feet-pounds/square inch) when tested in accordance with ASTM D256 (Izod impact, feet-pounds per inch notched).
 - b. Class 1 fire rating when tested in accordance with ASTM E84, having a maximum flame spread of 25 and a smoke developed rating of 450 or less.
 - c. Rated self-extinguishing when tested in accordance with ASTM D635.
 - d. Provide material labeled and tested by Underwriters Laboratories or other approved independent testing laboratory.
 - e. Provide resilient material for protection on fire rated doors and frames assemblies that is listed by the testing laboratory performing the tests.
 - f. Provide resilient material installed on fire rated wood/steel door and frame assemblies that have been tested on similar type assemblies. Test results of material tested on any other combination of door and frame assembly are not acceptable.

g. Provide integral color with colored components matched in accordance with SAE J 1545 to within plus or minus 1.0 on the CIE-LCH scales.

2.2 CORNER GUARDS

A. Resilient, Shock-Absorbing Corner Guards: Flush mounted type. Fabricate corner guards of 1.27 mm (.05 inch) thick material conforming to ASTM A240/A240M, Type /304. Install corner guards from floor to ceiling. Form corner guard to dimensions shown on construction documents.

2.3 WALL GUARDS AND HANDRAILS

- A. Resilient Wall Guards and Handrails:
 - 1. Handrails:
 - a. Snap-on covers of resilient material, minimum 2 mm (0.078-inch)thick.
 - b. Free-floating on a continuous, extruded aluminum retainer, minimum 1.82 mm (0.072-inch) thick.
 - c. Anchor to wall at maximum 762 mm (30 inches) on center.
 - d. Provide per Wall Protection plans in construction documents.
 - e. Refer to Color Schedule Key in construction documents for manufacturer and finish.

2. Wall Guards:

- a. Snap-on covers of resilient material, minimum 2.54 mm (0.100-inch) thick. Free-floating over 51 mm (2 inch) wide aluminum retainer clips, minimum 2.28 mm (0.090-inch) thick, anchored to wall at maximum 610 mm (24 inches) on center, supporting a continuous aluminum retainer, minimum 1.57 mm (0.062-inch) thick.
- b. Provide per Wall Protection plans in construction documents.
- c. Refer to Color Schedule Key in construction documents for manufacturer and finish.
- d. Equal to Inpro Corp Model 700

3. Base Rails:

a. Snap-on covers of resilient material, minimum 2.54 mm (0.100-inch) thick. Free-floating over 51 mm (2 inch) wide aluminum retainer clips, minimum 2.28 mm (0.090-inch) thick, anchored to wall at maximum 610 mm (24 inches) on center, supporting a continuous aluminum retainer, minimum 1.57 mm (0.062-inch) thick.

- b. Provide per Wall Protection plans in construction documents.
- c. Refer to Color Schedule Key in construction documents for manufacturer and finish.
- d. Equal to Inpro Corp Model 1600.

2.4 HIGH IMPACT WALL COVERING

- A. Wall Protection Rigid Vinyl Sheeting:
 - 1. Provide wall protection panels consisting of high impact rigid acrylic vinyl or polyvinyl chloride resilient material.
 - 2. Panel sizes to be maximum size possible for the installation and heights noted on drawings.
 - Submit fire rating and extinguishing test results for resilient material.
 - 4. Submit statements attesting that the items comply with specified fire and safety code requirements.
 - 5. Rigid Vinyl Acrylic Wall Covering: Wall covering thickness to be 1.02 mm (0.040 inch) WP--3,4,5 and 1.52 mm (0.060 inch) WP--1,2.
 - 6. Provide adhesive as recommended by the wall covering manufacturer. Provide adhesive with VOC content of 250 g/L or less when calculated according to 40 CFR 59, (EPA Method 24).
 - 7. Provide accessories and trim as indicated on drawings.
 - 8. Reference Color Schedule Key in drawings for manufacturers, colors and patterns.

2.5 FASTENERS AND ANCHORS

- A. Provide fasteners and anchors as required for each specific type of installation.
- B. Where type, size, spacing or method of fastening is not shown or specified in construction documents, submit shop drawings showing proposed installation details.

2.6 FINISH

- A. Aluminum: In accordance with AA DAF-45.
 - 1. Exposed aluminum: AAMA 611 AA-M12C22A31 chemically etched medium matte, with clear anodic coating, Class II Architectural, .01 mm (0.4 mil) thick.
 - 2. Concealed aluminum: Mill finish as fabricated, uniform in color and free from surface blemishes.
- B. Resilient Material: Embossed textures and color in accordance with SAE J1545.

PART 3 - INSTALLATION

3.1 RESILIENT CORNER GUARDS

- A. Install corner guards on walls in accordance with manufacturer's instructions.
- B. Reference drawings for locations and mounting heights.

3.3 RESILIENT WALL GUARDS AND HANDRAILS

- A. Secure guards to walls with mounting cushions brackets and fasteners in accordance with manufacturer's details and instructions.
- B. Reference drawings for locations and mounting heights.

3.6 HIGH IMPACT WALL COVERING

- A. Surfaces to receive protection to be clean, smooth and free of obstructions.
- B. Install protectors after frames are in place but preceding installation of doors in accordance with approved shop drawings and manufacturer's specific instructions.
- C. Apply with adhesive in controlled environment according to manufacturer's recommendations.
- D. Protection installed on fire rated doors and frames to be installed according to NFPA 80 and installation procedures listed in UL Building Materials Directory; or equal listing by other approved independent testing laboratory establishing the procedures.
- E. Reference drawings for locations and mounting heights.

- - - E N D - - -

SECTION 11 19 50 PROTECTIVE PADDING SYSTEM

PART 1 - GENERAL CONDITIONS

1.1 SCOPE

A. Provide all labor and material required to furnish and install protective padding (walls, floors, interior side of doors and frames and ceilings) in safety cells, seclusion rooms and time-out rooms as indicated in drawing and specified herein.

1.2 SUBMITTALS

- A. Submit shop drawings showing list of materials, elevations, sections, thickness of materials and any other pertinent information.
- B. Submit three (3) samples minimum of $3" \times 3"$ in size for approval and acceptance of protective padding system.
- C. Submit two (2) copies of the manufacturer's maintenance instructions.
- D. Submit two (2) copies of the onsite repair manual for any repairs that the facility may wish to undertake.
- E. Submit third party documentation showing compliance to ASTM Fire Testing detailed in 2.3 Properties. Testing must be for entire system, as opposed to individual components.

1.3 GUARANTEES

- A. Contractor for work under this section shall agree to repair or replace and defective materials or work for a period of one (1) year from the date of project completion. This guarantee shall also include any loss of adhesion, resiliency or delamination. This guarantee does not cover the damage caused by sharp or burning objects, intentional abuse or vandalism. This product is not intended to replace established management practices, but to supplement them in order to provide a safe environment for the end user, owner and client.
- B. Representatives from the manufacturer must be onsite during installation.
- C. Guarantee shall be by the manufacturer for labor and material.

1.4 QUALIFICATIONS

- A. Because of the special nature of work specified within this section, persons, firms or corporations desiring to bid on this section shall meet the following:
 - 1. Have a minimum of five (5) years' experience in the fabrication and installation of protective padding

- 2. Have at least fifteen (15) successful installations over the previous two (2) years.
- 3. Provide written verification from Manufacturer that contracting party is skilled and trained in this scope of work and meets the successful 15 installations as specified and required above.

PART 2 MATERIALS AND PRODUCTS

2.1 MANUFACTURERS

A. Basis of design is Gold Medal Safety Padding, manufactured by Marathon Engineering Corporation, 5615 2nd Street West, Lehigh Acres, FL. W: www.goldmedalsafetypadding.com, P:(239) 303-7378.

2.2 GENERAL

- A. Protective padding shall be a synthetic resinous material.

 Substitutions of a closed cell polyvinyl or field sprayed silicon polymer coatings are not permitted.
- B. All vertical panels shall be prefabricated. The panels shall be 1" nominal thickness padded material bonded on oriented strand board 7/16" thick, making the wall panels a total nominal thickness of 1 ½".
- C. All floor panels shall be prefabricated. The panels are to be a $\frac{3}{4}$ " nominal thickness padded material bonded on oriented strand board $\frac{7}{16}$ " thick, making the wall panels a total nominal thickness of $\frac{1}{4}$ ".
- D. Door jamb and molding padding shall be a minimum of $\frac{1}{2}$ " solid padding material.
- E. Fasteners for use in securing panels shall be as recommended by protective padding manufacturer.
- F. All Protective Padding material must be able to be repaired in the field by the facility's maintenance staff in order to maximize cost effectiveness during the product's life cycle. The product manufacturer must manufacture repair kits to aid the facility with any repairs.

2.3 PROPERTIES

- A. In addition to meeting the minimum physical properties when cured, protective padding system must contain a flame spread and smoke index which when tested in accordance with ASTM E84 is given a Class A Fire Rating
 - 1. Flame Spread: 5
 - 2. Smoke Developed: ≤ 20
- B. Padding must also conform to the following criteria:
 - 1. Critical Radiant Flux of Floor Covering Systems: Class I, >0.99 (W/cm²) in accordance with ASTM E684

- 2. Weight is approximately 5 pounds per square foot
- 3. Tensile Strength Range: 300 PSI minimum in accordance with ASTM D412
- 4. Standard Test Method for Evaluating the Force Reduction Properties of Surfaces ASTM F2569, Wall Pads 73%, Floor Pads 57%
- 5. Hardness Range: 60 \pm 5, Class D
- 6. Temperature Stability: unaffected from 20 degrees F to 120 degrees F
- 7. Moisture Absorption: 0.8% to 1.05% by weight
- 8. Compression: 90% recovery after 72 hours
- 9. Compression Properties: 30 PSI to 70 PSI at 50% modulus
- 10. Elongation at break: 150% typical
- 11. Acute Oral Toxicity Test: non-toxic
- 12. Fungus Resistance MIL-I-531-D Complete

PART 3 EXECUTION

3.1 INSPECTION

A. Inspect surfaces to receive work under this section. Notify the Architect in writing if surfaces are not satisfactory or application of materials.

3.2 INSTALLATON

- A. All vertical panels will be mechanically fastened to walls using fasteners as recommended by the protective padding manufacturer.
- B. The number of fasteners per panel will be determined by the installers and is based on type of substrate and angle of installation.
- C. A gap of $1/8" \pm 1/16"$ will be left between panels. This will be filled with an epoxy compound. When fully cured it will be sanded to meet adjacent edges of panels.
- D. All fastener holes will be filled with epoxy and then sanded flush.
- E. Upon final sanding of all surfaces walls, door, ceiling and floor will be wiped clean and provided with a painted topcoat. Finish topcoat will be provided by protective padding manufacturer.

3.3 SITE CONDITIONS: GENERAL

- A. The following conditions are required for the installation and onsite storage of materials:
 - 1. The General Contractor or Owner shall provide for adequate storage of materials during installation.
 - 2. A minimum temperature of 65 degrees F shall be maintained for the duration of the installation.
 - 3. The General Contractor or Owner shall provide 120-volt electrical service, hoisting equipment and a refuse receptacle.

- - - E N D - - -

SECTION 12 36 00 COUNTERTOPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies casework countertops with integral accessories.
- B. Integral accessories include:
 - 1. Window Sills

1.2 RELATED WORK

A. Color and patterns of plastic laminate: COLOR SCHEDULE KEY IN DRAWINGS D.

1.3 SUBMITTALS

- A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings
 - 1. Show dimensions of section and method of assembly.
 - 2. Show details of construction at a scale of ½ inch to a foot.
- C. Samples:
 - 1. 150 mm (6 inch) square samples each top.
 - 2. Front edge, back splash, end splash and core with surface material and booking.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Hardboard Association (AHA):

A135.4-95Basic Hardboard

C. Composite Panel Association (CPA):

A208.1-09Particleboard

D. American Society of Mechanical Engineers (ASME):

A112.18.1-12Plumbing Supply Fittings

A112.1.2-12Air Gaps in Plumbing System

A112.19.3-08(R2004)Stainless Steel Plumbing Fixtures (Designed for Residential Use)

E. American Society for Testing and Materials (ASTM):

A167-99 (R2009)Stainless and Heat-Resisting Chromium-Nickel

Steel Plate, Sheet and Strip

A1008-10Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength, Low Alloy

	D256-10Pendulum Impact Resistance of Plastic
	D570-98(R2005)Water Absorption of Plastics
	D638-10Tensile Properties of Plastics
	D785-08Rockwell Hardness of Plastics and Electrical
	Insulating Materials
	D790-10Flexural Properties of Unreinforced and
	Reinforced Plastics and Electrical Insulating
	Materials
	D4690-99(2005)Urea-Formaldehyde Resin Adhesives
F.	Federal Specifications (FS):
	A-A-1936Adhesive, Contact, Neoprene Rubber
G.	U.S. Department of Commerce, Product Standards (PS):
	PS 1-95Construction and Industrial Plywood
Н.	National Electrical Manufacturers Association (NEMA):
	LD 3-05

PART 2 - PRODUCTS

2.1 MATERIALS

- K. Solid Polymer Material:
 - 1. Filled Methyl Methacrylic Polymer.

2. Performance properties required:

Property	Result	Test
Elongation	0.3% min.	ASTM D638
Hardness	90 Rockwell M	ASTM D785
Gloss (60° Gordon)	5-20	NEMA LD3.1
Color stability	No change	NEMA LD3 except 200 hour
Abrasion resistance	No loss of pattern Max wear depth 0.0762 mm (0.003 in) - 10000 cycles	NEMA LD3
Water absorption weight (5 max)	24 hours 0.9	ASTM D-570
Izod impact	14 N·m/m (0.25 ft-lb/in)	ASTM D256 (Method A)
Impact resistance	No fracture	NEMA LD-3 900 mm (36") drop 1 kg (2 lb.) ball
Boiling water surface resistance	No visible change	NEMA LD3
High temperature resistance	Slight surface dulling	NEMA LD3

- 3. Cast into sheet form and bowl form.
- 4. Color throughout with subtle veining through thickness.
- 5. Joint adhesive and sealer: Manufacturers silicone adhesive and sealant for joining methyl methacrylic polymer sheet.
- 6. Bio-based products will be preferred.

2.02 COUNTERTOPS

- A. Fabricate in largest sections practicable.
- B. Fabricate with joints flush on top surface.
- C. Fabricate countertops to overhang front of cabinets and end of assemblies 25 mm (one inch) except where against walls or cabinets.
- D. Provide 1 mm (0.039 inch) thick metal plate connectors or fastening devices (except epoxy resin tops).
- ${\tt E.}$ Join edges in a chemical resistant waterproof cement or epoxy cement, except weld metal tops.
- F. Fabricate with end splashes where against walls or cabinets.
- G. Methyl Methacrylic Polymer Tops:
 - 1. Fabricate countertop of methyl methacrylic polymer cast sheet, 13 mm
 - 2. Fabricate with marine edge where sinks occur.

- 3. Fabricate in one piece for full length from corner to corner up to 3600 mm (12 feet).
- 4. Join pieces with adhesive sealant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Before installing countertops verify that wall surfaces have been finished as specified and that mechanical and electrical service locations are as required.
- B. Secure countertops to supporting rails of cabinets with metal fastening devices, or screws through pierced slots in rails.
 - 1. Use epoxy or silicone to fasten the epoxy resin countertops to the cabinets.

3.2 PROTECTION AND CLEANING

- A. Tightly cover and protect against dirt, water, and chemical or mechanical injury.
- B. Clean at completion of work.

- - - E N D - - -

SECTION 13 05 41 SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide seismic restraint in accordance with the requirements of the drawings, VA Handbook H18-8: Seismic Design Requirements and this specification in order to maintain the integrity of non-structural components and equipment of the building so that they remain safe and functional in case of seismic event.
- B. The design of seismic restraints of non-structural components to resist seismic load shall be based on Seismic Design parameters indicated below in accordance with VA H-18-8 in conjunction with ASCE 7 and ASCE 41, as specified in H-18-8 Section 4.0, for existing building retrofit projects. Specific requirements for Critical and Essential facilities are covered in Section 4.0 of H-18-8, including applying Ip = 1.5 for all nonstructural components in Critical facilities.
 - 1. International Building Code 2018 Edition
 - 2. American Society of Civil Engineers Seismic Evaluation and Retrofit of Existing Buildings ASCE 41-17.
 - 3. American Society of Civil Engineers Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7)7-16
 - 4. Facility Occupancy Category per VA H-18-8: Critical
 - 5. Site Class: B
 - 6. Building Risk Category: IV
- C. Definitions: Non-structural building components are components or systems that are not part of the building's structural system whether inside or outside, above or below grade. Non-structural components of buildings include but are not limited to (Refer to VA H-18-8, ASCE 7 and ASCE 41 for additional examples):
 - 1. Architectural Elements: Facades that are not part of the structural system and its shear resistant elements; cornices and other architectural projections and parapets that do not function structurally; glazing; nonbearing partitions; suspended ceilings; stairs isolated from the basic structure; cabinets; bookshelves; medical equipment; and storage racks, etc.
 - 2. Electrical Elements: Power and lighting systems; substations; switchgear and switchboards; auxiliary engine-generator sets; transfer switches; motor control centers; motor generators; selector

- and controller panels; fire protection and alarm systems; special life support systems; and telephone and communication systems, etc.
- 3. Mechanical Elements: Heating, ventilating, and air-conditioning systems; medical gas systems; plumbing systems; sprinkler systems; pneumatic systems; boiler/chiller/utility plant/other equipment and components, etc.
- 4. Transportation Elements: Mechanical, electrical and structural elements for transport systems, i.e., elevators and dumbwaiters, including hoisting equipment and counterweights.

1.2 RELATED WORK:

- A. Related specifications include but are not limited to those shown below. Coordinate all work with the applicable specification for that work.
 - 1. Structural Steel Framing: Section 05 12 00, STRUCTURAL STEEL FRAMING
 - 2. Metal Fabrication: Section 05 50 00, METAL FABRICATIONS
 - 3. Acoustical Ceilings: Section 09 51 00 ACOUSTICAL CEILINGS
 - 4. Interior Lighting: Section 26 51 00, INTERIOR LIGHTING

1.3 QUALITY CONTROL:

- A. Shop-Drawing Preparation:
 - 1. Non-structural seismic restraint systems shop drawings and delegated design calculations shall be prepared by a professional structural engineer with a minimum of 5 years' experience in the design and detailing of seismic force restraints. The professional structural engineer shall be registered in the state where the project is located and submit qualifications with list of projects illustrating compliance with the experience requirement of this section.
 - 2. Submit design tables and information used for the design-force levels, stamped and signed by a professional structural engineer registered in the State where project is located.

B. Coordination:

- 1. Do not install seismic restraints until seismic restraint submittals are approved by the Contracting Officers Representative (COR).
- 2. Coordinate trapezes or other multi-pipe hanger systems prior to submission of shop drawings for review.

C. Seismic Certification:

In structures assigned to Seismic Design Category C, D, E, or F, permanent equipment and components are to have Special Seismic Certification in accordance with requirements of section 13.2.2 of ASCE

7, including those required in existing buildings within Section 13.7.1.3.3, 13.7.7.3.3 and 13.7.8.3.3 of ASCE 41, except for equipment and components that are considered inherently rugged as listed in Section 4.2.2 of VA H18-8, and shall comply with section 13.2.6 of ASCE 7.

1.4 SUBMITTALS:

- A. Submit a complete and coordinated set of bracing and signed and sealed anchorage drawings and calculations for all non-structural elements requiring seismic restraint by the delegated professional structural engineer mentioned in Section 1.3.A.1 for review prior to installation including:
 - 1. Description, layout, and location of all items to be anchored or braced with anchorage or brace points noted and dimensioned.
 - 2. Details of all anchorage and bracing at large scale with all members, parts brackets shown, together with all connections, bolts, welds etc. clearly identified and specified. Details shall be coordinated with all project conditions and trades prior to shop drawing submission for review.
 - 3. Complete calculations including but not limited to seismic design criteria, computer model input and output, seismic design forces and capacities, design tables and information used for all proprietary design elements such as post installed anchors, stamped and signed by a professional structural engineer specified in section 1.3 A.1.
 - 4. For all post installed anchorages submit the appropriate International Code Council Engineering Service (ICC-ES) evaluation reports, California's Office of Statewide Health Planning and Development (OSHPD) pre-approvals, or lab test reports verifying compliance with OSHPD Interpretation of Regulations 28-6.
 - 5. Delegated professional structural engineer qualifications.
- B. Submit for review prior to installation, the following for seismic protection of piping in addition to items noted in Section 1.4.A:
 - 1. Single-line piping diagrams on a floor-by-floor basis. Show all suspended piping for a given floor on the same plain.
 - Type of pipe (Copper, steel, cast iron, insulated, non-insulated, etc.).
 - 3. Pipe contents.
 - 4. Structural framing for the seismic and gravity support and the main superstructure for which the bracing and or anchorage is attached.

- 5. Location of all gravity load pipe supports and spacing requirements.
- 6. Numerical value of gravity load reactions.
- 7. Location of all seismic bracing.
- 8. Numerical value of applied seismic brace loads.
- 9. Type of connection (Vertical support, vertical support with seismic brace etc.).
- 10. Seismic brace reaction type (tension or compression): Details illustrating all support and bracing components, methods of connections, and specific anchors to be used.
- C. Submit for review prior to installation, the following items for seismic protection of suspended ductwork and suspended electrical and communication cables, in addition to items noted in Section 1.4.A:
 - 1. Details illustrating all support and bracing components, methods of connection, and specific anchors to be used.
 - 2. Numerical value of applied gravity and seismic loads and seismic loads acting on support and bracing components.
 - 3. Maximum spacing of hangers and bracing.

1.5 APPLICABLE PUBLICATIONS:

- A. The Publications listed below (including amendments, addenda revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI):

 355.2-19Qualification for Post-Installed Mechanical

 Anchors in Concrete and Commentary
- C. American Institute of Steel Construction (AISC):
 Load and Resistance Factor Design, Volume 1, Second Edition
- D. ASTM International (ASTM):
 - A36/A36M-19Standard Specification for Carbon Structural Steel
 - A53/A53M-18Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
 - A307-14e1Standard Specifications for Carbon Steel Bolts,
 Studs, and Threaded Rod 60,000 PSI Tensile
 Strength

A325-14Standard Specification for Struc	tural Bolts,
Steel, Heat Treated, 120/105 ksi	Minimum
Tensile Strength	
A325M-14Standard Specification for High-	Strength Bolts
for Structural Steel Joints [Met	ric]
A490-14aStandard Specification for Heat-	·Treated Steel
Structural Bolts, 150 ksi Minimu	ım Tensile
Strength	
A490M-14aStandard Specification for High-	Strength Steel
Bolts, Classes 10.9 and 10.9.3,	for Structural
Steel Joints [Metric]	
A500/A500M-18Standard Specification for Cold-	·Formed Welded
and Seamless Carbon Steel Struct	ural Tubing in
Rounds and Shapes	
A501/A501M-14Standard Specification for Hot-E	ormed Welded
and Seamless Carbon Steel Str	cuctural Tubing
A615/A615M-20Standard Specification for Defor	med and Plain
Carbon Steel Bars for Concrete F	Reinforcement
A992/A992M-11(2015)Standard Specification for Steel	. for Structural
Shapes for Use in Building Fr	aming
A996/A996M-16Standard Specification for Rail	Steel and Axle
Steel Deformed Bars for Concrete	Reinforcement
E488/E488M-18Standard Test Methods for Streng	th of Anchors
in Concrete Elements	

E. American Society of Civil Engineers

- 1. Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7) Edition as indicated in section 1.1 B of this specification. Associated Criteria for Buildings and Other Structures (ASCE 7): 7-16
- F. International Building Code (IBC) Edition as indicated in Section 1.1 B of this specification.
- G. VA Handbook H18-8 Seismic Design Requirements, VA H-18-8, November 2019 (REVISED MAY 1,2020)
- H. National Uniform Seismic Installation Guidelines (NUSIG)
- I. Sheet Metal and Air Conditioning Contractors National Association
- J. (SMACNA): Seismic Restraint Manual Guidelines for Mechanical Systems, 3^{RD} EDITION 2008 and Addendum

1.6 REGULATORY REQUIREMENT:

- A. IBC as shown in Section 1.1 B of this specification.
- B. Exceptions: The omission of seismic restraints shall be allowed only in accordance with VA H18-8, ASCE 7 and ASCE 41.

PART 2 - PRODUCTS

2.1 STEEL:

- A. Structural Steel: ASTM A36.
- B. Structural Tubing: ASTM A500, Grade B.
- C. Structural Tubing: ASTM A501.
- D. Steel Pipe: ASTM A53/A53M, Grade B.
- E. Bolts & Nuts: ASTM A307.

2.2 CAST-IN-PLACE CONCRETE:

- A. Concrete: 28 day strength, f'c = 27.5 MPa (4,000 psi)
- B. Reinforcing Steel: ASTM A615/615M or ASTM A996/A996M deformed.

PART 3 - EXECUTION

3.1 CONSTRUCTION, GENERAL:

- A. Provide equipment supports and anchoring devices to withstand the seismic design forces, so that when seismic design forces are applied, the equipment cannot displace, overturn, or become inoperable.
- B. Provide anchorages in conformance with recommendations of the equipment manufacturer and as shown on approved shop drawings and calculations.
- C. Construct seismic restraints and anchorage to allow for thermal expansion.
- D. Testing Before Final Inspection:
 - 1. Test 10-percent of anchors in masonry and concrete per ASTM E488, and ACI 355.2 to determine that they meet the required load capacity. If any anchor fails to meet the required load, test the next 20 consecutive anchors, which are required to have zero failure, before resuming the 10-percent testing frequency.
 - Before scheduling Final Inspection, submit a report on this testing indicating the number and location of testing, and what anchor-loads were obtained.
 - 3. Construct seismic restraints and anchorages to not interfere with other trades or damage existing or in-situ elements of the constructed building.

3.2 EQUIPMENT RESTRAINT AND BRACING:

A. See drawings for equipment to be restrained or braced.

3.3 MECHANICAL DUCTWORK AND PIPING; BOILER PLANT STACKS AND BREACHING; ELECTRICAL BUSWAYS, CONDUITS, AND CABLE TRAYS; AND TELECOMMUNICATION WIRES AND CABLE TRAYS

- A. Support and brace mechanical ductwork and piping; electrical busways, conduits and cable trays; and telecommunication wires and cable trays including boiler plant stacks and breeching to resist directional forces (lateral, longitudinal and vertical).
- B. Brace duct and breeching branches with a minimum of 1 brace per branch.
- C. Provide supports and anchoring so that, upon application of seismic forces, piping remains fully connected as operable systems which will not displace sufficiently to damage adjacent or connecting equipment or building members.
- D. Piping Connections: Provide flexible connections where pipes connect to equipment. Make the connections capable of accommodating relative differential movements between the pipe and equipment under conditions of earthquake shaking.

3.4 PARTITIONS

- A. In buildings with flexible structural frames, anchor partitions to only structural element, such as a floor slab, and separate such partition by a physical gap from all other structural elements.
- B. Properly anchor masonry walls to the structure for restraint, so as to carry lateral loads imposed due to earthquake along with their own weight and other lateral forces.

3.5 CEILINGS AND LIGHTING FIXTURES

- A. At intervals required to meet the seismic demand forces, laterally brace suspended ceilings against lateral and vertical movements, and provide with a physical separation at the walls.
- B. Independently support and laterally brace all lighting fixtures. Refer to applicable portion of lighting specification, Section 26 51 00, INTERIOR LIGHTING.

3.6 FACADES AND GLAZING

- A. Do not install concrete masonry unit filler walls in a manner that can restrain the lateral deflection of the building frame. Provide a gap with adequately sized resilient filler to separate the structural frame from the non-structural filler wall.
- B. Tie brick veneers to a separate wall that is independent of the steel frame as shown on construction drawings to ensure strength against applicable seismic forces at the project location.

C. Install attachments to structure for all façade materials as shown on construction drawings to ensure strength against applicable seismic forces at the project location.

3.7 STORAGE RACKS, CABINETS, AND BOOKCASES

- A. Install storage racks to withstand earthquake forces and anchored to the floor or laterally braced from the top to the structural elements.
- B. Anchor medical supply cabinets to the floor or walls and equip them with properly engaged, lockable latches.
- C. Anchor filing cabinets that are more than 2 drawers high to the floor or walls, and equip all drawers with properly engaged, lockable latches.
- D. Anchor bookcases that are more than 30 inches high to the floor or walls, and equip any doors with properly engaged, lockable latches.

- - - E N D - - -

VA Black Hills Health Care System Upgrade Mental Health Lock Ward Fort Meade, South Dakota

VA Project # 568-20-102

Specifications - Volume 2 Divisions 21 - 48

Construction Documents – Back Check Set

August 5, 2022

VA Black Hills Health Care System
Upgrade Mental Health Lock Ward
Fort Meade, South Dakota

VA PROJECT #568-20-102

July 20, 2022

ARCHITECT OF RECORD

Stone Group Architects, Inc. 700 East 7th Street Sioux Falls, SD 57103 (605) 271-1144

STRUCTURAL ENGINEER

Albertson Engineering, Inc. 3202 W. Main St. | Suite C Rapid City, SD 57702 (314) 645-1132

MECHANICAL ENGINEER

West Plains Engineering, Inc. 1750 Rand Road Rapid City, SD 57702 (605) 348-7455

ELECTRICAL ENGINEER

West Plains Engineering, Inc. 1750 Rand Road Rapid City, SD 57702 (605) 348-7455

FIRE PROTECTION

West Plains Engineering, Inc. 1750 Rand Road Rapid City, SD 57702 (605) 348-7455

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	. DIVISION AND SECTION TITLES	
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
00 01 19	Bise of Diawing Sheets	03 20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	05-21
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	03-20
01 33 23	Shop Drawings, Product Data, and Samples	06-21
01 35 26	Safety Requirements	07-20
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 35	Special Inspections	06-21
01 57 19	Temporary Environmental Controls	01-21
01 58 16	Temporary Interior Signage	07-15
01 74 19	Construction Waste Management	01-21
01 81 13	Sustainable Construction Requirements	10-17
01 91 00	General Commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	08-17
02 82 13.13	Glovebag Asbestos Abatement	01-21
02 84 16	PCB's, Tubes, and Ballasts	11-21
	DIVISION 03 - CONCRETE	
03 51 16	Gypsum Concrete Roof Decks	01-21
03 31 10	Gypsum concrete noor beens	01 21
	DIVISION 04 - MASONRY	
04 01 00	Maintenance of Masonry	01-21
04 20 00	Unit Masonry	08-17
	DIVISION 05 - METALS	
05 12 00	Structural Steel Framing	11-18
05 31 00	Steel Decking	01-21
05 51 00	Metal Stairs	01-21
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
	DIVIDION OU HOOD, FINDITES AND COMPOSITES	
06 10 00	Rough Carpentry	10-17
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	

SECTION NO.	DIVISION AND SECTION TITLES	DATE
07 01 50.19	Preparation for Re-Roofing	01-21
07 21 13	Thermal Insulation	01-21
07 22 00	Roof and Deck Insulation	01-21
07 40 00	Roofing and Siding Panels	01-21
07 54 19	Polyvinyl-Chloride (PVC) Roofing	12-18
07 60 00	Flashing and Sheet Metal	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	10-17
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-21
08 14 00	Interior Wood Doors	01-21
08 31 13	Access Doors and Frames	01-21
08 41 13	Aluminum-Framed Entrances and Storefronts	01-21
08 51 13	Aluminum Windows	01-21
08 71 00	Door Hardware	01-21
08 80 00	Glazing	01-21
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 30 13	Ceramic/Porcelain Tiling	01-21
09 65 13	Resilient Base and Accessories	01-21
09 65 16	Resilient Sheet Flooring	05-18
09 65 19	Resilient Tile Flooring	05-18
09 67 23.20	Resinous Epoxy Base with Vinyl Chip Broadcast (RES 2)	01-21
09 91 00	Painting	01-21
09 96 59	Resinous Specialty Glazed Coating Systems for Walls,	01-21
	Ceilings, Wallboard, and Block CMU (RES-W1, RES-W2)	
	DIVISION 10 - SPECIALTIES	
10 21 23	Cubicle Curtain Tracks	01-21
10 26 00	Wall and Door Protection	01-21
	DIVISION 11 - EQUIPMENT	
	DIVISION 12 - FURNISHINGS	
12 36 00	Countertops	12-18
	DIVISION 13 - SPECIAL CONSTRUCTION	
	DITITION IS SINCIPAL CONSTRUCTION	
13 05 41	Seismic Restraint Requirements for Non-Structural	01-14
3 4 4 4 4	Components	
	† · ·	
	DIVISION 14- CONVEYING EQUIPEMENT	1

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 21- FIRE SUPPRESSION	
21 08 00	Commissioning of Fire Suppression System	11-16
21 13 13	Wet-Pipe Sprinkler Systems	06-15
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 12	General Motor Requirements for Plumbing Equipment	09-20
22 05 19	Meters and Gages for Plumbing Piping	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	05-21
22 13 00	Facility Sanitary and Vent Piping	09-20
22 14 00	Facility Storm Drainage	09-15
22 40 00	Plumbing Fixtures	09-15
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	02-20
23 05 41	Noise and Vibration Control for HVAC Piping and	02-20
	Equipment	
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 25 00	HVAC Water Treatment	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 40 00	HVAC Air Cleaning Devices	03-20
23 73 00	Indoor Central-Station Air-Handling Units	03-20
23 74 13	Packaged, Outdoor, Central-Station Air-Handling Units	03-20
23 82 00	Convection Heating and Cooling Units	03-20
	DIVISION 25 - INTEGRATED AUTOMATION	
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17

DATE
01-17
01-18
11-16
01-18
01-18
01-18
01-17
01-18
tions
01-16
s 06-15
06-15
10-11
10-11

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation, for all portions of Building including the penthouse, elevator machine rooms, elevator pits,
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 09 91 00, PAINTING.
- D. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- E. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:

- a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.
- b. Ordinary Hazard Group 1 Occupancies: Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, and Electric Closets.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, storage, storage areas for the entire area of the space up to 140 square meters (1500 square feet).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: Base water supply at:
 - a. Location Closet, Fire Service CHC3.
 - d. Static pressure: 524 kPa (76 psi)
 - e. Residual pressure: 280.6 kPa (40.7 psi)
 - f. Flow: 32.3 L/s (512 gpm)
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings. 1.4 submittals
- B. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a

compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

1. Qualifications:

- a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.

4. Calculation Sheets:

- a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In

addition, submittals shall include, but not be limited to, the following:

- a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.4 QUALITY ASSURANCE

A. Installer Reliability: The installer shall possess a valid State of South Dakota contractor's license. The installer shall have been

- actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

101-2021Life Safety Code 170-2021Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL):
 Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM):
 Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.

- 3. Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
- 4. Use nonferrous piping in MRI Scanning Rooms.
- 5. Plastic piping shall not be permitted except for drain piping.
- 6. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

A. General:

- 1. Valves shall be in accordance with NFPA 13.
- 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.
- E. Alarm Check Valve: Alarm check valve shall be UL Listed and Factory Mutual Approved. The alarm check valve shall be listed for installation in the vertical or horizontal position. The alarm check valve shall be equipped with a removable cover assembly, gauge connections on the system side and supply side of the valve clapper, variable pressure trim, and an external bypass to eliminate false water flow alarms. The alarm check valve trim piping shall be galvanized. Maximum water working pressure to 250 PSI.

2.3 SPRINKLERS

A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. "Institutional" type sprinklers in Mental Health and Behavior Units shall be UL listed or FM approved quick response type. Maximum break away strength shall be certified by the manufacturer to be no more than 39 kPa (85 pounds). Provide FM approved quick response sprinklers in all areas.

- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated. Minimum temperature class for all heads shall be 155°F.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.4 SPRINKLER CABINET

- A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13. Locate adjacent to the riser
- B. Provide a list of sprinklers installed in the property in the cabinet.

 The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.5 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.6 SWITCHES:

- A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- C. Alarm Pressure Switches: Activation by any flow of water equal to or in excess of the discharge from one sprinkler. The alarm pressure switch shall be UL Listed or Factory Mutual Approved for the application in

which it is used. Activation of the alarm pressure switch shall cause an alarm on the fire alarm system control unit.

D. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.7 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.8 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.9 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.10 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.

- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- I. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- K. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- L. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- M. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting

sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.

- N. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)
 - 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
 - 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- O. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- P. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied

spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. C: Celsius
 - 14. CDA: Copper Development Association
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. CO: Contracting Officer
 - 18. COR: Contracting Officer's Representative
 - 19. CPVC: Chlorinated Polyvinyl Chloride
 - 20. CR: Chloroprene
 - 21. CRS: Corrosion Resistant Steel
 - 22. CWP: Cold Working Pressure
 - 23. CxA: Commissioning Agent
 - 24. dB: Decibels
 - 25. db(A): Decibels (A weighted)
 - 26. DCW: Domestic Cold Water
 - 27. DDC: Direct Digital Control
 - 28. DI: Digital Input

- 29. DI: Deionized Water
- 30. DISS: Diameter Index Safety System
- 31. DN: Diameter Nominal
- 32. DO: Digital Output
- 33. DVD: Digital Video Disc
- 34. DWV: Drainage, Waste and Vent
- 35. ECC: Engineering Control Center
- 36. EPDM: Ethylene Propylene Diene Monomer
- 37. EPT: Ethylene Propylene Terpolymer
- 38. ETO: Ethylene Oxide
- 39. F: Fahrenheit
- 40. FAR: Federal Acquisition Regulations
- 41. FD: Floor Drain
- 42. FED: Federal
- 43. FG: Fiberglass
- 44. FNPT: Female National Pipe Thread
- 45. FPM: Fluoroelastomer Polymer
- 46. GPM: Gallons per Minute
- 47. HDPE: High Density Polyethylene
- 48. Hg: Mercury
- 49. HOA: Hands-Off-Automatic
- 50. HP: Horsepower
- 51. HVE: High Volume Evacuation
- 52. ID: Inside Diameter
- 53. IPS: Iron Pipe Size
- 54. Kg: Kilogram
- 55. kPa: Kilopascal
- 56. lb: Pound
- 57. L/min: Liters per Minute
- 58. L/s: Liters per Second
- 59. m: Meter
- 60. MAWP: Maximum Allowable Working Pressure
- 61. MAX: Maximum
- 62. MED: Medical
- 63. MFG: Manufacturer
- 64. mg: Milligram
- 65. mg/L: Milligrams per Liter
- 66. ml: Milliliter

- 67. mm: Millimeter
- 68. MIN: Minimum
- 69. NF: Oil Free Dry (Nitrogen)
- 70. NPTF: National Pipe Thread Female
- 71. NPS: Nominal Pipe Size
- 72. NPT: Nominal Pipe Thread
- 73. OXY: Oxygen
- 74. OD: Outside Diameter
- 75. OSD: Open Sight Drain
- 76. OS&Y: Outside Stem and Yoke
- 77. PBPU: Prefabricated Bedside Patient Units
- 78. PH: Power of Hydrogen
- 79. PID: Proportional-Integral-Differential
- 80. PLC: Programmable Logic Controllers
- 81. PP: Polypropylene
- 82. ppm: Parts per Million
- 83. PSI: Pounds per Square Inch
- 84. PSIG: Pounds per Square Inch Gauge
- 85. PTFE: Polytetrafluoroethylene
- 86. PVC: Polyvinyl Chloride
- 87. PVDF: Polyvinylidene Fluoride
- 88. RAD: Radians
- 89. RO: Reverse Osmosis
- 90. RPM: Revolutions Per Minute
- 91. RTRP: Reinforced Thermosetting Resin Pipe
- 92. SCFM: Standard Cubic Feet per Minute
- 93. SDI: Silt Density Index
- 94. SMACNA
- 95. SPEC: Specification
- 96. SPS: Sterile Processing Services
- 97. STD: Standard
- 98. SUS: Saybolt Universal Second
- 99. SWP: Steam Working Pressure
- 100. TEFC: Totally Enclosed Fan-Cooled
- 101. TFE: Tetrafluoroethylene
- 102. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 103. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 104. T/P: Temperature and Pressure

- 105. TYP: Typical
- 106. USDA: U.S. Department of Agriculture
- 107. V: Volt
- 108. VA: Veterans Administration
- 109. VAC: Vacuum
- 110. VAC: Voltage in Alternating Current
- 111. VAMC: Veterans Administration Medical Center
- 112. WAGD: Waste Anesthesia Gas Disposal
- 113. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- F. Section 05 50 00, METAL FABRICATIONS.
- G. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- H. Section 07 84 00, FIRESTOPPING.
- I. Section 07 92 00, JOINT SEALANTS.
- J. Section 09 91 00, PAINTING.
- K. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- L. Section 22 07 11, PLUMBING INSULATION.
- M. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- N. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- O. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 - B31.1-2013Power Piping
 - ASME Boiler and Pressure Vessel Code -
 - BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications
- C. American Society for Testing and Materials (ASTM):
 - A36/A36M-2019Standard Specification for Carbon Structural Steel

```
A575-96(2013)el ......Standard Specification for Steel Bars, Carbon,
  Merchant Quality, M-Grades
  E84-2013a ......Standard Test Method for Surface Burning
  Characteristics of Building Materials
  E119-2012a ......Standard Test Methods for Fire Tests of
  Building Construction and Materials
  F1760-01(R2011) ......Standard Specifi ation for Coextruded
  Poly(VinylChloride) (PVC) Non-Pressure Plastic Pipe Having Reprocessed-
  Recycled Content
D. International Code Council, (ICC):
  IBC-2018 .....International Building Code
  IPC-2018 .....International Plumbing Code
E. Manufacturers Standardization Society (MSS) of the Valve and Fittings
  Industry, Inc:
  SP-58-2018 ......Pipe Hangers and Supports - Materials, Design,
  Manufacture, Selection, Application and Installation
  SP-69-2003 ......Pipe Hangers and Supports - Selection and
  Application
     National Electrical Manufacturers Association (NEMA):
  MG 1-2016 ......Motors and Generators
     National Fire Protection Association (NFPA):
  51B-2019 ......Standard for Fire Prevention During Welding,
  Cutting and Other Hot Work
  54-2018 ......National Fuel Gas Code
  70-2020 ......National Electrical Code (NEC)
     99-2018
                       Healthcare Facilities CodeNSF International
     (NSF):
  Heat Recovery Equipment
  14-2019 ......Plastic Piping System Components and Related
  Materials
  372-2016 ............Drinking Water System Components - Lead Content
     Department of Veterans Affairs (VA):
  PG-18-102014(R18) .....Plumbing Design Manual
  PG-18-13-2017 (R18) .....Barrier Free Design Guide
```

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and will fit the space available.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- G. Manufacturer's Literature and Data including: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Coordination Drawings:

Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas.

The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to 1 foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed locations and adequate clearance for all equipment, controls, piping, pumps, valves, and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall provided with an access door sized for the complete removal of plumbing device component, or equipment. Detailed layout drawings shall be provided for all piping systems.

In addition, details of the following shall be provided:

Mechanical equipment rooms.

Interstitial space.

Hangers, inserts, supports, and bracing.

Pipe sleeves.

Equipment penetrations of floors, walls, ceilings, or roofs.

- I. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.
 - 2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
 - 3. Provide copies of approved plumbing equipment submittals to the TAB and Commissioning Subcontractor.Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.QUALITY ASSURANCE

J. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product. .

- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- K. Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code" (BPVC), Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- L. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- M. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided

- to the COR at least 10 working days prior to commencing installation of any item.
- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government
- N. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- O. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- P. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.

4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.5 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
- 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three—ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.
 Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.
 Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-Built drawings

- are to be provided on compact disk or DVD. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- B. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5workdays prior to the shutdown or it will need to be rescheduled.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372.
- B. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- C. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered,

without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

A. All material and equipment furnished and installation methods used shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.

B. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 at no additional cost or time to the Government.
- 2. Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - 1. Wiring material located where temperatures can exceed 71° C (160° F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers and water heaters.
 - 2. Other wiring at boilers and water heaters, and to control panels, shall be NFPA 70 designation THWN.
 - 3. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
- 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on

driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act (EPACT), revised 2005. Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.

- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC).
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. The combination of controller and motor shall be provided by the respective pump manufacturer and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficient type, "invertor duty", and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gauge, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic-coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the

3-ring binder notebook. Each valve location shall be identified with a color-coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) Submittals based on the International Building Code (IBC) requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. For Attachment to Wood Construction: Wood screws or lag bolts.
- F. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for

- controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gauge), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- H. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - 1. Standard clevis hanger: Type 1; provide locknut.
 - 2. Riser clamps: Type 8.
 - 3. Wall brackets: Types 31, 32 or 33.
 - 4. Roller supports: Type 41, 43, 44 and 46.
 - 5. Saddle support: Type 36, 37 or 38.
 - 6. Turnbuckle: Types 13 or 15.
 - 7. U-bolt clamp: Type 24.
 - 8. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.

- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- 9. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - 1. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - 2. Chrome plated piping: Chrome plated supports.
 - 3. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - 4. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gauge) minimum.

I. Pre-insulated Calcium Silicate Shields:

- 1. Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - 1. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - 2. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.
- J. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.12 PIPE PENETRATIONS

A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.

- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- G. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- H. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- I. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

F. Cutting Holes:

- 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.

H. Protection and Cleaning:

1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J. Gauges, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gauges shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC .
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- N. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers' putty.
- O. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with

a minimum of joints. Drain valve shall be provided in low point of casement pipe.

P. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are prohibited in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.

- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.

E. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

F. Floor Supports:

 Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled

- to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated in the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided at no additional cost or time to the Government.
- B. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the

top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

C. All valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - 1. Motors, controllers, control switches, and safety switches.
 - 2. Control and interlock devices.
 - 3. Regulators.
 - 4. Pressure reducing valves.
 - 5. Control valves and thermostatic elements.
 - 6. Lubrication devices and grease fittings.
 - 7. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - 8. Valve stems and rotating shafts.
 - 9. Pressure gauges and thermometers.
 - 10. Glass.

- 11. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory-built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

- tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

3.13 COMPONENTS PROVIDED UNDER THIS SECTION OF THE SPECIFICATION WILL BE TESTED AS PART OF A LARGER SYSTEM.DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel in operation and maintenance of the system.

- - E N D - - -

SECTION 22 05 12 GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the general motor requirements for plumbing equipment and applies to all sections of Division 22.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
 - 1. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- F. Section 26 24 19, MOTOR-CONTROL CENTERS: Motor Control Centers.
- G. Section 26 29 11, MOTOR CONTROLLERS: Starters, control and protection of motors.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Bearing Manufacturers Association (ABMA):

 ABMA 9-2015.....Load Ratings and Fatigue Life for Ball Bearings
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):

112-2017IEEE Standard Test Procedure for Polyphase Induction Motors and Generators

841-2018IEEE Standard for Petroleum and Chemical
Industry-Premium-Efficiency, Severe-Duty,
Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage
Induction Motors--Up to and Including 370 kW
(500 HP)

D. International Code Council (ICC):

IPC-2018International Plumbing Code

E. National Electrical Manufacturers Association (NEMA):

MG 1-2016Motors and Generators

- MG 2-2014Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

 Motors and Generators
- 250-2018Enclosures for Electrical Equipment (1000 Volts Maximum)
- F. National Fire Protection Association (NFPA): 70-2020National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT", with applicable paragraph identification.
- C. Shop Drawings:
 - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Motor nameplate information shall be submitted including electrical ratings, dimensions, mounting details, materials, horsepower, power factor, current as a function of speed, current efficiency, speed as a function of load, (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
 - 3. Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.
- D. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- E. Operating and maintenance manuals: Companion copies of complete maintenance and operating manuals, including technical data sheets be submitted and application data shall be submitted simultaneously with the shop drawings. Complete operating and

maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:

- 1. Include complete list indicating all components of the systems.
- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Certification: Two weeks prior to final inspection, unless otherwise noted, the following certification shall be submitted to the Contracting Officer's Representative (COR).
 - Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- G. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.QUALITY ASSURANCE
- H. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- I. Refer to Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for additional sustainable design requirements.

1.5 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 MOTORS

All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices

necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty totally enclosed motors, IEEE 841 shall apply.
- C. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- D. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.

2. Three phase:

- a. Motors connected to 208-volt systems: 200 volts.
- b. Motors, less than 74.6 kW (100 HP), connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
- c. Motors, 74.6 kW (100 HP) or greater, connected to 240-volt systems: 230 volts.
- d. Motors, 74.6 kW (100 HP) or greater, connected to 480-volt systems: 460 volts.
- e. Motors connected to high voltage systems : Shall conform to NEMA MG 1 Standards for connection to the nominal system voltage shown oin the drawings.
- E. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and greater: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- F. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in

- areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- G. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration and running torque without exceeding nameplate ratings or considering service factor.

H. Motor Enclosures:

- 1. Shall be the NEMA types shown on the drawings for the motors.
- 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
- 3. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- 4. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- 5. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 6. Enclosures shall be primed, and finish coated at the factory with manufacturer's prime coat and standard finish.
- 7. All motors in hazardous locations shall be approved for application and meet the Class and Group as required by the area classification.

I. Electrical Design Requirements:

- 1. Motors shall be continuous duty.
- 2. The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
- 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (144 degrees F).
- 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
- 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
- 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant

Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable Voltage or Adjustable Frequency Controls, or both, or NEMA MG 1, Part 31, Definite Purpose Inverter Fed Polyphase Motors.

J. Mechanical Design Requirements:

- 1. Bearings shall be rated for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hour rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
- 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
- 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- 6. Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- 13.Additional requirements for specific motors, as indicated in other sections, shall also apply.
- K. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746~W~(1~HP) or more shall meet the minimum full-load efficiencies as indicated in the

following table, and as specified in this specification. Motors of 746 W (1 HP) or more with open, drip-proof or totally enclosed fancooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Efficiencies				Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM	Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

- L. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be installed unless the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- M. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 **FIELD TESTS**

- A. All tests shall be witnessed by the CxA or by the COR.
- B. P Megger all motors after installation, before startup. All shall test free from grounds.
- C. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.COMMISSIONING
- D. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- E. Components provided under this section of the specification shall be tested as part of a larger system. DEMONSTRATION AND TRAINING

 Provide services of manufacturer's technical representative for 4hours to instruct each VA personnel responsible in operation and maintenance of the system. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08

 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 19 METERS AND GAUGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gauges primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 25 10 10, ADVANCED UTILITY METERING SYSTEM.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only
- B. American Society of Mechanical Engineers (ASME):

B40.100-2013Pressure Gauges and Gauge Attachments
B40.200-2008Thermometers, Direct Reading and Remote Reading

C. American Water Works Association (AWWA):

C700-2015Cold Water Meters, Displacement Type, Bronze

Main Case

C701-2015Cold Water Meters-Turbine Type, for Customer Service

C706-2010 Direct-Reading, Remote-Registration Systems for Cold-Water Meters

D. Institute of Electrical and Electronics Engineers (IEEE):

C2-2017National Electrical Safety Code (NESC)

E. International Code Council (ICC):

IPC-2018International Plumbing Code

F. National Fire Protection Association (NFPA):

70-2020National Electrical Code (NEC)

G. NSF International (NSF):

61-2019Drinking Water System Components - Health

Effects

372-2016Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAUGES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Water Meter.
 - 2. Pressure Gauges.
 - 3. Thermometers.
 - 4. Product certificates for each type of meter and gauge.
 - 5. BACnet communication protocol.
- D. Operating and maintenance manual shall including:
 - 1. System Description.
 - 2. Major assembly block diagrams.
 - 3. Troubleshooting and preventive maintenance guidelines..
 - 4. Spare parts information.
- E. Shop Drawings shall include the following: One line, wiring and terminal diagrams including terminals identified, protocol or communica

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit copies of complete operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder per the requirements of Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The

operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 PRESSURE GAUGES FOR WATER

- A. ASME B40.100 all metal case 115 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1380 kPa (0 to 200 psig) gauge.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.
- H. The pressure gauge for water domestic use shall conform to NSF 61 and NSF 372.

2.2 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 175 mm (7 inches) high, 4 degrees C to 100 degrees C (40 degrees F to 212 degrees F). Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gauges shall be installed in piping tees with pressure gauge located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gauge.
- C. Test plugs shall be installed on the inlet and outlet pipes of all heat exchangers or water heaters serving more than one plumbing fixture.
- D. Pressure gauges shall be installed where indicated in the drawings and at the following locations:

- 1. Building water service entrance into building.
- 2. Inlet and outlet of each pressure reducing valve.
- 3. Suction and discharge of each domestic water pump or re-circulating hot water return pump.
- E. Thermometers shall be installed on the water heater inlet and outlet piping, thermostatic mixing valve outlet piping, and the hot water circulation pump inlet piping.
- F. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 FIELD QUALITY CONTROL

A. The meter assembly shall be visually inspected and operationally tested. The correct multiplier placement on the face of the meter shall be verified.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only
- B. American Society of Mechanical Engineers (ASME):
 A112.14.1-2003Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2017	Performance	Requirements	for	Atmospheric	Type
	Vacuum Breal	kers			

- 1003-2009Performance Requirements for Water Pressure

 Reducing Valves for Domestic Water Distribution

 Systems
- 1011-2017 Performance Requirements for Hose Connection

 Vacuum Breakers
- 1013-2011Performance Requirements for Reduced Pressure

 Principle Backflow Preventers and Reduced

 Pressure Principle Fire Protection Backflow

Preventers

1015-2011Performance Requirements for Double Check

Backflow Prevention Assemblies and Double Check

Fire Protection Backflow Prevention Assemblies

22 05 23 - 1

	1017-2009Performance Requirements for Temperature
	Actuated Mixing Valves for Hot Water
	Distribution Systems
	1020-2004Performance Requirements for Pressure Vacuum
	Breaker Assembly
	1035-2008Performance Requirements for Laboratory Faucet
	Backflow Preventers
	1069-2005Performance Requirements for Automatic
	Temperature Control Mixing Valves
	1070-2015Performance Requirements for Water Temperature
	Limiting Devices
	1071-2012Performance Requirements for Temperature
	Actuated Mixing Valves for Plumbed Emergency
	Equipment
D.	American Society for Testing and Materials (ASTM):
	A126-2004(R2019)Standard Specification for Gray Iron Castings
	for Valves, Flanges, and Pipe Fittings
	A276/A276M-2017Standard Specification for Stainless Steel Bars
	and Shapes
	A536-1984(R2019e)Standard Specification for Ductile Iron
	Castings
	B62-2017Standard Specification for Composition Bronze
	or Ounce Metal Castings
	B584-2014Standard Specification for Copper Alloy Sand
	Castings for General Applications
Ε.	International Code Council (ICC):
	IPC-2018International Plumbing Code
F.	Manufacturers Standardization Society of the Valve and Fittings
	Industry, Inc. (MSS):
	SP-25-2018Standard Marking Systems for Valves, Fittings,
	Flanges and Unions
	SP-67-2017Butterfly Valves
	SP-70-2011Gray Iron Gate Valves, Flanged and Threaded
	Ends
	SP-71-2018Gray Iron Swing Check Valves, Flanged and
	Threaded Ends
	SP-80-2019Bronze Gate, Globe, Angle, and Check Valves

- SP-110-2010Ball Valves Threaded, Socket-Welding, Solder

 Joint, Grooved and Flared Ends
- G. National Environmental Balancing Bureau (NEBB):
 - 8th Edition 2015 Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
- H. NSF International (NSF):
 - 61-2019 Drinking Water System Components Health

 Effects
 - 372-2016Drinking Water System Components Lead Content
- I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR):
 - 10th EditionManual of Cross-Connection Control

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Gate Valves.
 - 3. Butterfly Valves.
 - 4. Balancing Valves.
 - 5. Check Valves.
 - 6. Globe Valves.
 - 7. Water Pressure Reducing Valves and Connections.
 - 8. Backwater Valves.
 - 9. Backflow Preventers.
 - 10. Chainwheels.
 - 11. Thermostatic Mixing Valves.
- D. Test and Balance reports for balancing valves.

- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 4. Piping diagrams of thermostatic mixing valves to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials.

 Bronze valves made with copper alloy (brass) containing greater than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.

- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
 - 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.
 - 3. 100 mm DN100 (4 inches) andlarger:
 - a. Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS SP-70 type I standard. The gate valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall meet ASTM A126, grey iron with bolted bonnet, flanged ends, bronze trim, and positive-seal resilient solid wedge disc. The gate valve shall be gear operated for sizes under 200 mm or DN200 (8 inches) and crank operated for sizes 200 mm or DN200 (8 inches) andabove.
 - b. Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The butterfly valve shall be lug type, suitable for bidirectional

- dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem.
- c. Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall be epoxy coated ductile iron conforming to ASTM A536 with two-piece stainless-steel stem, Buna-N encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated.
- B. Reagent Grade Water: Valves for reagent grade, reverse osmosis, or deionized water service shall be ball type of same material as used for pipe.

2.3 BALANCING VALVES

- A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitted with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- B. Larger than 75 mm or DN75 (3 inches): Manual balancing valves shall be of heavy duty cast iron flanged construction with 861 kPa (125 psig) flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. The design pressure shall be 1200 kPa (175 psig) at 121 degrees C (250 degrees F).

2.4 CHECK VALVES

A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a

Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.

- B. 100 mm or DN100 (4 inches) and larger:
 - 1. Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.
 - 2. All check valves on the discharge side of submersible sump pumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.5 GLOBE VALVES

- A. 75 mm or DN75 (3 inches) or smaller: Class 150, bronze globe valve with non-metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B62 with solder ends, copper-silicon bronze stem, PTFE or TFE disc, and malleable iron hand wheel.
- B. Larger than 75 mm or DN75 (3 inches): Similar to above, except with cast iron body and bronze trim, Class 125, iron globe valve. The globe valve shall meet MSS SP-85, Type 1 standard. The globe valve shall have a CWP rating of 1380 kPa (200 psig). The valve material shall be gray iron with bolted bonnet conforming to ASTM A126 with flanged ends, bronze trim, and malleable iron handwheel.

2.6 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

- A. 75 mm or DN75 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The pressure reducing valve shall meet ASSE 1003. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.
- B. 100 mm or DN100 (4 inches) and greater: The pressure reducing valve shall consist of a flanged cast iron body and rated to 1380 kPa (200

- psig). The valve shall have a large elastomer diaphragm for sensitive response. The pressure reducing valve shall meet ASSE 1003.
- C. The regulator shall have a tap for pressure gauge.
- D. The regulator shall have a temperature rating of 100 degrees C (212 degrees F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9 kPa (+/- 1 psig).
- E. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- F. Connections Valves and Strainers: Shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gauge shall be installed on the inlet and outlet of the valve.

2.7 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276/A276M. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.
 - 1. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water.
- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be

the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.

- 1. Hose bibs and sinks with threaded outlets.
- 2. Disposers.
- 3. Showers (telephone/handheld type).
- 4. Hydrotherapy units.
- 5. Service sinks (integral with faucet only).
- 6. Laundry tubs (integral with faucet only).
- D. The hose connection vacuum breaker shall be ASSE listed 1011. The main body shall be cast brass with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to hose thread outlets. Hose connection vacuum breakers shall be installed in the following locations requiring non-continuous pressure:
 - 1. Hose bibbs and wall hydrants.
- E. The pressure vacuum breaker shall be ASSE listed 1020. The main body shall be brass. The disc and O-ring seal shall be the elastomer type. The valve seat and disc float shall be the thermoplastic type. Tee handle or lever handle shut-off ball valves. Test cocks for testing and draining where freezing conditions occur. All materials shall be suitable for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Pressure vacuum breakers shall be installed in the following locations requiring continuous pressure and no backpressure including equipment with submerged inlet connections:
 - 1. 1. Lawn Irrigation.
- F. The laboratory faucet vacuum breaker shall be ASSE listed 1035. The main body shall be cast brass. Dual check valves with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to laboratory faucets for non-continuous pressure applications.

G. The double check backflow prevention assembly shall be ASSE listed 1015 and supply with full port, OS&Y, positive-seal, resilient gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The first and second check valve shall be accessible for maintenance without removing the device from the line. Double check valves shall be installed in the following location requiring continuous pressure subject to backpressure and backsiphonage conditions.

2.8 CHAINWHEELS

- A. Valve chain wheel assembly with sprocket rim brackets and chain shall be constructed according to the following:
 - 1. Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to butterfly valve stem.
 - 3. Sprocket rim with chain guides: Ductile or cast iron of type and size required for valve with zinc coating.
 - 4. Chain: Hot dipped galvanized steel of size required to fit sprocket rim.

2.9 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - 2. The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
 - No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
 - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
 - 5. Valve finish shall be chrome plated in exposed areas.
 - 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.

- 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
- 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
- 9. Provide mixing valves with integral check valves with screens and stop valves.

B. Master Thermostatic Water Mixing Valves:

- 1. Application: Tempered water distribution from hot water source.
- 2. Standard: ASSE 1017.
- 3. Pressure Rating: 861 kPa (125 psig).
- 4. Type: Exposed-mounting or Cabinet-type, as indicated, thermostatically controlled water mixing valve.
- 5. Connections: Flanged or threaded union inlets and outlet.

C. Hi-Lo Water-Mixing-Valve Assemblies:

- 1. Application: Tempered water distribution from hot water source covering a wide range of flow.
- 2. Description: Factory-fabricated, cabinet-type or exposed-mounting, thermostatically controlled, water-mixing-valve assembly in two-valve parallel arrangement including pressure regulators, pressure gauges and thermometer.
- 3. Large-Flow Parallel: Master thermostatic water mixing valve and downstream pressure regulator with pressure gauges on inlet and outlet.
- 4. Small-Flow Parallel: Master thermostatic water mixing valve.
- 5. Master Thermostatic Mixing Valves: Comply with ASSE 1017.
- 6. Water Regulator(s): Comply with ASSE 1003. Include pressure gauge on inlet and outlet.
- 7. Component Pressure Ratings: 861 kPa (125 psig) minimum, unless otherwise indicated.

D. Automatic Water Temperature Control Mixing Valves:

- 1. Application: Gang plumbing fixtures point-of-use when no other mixing at fixtures occurs.
- 2. Standard: ASSE 1069.
- 3. Pressure Rating: 861 kPa (125 psig).

- 4. Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
- 5. Connections: Threaded union or soldered inlets and outlet.
- 6. Thermometers shall be provided to indicate mixed water temperature.
- 7. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 gpm maximum.

E. Water Temperature Limiting Devices:

- 1. Application: Single plumbing fixture point-of-use such as sinks or lavatories.
- 2. Standard: ASSE 1070.
- 3. Pressure Rating: 861 kPa (125 psig).
- 4. Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
- 5. Connections: Threaded union, compression or soldered inlets and outlet.
- 6. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.

F. Temperature Activated Mixing Valves:

- 1. Application: Emergency eye/face/drench shower equipment.
- 2. Standard: ASSE 1071.
- 3. Pressure Rating: 861 kPa (125 psig).
- 4. Type: Thermostatically controlled water mixing valve set at 24-30 degrees C (75-85 degrees F).
- 5. Connections: Soldered or threaded union inlets and outlet.
- 6. Thermometers shall be provided to indicate mixed water temperature.
- 7. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.

- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Install chain wheels on operators for butterfly gate and globe valves NPS 100 mm or DN100 (4 inches) and greater and installed greater than 3.0 m (10 feet) above floor. Chains shall be extended to 1524 mm (60 inches) above finished floor.
- F. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - 1. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- H. Install pressure gauges on outlet of backflow preventers.
- I. Do not install bypass piping around backflow preventers.

- J. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - 2. Install cabinet-type units recessed in or surface mounted on wall as specified.
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Master, thermostatic, water mixing valves.
 - 3. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.

B. Definitions:

- 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
- 4. Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
- 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
- 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces.
- 7. FSK: Foil-scrim-Kraft facing.
- 8. Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
- 9. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.

- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- F. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.
- G. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011Standard Test Method for Hot-Surface

Performance of High-Temperature Thermal
Insulation

C449-2007 (R2013)	.Standard Specification for Mineral Fiber
	Hydraulic-Setting Thermal Insulating and
	Finishing Cement
C450-2008 (R2014)	.Standard Practice for Fabrication of Thermal
	Insulating Fitting Covers for NPS Piping, and
	Vessel Lagging
Adjunct to C450	.Compilation of Tables that Provide Recommended
	Dimensions for Prefab and Field Thermal
	Insulating Covers, etc.
C533-2013	.Standard Specification for Calcium Silicate
	Block and Pipe Thermal Insulation
C534/C534M-2014	.Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-2015	.Standard Specification for Mineral Fiber Pipe
	Insulation
C552-2014	.Standard Specification for Cellular Glass
	Thermal Insulation
C553-2013	.Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C591-2013	.Standard Specification for Unfaced Preformed
	Rigid Cellular Polyisocyanurate Thermal
	Insulation
C680-2014	.Standard Practice for Estimate of the Heat Gain
	or Loss and the Surface Temperatures of
	Insulated Flat, Cylindrical, and Spherical
	Systems by Use of Computer Programs
C612-2014	.Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126-2014	.Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136-2012	.Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
C1710-2011	.Standard Guide for Installation of Flexible
	Closed Cell Preformed Insulation in Tube and
	Sheet Form

D1668/D1668M-1997a (2014)el Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-2015aStandard Test Method for Surface Burning Characteristics of Building Materials E2231-2015Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics C. Federal Specifications (Fed. Spec.): L-P-535E-1979Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990 ... Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987 .. Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass F. National Fire Protection Association (NFPA): 90A-2015Standard for the Installation of Air-Conditioning and Ventilating Systems G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013)Standard for Test for Surface Burning Characteristics of Building Materials

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; https://insulationinstitute.org/toolsresources/

Characteristics

1887-2004 (R2013)Standard for Fire Test of Plastic Sprinkler

Pipe for Visible Flame and Smoke

1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

D. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through
 - 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:
 - **4.3.3.1** Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.
 - 4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a

similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

- 4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
- 4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.
- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version18 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall

- not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- C. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers.

Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m 3 (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (nominal 1 pcf), k = 0.045 (0.31) Class B-5, Density 32 kg/m³ (nominal 2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (842 degrees F).

2.3 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are

- to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.4 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II.
- D. Characteristics:

Insulation Characteristics					
ITEMS	TYPE I	TYPE II			
Surface Temperature, maximum degrees C (degrees F)	649 (1200)	927 (1700)			
Density (dry), Kg/m ³ (lb/ ft3)	240 (15)	352 (22)			
Thermal conductivity: Min W/ m K (Btu in/h ft² degrees F)@ mean temperature of 93 degrees C (199 degrees F)	0.065 (0.45)	0.078 (0.540)			
Surface burning characteristics: Flame spread Index, Maximum	0	0			
Smoke Density index, Maximum	0	0			

2.5 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units,

- suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets,) conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder

- pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.6 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high

density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

2.7 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.8 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.9 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.

- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.10 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.11 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through

- insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of $150\ \mathrm{mm}$ (6 inches).
- E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage.

 Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

- L. Firestop Pipe insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- M. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids below ambient air temperature.
- O. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1829 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets except for cold pipe or tubing applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- P. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt

strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain unfaced board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowelled to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with vapor retarder ASJ or FSK. Seal all facings, laps, and termination points and do not use staples or other attachments that may puncture ASJ or FSK.
 - a. Water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with unsealed ASJ or FSK.
 - a. Domestic water heaters and hot water storage tanks (not factory insulated).
 - b. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.

B. Molded Mineral Fiber Pipe and Tubing Covering:

1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

C. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impreganted glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

- D. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.
 - 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

E. Calcium Silicate:

1. Minimum thickness in millimeter (inches) specified below for piping other than in boiler plant.

Nominal Thick	ness Of Cal (Non-Boil		te Insulati	on
Nominal Pipe Size Millimeters (Inches)	Thru 25 (1)	32 to 75 (1-1/4 to 3)	100-200 (4 to 8)	Greater than 200 (8)
93-260 degrees C (199-500 degrees F)(HPS, HPR)	100(4)	125(5)	150(6)	Greater than 150(6)

2. MRI Quench Vent Insulation: Type I, class D, 150 mm (6 inch) nominal thickness.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

I	nsulation Thickne	ss Millimet	ers (Inches	3)	
		Nominal	Pipe Size M	illimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Greater
0-38 degrees C (32- 100 degrees F) (Domestic Cold Water Supply)	Mineral Fiber (Above ground piping only)	13 (0.5)	19 (0.75)	19 (0.75)	19 (0.75)
0-38 degrees C (32- 100 degrees F) (Domestic Cold Water Supply)	Cellular Glass Thermal	13 (0.5)	19 (0.75)	19 (0.75)	19 (0.75)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
0-38 degrees C (32- 100 degrees F) (Roof Drain Bodies)	Mineral Fiber (Above ground piping only)	25 (1.0)	25 (1.0)	25 (1.0)	25 (1.0)
0-38 degrees C (32- 100 degrees F) (Roof Drainage Above Grade)	Cellular Glass Thermal	25 (1.0)	25 (1.0)	25 (1.0)	25 (1.0)

- - - E N D - - -

SECTION 22 08 00

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. . All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Contracting Officers Representative. The Contractor shall review and
comment on the tests prior to approval. The Contractor shall provide
the required labor, materials, and test equipment identified in the
test procedure to perform the tests. The Commissioning Agent will
witness and document the testing. The Contractor shall sign the test
reports to verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Contracting Officers Representative and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Contracting Officers Representative after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

- - - END - - -

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- H. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007	(R2013)	Scheme	for Ide	ntificatio	n of Pipir	ng Syster	ns
B16.3-2011		Malleak	ole Iron	Threaded	Fittings:	Classes	150
		and 300	O				

B16.9-2012Factory-Made Wrought Buttwelding Fittings
B16.11-2011Forged Fittings, Socket-Welding and Threaded
B16.12-2009 (R2014)Cast Iron Threaded Drainage Fittings
B16.15-2013Cast Copper Alloy Threaded Fittings: Classes
125 and 250
B16.18-2012Cast Copper Alloy Solder Joint Pressure

B16.18-2012	Cast	Copper	Alloy	Solder	Joint	Pressure
	Fitt	ings				

B16.22-2013	Wrought	Copper	and	Copper	Alloy	Solder-Joint
	Pressure	e Fittir	ngs			

B16.24-2011	Cast	Copper	r Alloy	Pipe	Flanc	ges ar	nd Fla	anged	
	Fitt	ings: (Classes	150,	300,	600,	900,	1500,	and
	2500								

	ASME Boiler and Pressure Vessel Code -
	BPVC Section IX-2015Welding, Brazing, and Fusing Qualifications
С.	American Society of Sanitary Engineers (ASSE):
	1010-2004Performance Requirements for Water Hammer
	Arresters
D.	American Society for Testing and Materials (ASTM):
	A47/A47M-1999 (R2014)Standard Specification for Ferritic Malleable
	Iron Castings
	A53/A53M-2012Standard Specification for Pipe, Steel, Black
	and Hot-Dipped, Zinc-Coated, Welded and
	Seamless
	A183-2014Standard Specification for Carbon Steel Track
	Bolts and Nuts
	A269/A269M-2014elStandard Specification for Seamless and Welded
	Austenitic Stainless Steel Tubing for General
	Service
	A312/A312M-2015Standard Specification for Seamless, Welded,
	and Heavily Cold Worked Austenitic Stainless
	Steel Pipes
	A403/A403M-2014Standard Specification for Wrought Austenitic
	Stainless Steel Piping Fittings
	A536-1984 (R2014)Standard Specification for Ductile Iron
	Castings A733-2013Standard Specification for Welded and Seamless
	Carbon Steel and Austenitic Stainless Steel
	Pipe Nipples
	B32-2008 (R2014)Standard Specification for Solder Metal
	B43-2014Standard Specification for Seamless Red Brass
	Pipe, Standard Sizes
	B61-2008 (R2013)Standard Specification for Steam or Valve
	Bronze Castings
	B62-2009Standard Specification for Composition Bronze
	or Ounce Metal Castings
	B75/B75M-2011Standard Specification for Seamless Copper Tube
	B88-2014Standard Specification for Seamless Copper
	Water Tube
	B584-2014Standard Specification for Copper Alloy Sand
	Castings for General Applications

	B687-1999 (R2011)Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
	C919-2012Standard Practice for Use of Sealants in
	Acoustical Applications
	D4101-2014Standard Specification for Polypropylene
	Injection and Extrusion Materials
	E1120-2008Standard Specification for Liquid Chlorine
	E1229-2008Standard Specification for Calcium Hypochlorite
Ε.	American Water Works Association (AWWA):
	C110-2012Ductile-Iron and Gray-Iron Fittings
	C151-2009Ductile Iron Pipe, Centrifugally Cast
	C153-2011Ductile-Iron Compact Fittings
	C651-2014Disinfecting Water Mains
F.	American Welding Society (AWS):
	${\tt A5.8M/A5.8-2011-AMD1} \ \dots {\tt Specification} \ {\tt for} \ {\tt Filler} \ {\tt Metals} \ {\tt for} \ {\tt Brazing} \ {\tt and}$
	Braze Welding
G.	International Code Council (ICC):
	IPC-2012International Plumbing Code
Н.	Manufacturers Specification Society (MSS):
	SP-58-2009Pipe Hangers and Supports - Materials, Design,
	Manufacture, Selection, Application, and
	Installation
	SP-72-2010aBall Valves with Flanged or Butt-Welding Ends
	for General Service
	SP-110-2010Ball Valves Threaded, Socket-Welding, Solder
	Joint, Grooved and Flared Ends
I.	NSF International (NSF):
	14-2015Plastics Piping System Components and Related
	Materials
	61-2014aDrinking Water System Components - Health
	Effects
	372-2011Drinking Water System Components - Lead Content
J.	Plumbing and Drainage Institute (PDI):
	PDI-WH 201-2010Water Hammer Arrestors
	H-18-10Plumbing Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or . All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 18 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
- B. Fittings for Copper Tube:
 - 1. Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kPa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
 - 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 1 approved, 50 mm (2 inch) size and smaller mechanical press connect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature..
 - 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME R16 24
- C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- E. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.3 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment, and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B687, Chromium-plated.
 - 4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.4 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings.

 Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.5 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.6 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.

2.7 WATER HAMMER ARRESTER

A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:

- 1. All solenoid valves.
- 2. All groups of two or more flush valves.
- 3. All quick opening or closing valves.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - 3. All pipe runs shall be laid out to avoid interference with other work/trades.
 - 4. Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or
 Threaded at each end with two removable nuts at each end for
 positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel.

 Pipe Hangers and riser clamps shall have a copper finish when
 supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.

- 9) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180-degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- 6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

7. Penetrations:

- a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in

- Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the Manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool (s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - 1. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot and cold water circulating lines with no traps.
 - 2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.

- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- E. Section 07 92 00, JOINT SEALANTS: Sealant products.
- F. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- H. Section 22 07 11, PLUMBING INSULATION.
- I. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- J. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007Identification of Piping Systems
A112.36.2M-1991Cleanouts
A112.6.3-2019Floor and Trench Drains
B1.20.1-2013Pipe Threads, General Purpose (Inch)
B16.1-2015Gray Iron Pipe Flanges and Flanged Fittings
Classes 25, 125, and 250
B16.4-2016Grey Iron Threaded Fittings Classes 125 and 250
B16.15-2018Cast Copper Alloy Threaded Fittings, Classes
125 and 250

B16.18-2018Cast Copper Alloy Solder Joint Pressure Fittings

	D1C 01 001C	Namestallia Elet Casheta for Dina Elegan
		.Nonmetallic Flat Gaskets for Pipe Flanges
	B16.22-2018	.Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.23-2016	.Cast Copper Alloy Solder Joint Drainage
		Fittings: DWV
	B16.24-2016	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings, and Valves: Classes 150, 300, 600,
		900, 1500, and 2500
	B16.29-2017	.Wrought Copper and Wrought Copper Alloy Solder-
		Joint Drainage Fittings: DWV
	B16.39-2014	.Malleable Iron Threaded Pipe Unions Classes
		150, 250, and 300
	B18.2.1-2012	.Square, Hex, Heavy Hex, and Askew Head Bolts
		and Hex, Heavy Hex, Hex Flange, Lobed Head, and
		Lag Screws (Inch Series)
С.	American Society of San	itary Engineers (ASSE):
	1001-2017	.Performance Requirements for Atmospheric Type
		Vacuum Breakers
	1018-2001	.Performance Requirements for Trap Seal Primer
		Valves - Potable Water Supplied
	1044-2015	.Performance Requirements for Trap Seal Primer
		Devices - Drainage Types and Electronic Design
		Types
	1079-2012	.Performance Requirements for Dielectric Pipe
		Unions
D.	American Society for Te	sting and Materials (ASTM):
	A53/A53M-2018	.Standard Specification for Pipe, Steel, Black
		And Hot-Dipped, Zinc-coated, Welded and
		Seamless
	A74-2017	.Standard Specification for Cast Iron Soil Pipe
		and Fittings
	A888-2018a	.Standard Specification for Hubless Cast Iron
		Soil Pipe and Fittings for Sanitary and Storm
		Drain, Waste, and Vent Piping Applications
	B32-2008 (R2014)	.Standard Specification for Solder Metal
	в43-2015	.Standard Specification for Seamless Red Brass
		Pipe, Standard Sizes
	в75-2011	.Standard Specification for Seamless Copper Tube

	B88-2016Standard Specification for Seamless Copper		
	Water Tube		
	B306-2013 Standard Specification for Copper Drainage Tube		
	(DWV)		
	B584-2013Standard Specification for Copper Alloy Sand		
	Castings for General Applications		
	B687-1999(R2016)Standard Specification for Brass, Copper, and		
	Chromium-Plated Pipe Nipples		
	B813-2016 Standard Specification for Liquid and Paste		
	Fluxes for Soldering of Copper and Copper Alloy		
	Tube		
	B828-2016Standard Practice for Making Capillary Joints		
	by Soldering of Copper and Copper Alloy Tube		
	and Fittings		
	C564-2014Standard Specification for Rubber Gaskets for		
	Cast Iron Soil Pipe and Fittings		
Ε.	. Cast Iron Soil Pipe Institute (CISPI):		
	2006Cast Iron Soil Pipe and Fittings Handbook		
	301-2012Standard Specification for Hubless Cast Iron		
	Soil Pipe and Fittings for Sanitary and Storm		
	Drain, Waste, and Vent Piping Applications		
	310-2012Specification for Coupling for Use in		
	Connection with Hubless Cast Iron Soil Pipe and		
	Fittings for Sanitary and Storm Drain, Waste,		
	and Vent Piping Applications		
F.	. Copper Development Association, Inc. (CDA):		
	A4015-14/19Copper Tube Handbook		
G.	<pre>International Code Council (ICC):</pre>		
	IPC-2018International Plumbing Code		
н.	Manufacturers Standardization Society (MSS):		
	SP-123-2018Non-Ferrous Threaded and Solder-Joint Unions		
	for Use with Copper Water Tube		
I.	National Fire Protection Association (NFPA):		
	70-2020National Electrical Code (NEC)		
J.	Plumbing and Drainage Institute (PDI):		
~ ·	WH-201 (R2010) Water Hammer Arrestors Standard		
K	Underwriters' Laboratories, Inc. (UL):		
	508-99 (R2013)Standard For Industrial Control Equipment		
	500 55 (N2015)Standard For Industrial Control Equipment		

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Cleanouts.
 - 4. Trap Seal Protection.
 - 5. Penetration Sleeves.
 - 6. Pipe Fittings.
 - 7. Traps.
 - 8. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. The installing contractor shall maintain as-Built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 18 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company requirement.

B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of the individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of the tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or no-hub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

B. Copper Tube, (DWV):

- 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
- 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
- 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
- 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15and ASTM D2665.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt

- sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated in the drawings and at every building exit.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent

- providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening shall not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a 1.1 to 1.8 Kg (2.5 to 4 lbs.) flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.
- B. Type B (FD-B) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type B floor drain shall be constructed of galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with secondary strainer in bottom for large debris. The grate shall be 175 mm (7 inches) minimum.
- C. Type C (FD-C) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty nickel bronze adjustable strainer with round or square grate of 150 mm (6 inches) width or diameter minimum for toilet rooms, showers.
- D. Type D (FD-D) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type D floor drain shall have a cast iron body with flange for membrane type flooring, integral reversible clamping device, seepage openings and 175 mm (7 inch) diameter or square satin nickel

- bronze or satin bronze strainer with 100 mm (4 inch) flange for toilet rooms, showers and kitchens.
- E. Type F (FD-F) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type F floor drain shall be have a cast iron body with flange, integral reversible clamping device, seepage openings and a 228 mm (9 inch) two-piece satin nickel-bronze or satin bronze strainer for use with seamless vinyl floors in toilet rooms and showers.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are prohibited on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that shall extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that shall extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.

- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends.

 Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow greater than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- L. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
- 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead-free alloy solder conforming to ASTM B32 shall be used.

3.3 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.

- 2. All plates shall be provided with set screws.
- 3. Height adjustable clevis type pipe hangers.
- 4. Adjustable floor rests and base flanges shall be steel.
- 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser clamps shall be malleable iron or steel.
- 7. Rollers shall be cast iron.
- 8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

I. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.

3.4 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.

- 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
- 2. For an air test, an air pressure of 34 kPa (5 psig) gauge shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gauge shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- H. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A112.6.4-2003 (R2012) .Roof, Deck, and Balcony Drains
A13.1-2007 (R2013)Scheme for Identification of Piping Systems
B1.20.1-2013Pipe Threads, General Purpose, Inch
B16.3-2011Malleable Iron Threaded Fittings: Classes 150
and 300
B16.9-2012Factory-Made Wrought Buttwelding Fittings
B16.11-2011Forged Fittings, Socket-Welding and Threaded
B16.12-2009 (R2014)Cast Iron Threaded Drainage Fittings
B16.15-2013Cast Copper Alloy Threaded Fittings: Classes
125 and 250

22 14 00 - 1

Fittings

	B16.22-2013	.Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.23-2011	.Cast Copper Alloy Solder Joint Drainage
		Fittings - DWV
	B16.29-2012	.Wrought Copper and Wrought Copper Alloy Solder-
		Joint Drainage Fittings - DWV
С.	American Society of San	
	1079-2012	.Performance Requirements for Dielectric Pipe
		Unions
D.	American Society for Te	sting and Materials (ASTM):
	A47/A47M-1999 (R2014) .	.Standard Specification for Ferritic Malleable
		Iron Castings
	A53/A53M-2012	.Standard Specification for Pipe, Steel, Black
		And Hot-Dipped, Zinc-coated Welded and Seamless
	A74-2013a	.Standard Specification for Cast Iron Soil Pipe
		and Fittings
	A183-2014	.Standard Specification for Carbon Steel Track
		Bolts and Nuts
	A312/A312M-2015	.Standard Specification for Seamless, Welded,
		and Heavily Cold Worked Austenitic Stainless
		Steel Pipes
	A536-1984 (R2014)	.Standard Specification for Ductile Iron
		Castings
	A733-2013	.Standard Specification for Welded and Seamless
		Carbon Steel and Austenitic Stainless Steel
		Pipe Nipples
	A888-2013a	.Standard Specification for Hubless Cast Iron
		Soil Pipe and Fittings for Sanitary and Storm
		Drain, Waste, and Vent Piping Applications
	B32-2008 (R2014)	.Standard Specification for Solder Metal
	B61-2008 (R2013)	.Standard Specification for Steam or Valve
		Bronze Castings
	B62-2009	.Standard Specification for Composition Bronze
		or Ounce Metal Castings
		.Standard Specification for Seamless Copper Tube
	B88-2014	.Standard Specification for Seamless Copper
		Water Tube

	в306-2013	.Standard Specification for Copper Drainage Tube (DWV)
	B584-2014	.Standard Specification for Copper Alloy Sand
	DC07 1000 (D0011)	Castings for General Applications
	B687-1999 (R2011)	.Standard Specification for Brass, Copper, and
		Chromium-Plated Pipe Nipples
	B828-2002 (R2010)	.Standard Practice for Making Capillary Joints
		by Soldering of Copper and Copper Alloy Tube
		and Fittings
	B813-2010	.Standard Specification for Liquid and Paste
		Fluxes for Soldering of Copper and Copper Alloy
		Tube
	C564-2014	.Standard Specification for Rubber Gaskets for
		Cast Iron Soil Pipe and Fittings
	C1173-2010 (R2014)	.Standard Specification for Flexible Transition
		Couplings for Underground Piping Systems
Ε.	E. American Welding Society (AWS):	
	A5.8M/A5.8 AMD1-2011	.Specification for Filler Metals for Brazing and
		Braze Welding
F.	Copper Development Asso	ciation (CDA):
	A4015-2011	.Copper Tube Handbook
G. Cast Iron Soil Pipe Institute (CISPI):		
	301-2012	.Standard Specification for Hubless Cast Iron
		Soil Pipe and Fittings for Sanitary and Storm
		Drain, Waste, and Vent Piping Applications
	310-2012	.Standard Specification for Coupling for Use in
		Connection with Hubless Cast Iron Soil Pipe and
		Fittings for Sanitary and Storm Drain, Waste,
		and Vent Piping Applications
Н.	H. International Code Council (ICC):	
	IPC-2012	.International Plumbing Code
I.	Manufacturers Standardi	zation Society of the Valve and Fittings
	<pre>Industry, Inc. (MSS):</pre>	
	SP-72-2010a	.Ball Valves with Flanged or Butt-Welding Ends
		for General Service
	SP-110-2010	.Ball Valves Threaded, Socket-Welding, Solder
		Joint, Grooved and Flared Ends

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 00, FACILITY STORM DRAINAGE", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and Fittings.
 - 2. Specialty Pipe Fittings.
 - 3. Cleanouts.
 - 4. Roof Drains.
 - 5. Expansion Joints.
 - 6. Downspout Nozzles.
 - 7. Sleeve Flashing Devices.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for

emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 18 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - 1. Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.
 - d. All mechanical equipment rooms or other areas containing mechanical air handling equipment.
 - 2. The cast iron storm pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless

joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

- B. Copper Tube, (DWV): May be used for piping above ground.
 - 1. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 2. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 3. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.
- C. Roof drain piping and body of drain in locations where the outdoor conditions are subject to freezing shall be insulated.

2.2 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside caulk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and

- stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.3 ROOF DRAINS AND CONNECTIONS

- A. Roof Drains: Roof Drains (RD) shall be cast iron with clamping device for making watertight connection and shall conform with ASME A112.6.4. Free openings through strainer shall be twice area of drain outlet. For roof drains not installed in connection with a waterproof membrane, a soft copper membrane shall be provided 300 mm (12 inches) in diameter greater than outside diameter of drain collar. An integral gravel stop shall be provided for drains installed on roofs having built up roofing covered with gravel or slag. Integral no-hub, soil pipe gasket or threaded outlet connection shall be provided.
 - 1. Flat Roofs: The roof drain shall have a beehive or dome shaped strainer with integral flange not less than 300 mm (12 inches) in diameter. For an insulated roof, a roof drain with an adjustable drainage collar shall be provided, which can be raised or lowered to meet required insulation heights, sump receiver and deck clamp. The bottom section shall serve as roof drain during construction before insulation is installed.
 - 2. Roof Drains, Overflow or Secondary (Emergency): Roof Drains identified as overflow or secondary (emergency) drains shall have a 50 mm (2 inch) water dam integral to the drain body.
 - 3. Roof drains in areas subject to freezing shall have heat tape and shall be insulated.
- B. Expansion Joints: Expansions joints shall be heavy cast iron with cast brass or PVC expansion sleeve having smooth bearing surface working freely against a packing ring held in place and under pressure of a bolted gland ring, forming a water and air tight flexible joint.

 Asbestos packing is prohibited.

2.4 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor

membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the IPC and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for glass, shall be reamed to remove burns and a clean smooth finish restored to full pipe inside diameter.
- D. All pipe runs shall be laid out to avoid interference with other work/trades.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 2.44 m (8 feet) (1 percent slope) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep 4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two drains are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- J. Aboveground copper tubing shall be installed according to CDA A4015.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - Pipe sections with damaged threads shall be replaced with new undamaged sections of pipe at no additional time or cost to Government.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the IPC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.

- 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
- 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
- 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 23 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be $1.22 \ \mathrm{m}$ (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, wall and ceiling plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.
 - 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield shall be 100 mm (4 inches) in length and be 1.6 mm (16 gage) steel. The shield shall be sized for the insulation.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

J. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

3.4 INSULATION

A. Insulate horizontal sections and 600 mm (2 feet) past changes of direction to vertical sections for interior section of roof drains.

Install insulation in accordance with the requirements of Section 22 07 11, PLUMBING INSULATION.

3.5 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
 - 3. Final Tests: While either one of the following tests may be used, Contractor shall check with VA as to which test will be performed.

- a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 0.25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
- b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.
- C. COR shall witness all tests. Contractor shall coordinate schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to flushing, disinfection/sterilization, startup, and testing.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- F. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
- G. Section 10 21 13, TOILET COMPARTMENTS: Through bolts.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- I. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.
- J. Section 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME):
 - A112.6.1M-1997 (R2012) .Supports for Off-the-Floor Plumbing Fixtures for Public Use
 - A112.19.2-2013Ceramic Plumbing Fixtures
 - A112.19.3-2008Stainless Steel Plumbing Fixtures
- C. American Society for Testing and Materials (ASTM):
 - A276-2013aStandard Specification for Stainless Steel Bars and Shapes
 - B584-2008Standard Specification for Copper Alloy Sand

 Castings for General Applications

- D. CSA Group:
 - B45.4-2008 (R2013)Stainless Steel Plumbing Fixtures
- E. National Association of Architectural Metal Manufacturers (NAAMM):

 AMP 500-2006Metal Finishes Manual
- F. American Society of Sanitary Engineering (ASSE):

1016-2011Automatic Compensating Valves for Individual

Showers and Tub/Shower Combinations

- G. NSF International (NSF):
 - 14-2013Plastics Piping System Components and Related
 Materials
 - 61-2013Drinking Water System Components Health

 Effects
 - 372-2011Drinking Water System Components Lead Content
- H. American with Disabilities Act (A.D.A)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD version 18 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - 1. Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.
- E. Mental Health Area: Provide stainless steel drain guard for all lavatories not installed in casework.

2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.5 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. Aerators are prohibited.
- B. Flow Control Restrictor:
 - 1. Capable of restricting flow from 32 ml/s to 95 ml/s (0.5 gpm to 1.5 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks or as specified.
 - 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psig and 80 psig).
 - 3. Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.6 CARRIERS

- A. ASME A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME All2.6.1M, lavatory, concealed arm support All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.
- D. Hose Bibb (Single Faucet, Wall Mounted to Exposed Supply Pipe): Cast or wrought copper alloy, single faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, mounted on wall 914 mm (36 inches) above floor to concealed supply pipe. Provide faucet with 19 mm (3/4 inch) hose coupling thread on spout and vacuum breaker. Four-arm handle on faucet shall be cast, formed or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a bright finish.

2.7 MENTAL HEALTH PLUMBING FIXTURES

- A. All fixtures shall utilize an anti-ligature design specifically intended for the safety of mental health patients and fitting for patient rooms. All Stainless Steel fixtures shall be white powder-coated
- B. There shall be no sharp edges/corners, exposed piping or conduit in patient areas. The faucet should be a single unit with a round handle that is designed with a taper or a round lever so a noose would slip off with the weight of a person. A sensor type faucet is preferable since this has no lever.
- C. Tamper resistant screws/security fasteners shall be used. Tamper resistant strainers and screws used for the covers should be of the TORX or Allen head type (tools typically carried by IT personnel) for maintenance access purposes. Coordinate with VA Maintenance Shops for type of tamper resistant screws they are currently using.
- D. Fixtures:
 - 1. Urinal
- E. Ligature Resistant Urinal (Wall Hung, ASME All2.19.2) Security fixture fabricated from 14 gauge or 16 gauge type 304 stainless steel bowl with integral flush distribution, wall to front of flare 356 mm (14 inches) minimum. Wall hung with integral trap, 0.5L (0.5 gallons)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Through Bolts: For free standing marble and metal stud partitions refer to Section 10 21 13, TOILET COMPARTMENTS.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.

- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm $(1\ 1/4\ \text{inches})$ into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- I. Aerators are prohibited on lavatories and sinks.
- J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- **B.** Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. ACR: Air Conditioning and Refrigeration
 - 3. AI: Analog Input
 - 4. AISI: American Iron and Steel Institute
 - 5. AO: Analog Output
 - 6. ASJ: All Service Jacket
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Networking Protocol
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. bhp: Brake Horsepower
 - 13. Btu: British Thermal Unit
 - 14. Btu/h: British Thermal Unit Per Hour
 - 15. CDA: Copper Development Association
 - 16. C: Celsius
 - 17. CD: Compact Disk
 - 18. CFM: Cubic Foot Per Minute
 - 19. CH: Chilled Water Supply
 - 20. CHR: Chilled Water Return
 - 21. CLR: Color
 - 22. CO: Carbon Monoxide
 - 23. COR: Contracting Officer's Representative
 - 24. CPD: Condensate Pump Discharge
 - 25. CPM: Cycles Per Minute
 - 26. CPVC: Chlorinated Polyvinyl Chloride
 - 27. CRS: Corrosion Resistant Steel

- 28. CTPD: Condensate Transfer Pump Discharge
- 29. CTPS: Condensate Transfer Pump Suction
- 30. CW: Cold Water
- 31. CWP: Cold Working Pressure
- 32. CxA: Commissioning Agent
- 33. dB: Decibels
- 34. dB(A): Decibels (A weighted)
- 35. DDC: Direct Digital Control
- 36. DI: Digital Input
- 37. DO: Digital Output
- 38. DVD: Digital Video Disc
- 39. DN: Diameter Nominal
- 40. DWV: Drainage, Waste and Vent
- 41. EPDM: Ethylene Propylene Diene Monomer
- 42. EPT: Ethylene Propylene Terpolymer
- 43. ETO: Ethylene Oxide
- 44. F: Fahrenheit
- 45. FAR: Federal Acquisition Regulations
- 46. FD: Floor Drain
- 47. FED: Federal
- 48. FG: Fiberglass
- 49. FGR: Flue Gas Recirculation
- 50. FOS: Fuel Oil Supply
- 51. FOR: Fuel Oil Return
- 52. FSK: Foil-Scrim-Kraft facing
- 53. FWPD: Feedwater Pump Discharge
- 54. FWPS: Feedwater Pump Suction
- 55. GC: Chilled Glycol Water Supply
- 56. GCR: Chilled Glycol Water Return
- 57. GH: Hot Glycol Water Heating Supply
- 58. GHR: Hot Glycol Water Heating Return
- 59. gpm: Gallons Per Minute
- 60. HDPE: High Density Polyethylene
- 61. Hg: Mercury
- 62. HOA: Hands-Off-Automatic
- 63. hp: Horsepower
- 64. HPS: High Pressure Steam (414 kPa (60 psig) and above)
- 65. HPR: High Pressure Steam Condensate Return

- 66. HW: Hot Water
- 67. HWH: Hot Water Heating Supply
- 68. HWHR: Hot Water Heating Return
- 69. Hz: Hertz
- 70. ID: Inside Diameter
- 71. IPS: Iron Pipe Size
- 72. kg: Kilogram
- 73. klb: 1000 lb
- 74. kPa: Kilopascal
- 75. lb: Pound
- 76. lb/hr: Pounds Per Hour
- 77. L/s: Liters Per Second
- 78. L/min: Liters Per Minute
- 79. LPS: Low Pressure Steam (103 kPa (15 psig) and below)
- 80. LPR: Low Pressure Steam Condensate Gravity Return
- 81. MAWP: Maximum Allowable Working Pressure
- 82. MAX: Maximum
- 83. MBtu/h: 1000 Btu/h
- 84. MBtu: 1000 Btu
- 85. MED: Medical
- 86. m: Meter
- 87. MFG: Manufacturer
- 88. mg: Milligram
- 89. mg/L: Milligrams Per Liter
- 90. MIN: Minimum
- 91. MJ: Megajoules
- 92. ml: Milliliter
- 93. mm: Millimeter
- 94. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig))
- 95. MPR: Medium Pressure Steam Condensate Return
- 96. MW: Megawatt
- 97. NC: Normally Closed
- 98. NF: Oil Free Dry (Nitrogen)
- 99. Nm: Newton Meter
- 100. NO: Normally Open
- 101. NOx: Nitrous Oxide
- 102. NPT: National Pipe Thread

- 103. NPS: Nominal Pipe Size
- 104. OD: Outside Diameter
- 105. OSD: Open Sight Drain
- 106. OS&Y: Outside Stem and Yoke
- 107. PC: Pumped Condensate
- 108. PID: Proportional-Integral-Differential
- 109. PLC: Programmable Logic Controllers
- 110. PP: Polypropylene
- 111. PPE: Personal Protection Equipment
- 112. ppb: Parts Per Billion
- 113. ppm: Parts Per Million
- 114. PRV: Pressure Reducing Valve
- 115. PSIA: Pounds Per Square Inch Absolute
- 116. psig: Pounds Per Square Inch Gauge
- 117. PTFE: Polytetrafluoroethylene
- 118. PVC: Polyvinyl Chloride
- 119. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White
- 120. PVDF: Polyvinylidene Fluoride
- 121. rad: Radians
- 122. RH: Relative Humidity
- 123. RO: Reverse Osmosis
- 124. rms: Root Mean Square
- 125. RPM: Revolutions Per Minute
- 126. RS: Refrigerant Suction
- 127. RTD: Resistance Temperature Detectors
- 128. RTRF: Reinforced Thermosetting Resin Fittings
- 129. RTRP: Reinforced Thermosetting Resin Pipe
- 130. SCFM: Standard Cubic Feet Per Minute
- 131. SPEC: Specification
- 132. SPS: Sterile Processing Services
- 133. STD: Standard
- 134. SDR: Standard Dimension Ratio
- 135. SUS: Saybolt Universal Second
- 136. SW: Soft water
- 137. SWP: Steam Working Pressure
- 138. TAB: Testing, Adjusting, and Balancing
- 139. TDH: Total Dynamic Head
- 140. TEFC: Totally Enclosed Fan-Cooled

- 141. TFE: Tetrafluoroethylene
- 142. THERM: 100,000 Btu
- 143. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 144. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 145. T/P: Temperature and Pressure
- 146. USDA: U.S. Department of Agriculture
- 147. V: Volt
- 148. VAC: Vacuum
- 149. VA: Veterans Administration
- 150. VAC: Voltage in Alternating Current
- 151. VA CFM: VA Construction & Facilities Management
- 152. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 153. VAMC: Veterans Administration Medical Center
- 154. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 155. VR: Vacuum condensate return
- 156. WCB: Wrought Carbon Steel, Grade B
- 157. WG: Water Gauge or Water Column
- 158. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 05 50 00, METAL FABRICATIONS.
- F. Section 07 84 00, FIRESTOPPING.
- G. Section 07 92 00, JOINT SEALANTS.
- H. Section 09 91 00, PAINTING.
- I. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- J. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- K. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- L. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- N. Section 23 36 00, AIR TERMINAL UNITS.
- O. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.

- P. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- Q. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- R. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

ASME Boiler and Pressure Vessel Code:

BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications

- D. American Society for Testing and Materials (ASTM):
 - A36/A36M-2014Standard Specification for Carbon Structural Steel
 - A575-1996(R2018)Standard Specification for Steel Bars, Carbon,

 Merchant Quality, M-Grades
- E. Association for Rubber Products Manufacturers (ARPM):

 - IP-21-2016Specifications for Drives Using Double-V (Hexagonal) Belts
 - IP-24-2016Specifications for Drives Using Synchronous
 - IP-27-2015Specifications for Drives Using Curvilinear
 Toothed Synchronous Belts
- F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.:
 - SP-58-2018Pipe Hangers and Supports-Materials, Design,

 Manufacture, Selection, Application, and

 Installation
 - SP-127-2014aBracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application

- I. Department of Veterans Affairs (VA):
 PG-18-10-2016Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- D. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together.

 Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- G. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- H. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.

- 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
- 2. Submit electric motor data and variable speed drive data with the driven equipment.
- 3. Equipment and materials identification.
- 4. Fire-stopping materials.
- 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
- 6. Wall, floor, and ceiling plates.
- I. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- J. HVAC Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- L. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

M. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.

- 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
- 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.

- 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
 - 2. Large equipment such as fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
 - 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
 - 4. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
 - 6. Protect plastic piping and tanks from ultraviolet light (sunlight).

- B. Cleanliness of Piping and Equipment Systems:
 - 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.

- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The

- phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

 Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a

- nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave.

 Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.

- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts.
 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation

of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.

- D. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS and Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.

F. Ceiling Grid Labels:

- 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
- 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 100 mm (2 by 4 inches) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- F. Attachment to existing structure: Support from existing floor/roof frame.
- G. Attachment to Wood Construction: Wood screws or lag bolts.
- H. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.

- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - 2) For vertical runs use epoxy painted or plastic-coated riser clamps.
 - 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.

- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - a. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
 - a. Provide eye rod or Type 17 eye nut near the upper attachment.
 - b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.

K. Pre-insulated Calcium Silicate Shields:

- 1. Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, builtin cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

E. Cutting Holes:

- Cut holes through concrete and masonry by rotary core drill.
 Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
- 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If

the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.

- 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

H. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.

L. Work in Existing Building:

- 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).

N. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury

- can occur to personnel by contact with operating facilities. The requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

 All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are

- prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - 1. Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

F. Overhead Supports:

- The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

G. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 150 mm (6

- inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered.

Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.

D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Nameplates.

- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.

3.13 PERFORM TESTS AS REQUIRED FOR COMMISSIONING PROVISIONS IN ACCORDANCE WITH SECTION 23 08 00, COMMISSIONING OF HVAC SYSTEMS AND SECTION 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- G. Section 26 24 19, MOTOR CONTROL CENTERS.
- H. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA): 9-2015Load Ratings and Fatigue Life for Ball Bearings 11-2014Load Ratings and Fatigue Life for Roller Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 - 90.1-2021 Energy Efficient Design of New Buildings Except

 Low-Rise Residential Buildings
- D. Institute of Electrical and Electronics Engineers (IEEE):
 - 112-2017Standard Test Procedure for Polyphase Induction

 Motors and Generators
 - 841-2009IEEE Standard for Petroleum and Chemical
 Industry-Premium-Efficiency, Severe-Duty,
 Totally Enclosed Fan-Cooled (TEFC) Squirrel

Cage Induction Motors--Up to and Including 370
kW (500 hp)

E. National Electrical Manufacturers Association (NEMA):

F. National Fire Protection Association (NFPA): 70-2014National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.

- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- 1. Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

- 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time-delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 hp), connected to 240-volt or 480-volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 hp) or larger, connected to 240-volt systems: 230 volts.
 - d. Motors, $74.6~\mathrm{kW}$ (100 hp) or larger, connected to $480\mathrm{-volt}$ systems: $460~\mathrm{volts}$.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown on the drawings.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746~W~(1~hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.

J. Motor Enclosures:

- 1. Shall be the NEMA types as specified and/or shown in the Contract Documents.
- 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

K. Electrical Design Requirements:

- 1. Motors shall be continuous duty.
- 2. The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
- 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
- 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
- 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
- 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.

L. Mechanical Design Requirements:

1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust

- motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
- 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
- 3. Grease lubricated bearings shall be designed for electric motor use.

 Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5.0il lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- 6. Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.

M. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.

- c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Premium Efficiencies				Minimum Premium Efficiencies				
Open Drip-Proof				Totally Enclosed Fan-Cooled (TEFC)				
Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%	
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%	
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%	
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%	
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%	
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%	
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%	
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%	
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%	
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%	
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%	

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyphase Open Motors Average full load efficiency				Capacitor-start capacitor-run and capacitor-start induction run open motors Average full load efficiency			
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- 3.4 THE COMMISSIONING AGENT WILL OBSERVE STARTUP AND CONTRACTOR TESTING OF SELECTED EQUIPMENT. COORDINATE THE STARTUP AND CONTRACTOR TESTING SCHEDULES WITH COR AND COMMISSIONING AGENT. PROVIDE A MINIMUM NOTICE OF 10 WORKING DAYS PRIOR TO STARTUP AND TESTING.COMMISSIONING
 - A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
 - B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION

PART 1 - GENERAL

1.1 DESCRIPTION

A. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors (Public)	40
Dining Rooms, Food Services/ Serving	40
Examination Rooms	35
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Patient Rooms	35

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect

between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):
 - Handbook 2017Fundamentals Handbook, Chapter 8, Sound and Vibration

- C. American Society for Testing and Materials (ASTM):

 A123/A123M-2017Standard Specification for Zinc (Hot-Dip
 Galvanized) Coatings on Iron and Steel Products

 A307-2016Standard Specification for Carbon Steel Bolts
 and Studs, 60,000 PSI Tensile Strength

 D2240-05(2010)Standard Test Method for Rubber Property
 Durometer Hardness

 D. Manufacturers Standardization (MSS):
- SP-58-2018Pipe Hangers and Supports-Materials, Design and
 Manufacture
- E. Occupational Safety and Health Administration (OSHA):
 29 CFR 1960.95Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):

 ASCE 7-2017Minimum Design Loads for Buildings and Other

 Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):
 IBC 2018International Building Code.
- I. Department of Veterans Affairs (VA):
 H-18-8 2016Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in

- accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Captive Spring Mount for Seismic Restraint (Type SS):
 - a. Design mounts to resiliently resist seismic forces in all directions. Snubbing shall take place in all modes with adjustment to limit upward, downward, and horizontal travel to a maximum of 6 mm (1/4-inch) before contacting snubbers. Mountings shall have a minimum rating of one G coefficient of gravity as calculated and certified by a registered structural engineer.
 - b. All mountings shall have leveling bolts that must be rigidly bolted to the equipment. Spring diameters shall be no less than 0.8 of the compressed height of the spring at rated load. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Mountings shall have ports for spring inspection. Provide an all directional neoprene cushion collar around the equipment bolt.
 - 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting. Isolators shall have a minimum seismic rating of one G.
 - 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or

- reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- 6. Seismic Pad (Type DS): Pads shall be natural rubber / neoprene waffle with steel top plate and drilled for an anchor bolt. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
 - 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed 4' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four all-directional or eight two directional (two per side) seismic snubbers

that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.

D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.3 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 2 mm (1/16 inch).

D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.4 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - 4. Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
 - 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

- - - E N D - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPM	MENT .	C	N GRAD	E	20FT	20FT FLOOR SPAN			FLOOR	SPAN	40FT	FLOOR	SPAN	50FT FLOOR SPAN		
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
REFRIGER	REFRIGERATION MACHINES															
ABSORPTIO	N		D	0.3		SP	0.8		SP	1.5		SP	1.5		SP	2.0
PACKAGED	HERMETIC		D	0.3		SP	0.8		SP	1.5		SP	1.5	R	SP	2.5
OPEN CENT	RIFUGAL	В	D	0.3	В	SP	0.8		SP	1.5	В	SP	1.5	В	SP	3.5
RECIPROCA	RECIPROCATING:															
ALL			D	0.3		SP	0.8	R	SP	2.0	R	SP	2.5	R	SP	3.5
COMPRESS	ORS AND	VACU	JUM P			Г	Г		Т	T	T	Г	Т		Г	T
UP THROUGH HP	1-1/2		D,L, W	0.8		D,L, W	0.8		D,L, W	1.5		D,L, W	1.5		D,L, W	
2 HP AND O	VER:															
500 - 750	RPM		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
750 RPM &	OVER		D	0.8		S	0.8		S	1.5		S	1.5		S	2.5
PUMPS	PUMPS															
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0

EQUIPMENT ON GRA		N GRAD	E	20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40fT FLOOR SPAN			50FT FLOOR SPAN			
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
LARGE INLINE	Up to 25 HP					S	0.75		S	1.50		S	1.50			NA
	26 HP THRU 30 HP					S	1.0		S	1.50		S	2.50			NA
	UP TO 10 HP					D,L, W			D,L, W			D,L, W			D,L, W	
BASE MOUNTED	15 HP THRU 40 HP	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.0	I	S	2.0
	50 HP & OVER	I	S	1.0	I	S	1.0	I	S	2.0	I	S	2.5	I	S	2.5
ROOF FAN		S:														
5 HP & OV	/ER				СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0
CENTRIFU		1S	1	1	•			•			•	1	1	•	1	
UP TO 200) RPM	В	N	0.3	В	S	2.5	В	S	2.5	В	S	3.5	В	S	3.5
201 - 300) RPM	В	N	0.3	В	S	2.0	В	S	2.5	В	S	2.5	В	S	3.5
301 - 500) RPM	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.5	В	S	3.5
501 RPM 8	& OVER	В	N	0.3	В	S	2.0	В	S	2.0	В	S	2.0	В	S	2.5

EQUIPMENT	EQUIPMENT ON GRADE			20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
60 HP & OVER:	•								•			•		•	
UP TO 300 RPM	В	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5	I	S	3.5
301 - 500 RPM	В	S	2.0	I	S	2.0	I	S	2.5	I	S	3.5	I	S	3.5
501 RPM & OVER	В	S	1.0	I	S	2.0	I	S	2.0	I	S	2.5	I	S	2.5
COOLING TOWERS	<u> </u>														<u> </u>
UP TO 500 RPM					SP	2.5		SP	2.5		SP	2.5		SP	3.5
501 RPM & OVER					SP	0.75		SP	0.75		SP	1.5		SP	2.5
INTERNAL COMBUSTION	ENGINE	ES													1
UP TO 25 HP	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
30 THRU 100 HP	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
125 HP & OVER	I	N	0.75	I	N	1.5	I	S	2.5	I	S	3.5	I	S	4.5
AIR HANDLING UNIT P	ACKAGES	5													
SUSPENDED:															
UP THRU 5 HP					Н	1.0		Н	1.0		Н	1.0		Н	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM					H, THR	1.5		H, THR	2.5		H, THR	2.5		H, THR	2.5
501 RPM & OVER					H, THR	0.8		H, THR	0.8		H,TH R	0.8		H,TH R	2.0

EQUIPMENT	ON GRADE			20FT	FLOOR	SPAN	30FT	FLOOR	SPAN	40FT	FLOOR	SPAN	50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
FLOOR MOUNTED:															
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM		D		R	S, THR	1.5	R	S, THR	2.5	R	S, THR	2.5	R	S, THR	2.5
501 RPM & OVER		D			S, THR	0.8		S, THR	0.8	R	S, THR	1.5	R	S, THR	2.0
HEAT PUMPS	HEAT PUMPS														
ALL		S	0.75		S	0.75		S	0.75	СВ	S	1.5			NA
CONDENSING UNITS															
ALL		SS	0.25		SS	0.75		SS	1.5	СВ	SS	1.5			NA
IN-LINE CENTRIFUGAL	AND V	ANE AXI	AL FAN	S, FLO	OR MOUN	ITED: (APR 9)								
UP THRU 50 HP:															
UP TO 300 RPM		D		R	S	2.5	R	S	2.5	R	S	2.5	R	S	3.5
301 - 500 RPM		D		R	S	2.0	R	S	2.0	R	S	2.5	R	S	2.5
501 - & OVER		D			S	1.0		S	1.0	R	S	2.0	R	S	2.5
60 HP AND OVER:	60 HP AND OVER:														
301 - 500 RPM	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.5	R	S	3.5
501 RPM & OVER	R	S	1.0	R	S	2.0	R	S	2.0	R	S	2.0	R	S	2.5

NOTES:

- 1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.
- 2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.
- 3. For separate chiller building on grade, pump isolators may be omitted.
- 4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.
- 5. For projects in seismic areas, use only SS & DS type isolators and snubbers.
- 6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.
- 7. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - 6. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
 - 9. Document critical paths of flow on reports.

B. Definitions:

- 1. Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. TABB: Testing Adjusting and Balancing Bureau
- 6. SMACNA: Sheet Metal Contractors National Association
- 7. Hydronic Systems: Includes chilled waterand heating hot water.
- 8. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 9. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 31 00, HVAC DUCTS AND CASINGS.
- I. Section 23 36 00, AIR TERMINAL UNITS.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11and COMMON WORK RESULTS FOR HVAC, Section 23 05 10.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any

- duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.
- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.

D. TAB Criteria:

1. One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC

- Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Minimum outside air: 0 percent to plus 10 percent.
 - d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - e. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - f. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - g. Chilled water coils: Minus O percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and critical path results shall be demonstrated to the COR for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of which shall be a critical path) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.

- C. For use by the COR staff, submit one complete set of applicable AABC, NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - 6. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
 - 7. Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
 - Handbook 2019HVAC Applications ASHRAE Handbook, Chapter 39,
 Testing, Adjusting, and Balancing and Chapter
 49, Sound and Vibration Control
- C. Associated Air Balance Council (AABC):
 - 7^{th} Edition 2016AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB):
 - 9th Edition 2019Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration

 $2^{\rm rd}$ Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing TABB- TAB Procedural Guide Current Edition

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the COR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- B. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COR.

3.6 TAB REPORTS

- A. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.
- B. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- C. Do not proceed with the remaining systems until intermediate report is approved by the COR.

3.7 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
 - 1. At least one trunk damper shall be 100% open.
 - 2. At least one branch damper shall be 100%open per trunk.
 - 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.

- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 10 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, room diffusers/outlets/inlets.
 - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
 - 2. Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under all operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
 - 5. Record final measurements for air handling equipment performance data sheets.

- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 2. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 3. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the COR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COR.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
 - 1. Take readings in rooms, approximately five percent of all rooms. The COR may designate the specific rooms to be tested.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC, TABB or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2019 ASHRAE Handbook, "HVAC Applications", Chapter 49, SOUND AND VIBRATION CONTROL.

- D. Determine compliance with specifications as follows:
 - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified
 equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 10 meters (30 feet) for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), measure sound levels using the "A" scale of meter. Single value readings will be used instead of octave band analysis.

- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the COR and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the COR based on the recorded sound data.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.12 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - 8. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor

retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.
- 41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- G. Section 23 22 23, STEAM CONDENSATE PUMPS
- H. Section 23 50 11, BOILER PLANT MECHANICAL EQUIPMENT
- I. Section 23 51 00, BREECHINGS, CHIMNEYS, and STACKS

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
 - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
 - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
 - **4.3.3.1.2** The flame spread and smoke developed index requirements of $\frac{4.3.3.1.1}{4.3.3.1.1}$ shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
 - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:
 - (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors $\frac{1}{2}$
 - (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
 - 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

- 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a $25.4 \, \text{mm}$ (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and

- condensation control insulation, no thickness adjustment need be $\mbox{made.}$
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

C. Samples:

- Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- 2. Each type of facing and jacket: Minimum size $100 \ \text{mm}$ (4 inches square).
- 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed

instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):

L-P-535E (2) - 1999Plastic Sheet (Sheeting): Plastic Strip; Poly

(Vinyl Chloride) and Poly (Vinyl Chloride
Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

MIL-A-3316C -1987 Adhesives, Fire-Resistant, Thermal Insulation
MIL-A-24179A (1)-2016 Adhesive, Flexible Unicellular-Plastic
Thermal Insulation

MIL-C-19565C (1) - 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-1987Cloth, Glass; Tape, Textile Glass; and Thread,
Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-99 2014Standard Specification for Stainless and
Heat-Resisting Chromium-Nickel Steel Plate,
Sheet, and Strip

B209-2014Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-2019Standard test method for Hot-Surface

Performance of High-Temperature Thermal

Insulation

C449-2019Standard Specification for Mineral Fiber

Hydraulic-Setting Thermal Insulating and

Finishing Cement

C533-2017Standard Specification for Calcium Silicate

Block and Pipe Thermal Insulation

C534-2017...Standard Specification for Preformed Flexible

Elastomeric Cellular Thermal Insulation in

Sheet and Tubular Form

C547-2017Standard Specification for Mineral Fiber pipe

Insulation

C552-07	Standard Specification for Cellular Glass
	Thermal Insulation
C553-2015	Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C585-2016	Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
C612-2014	Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126- 2019	Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136- 2017	Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a 2017	Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-2014	Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-007	Standard Test Method for Fire Tests of Building
	Construction and Materials
E136-2019	Standard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)
E. National Fire Protecti	on Association (NFPA):
90A-2018	Standard for the Installation of Air
	Conditioning and Ventilating Systems
101-2018	Life Safety Code
251-2014	Standard methods of Tests of Fire Endurance of
	Building Construction Materials
255-2006	Standard Method of tests of Surface Burning
	Characteristics of Building Materials
F. Underwriters Laborator	ies, Inc (UL):
723-2018	UL Standard for Safety Test for Surface Burning
	Characteristics of Building Materials with
	Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting
 Industry (MSS):

SP58-2018Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing. Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

 Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity areas conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.4 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - 2. Temperature maximum of $450^{\circ}F$, Maximum water vapor transmission of 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.

4. Construction: One piece jacket body with three-ply braided pure
Teflon or Kevlar thread and insulation sewn as part of jacket. Belt
fastened.

2.5 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessor	ries Material (Insert Blocks)
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)
Up through 125 (5)	150 (6) long
150 (6)	150 (6) long
200 (8), 250 (10), 300 (12)	225 (9) long
350 (14), 400 (16)	300 (12) long
450 through 600 (18 through 24)	350 (14) long

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.9 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.10 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COR for application of

- insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.

 Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Insulate PRVs, flow meters, and steam traps.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.

- 4. Equipment: Expansion tanks, flash tanks, hot water pumps, steam condensate pumps.
- 5. In hot piping: Unions, flexible connectors, control valves, PRVs, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow and fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow and fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- M. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - 2. All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature .
- N. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.

3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

2. Plain board:

- a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
- b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
- c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- d. Chilled water pumps: Insulate with removable and replaceable 1 mm thick (20 gage) aluminum or galvanized steel covers lined with insulation. Seal closure joints/flanges of covers with gasket material. Fill void space in enclosure with flexible mineral fiber insulation.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct unlined air handling units and after filter housing.

- b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
- c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
- d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 - a. Chilled water pumps, water filter, chemical feeder pot or tank.
- 5. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Convertors, air separators, steam condensate pump receivers.
 - b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.

B. Flexible Mineral Fiber Blanket:

- 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
- 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
- 3. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.

C. Molded Mineral Fiber Pipe and Tubing Covering:

1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples

may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - 2. Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - 6. Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.

- 8. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.

E. Cellular Glass Insulation:

- 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
- 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
 - f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.
- 4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing

membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.

F. Polyisocyanurate Closed-Cell Rigid Insulation:

- 1. Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
- 2. Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
- 3. Install insulation with all joints tightly butted (except expansion) joints in hot applications).
- 4. If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
- 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
- 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.
- 7. For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Underground piping: Follow instructions for above ground piping but the vapor retarder jacketing shall be 6 mil thick PVDC or minimum 30

- mil thick rubberized bituminous membrane. Sand bed and backfill shall be a minimum of 150 mm (6 inches) all around insulated pipe.
- 10. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 11. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 12. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.

G. Flexible Elastomeric Cellular Thermal Insulation:

- Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- 6. Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:

- a. Chilled water pumps
- b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
- c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
- d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- 7. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

H. Calcium Silicate:

- 1. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.
- 2. Engine Exhaust Insulation for Emergency Generator and Diesel Driven Fire Pump: Type II, Class D, 65 mm (2 1/2 inch) nominal thickness. Cover exhaust completely from engine through roof or wall construction, including muffler. Secure with 16 AWG galvanized annealed wire or 0.38 x 12 mm 0.015 x 1/2 IN wide galvanized bands on 300 mm 12 IN maximum centers. Anchor wire and bands to welded pins, clips or angles. Apply 25 mm 1 IN hex galvanized wire over insulation. Fill voids with 6 mm 1/4 IN insulating cement.
- 3. ETO Exhaust (High Temperature): Type II, class D, 65 mm (2.5 inches) nominal thickness. Cover duct for entire length. Provide sheet aluminum jacket for all exterior ductwork.

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Wall Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Above
	Insulation Wall Thickness Millimeters (Inches)				
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)

93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
39-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)

pipe chase and underground)					
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Cellular Glass Closed- Cell	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC and GCR (where underground)	Polyiso- cyanurate Closed-Cell Rigid	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 00 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems of the related subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00

- GENERAL COMMISSIONING REQUIREMENTS and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility HVAC systems commissioning will include the systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.7 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. Department of Veterans Affairs (VA):
 PG 18-10 2007Mission Critical Facilities DRAFT
 PG 18-10 2007Life-Safety Protected Facilities DRAFT
- C. American Society of Heating, Refrigerating and Air Conditioning
 Engineers, Inc. (ASHRAE):

 - HANDBOOK 2017HVAC Fundamentals ASHRAE Handbook, Chapter 8, Sound and Vibration
- D. Associated Air Balance Council (AABC):
 - 7th Edition 2016AABC National Standards for Total System
 Balance
- E. National Environmental Balancing Bureau (NEBB):
 - 9th Edition 2019Procedural Standards for Testing, Adjusting,
 Balancing of Environmental Systems
 - 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration

2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2005 ... HVAC Systems Testing, Adjusting and Balancing

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. Refer to Sections 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT, Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC and Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC requirements. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Contracting Officers Representative. The Contractor shall review and
comment on the tests prior to approval. The Contractor shall provide
the required labor, materials, and test equipment identified in the
test procedure to perform the tests. The Commissioning Agent will
witness and document the testing. The Contractor shall sign the test
reports to verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional requirements.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Contracting Officers Representative and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The instruction shall be scheduled in coordination with the VA Contracting Officers Representative after submission and approval of formal training plans. Refer to Section 01

91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

- - - END - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - 1. The direct-digital control system(s) shall be native BACnet but shall also seamlessly integrate with the existing campuswide Johnson Control Systems. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controllers, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA. 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and any other items required for a complete and fully functional Controls System.
 - 2. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The A/E shall designate what each "mechanical systems" is composed of. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure

- of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 3. The control system shall accommodate 2 Engineering Control Center(s) and the control system shall accommodate 20 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include but are not limited to the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include but are not limited to the following:
 - 2. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. These products include but are not limited to the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - 2. Advanced utility metering systems. These systems may take information from the control system or its component meters and

sensors. There is no command or control action from the advanced utility monitoring system on the control system however.

- 3. Terminal units' velocity sensors
- 4. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 5. The following systems have limited control (as individually noted below) from the ECC:
 - a. Constant temperature rooms: temperature out of acceptable range and status alarms.

E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
VFDs	23	26	23 09 23	26
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	26	26	N/A	26

1.2 RELATED WORK

A. Section 21 05 11, Common Work Results for Fire Suppression

- B. Section 21 10 00, Water-Based Fire-Suppression Systems.
- C. Section 22 11 23, Domestic Water Pumps.
- D. Section 22 14 29, Sump Pumps.
- E. Section 22 62 00, Vacuum Systems for Laboratory and Healthcare Facilities.
- F. Section 22 63 00, Gas Systems for Laboratory and Healthcare Facilities.
- G. Section 23 21 13, Hydronic Piping.
- H. Section 23 22 13, Steam and Condensate Heating Piping.
- I. Section 23 31 00, HVAC Ducts and Casings.
- J. Section 23 36 00, Air Terminal Units.
- K. Section 23 73 00, Indoor Central-Station Air-Handling Units.
- L. Section 23 84 00, Humidity Control Equipment.
- M. Section 25 10 10, Advanced Utility Metering System.
- N. Section 26 05 11, Requirements for Electrical Installations.
- O. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- P. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- Q. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- R. Section 26 09 23, Lighting Controls.
- S. Section 26 22 21, Specialty Transformers.
- T. Section 26 27 26, Wiring Devices.
- U. Section 26 29 11, Motor Starters.
- V. Section 26 32 13, Engine Generators.
- W. Section 27 15 00, Communications Horizontal Cabling
- X. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A

- BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- F. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- G. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- H. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- I. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- J. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device.

 Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- K. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- L. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- M. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- N. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables..
- O. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- P. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- Q. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- R. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- S. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- T. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required.

 Objects are controlled by reading from and writing to object properties.
- U. Operating system (OS): Software, which controls the execution of computer application programs.
- V. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- W. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.

- X. Repeater: A network component that connects two or more physical segments at the physical layer.
- Y. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- Z. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- AA. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:

- 1. Single Source Responsibility of subcontractor: Either the DDC Contractor or the System Integrator shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The Integration subcontractor shall be responsible for the complete design, installation, integration, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative could observe the control systems in full operation.
- 4. The controls subcontractor shall have an in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years of experience in design and installation of building automation systems similar in performance to those specified in this Section.

6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.

B. Codes and Standards:

- 1. All work shall conform to the applicable Codes and Standards.
- 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
 - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.

- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy	
Space temperature	±0.5°C (±1°F)	
Ducted air temperature	±0.5°C [±1°F]	
Outdoor air temperature	±1.0°C [±2°F]	
Dew Point	±1.5°C [±3°F]	
Water temperature	±0.5°C [±1°F]	
Relative humidity	±2% RH	
Water flow	±1% of reading	
Air flow (terminal)	±10% of reading	
Air flow (measuring stations)	±5% of reading	
Air pressure (ducts)	±25 Pa [±0.1"w.c.]	
Air pressure (space)	±0.3 Pa [±0.001"w.c.]	
Electrical Power	±0.5% of reading	

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	MRI, SPS, PHARMACY
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet to monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with online support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including but not limited to the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - 6. Sequence of operations for each system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.
 - 8. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.

- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 11. Riser diagrams of wiring between central control unit ($\underline{\text{CCU}}$) and all control panels.
- 12. Plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but it is the responsibility of the contractor administered by this Section of the technical specifications to provide sufficient quantities for a complete and working system.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems, ECC, and portable OWS and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - 2. Furnish one (1) set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:

- a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- B. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.

- B. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- C. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

135-2017BACNET Building Automation and Control Networks

C. American Society of Testing Materials (ASTM):

B32-2014Standard Specification for Solder Metal
B88-2016Standard Specifications for Seamless Copper
Water Tube

B88M-2018 Standard Specification for Seamless Copper Water Tube (Metric)

B280-2019Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service

D2737-2018Standard Specification for Polyethylene (PE)
Plastic Tubing

D. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2014 Part 15: Radio Frequency Devices.

E. Institute of Electrical and Electronic Engineers (IEEE):

802.3-2018Information Technology-Telecommunications and
Information Exchange between Systems-Local and
Metropolitan Area Networks- Specific
Requirements-Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD)
Access method and Physical Layer Specifications

F. National Fire Protection Association (NFPA):

G. Underwriter Laboratories Inc (UL):

94-2013 Tests for Flammability of Plastic Materials for Parts and Devices and Appliances
294-2013Access Control System Units
486A/486B-2018Wire Connectors
555S-2014(R2016)Standard for Smoke Dampers
916-2015Energy Management Equipment
1076-2018Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least **five** years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

- The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- 2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards, and to meet all requirements of the Contract Documents.
- C. Network Architecture

- 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They may also utilize digital wireless technologies as appropriate to the application.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135, BACnet.
 - 1. The Data link / physical layer protocol between the ECC and all B-BC's (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - 2. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internet controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.

E. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

laser rollers

2.4 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.5 NETWORK AND DEVICE NAMING CONVENTION

A. Network Numbers

- 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
- 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building

B. Device Instances

- 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:

- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.

C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.6 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators,
 Operator Displays, and sensors shall conform to BACnet Device Profiles
 and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to
 those Device Profiles. Protocol Implementation Conformance Statements
 (PICSs), describing the BACnet capabilities of the Devices shall be
 published and available for the Devices through links in the BTL
 website.
 - 1. BACnet Building Controllers, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.

- 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile and shall be BTL-Listed as conforming to the B-SS Device Profile.

 The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.7 CONTROLLERS

- A. General. Provide an adequate number of BTL listed B-BC building controllers, BTL listed B-AAC, BTL listed B-ASC, BTL listed B-SA, and BTL listed B-SS's to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. Communication.
 - a. Each B-BC controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications.
 - b. Each B-BC controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. If this port is not available built into the controller, contractor is to install a 4 port unmanaged switch inside the B-BC control cabinet.
 - 2. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
 - 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 4. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.

- 5. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- 6. Transformer. Power supply for the ASC must be rated at a minimum of 125% of B-ASC power consumption and shall be of the fused or current limiting type.
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers./
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
 - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).

- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOSor Microsoft Windows.
 - 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units. All new controllers installed will also include all software and/or hardware required to program, commission, or alter the sequence of operation of said controller(s). Controllers requiring software or hardware that is not commercially available will not be allowed. Installation of software and/or hardware for controller configuration will be the responsibility of the DDC contractor. COR will direct to install said hardware and/or software on either the B-AWS or portable operator terminal. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters without requiring the services of a DDC contractor.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention

- routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
- e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of three (3)or a maximum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage will likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.
 - b. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.

- c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- d. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:
 - 1) Time, day.
 - 2) Commands such as on, off, auto.
 - 3) Time delays between successive commands.
 - 4) Manual overriding of each schedule.
 - 5) Allow operator intervention.
- e. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the

- messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- f. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.8 SPECIAL CONTROLLERS

- A. Room Differential Pressure Controller: The differential pressure in isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space and display the value on its monitor. The sensor-controller shall meet the following as a minimum:
 - 1. Operating range: -0.25 to +0.25 inches of water column
 - 2. Resolution: 5 percent of reading
 - 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
 - 4. Analog output: 4-20 ma
 - 5. Operating temperature range: 32°F-120°F

2.9 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral 4-20 mA transmitter type for all other sensors.

- a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling/heating coil face area.
- b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. Temperature well shall be filled with a thermal compound compatible with installed sensor.
- c. All space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and BACNet communication port. Match room thermostats. Provide a tooled-access cover.
 - 1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - 2) Psychiatric patient room sensor: sensor shall be flush with wall or on the return duct, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless-steel cover plate with an insulated back and security screws.
- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 mA.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent ${\tt RH.}$

- c. Continuous Output Signal: 4-20 mA
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 mA output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Water flow sensors:
 - 1. Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: up to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BAS/EMS/BES/BMCS: Digital pulse or BACNet type.
 - 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
 - 4. Install flow meters according to manufacturer's recommendations.

 Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digital display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100° humidity.

- b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
- c. Nominal range (turn down ratio): 10 to 1.
- d. Preamplifier mounted on meter shall provide 4-20 mA, a divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier.
- e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
- f. Ambient temperature effects, less than 0.005 percent calibrated span per $^{\circ}\text{C}$ ($^{\circ}\text{F}$) temperature change.
- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.

F. Steam Flow Sensor/Transmitter:

- Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.
 - e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - 1) Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent non-condensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - 3) Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.

f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.

G. Flow switches:

- 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.10 CONTROL CABLES

A. General:

- 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing.

 Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair,

- failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid or stranded, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. All MS/TP communications cables for devices utilizing the EIA-485 standard must be listed for use on EIA-485 networks by the manufacturer of the cable. This requirement overrides any cable recommendation by the controller manufacturer. The use of EIA-485 communication cables shall not affect the warranty from the installing DDC contractor. Cables shall have the following characteristic:
 - 1. Nominal Impedance: 100-130 Ohms
 - 2. Twisted/shielded construction of 1, 1.5, or 2 pairs depending on controller requirements.
 - 3. Be plenum rated when required
 - 4. Cables designated for use by the cable manufacturer for use in PA or Speaker systems shall not be allowed, regardless of recommendations by the controller manufacturer.
- E. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.11 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating null or dead band cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum finish, setpoint range and temperature display and external adjustment:
 - 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.12 FINAL CONTROL ELEMENTS AND OPERATORS

A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.

- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: maximum leakage in closed position shall not exceed 7 L/S
 (15 CFMs) differential pressure for outside air and exhaust dampers
 and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches)
 differential pressure for other dampers.
 - Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - 1. Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - 4. Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.

5. Flow characteristics:

- a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
- b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
- c. Two-way 2-position valves shall be ball, gate or butterfly type.

6. Maximum pressure drop:

- a. Two position steam control: 20 percent of inlet gauge pressure.
- b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
- c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.

F. Damper and Valve Operators and Relays:

- 1. Electric operator shall provide full modulating control of dampers and valves. For dampers a linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct, externally in the duct, externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motor(s) shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
- 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating

control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.

3. See and coordinate drawings for required control operation.

2.13 AIR FLOW CONTROL

- A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.
 - 1. Airflow measuring stations shall measure airflow by the pitot tube traverse method. Each unit shall consist of a network of static and total pressure sensors, factory positioned and connected in parallel, to produce an equalized velocity pressure. The measured velocity pressure converted to airflow (cfm) shall have accuracy within 2 percent of the full scale throughout the velocity range from 200 to 1,200 meter per minute (700 to 4,000 fpm).
 - 2. Airflow measuring stations shall consist of 16-gauge sheet metal casing, an aluminum air velocity treatment and air straightening section with an open face area not less than 97 percent and a total and static pressure sensing manifold made of copper. Each station shall contain noncombustible sensors which shall be incapable of producing toxic gases or fumes in the event of elevated duct temperatures. All interconnecting tubing shall be internal to the unit with the exception of one total pressure and one static pressure meter connection.
 - 3. Each air flow measuring station shall be installed to meet at least the manufacturer's minimum installation conditions and shall not amplify the sound level within the duct. The maximum resistance to airflow shall not exceed 0.3 times the velocity head for the duct stations and 0.6 times the velocity head for the fan stations. The unit shall be suitable for continuous operation up to a temperature of 120°C (250°F).

- 4. Differential pressure transducers shall measure and transmit pressure signals to the direct digital controller. .
- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
 - 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal $(0.015"\ \text{W.G.})$ at 1,000 meter per minute $(3,000\ \text{FPM})$.
 - 3. Electronics Panel:

- a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
- b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 4-20 ma type or PWM type for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
- c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal shall be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
- d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to 160°F).
 - 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The required probe sensor density shall be as follows:

Probe Sensor Density		
Area (sq.ft.)	Qty. Sensors	
<=1	2	
>1 to <4	4	
4 to <8	6	
8 to <12	8	
12 to <16	12	
>=16	16	

a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of

up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within ± 0.25%.

- C. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - 1. Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and Control Unit (CU) shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually reset.
- D. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.

E. Airflow Synchronization:

- 1. Systems shall consist of an air flow measuring station for each main supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
- 2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

A. General:

- 1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
- 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 6. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plumb.

B. Electrical Wiring Installation:

 All wiring and cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying

- control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
- 2. Install analog signal and communication cables in conduit and in accordance with Specification Division 27 - COMMINICATIONS. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, COMMINICATIONS STRUCTURED CABLING.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.

- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.

C. Install Sensors and Controls:

1. Temperature Sensors:

- a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
- b. Calibrate sensors to accuracy specified, if not factory calibrated.
- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor unless otherwise noted on the plans or drawings.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- q. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

2. Pressure Sensors:

a. Install duct static pressure sensor tips facing directly downstream of airflow.

- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- c. Install snubbers and isolation valves on steam pressure sensing devices.

3. Actuators:

- a. Mount and link damper and valve actuators according to manufacturer's written instructions.
- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

4. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.

D. Installation of network:

1. Ethernet:

- a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.

E. Installation of digital controllers and programming:

1. Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.

Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.

- 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
- 3. System point names shall be human readable, permitting easy operator interface without the use of a written point index.
- 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
- 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

B. Validation

- 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved

specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

C. Demonstration

- 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect, Cx Agent or COR on random samples of equipment as dictated by the COR. Should random sampling indicate improper work, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. PG-18-10 Safety DM
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.

- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute(s). Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate Energy Management System (EMS) performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

---- END ----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping for HVAC systems.
 - 3. Glycol-water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- H. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- I. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- J. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- K. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: Induction units, fan coil units, Unit Heaters and radiant ceiling panels.
- L. Section 31 20 00, EARTHWORK: Excavation and backfill.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

	в16.3-2016	.Malleable Iron Threaded Fittings: Classes 150 and 300	
	B16.4-2016	.Gray Iron Threaded Fittings: (Classes 125 and 250)	
	B16.5-2017	.Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard	
	B16.9-2018	.Factory Made Wrought Buttwelding Fittings	
	B16.11-2016	.Forged Fittings, Socket-Welding and Threaded	
	B16.18-2018	.Cast Copper Alloy Solder Joint Pressure	
		Fittings	
	B16.22-2018	.Wrought Copper and Copper Alloy Solder-Joint	
		Pressure Fittings	
	B16.24-2016	.Cast Copper Alloy Pipe Flanges and Flanged	
		Fittings: Classes 150, 300, 600, 900, 1500, and	
		2500	
	B16.39-2014	.Malleable Iron Threaded Pipe Unions: Classes	
		150, 250, and 300	
	B16.42-2016	.Ductile Iron Pipe Flanges and Flanged Fittings	
	в31.9-2014	.Building Services Piping	
	в40.100-2013	.Pressure Gauges and Gauge Attachments	
	ASME Boiler and Pressure Vessel Code:		
	BPVC Section VIII-2015	.Rules for Construction of Pressure Vessels	
С.	C. American Society for Testing and Materials (ASTM):		
	A47/A47M-2018	.Standard Specification for Ferritic Malleable	
		Iron Castings	
	A53/A53M-2018	.Standard Specification for Pipe, Steel, Black	
		and Hot-Dipped, Zinc-Coated, Welded and	
		Seamless	
	A106/A106M-2019	.Standard Specification for Seamless Carbon	
		Steel Pipe for High-Temperature Service	
	A126-2004 (R2019)	.Standard Specification for Gray Iron Castings	
		for Valves, Flanges, and Pipe Fittings	
	A183-2014	.Standard Specification for Carbon Steel Track	
		Bolts and Nuts	
	A216216M-2018	.Standard Specification for Steel Castings,	
		Carbon, Suitable for Fusion Welding, for High-	
		Temperature Service	

	A307-2016	Standard Specification for Carbon Steel Bolts,
	5	Studs, and Threaded Rod 60,000 PSI Tensile
	5	Strength
	A536-1984 (R2019)	Standard Specification for Ductile Iron
		Castings
	в62-2017	Standard Specification for Composition Bronze
		or Ounce Metal Castings
	B88-2016	Standard Specification for Seamless Copper
	V	Nater Tube
D.	American Welding Society	(AWS):
	B2.1/B2.1M-2014	Standard for Welding Procedure and Performance
	S	Specification
Ε.	Expansion Joint Manufactu	arer's Association, Inc. (EJMA):
	EJMA 2017	Expansion Joint Manufacturer's Association
	S	Standards, Tenth Edition
F.	. Manufacturers Standardization Society (MSS) of the Valve and Fitting	
	<pre>Industry, Inc.:</pre>	
	SP-67-2017	Butterfly Valves
	SP-70-2014	Gray Iron Gate Valves, Flanged and Threaded
	E	Ends
	SP-71-2014	Gray Iron Swing Check Valves, Flanged and
	נ	Threaded Ends
	SP-80-2014	Bronze Gate, Globe, Angle, and Check Valves
	SP-85-2014	Gray Iron Globe and Angle Valves, Flanged and
	ר	Threaded Ends
	SP-110-2014	Ball Valves Threaded, Socket-Welding, Solder
	<u> </u>	Joint, Grooved and Flared Ends
	SP-125-2018	Gray Iron and Ductile Iron In-line, Spring-
	I	Loaded, Center-Guided Check Valves
G.	Tubular Exchanger Manufac	cturers Association (TEMA):
	TEMA Standards20159	Oth Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.

- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gauges.
 - 15. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Water to Water).
 - 2. Air separators.
 - 3. Expansion tanks.
 - 4. Buffer tanks.
- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, and heating hot water system and other piping systems and equipment.
 - 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.

- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- I. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one-year old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts

(manufacturer, model number, and quantity) shall be furnished.

Information explaining any special knowledge or tools the owner will be

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - 1. Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Heating Hot Water, :
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - 1. From air handling units: Copper water tube, ASTM B88, Type M, or Schedule 40 PVC plastic piping.
 - 2. From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.
- D. Chemical Feed Piping for Condenser Water Treatment: CPVC, Schedule 80, ASTM F441/F441M.
- E. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ${\tt ASTM}$ A307, Grade B.

C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

A. Joints:

- Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: CPVC, Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2758 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 65 mm (2-1/2 inch) and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS SP-67, flange lug type rated 1200 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Butterfly valves are prohibited for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47/A47M electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.
 - c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - 1) Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - 2) Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.

- 3) Gate Valves:
 - a) 50 mm (2 inches) and smaller: MSS SP-80, Bronze, 1035 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke. MSS SP-70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

E. Globe and Angle Valves:

1. Globe Valves:

- a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.

2. Angle Valves:

- a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
- b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.

F. Check Valves:

- 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.
- 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.

- 1. Ball style valve.
- 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
- 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - 1. Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - 2. Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
 - 4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.
- I. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.9 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.

- D. Self-Averaging Annular Sensor Type: Brass or stainless-steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - 2. Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.
- G. Portable Water Flow Indicating Meters:
 - 1. Minimum 150 mm (6 inch) diameter dial, forged brass body, beryllium-copper bellows, designed for 1200 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 3 m (10 feet) lengths of hose with quick disconnect connections.
 - 4. Factory-fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- H. Permanently Mounted Water Flow Indicating Meters: Minimum 150 mm (6 inch) diameter, or 457 mm (18 inch) long scale, for 120 percent of design flow rate, direct reading in /gpm, with three valve manifold and two shut-off valves.

2.10 STRAINERS

- A. Y Type.
 - Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - 1. Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral

flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.

- 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
- 3. Provide ductile iron retaining rings and control units.

2.12 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints
 Manufacturers Association (EJMA) Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.9.
 - 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.9.
 - 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.

- 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - 1. Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 2413 kPa (350 psig) maximum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, PTFE modified polyphenylene sulfide coated slide section, with welded or flanged ends, suitable for axial end movement to 75 mm (3 inch).
- G. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement.

 Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- I. Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Heat Exchanger (Water to Water): Shell and tube type, U-bend removable tube bundle, heating fluid in shell, heated fluid in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.001.
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Cast iron or steel.

- 4. Construction: In accordance with ASME BPVC Section VIII for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of converters, pumps, and other components, pre-piped and pre-wired supported on a welded steel frame or skid. Refer to Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING, for additional requirements.
- C. Tangential Air Separator: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless-steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless-steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the cross-sectional area of connecting piping.
- D. Diaphragm Type Pre-Pressurized Expansion Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, welded steel shell, rustproof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 115 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to.
- E. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless-steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).
- F. Pressure Relief Valve: Bronze or iron body and bronze or stainlesssteel trim, with testing lever. Comply with ASME BPVC Section VIII and bear ASME stamp.
- G. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.14 WATER FILTERS AND POT CHEMICAL FEEDERS

A. See Section 23 25 00, HVAC WATER TREATMENT, paragraph, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.15 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.16 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.
- B. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.17 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.

- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water and Glycol-Water: 0 to 38 degrees C (32 to 100 degrees \mathbf{F}).
 - 2. Hot Water and Glycol-Water: 38 to 93 degrees C (100 to 200 degrees \mathbf{F}).

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in

overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space.

 Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless

acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system.

Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.6 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.

D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.7 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.9 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. Boiler plant and outside steam distribution piping is covered in specification Section 33 63 00, STEAM ENERGY DISTRIBUTION and Section 23 21 11, BOILER PLANT PIPING SYSTEMS.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 09 91 00, PAINTING.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- G. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 22 23, STEAM CONDENSATE PUMPS.
- J. Section 23 25 00, HVAC WATER TREATMENT.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B1 20 1-2013	Pipe	Threads.	General	Purpose	(Inch)
D1.20.1 2015		IIII Caab,	OCHCIAI	rarpose	(111011)

B16.5-2013Pipe Flanges and Flanged Fittings: NPS 1/2

through NPS 24 Metric/Inch Standard

B16.9-2012Factory Made Wrought Buttwelding Fittings

B16.11-2011Forged Fittings, Socket-Welding and Threaded

B16.42-2016Ductile Iron Pipe Flanges and Flanged Fittings:

Classes 150 and 300

B31.1-2018Power Piping

B31.9-2014Building Services Piping

B40.100-2013Pressure Gauges and Gauge Attachments

ASME Boiler and Pressure Vessel Code (BPVC) -BPVC Section II-2019 Materials BPVC Section VIII-2019 Rules for Construction of Pressure Vessels, Division 1 BPVC Section IX-2019/Welding, Brazing, and Fusing Qualifications C. American Society for Testing and Materials (ASTM): A53/A53M-2017Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2019Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A216/A216M-2019Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A285/A285M-2017Standard Specification for Pressure Vessel Plates, Carbon Steel, Low-and Intermediate-Tensile Strength A307-2019Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A516/A516M-2017Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service A536-1984(R2017)Standard Specification for Ductile Iron Castings B62-2017Standard Specification for Composition Bronze or Ounce Metal Castings D. American Welding Society (AWS): B2.1/B2.1M-2014Specification for Welding Procedure and Performance Qualifications Z49.1-2012Safety in Welding and Cutting and Allied Processes E. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-80-2013Bronze Gate, Globe, Angle, and Check Valves F. Military Specifications (Mil. Spec.): MIL-S-901D-2017Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems

- G. National Board of Boiler and Pressure Vessel Inspectors (NB):
 Relieving Capacities of Safety Valves and Relief Valves
- H. Tubular Exchanger Manufacturers Association (TEMA):
 TEMA Standards-20159th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - 3. Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gauges.
 - 13. Thermometers and test wells.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).
 - 2. Flash tanks.
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.

- 1. One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
- 2. One set of reproducible drawings.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
 - 2. Comply with provisions in ASME B31.9 and ASME B31.1.
 - 3. Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
 - 4. All welds shall be stamped according to the provisions of the American Welding Society.
- D. ASME Compliance: Comply with ASME B31.9 and ASME B31.1 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall

contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping.

- 2. Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
- 3. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with non-asbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750 degrees F) and 10,342 kPa (1500 psig).
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.

- b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 - 1) High pressure steam 110 kPa (16 psig) and above system): Cast steel body, ASTM A216/A216M grade WCB, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.

E. Globe and Angle Valves:

1. Globe Valves:

- a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
- b. 65 mm (2-1/2 inches) and larger:
 - 1) Globe valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze-faced disc (Teflon or composition facing permitted) and seat, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.

2. Angle Valves:

- a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
- b. 65 mm (2-1/2 inches) and larger:
 - 1) Angle valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.

F. Swing Check Valves:

- 1. 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45-degree swing disc.
- 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 110 kPa (16 psig) and above system: Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1035 kPa (150 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel, rated for saturated steam at 1034 kPa (150 psig) threaded ends.
 - 2. 65 mm (2-1/2 inches) and larger: Cast steel rated for 1034 kPa (150 psig) saturated steam with 1034 kPa (150 psig) ASME flanged ends or forged steel with 1724 kPa (250 psig) ASME flanged ends.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 1. 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement.

Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-29 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-123 psig): Rated 1035 kPa (150 psig) at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1035 kPa (126-150 psig): Rated 1380 kPa (200
 psig) at 194 degrees C (381 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (309 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - 3. Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints
 Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - 3. External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - 6. External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.

- 5. Conform to the standards of EJMA and ASME B31.1.
- 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.9 FLEXIBLE BALL JOINTS

A. Design and Fabrication: One-piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1725 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 762 mm (30 inches). Joints through 355 mm (14 inches) shall have forged pressure retaining members; while size 406 mm (16 inches) through 762 mm (30 inches) shall be of one-piece construction.

B. Material:

- 1. Cast or forged steel pressure containing parts and bolting in accordance with ASME BPVC Section II or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME BPVC Section II SA 515, Grade 70.
- 2. Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - 1. Low pressure leakage test: 41 kPa (6 psig) saturated steam for 60 days.
 - 2. Flex cycling: 800 Flex cycles at 3447 kPa (500 psig) saturated steam.
 - 3. Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.

- 4. Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
- 5. Vibration: 170 hours on each of three mutually perpendicular axes at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.10 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.10 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft^2hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components, pre-piped and pre-wired and supported on a welded steel frame or skid.
- C. Steam Pressure Reducing Valves in PRV Stations:
 - Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
 - 2. Service: Provide controlled reduced pressure to steam piping systems.
 - 3. Pressure control shall be smooth and continuous with maximum drop of 10 percent deviation from set pressure. Maximum flow capacity of each valve shall not exceed capacity of downstream safety valve(s).
 - 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, Monel, or similar durable material.

- a. Pressure rating for high pressure steam: Not less than 1035 kPa (150 psig) saturated steam.
- b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.
- 5. Direct-Digital Control PRV Valves: May be furnished in lieu of steam operated valves. All specification requirements for steam operated valves apply. In the event of signal failure, valves shall be normally closed. Install per manufacturer's recommendation.
- D. Safety Valves and Accessories: Comply with ASME BPVC Section VIII.

 Capacities shall be certified by National Board of Boiler and Pressure

 Vessel Inspectors, maximum accumulation 10 percent. Provide lifting

 lever. Provide drip pan elbow where shown. Valve shall have stainless

 steel seats and trim.
- E. Steam PRV for Individual Equipment: Cast steel body, screwed or flanged ends, rated 861 kPa (125 psig), or 20 percent above the working pressure, whichever is greater. Single-seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.
- F. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516/A516M or ASTM A285/A285M, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53/A53M Grade B, seamless or ERW, or ASTM A106/A106M Grade B seamless, Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - 1. Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.

- b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
- 2. Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of raised face flange is required on pipe sizes 1½ inch and above. The use of unions is acceptable for pipe sizes below 1½ inches. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.

2.11 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.
- C. Pressure gauge ranges shall be selected such that the normal operating pressure for each gauge is displayed near the midpoint of each gauge's range. Gauges with ranges selected such that the normal pressure is displayed at less than 30 percent or more than 70 percent of the gauge's range are prohibited. The units of pressure shall be psig.

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 1. 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug. Pressure/temperature plug is an example.

- 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 762 mm (30 inches) Hg to 690 kPa (100 psig) range.
- 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.

- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40 feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - 1. Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - 2. Perform all welding operations required for construction and installation of the piping systems.

- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.

- 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.

- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space.

 Locate joints to permit access without removing piping or other

 devices. Allow clear space to permit replacement of joints and to

 permit access to devices for inspection of all surfaces and for adding

 packing.

3.5 STEAM TRAP PIPING

- A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.
 - 1. On pipe size 1×1 inch and above a raised face flange is required to allow for removal of the steam trap without disturbing surrounding piping.
 - 2. On pipe size below 1 $\frac{1}{2}$ inch raised face flanges or unions may be used to allow for removal of the traps.

3.6 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

3.7 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.8 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.10 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Chemical treatment for open loop systems.
 - 4. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - 2. Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Chemical treatment for open loop systems, including installation and operating instructions.
 - 4. Glycol-water system materials, equipment, and installation.

- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2017National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02-2018.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system

essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with stainless steel core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 13.8 kPa (2 psig) at design flow rate when clean, and maximum pressure drop of 172 kPa (25 psig) when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.3 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: _30_ percent for chilled water system. and heating water system.
- C. Pot Feeder Make-up Unit: By pass type for chemical treatment, schedule 3.5 mm (10 gauge) heads, 20 mm (3/4-inch) system connections and large neck opening for chemical addition. Feeders shall be 19 Liters (5 gallon) minimum size.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - 2. Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - 3. Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
 - 4. Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.
 - 5. Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.

- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
 - 2. Exhaust duct with HEPA filters for Negative Pressure Isolation Room

B. Definitions:

- 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
- 2. Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
- 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
- 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- B. Section 08 90 00, LOUVERS and VENTS: Outdoor and Exhaust Louvers.
- C. Section 11 53 13, LABORATORY FUME HOODS: Fume Hoods.
- D. Section 22 11 00, FACILITY WATER DISTRIBUTION: Plumbing Connections.
- E. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- G. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise Level Requirements.
- H. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- I. Section 23 07 11, HVAC, and BOILER PLANT INSULATION: Duct Insulation.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- K. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.
- L. Section 23 36 00, AIR TERMINAL UNITS: Air Flow Control Valves and Terminal Units.
- M. Section 23 38 13, COMMERCIAL-KITCHEN HOODS: Kitchen Hoods.

- N. Section 23 40 00, HVAC AIR CLEANING DEVICES: Air Filters and Filters' Efficiencies.
- O. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Supply Air Fans.
- P. Section 23 82 00, CONVECTION HEATING and COOLING UNITS.
- Q. Section 23 82 16, AIR COILS: Duct Mounted Coils.
- R. Section 28 31 00, FIRE DETECTION and ALARM: Smoke Detectors.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.

- 4. Upper hanger attachments.
- 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
- 6. Sound attenuators, including pressure drop and acoustic performance.
- 7. Flexible ducts and clamps, with manufacturer's installation instructions.
- 8. Flexible connections.
- 9. Instrument test fittings.
- 10 Details and design analysis of alternate or optional duct systems.
- 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-2017Minimum Design Loads for Buildings and Other Structures C. American Society for Testing and Materials (ASTM): A167-2009Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-2019Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-2018Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-2014Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C1071-2019Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing

Material)

	E84-2014Standard Test Method for Surface Burning
	Characteristics of Building Materials
D.	National Fire Protection Association (NFPA):
	90A-2018Standard for the Installation of Air
	Conditioning and Ventilating Systems
	96-2018 Standard for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
Ε.	Sheet Metal and Air Conditioning Contractors National Association
	(SMACNA):
	3rd Edition -2006 HVAC Duct Construction Standards, Metal and
	Flexible
	2nd Edition -2012HVAC Air Duct Leakage Test Manual
	6th Edition -2016Fibrous Glass Duct Construction Standards
F.	Underwriters Laboratories, Inc. (UL):
	181-2013Factory-Made Air Ducts and Air Connectors
	555-2006Standard for Fire Dampers
	555S-2014Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Optional Duct Materials:
 - 1. Grease Duct: Double wall factory-built grease duct, UL labeled and complying with NFPA 96 may be furnished in lieu of specified materials for kitchen and grill hood exhaust duct. Installation and accessories shall comply with the manufacturers catalog data. Outer jacket of exposed ductwork shall be stainless steel. Square and rectangular duct shown on the drawings will have to be converted to equivalent round size.
- D. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically

for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.

- 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
- 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Provide a welded stainless-steel duct section for housing the ductmounted terminal humidifiers. Ductwork shall be at least 3 feet long on the upstream side and 6 feet long on the downstream side. Slope the ductwork against the direction of airflow and provide drain connections.
- E. Duct for Negative Pressure Up to 750 Pa (3-inch W.G.): Provide for exhaust duct between HEPA filters and exhaust fan inlet including systems for Autopsy Suite exhaust.
 - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints.
 - 2. Rectangular Duct: Galvanized steel, minimum 1.0 mm (20 gage), Pittsburgh lock seam, companion angle joints 32 mm by 3.2 mm (1-1/4 by 1/8 inch) minimum at not more than 2.4 m (8 feet) spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles.

- F. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - 1. Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - 2. Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
 - 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.

 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the COR.
- G. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 1350 mm (48 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.

- H. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- I. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.
- J. Ductwork in excess of 620 cm² (96 square inches) shall be protected unless the duct has one dimension less than 150 mm (6 inches) if it passes through the areas listed below. Refer to the Mission Critical Physical Design Manual for VA Facilities. This applies to the following:
 - 1. Agent cashier spaces
 - 2. Perimeter partitions of caches
 - 3. Perimeter partitions of computer rooms
 - 4. Perimeter of a COOP sites
 - 5. Perimeter partitions of Entrances
 - 6. Security control centers (SCC)

2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS)

- A. Duct sizes shown on drawings for lined duct are clear opening inside lining.
- B. Duct liner is only permitted to be used for return, relief and general exhaust ducts. Duct liner is not permitted for outside air ducts, supply air ducts or any other positive pressure ductwork (provide exterior insulation only).
- C. Rectangular Duct or Casing Liner: ASTM C1071, Type I (flexible), or Type II (board), 25 mm (one inch) minimum thickness, applied with mechanical fasteners and 100 percent coverage of adhesive in conformance with SMACNA, Duct Liner Application Standard.

2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.

- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.5 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2-hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless-steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.6 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.).
- B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3-inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - 1. Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - 2. Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if

required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.

- 4. Shafts: Galvanized steel.
- 5. Bearings: Nylon, bronze sleeve or ball type.
- 6. Hardware: Zinc plated.
- 7. Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.8 FIRE DOORS

Galvanized steel, interlocking blade type, UL listing and label, 71 degrees C (160 degrees F) fusible link, 3-hour rating and approved for openings in Class A fire walls with rating up to 4 hours, 100 percent free opening with no part of the blade stack or damper frame in the air stream.

2.9 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm

(foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).

D. Application Criteria:

- 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F)
- 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
- 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.10 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.11 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.

- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.12 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.13 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.14 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7-inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - 1. Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.15 DUCT MOUNTEDTEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.16 INSTRUMENT TEST FITTINGS

A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated.

Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.

B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.17 AIR FLOW CONTROL VALVES (AFCV)

Refer to Section 23 36 00 / 23 82 00, AIR TERMINAL UNITS / CONVECTION HEATING and COOLING UNITS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the

installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the COR. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the COR.

- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.

- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by COR. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the COR on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the COR and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the COR and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the COR.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.

H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- J. Section 23 82 16, AIR COILS.
- K. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - 1. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:

- a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - 1. Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - 3. Power roof and wall ventilators.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

Α.	The publications listed below form a part of this specification to the
	extent referenced. The publications are referenced in the text by the
	basic designation only.

В.	Air Movement and Control Association International, Inc. (AMCA):
	99-2016Standards Handbook
	210-2016Laboratory Methods of Testing Fans for
	Aerodynamic Performance Rating
	261-2017Directory of Products Licensed to bear the AMCA
	Certified Ratings Seal - Published Annually
	300-2014Reverberant Room Method for Sound Testing of

C. American Society for Testing and Materials (ASTM):

Fans

B117-2018	Standard	Practice	for	Operating	Salt	Spray
	(Fog) Apr	paratus				

D1735-2008	Standard	Practice	for Te	esting	Water	Resistance
	of Coatir	ngs Using	Water	Fog Ar	paratu	ıs

D3359-2017	Standard	Test	Methods	for	Measuring	Adhesion	bу
	Tape Test	5					

G152-2013	Standard Practice for Operating Open Flame	
	Carbon Arc Light Apparatus for Exposure of No.	n-
	Metallic Materials	

G153-2013	Standard	Practice	for	Operating	Enclosed	Carbon
	Arc Ligh	t Apparatı	ıs fo	or Exposure	e of Non-	
	Metallic	Materials	3			

D. National Fire Protection Association (NFPA):

NFPA 96-201	8Stand	dard for Ve	entilation	Control	and Fire
	Prote	ection of C	Commercial	Cookina	Operations

E. National Sanitation Foundation (NSF):

37-2017	Air	Curtains	for	Entrance	Ways	in	Food	and	Food
	Serv	vice Estab	olis	nments					

F. Underwriters Laboratories, Inc. (UL):

181-2013Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 1, 3, 9 or 10, except for fume hood (H7 or H13) exhaust fans Arrangement 3 shall not be acceptable.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a BlO life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.
 - 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
 - 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
 - 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
 - 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 26 29 11, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.

D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper. Provide electric motor operated damper where indicated.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream. For kitchen hood exhaust applications, provide grease trough on base and threaded drain. The mounting height of the kitchen up-blast exhaust fan shall be in compliance with NFPA 96. (Provide vented curb extension if required to maintain required clearances.)

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- ${\ensuremath{\text{C.}}}$ Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.

- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- C. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code:
 - 1062 GRD-2015Certification, Rating, and Test Manual $4^{\rm th}$ Edition
- C. American Society of Civil Engineers (ASCE):
 - ASCE7-2017Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):
 - A167-99 2009Standard Specification for Stainless and
 Heat-Resisting Chromium-Nickel Steel Plate,
 Sheet and Strip

B209- 2014Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA):

90A-2018Standard for the Installation of Air Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL):

181-2013UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED)

- A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 13 mm (1/2 inch) mesh aluminum welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.
 - 1. Spun Intake/Exhaust Ventilators: Spun aluminum structural components shall be constructed of minimum 1.3 mm (16 Gauge) marine alloy aluminum, bolted to a rigid aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. The spun aluminum baffle shall have a rolled bead for added strength.
 - 2. Louvered Intake/Exhaust Hoods: Louvered hood constructed from 0.081 Gauge extruded aluminum tiers welded to a minimum 3.3 mm (8 Gauge) aluminum support structure. The aluminum hood shall be constructed of a minimum 0.064 marine alloy aluminum and provided with a layer of anti-condensate coating. The aluminum base shall have continuously welded curb cap corners for maximum leak protection.
 - 3. Low Silhouette Intake/Exhaust Ventilator: The unit shall be of bolted and welded construction utilizing corrosion resistant fasteners. The aluminum hood shall be constructed of minimum 1.60 mm (14 Gauge) marine alloy aluminum, bolted to a minimum 3.25 mm (8 Gauge) aluminum support structure. The aluminum base shall have continuously welded curb cap corners for maximum leak protection. Birdscreen constructed of 13 mm (1/2 inch) mesh shall be mounted across the relief opening.
- B. See ventilator schedule on the drawings. Sizes shown on the drawings designate throat size. Area of ventilator perimeter opening shall be not less than the throat area.
- C. Dampers for Gravity Ventilators without Duct Connection: Construct damper of the same material as the ventilator and of the design to

completely close opening or remain wide open. Hold damper in closed position by a brass chain and catch. Extend chains 300 mm (12 inches) below and engage catch when damper is closed.

D. Provide Roof Curb by unit manufacturer. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for additional requirements.

2.2 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 AIR OUTLETS AND INLETS

A. Materials:

- 1. Steel or aluminum except that all supply air outlets installed in operating rooms and Cystoscopy rooms (see Article 2.3C.3) shall be stainless steel. Use aluminum air outlets and inlets for facilities located in high-humidity areas. Exhaust air registers located in combination toilets and shower stalls shall be constructed from aluminum. Provide manufacturer's standard gasket.
- 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.

C. Air Supply Outlets:

- Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - 2. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting or shall be extruded with manufacturer's standard finish.
 - 3. Supply Grilles: Same as registers but without the opposed blade damper.
- D. Not Used.

- E. Supply Registers in Psychiatric Rooms: Supply air registers shall be security type, steel with perforated faceplate, flat surface margin, extension sleeve, opposed blade damper and back mounting flanges.

 Faceplate shall be 5 mm (3/16 inch) (minimum) with 5x5 mm holes on 7 mm (3/16 by 3/16 inch holes on 9/32 inch) spacing and a minimum free area of 45 percent. Wall sleeve shall be 5 mm (3/16 inch) thick (minimum).
- F. Air Inlet Registers in Psychiatric Rooms: Return, exhaust, transfer and relief air registers shall be security type, steel with perforated faceplate, flat surface margin, wall sleeve, opposed blade damper and back mounting flanges. Faceplate shall be 5 mm (3/16 inch) (minimum) with 5x5 mm holes on 7 mm (3/16 by 3/16 inch holes on 9/32 inch) spacing and a minimum free area of 45 percent. Wall sleeve shall be 5 mm (3/16 inch) thick (minimum).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by COR. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 145 km/h (90 mph).

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 40 00

HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media used filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- C. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.
- D Section 23 73 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to COR, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.

- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):
 - 52.2-2017......Method of Testing General Ventilation Air-Cleaning

 Devices for Removal Efficiency by Particle

 Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME):
 NQA-1-2017Quality Assurance Requirements for Nuclear
 Facilities Applications
- D. Underwriters Laboratories, Inc. (UL):
 900; Revision 15 July 2015 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in

- Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the COR.
- B. The COR will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

	HVAC Filter Types Table 2.2C								
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type					
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway					
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge					
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge					
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge					

D. HEPA Filters

HEPA Filters Table 2.2D							
Efficiency at 0.3 Micron	Application	Initial Resistance (inches w.g.)	Rated CFM	Construction			
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body			
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank			

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic

media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

Minimum Efficiency Reporting (MERV)	8
Dust Holding Capacity (Grams)	105
Nominal Size (Width x Height x Depth)	24x24x2
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000
Rated Air Flow Rate (Feet per Minute)	500
Final Resistance (Inches w.g.)	1.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66
Rated Initial Resistance (Inches w.g.)	0.33

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be

- adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.5 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - 1. Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall

- not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
- 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UVresistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of high-efficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.
- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- 4. Manufacturer shall provide evidence of facility certification to ISO 9001:2015.

2.6 INSTRUMENTATION

A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range, Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.

- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

2.7 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

2.8 FILTER RETURN GRILLES

Refer to Section 23 37 00 AIR OUTLETS AND INLETS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the COR.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 73 00 INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of single or multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- B. Section 09 91 00, PAINTING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- G. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Section 23 21 13, HYDRONIC PIPING.
- K. Section 23 31 00, HVAC DUCTS and CASINGS.
- L. Section 23 34 00, HVAC FANS.
- M. Section 23 40 00, HVAC AIR CLEANING DEVICES.
- N. Section 23 82 16, AIR COILS.
- O. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:

- a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
- b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for AHUs shall include fans, drives, motors, coils, humidifiers, sound attenuators, mixing box with outside/return air dampers, filter housings, blender sections, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, diffusion plates, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points,

- unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).
- 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EOUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.

 Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - 1. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate

clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.

- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-2001Standard for Forced-Circulation Air-Heating and Air-Cooling Coils
- C. Air Movement and Control Association International, Inc. (AMCA): 210-2016Laboratory Methods of Testing Fans for Rating
- D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):
 - 170-2017Ventilation of Health Care Facilities
- E. American Society for Testing and Materials (ASTM):
 - B117-2017 Standard Practice for Operating Salt Spray (Fog) Apparatus
 - D1654-2016Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
 - D1735-2014Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus
 - D3359-2017Standard Test Methods for Measuring Adhesion by

 Tape Test

- F. Military Specifications (Mil. Spec.):

 P-21035B-2003Paint, High Zinc Dust Content, Galvanizing

 Repair (Metric)
- G. National Fire Protection Association (NFPA): 90A-2018Standard for Installation of Air Conditioning and Ventilating Systems, 2009
- H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 AIR HANDLING UNITS

A. General:

- 1. AHUS shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in draw-through configuration. Casing shall be fabricated as specified in section 2.1.C.2. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units, subject to VA approval, may be used in place of galvanized steel. The unit manufacturer shall provide published documentation confirming that the structural rigidity of aluminum air-handling units is equal or greater than the specified galvanized steel.
- 2. The contractor and the AHU manufacturer shall be responsible for ensuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. AHUS shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested, and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job

- site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
- 4. The AHU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a factory-trained and qualified local representative at the job site to supervise the assembly and to assure that the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation to the Contracting Officer that the local representative has provided services of similar magnitude and complexity on jobs of comparable size. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.

B. Base:

- 1. Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and as shown on drawings.
- AHUs shall be completely self supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.

- 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- C. Casing (including wall, floor and roof):
 - 1. General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Casing Construction:

Table 2.1.C.2

Outer Panel	0.8 mm (22 Gage) Minimum
Inner Panel	0.8 mm (22 Gage) Minimum
Insulation	Foam
Thickness	50 mm (2 inch) Minimum
Density	48 kg/m 3 (3.0 lb/ft 3) Minimum
Total R Value	2.3 m ² .K/W (13.0 ft ² .°F.hr/Btu)
	Minimum

3. Casing Construction (Contractor's Option):

Table 2.1.C.3

Outer Panel	1.3 mm (18 Gage) Minimum
Inner Panel	1.0 mm (20 Gage) Minimum
Insulation	Fiberglass
Thickness	50 mm (2 inch) Minimum
Density	$24 \text{ kg/m}^3 \text{ (1.5 lb/ft}^3) \text{ Minimum}$
Total R Value	$1.4 \text{ m}^2.\text{K/W}$ (8.0 ft ² .°F.hr/Btu)
	Minimum

- 4. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 5. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for

- future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 6. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).
 - c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 7. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting.

No cutting by torches will be allowed. Neatly seal all openings airtight.

E. Floor:

- 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- 2. Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
- F. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - 3. Installation, including frame, shall be designed and sealed to prevent blow-by.
- G. Housed Centrifugal Fan Sections:
 - 1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined type as indicated

- on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B (10) life of not less than 50,000 hours and an L (50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
- 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements.
- 3. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- H. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION, on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

- 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- I. Plenum Fans Single and/or Multiple Fans in an Array:
 - 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
 - 2. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
 - 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
 - 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall

be met by all operating fans in an array and without the provision of an idle standby fan.

5. Fan Accessories

- a. Fan Isolation: Provide a manual blank off plate to isolate the fan not in operation due to failure.
- b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- J. Fan Motor, Drive, and Mounting Assembly (Plenum Fans):
- K. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS
- L. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 2.8 cubic meters/min/square meter (9 CFM per square foot) at 995 Pa (4 inch WG) Electronic operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Blenders: Construction of the blender section shall be of welded aluminum 2 mm (0.081 inch) thick framing and turbulators. The mixer shall have no moving parts and shall contain a primary set of directional changing vanes, a secondary set of turbulator vanes, and a cone design for mixing of air streams. Certify blender performance to achieve no more than a 5°F variation across the cross section of the

AHU measured 12 inches downstream of the blender over a face velocity range of 1-4~m/s (200-800 FPM).

- N. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
- O. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Coils installed in the air handling units serving surgical suites shall be equipped with copper fins. Copper fins are also required for all duct-mounted and terminal reheat coils All coils in the high humidity areas, shall be epoxycoated as shown below Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements.
- P. Humidifier: When included in design, coordinate the humidification requirements with section 23 22 13 Steam and Condensate Heating Piping. Provide air-handling unit-mounted humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.

- Q. Sound Attenuators: Refer to Drawings, Specification Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, and Section 23 31 00, HVAC DUCTS AND CASINGS, for additional unit mounted sound attenuator requirements. AHU sound attenuators shall be factory installed as an integral part of AHU.
- R. Discharge Section:
 - Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- S. Electrical and Lighting: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 1. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air handling unit in conformance with ARI 435.
- B. Assemble air handling unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air handling units clean prior to operation.
- C. Leakage and test requirements for air handling units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Seal and/or fill all openings between the casing and AHU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.

C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 74 13 PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof top air handling units including integral components specified herein.
- B. Definitions: Roof Top Air Handling Unit(Roof Top Units, RTU): A factory fabricated assembly consisting of fan, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- F. Section 23 07 11, HVAC and BOILER PLANT INSULATION.
- G. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 31 00, HVAC DUCTS and CASINGS.
- J. Section 23 34 00, HVAC FANS.
- K. Section 23 40 00, HVAC AIR CLEANING DEVICES.
- L. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Housed Centrifugal Fans: The air handling units shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - 2. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.

- b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.
- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 410, AHRI 430, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4 SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish a complete submission for all roof top units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for RTUs shall include fans, drives, motors, coils, , mixing box with outside/return air dampers, filter housings, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc) and rigging points.

- 2. Submittal drawings of section or component only, will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details; if the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.
- 3. Submit sound power levels in each octave band for fan and at entrance and discharge of RTUs at scheduled conditions. Include sound attenuator capacities and itemized internal component attenuation. Internal lining of supply air ductwork with sound absorbing material is not permitted. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute) and 110 percent of design static pressure.
- 5. Submit total fan static pressure, external static pressure, for RTU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.

 Submit written results of factory tests for approval prior to shipping.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- F. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.

- 1. Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
- 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
- 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).
- 4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

Engineers (ASHRAE):

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

51-2016 Laboratory Methods of Testing Fans for Rating

E. American Society of Heating, Refrigerating and Air Conditioning

177	The miner Conjety for Mosting and Materials (ACMM).
г.	American Society for Testing and Materials (ASTM):
	A653/653M-2019Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy-Coated (Galvannealed) by the Hot-Dip
	Process
	B117-2018Salt Spray (Fog) Testing
	C1071-2019 Standard Specification for Fibrous Glass Duct
	Lining Insulation (Thermal and Sound Absorbing
	Material)
	D1654-2016Standard Method for Evaluation of Painted or
	Coated Specimens Subjected to Corrosive
	Environments
	D1735-2014Water Resistance of Coatings Using Water Fog
	Apparatus
	D3359-2017Standard Test Methods for Measuring Adhesion by
	Tape Test
	E84-2014Standard Test Method for Surface Burning
	Characteristics of Building Materials
G.	Military Specifications (Mil. Spec.):
	DOD-P-21035A-2014Paint, High Zinc Dust Content, Galvanizing
	Repair
Н.	National Fire Protection Association (NFPA):
	90A-2018Standard for Installation of Air Conditioning
	and Ventilating Systems, 2009
I.	Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 ROOF TOP AIR HANDLING UNITS

A. General:

- 1. Roof top units (RTU) shall be fabricated from insulated, solid double-wall galvanized steel without any perforations in drawthrough configuration. Casing is specified in paragraph 2.1.C. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
- 2. The contractor and the RTU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on

- the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 3. RTUs shall be fully assembled by the manufacturer in the factory in accordance with the arrangement shown on the drawings. The unit shall be assembled into the largest sections possible subject to shipping and rigging restrictions. The correct fit of all components and casing sections shall be verified in the factory for all units prior to shipment. All units shall be fully assembled, tested and then split to accommodate shipment and job site rigging. On units not shipped fully assembled, the manufacturer shall tag each section and include air flow direction to facilitate assembly at the job site. Lifting lugs or shipping skids shall be provided for each section to allow for field rigging and final placement of unit.
- 4. The RTU manufacturer shall provide the necessary gasketing, caulking, and all screws, nuts, and bolts required for assembly. The manufacturer shall provide a local representative at the job site to supervise the assembly and to assure the units are assembled to meet manufacturer's recommendations and requirements noted on the drawings. Provide documentation that this representative has provided this service on similar jobs to the Contracting Officer. If a local representative cannot be provided, the manufacturer shall provide a factory representative.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted sections may use a more permanent gasketing method provided they are not disassembled.
- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 Pa (8 inches water gage) or higher.
- 7. Corrosion Protection:

a. Casing Surfaces (Exterior and Interior): All exposed and accessible exterior and interior metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) and 500 hours UV resistance (ASTM D4587).

B. Base:

- 1. Provide a heavy duty steel base for supporting all major RTU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 125 mm (5 inch) high 3.5 mm (10 Gauge) steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and as shown on drawings.
- 2. RTUs shall be completely self supporting for installation on roof curb.
- 3. The RTU bases not constructed of galvanized material shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.

C. Casing (including wall, floor and roof):

- 1. General: RTU casing shall be entirely double wall insulated panels, integral of or attached to a structural frame. Construction shall be such that removal of any panel shall not affect the structural integrity of the unit. Casing finished shall meet salt-spray test as specified in paragraph 2.1.C.10. All casing and panel sections shall be tightly butted and gasketed. No gaps of double wall construction will be allowed where panels bolt to air handling unit structural member. Structural members, not covered by the double wall panels, shall have equivalent insulated double wall construction.
- 2. Double wall galvanized steel panels, minimum 51 mm (2 inches) thick, constructed of minimum 1.3 mm (18 gauge) outer skin and 1.0 mm (20 gauge) solid or perforated inner skin. to limit wall, roof and floor deflection to not exceed an L/240 ratio when the unit casing is pressurized to (±1245 Pa (±5 in. w.g.). Deflection shall be measured at the midpoint of the panel height. Total housing leakage shall not exceed 1% of rated cfm when the unit casing is pressurized

- to ± 5 in. w.g. (± 1245 Pa). The outer (skin) and inner panels shall be solid.
- 3. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
- 4. Insulation: Insulation shall be injected CFC free polyurethane foam encased in double-wall casing between exterior and interior panels such that no insulation can erode to the air stream. Insulation shall be 50 mm (2 inch) thick, and 48 kg/m³ (3.0 lb/ft³) density with a total thermal resistance (R-value) of approximately 2.3 m.K/W (13.0 hr-ft² °F/BTU). Units with less than 50 mm (2 inch) of insulation in any part of the walls, floor, roof or drain pan shall not be acceptable. The insulation shall comply with NFPA 90-A for the flame and smoke generation requirements. Also, refer to specification Section 23 07 11, HVAC and BOILER PLANT INSULATION.

Outer Panel 0.8 mm (22 Gage) Minimum

Inner Panel 0.8 mm (22 Gage) Minimum

Insulation Foam

Thickness 50 mm (2 inch) Minimum

Density 48 kg/m³ (3.0 lb/ft³) Minimum

Total R Value 2.3 m².K/W (13.0 ft².°F.hr/Btu)

Minimum

Table 2.1.C.4

- 5. The thickness of insulation, mode of application, and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU.
- 6. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
- 7. Access Doors: Provide in each access section and where shown on drawings. Show single-sided and double-sided access doors with door swings on the floor plans. Doors shall be a minimum of 50 mm (2 inches) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of

different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier coil section shall include a minimum $150 \text{ mm} \times 150 \text{ mm}$ (6 inch \times 6 inch) double thickness, with air space between glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.

- a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 pound) weight hung on latch side of door.
- b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside. Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inches water gage).
- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- 8. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- 9. Roof of the unit shall be sloped to have a minimum pitch of 1/4 inch per foot. The roof shall overhang the side panels by a minimum of three inches to prevent precipitation drainage from streaming down the unit side panels.
- 10. Casing finished shall meet ASTM B117, 500-hour salt spray test, using 20 percent sodium chloride solution. Immediately after completion of the test, the coating shall show no sign of

- blistering, wrinkling, or cracking, no loss of adhesion, and the specimen shall show no sign of rust creepage beyond 1/8-inch on either side of scratch mark.
- D. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 pounds per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
- E. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double wall construction, Type 304 stainless steel and have a minimum of 50 mm (2 inch) insulation, and shall be sloped to drain. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.
 - 1. An intermediate condensate drip pan shall be provided on stacked cooling coils and shall be constructed of type 304 stainless steel with copper downspouts factory piped to main condensate pan. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
 - 2. Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
 - 3. Installation, including frame, shall be designed and sealed to prevent blow-by.

F. Housed Centrifugal Fan Sections:

1. Fans shall be minimum Class II construction, double width, double inlet centrifugal, air foil or backward inclined type as indicated on drawings, factory balanced and rated in accordance with AMCA 210 or ASHRAE 51. Provide self-aligning, pillow block, regreasable ball-type bearings selected for a B(10) life of not less than 40,000

- hours and an L(50) average fatigue life of 200,000 hours per AFBMA Standard 9. Extend bearing grease lines to motor and drive side of fan section. Fan shall be located in airstream to assure proper air flow.
- 2. Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. Following fan assembly, the complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
- G. Fan Motor, Drive, and Mounting Assembly (Housed Centrifugal Fans):
 - 1. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
 - 2. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation.

 Drive and belts shall be as specified in Section 23 05 11, COMMON

WORK RESULTS FOR HVAC. Provide additional drive(s) if required during balancing, to achieve desired airflow.

- H. Plenum Fans Single and/or Multiple Fans in an Array
 - 1. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum bladed. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4. Fans shall be dynamically balanced and internally isolated to minimize the vibrations. Provide a steel inlet cone for each wheel to match with the fan inlet. Locate fan in the air stream to assure proper flow. The fan performance shall be rated in accordance with AMCA 210 or ASHRAE 51.
 - 2. Allowable vibration tolerances for fan shall not exceed a self-excited vibration maximum velocity of 0.005 m/s (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions. After field installation, compliance to this requirement shall be demonstrated with field test in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT and Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC. The fan wheel shall meet or exceed guidelines in AMCA 801-92 for dynamic balancing requirements. The complete fan assembly balance shall be tested using an electronic balance analyzer with a tunable filter and stroboscope. Vibration measurements shall be taken on each motor bearing housing in the vertical, horizontal, and axial planes (5 total measurements, 2 each motor bearing and 1 axial).
 - 3. The plenum fans shall be driven by variable speed drives with at least one back-up drive as shown in the design documents. Use of a drive with bypass is not permitted.
 - 4. Multiple fans shall be installed in a pre-engineered structural frame to facilitate fan stacking. All fans shall modulate in unison, above or below the synchronous speed within the limits specified by the manufacturer, by a common control sequence. Staging of the fans is not permitted. Redundancy requirement shall be met by all operating fans in an array and without the provision of an idle standby fan.
 - 5. Fan Accessories
 - a. Fan Isolation: Provide a manual blank off plate to isolate the fan not in operation due to failure.

- b. Fan Airflow Measurement: Provide an airflow measuring device integral to the fan to measure air volume within +/- 5 percent accuracy. The probing device shall not be placed in the airflow path to stay clear of turbulence and avoid loss of performance.
- 6. Fan Motor, Drive and Mounting Assembly: Fan Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMNT, on drawings and suitable for use in variable frequency drive applications. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC, for additional motor and drive specifications. Refer to
- I. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 cfm per square foot) at 250 Pa (1 inch water gage) and 2.8 cubic meters/min/square meter (9 cfm per square foot) at 995 Pa (4 inches water gage) Electronic damper operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - 1. Filters including one complete set for temporary use at site shall be provided independent of the RTU. The RTU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The RTU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for RTU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the RTU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.

- K. Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections.
- L. Humidifier: When included in design, coordinate the humidification requirements with section 23 84 13 Humidifiers. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.
- M. Electrical: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof top unit in conformance with ARI 435.
- B. Assemble roof top unit components following manufacturer's instructions for handling, testing and operation. Repair damaged galvanized areas with paint in accordance with Military Spec. DOD-P-21035A. Repair painted units by touch up of all scratches with finish paint material. Vacuum the interior of air-handling units clean prior to operation.
- C. Leakage and test requirements for roof top units shall be the same as specified for ductwork in Specification Section 23 31 00, HVAC DUCTS AND CASINGS except leakage shall not exceed Leakage Class (C_L) 12 listed in SMACNA HVAC Air Duct Leakage Test Manual when tested at 1.5 times the design static pressure. Repair casing air leaks that can be heard or felt during normal operation and to meet test requirements.
- D. Perform field mechanical (vibration) balancing in accordance with Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Seal and/or fill all openings between the casing and RTU components and utility connections to prevent air leakage or bypass.

3.2 STARTUP SERVICES

- A. The air handling unit shall not be operated for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings are lubricated and fan has been test run under observation.
- B. After the air handling unit is installed and tested, provide startup and operating instructions to VA personnel.
- C. An authorized factory representative should start up, test and certify the final installation and application specific calibration of control components. Items to be verified include fan performance over entire operating range, noise and vibration testing, verification of proper alignment, overall inspection of the installation, Owner/Operator training, etc.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies room blower coil units and radiant ceiling panels

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic restraints for equipment.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- J. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- K. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors
- L. Section 23 82 16, AIR COILS: Additional coil requirements.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide guarantee in accordance with FAR clause 52.246-21

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Room Fan-Coil units.
- C. Certificates:

- 1. Compliance with Article, QUALITY ASSURANCE.
- 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI):

440-2019Performance Rating of Room Fan Coils National Fire Protection Association (NFPA):

90A-2018 Standard for the Installation of Air Conditioning and Ventilating Systems

70-2017National Electrical Code

C. Underwriters Laboratories, Inc. (UL):

181-2013Standard for Factory-Made Air Ducts and Air Connectors

1995-2015Heating and Cooling Equipment

PART 2 - PRODUCTS

2.1 BLOWER COIL UNITS

- A. Capacity Certification: AHRI 440.
- B. Safety Compliance: NEC compliant and UL listed.
- C. Noise Levels: Operating at full cooling capacity, sound power level shall not exceed by more than 5 dB the numerical value of sound pressure levels associated with noise criteria specified in Section Select units at intermediate speed, for compliance with the noise criteria
- D. Chassis: Galvanized steel, acoustically and thermally insulated to attenuate noise and prevent condensation.
- E. Cabinet: Minimum 1.3 mm (18 gage) steel reinforced and braced. Arrange components and provide adequate space for installation of piping package and control valves. Finish shall be factory-baked enamel in manufacturer's standard coloron all exposed surfaces.

- 1. Horizontal Unit: Provide Exposedtype as shown. Provide supports and vibration isolators for horizontal units as recommended by the manufacturer.
- 2. Exposed Units: Fully enclosed cabinet with hinged bottom access panel with cam-lock fasteners. Provide stamped integral inlet and discharged grilles in front of cabinet.
- F. Fans: Centrifugal, forward curved, double width type wheels, galvanized steel or polyester resin construction, statically and dynamically balanced, direct driven.
 - 1. Motors: Premium efficiency, 3-speed permanent split capacitor type with integral thermal overload protection, for operation at not more than 1200 RPM.
 - 2. Provide a fan speed selector switch, with off, low, medium, and high positions. Switch shall have a set of auxiliary contacts which are open when the switch is in the "off" position and closed when the switch in any of the other positions. On vertical units, mount switch in a junction box in the cabinet of each unit. On ceiling-suspended horizontal and concealed units, switch shall be wall mounted.
- G. Cooling and Heating Coils:
 - 1. Hydronic (two separate coils for cooling and heating): Copper tubes, 10 mm (three-eighths inch) minimum inside diameter, not less than 4.3 mm (0.017 inch) thick with copper or aluminum fins. Coils shall be pressure tested for bursting and strength in accordance with Underwriters Laboratories, Inc., requirements for pressure tested coils, and shall be designed to provide adequate heat transfer capacity. Provide manual air vent at high point of each coil and drain at each low point.
- H. Piping Package: Factory furnished with unit by the manufacturer or field-installed by the contractor to fit control valves provided by the controls' supplier. Submit manufacturer's detailed drawings of the piping in the end compartments for approval prior to fabrication of the piping packages. Provide ball stop valves on the supply and return pipes and balancing fittings on the return pipes.
- I. Drain pans: Furnish galvanized steel with solderless drain connections and molded polystyrene foam insulating liner:
 - 1. Auxiliary drain pan: Located under control valve and piping within the unit enclosure to prevent dripping.

- J. Air Filter: Manufacturer's standard throwaway type, not less than 25 mm (1 inch) thick, MERV 7, supported to be concealed from sight and be tight fitting to prevent air by-pass. Filters shall have slide out frames and be easily replaced without removing enclosure or any part thereof.
- K. Control valves and remote wall mounted space thermostats or unit mounted return air thermostats, where shown or specified are to be field installed. Provide two-way modulating control valves unless

2.2 UNIT HEATERS

- A. General: Horizontal or vertical discharge type for hot water as indicated.
- B. Casing: Steel sheet, phosphatized to resist rust and finished in baked enamel. Provide hanger supports.
- C. Fan: Propeller type, direct driven by manufacturer's standard electric motor. Provide resilient mounting. Provide fan guard for horizontal discharge units.
- D. Discharge Air Control:
 - 1. Horizontal discharge: Horizontal, adjustable louvers.
 - 2. Vertical discharge: Radial louver diffuser.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they always remain stationary. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Install fiberglass blanket insulation with a minimum R value of 8 above hydronic radiant panels.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.
 Capacities and ratings of motors, conductors and cable, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

B. Definitions:

1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that

- maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Oualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests.

 The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.

3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.

- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
 - 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.

- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum

- of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.

- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.

F. Maintenance and Operation Manuals:

- Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.

- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.

C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.

b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

D2301-10	Standard Specification for	Vinyl Chloride
	Plastic Pressure-Sensitive	Electrical
	Insulating Tape	

D2304-10	Test Method for Thermal Endurance of Rigid
	Electrical Insulating Materials
D3005-10	Low-Temperature Resistant Vinyl Chloride
	Plastic Pressure-Sensitive Electrical

Insulating Tape

- C. National Electrical Manufacturers Association (NEMA):
 - WC 70-09Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):

70-17National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

4-14Thermoset-Insulated Wires and Cables
33-14
67-13Grounding and Bonding Equipment
186A-486B-13Wire Connectors

486D-15Sealed Wire Connector Systems

486C-13Splicing Wire Connectors

486E-15Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-07Thermoplastic-Insulated Underground Feeder and
Branch Circuit Cables

514B-12Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:

- 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
- 2. No. 8 AWG and larger: Stranded.
- 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
- 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

D. Color Code:

- 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
- 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
- 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 4. Conductors shall be color-coded as follows:

208/120 V	Phase	
Black	A	
Red	В	
Blue	С	
White	Neutral	
* or white with	colored (other	than green) tracer.

- 5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 6. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.

- 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
- 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zincplatedsteel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplatedsteel.

2.4 CONTROL WIRING

A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.

B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, or pullboxes,.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.

K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.

2. Test Reports:

a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.

3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-13	Standard	Specification	for	Hard-Drawn	Copper
	Wire				

- B3-13Standard Specification for Soft or Annealed Copper Wire
- B8-11Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- D. National Fire Protection Association (NFPA):

70-17	.National	Electrical	Code (NEC)
70E-15	.National	Electrical	Safety	Code
99-15	.Health Ca	are Facilit	les	

E. Underwriters Laboratories, Inc. (UL):

44-14	Thermoset-Insulated Wires and Cables
83-14	Thermoplastic-Insulated Wires and Cables
467-13	Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors

- shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND CONNECTIONS

A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.

B. Above Grade:

- 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 2. Connection to Building Steel: Exothermic-welded type connectors.
- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- C. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental
 Electrode(s):
 - 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes.

 Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.

3.4 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.

3.5 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.6 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.7 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Conduits bracing.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- H. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI):

 S100-12North American Specification for the Design of

 Cold-Formed Steel Structural Members

Cable

	FB2.10-13	.Selection and Installation Guidelines for
		Fittings for use with Non-Flexible Conduit or
		Tubing (Rigid Metal Conduit, Intermediate
		Metallic Conduit, and Electrical Metallic
		Tubing)
	FB2.20-14	.Selection and Installation Guidelines for
		Fittings for use with Flexible Electrical
		Conduit and Cable
	TC-2-13	.Electrical Polyvinyl Chloride (PVC) Tubing and
		Conduit
	TC-3-13	.PVC Fittings for Use with Rigid PVC Conduit and
		Tubing
D.	National Fire Protectio	n Association (NFPA):
	70-17	.National Electrical Code (NEC)
Ε.	Underwriters Laboratori	es, Inc. (UL):
	1-05	.Flexible Metal Conduit
	5-16	.Surface Metal Raceway and Fittings
	6-07	.Electrical Rigid Metal Conduit - Steel
	50-15	.Enclosures for Electrical Equipment
	360-13	.Liquid-Tight Flexible Steel Conduit
	467-13	.Grounding and Bonding Equipment
	514A-13	.Metallic Outlet Boxes
	514B-12	.Conduit, Tubing, and Cable Fittings
	514C-14	.Nonmetallic Outlet Boxes, Flush-Device Boxes
		and Covers
	651-11	.Schedule 40 and 80 Rigid PVC Conduit and
		Fittings
	651A-11	.Type EB and A Rigid PVC Conduit and HDPE
		Conduit
	797-07	.Electrical Metallic Tubing
	1242-14	.Electrical Intermediate Metal Conduit - Steel
ДВЩ (2 - PRODITCTS	

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

B. Conduit:

- 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
- 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
- 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Surface Metal Raceway: Shall conform to UL 5.

C. Conduit Fittings:

- 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.

- 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of case-hardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 6. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.

D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
- 2. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm \times 38 mm (1.5 \times 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

E. Outlet, Junction, and Pull Boxes:

- 1. Comply with UL-50 and UL-514A.
- 2. Rustproof cast metal where required by the NEC or shown on drawings.
- 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

E. Layout and Homeruns:

- Install conduit with wiring, including homeruns, as shown on drawings.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.

 Mixing different types of conduits in the same system is prohibited.
 - 2. Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum $1.8\,$ M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.

G. Painting:

- 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
- 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.6 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquid-tight flexible metal conduit.

3.7 EXPANSION JOINTS

A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require

- expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.8 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.

- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Contracting Officers Representative. The Contractor shall review and
comment on the tests prior to approval. The Contractor shall provide
the required labor, materials, and test equipment identified in the
test procedure to perform the tests. The Commissioning Agent will
witness and document the testing. The Contractor shall sign the test
reports to verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Contracting Officers Representative and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Contracting Officers Representative after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

- - - END - - -

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- E. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.

2. Manuals:

a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- designation only. B. National Electrical Manufacturer's Association (NEMA): C136.10-10American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles-Physical and Electrical Interchangeability and Testing ICS-1-15Standard for Industrial Control and Systems General Requirements ICS-2-05Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-16Standard for Industrial Controls and Systems Enclosures C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 20-10Standard for General-Use Snap Switches 98-16Enclosed and Dead-Front Switches 773-16Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting 773A-16Nonindustrial Photoelectric Switches for Lighting Control 916-15Standard for Energy Management Equipment Systems

917-06Clock Operated Switches

924-16 Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay.Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - 8. Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - 9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).

C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.2 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- C. Set occupancy sensor "on" duration to 15 minutes.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability.
 Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015)General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA):
 - 70-17National Electrical Code (NEC) 99-18Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):

 - 1449-14burge Flotective Devices
 - 1472-15Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 3. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 4. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be ivory in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - 2) Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.

D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 2. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- ${\rm H.}$ Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- ${\tt M.}$ Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:

- 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
- 2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload

relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - 2) Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - 3) Elementary schematic diagrams shall be provided for clarity of operation.
 - 4) Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- C. International Code Council (ICC):
 IBC-15International Building Code

D.	. National Electrical Manufacturers Association (NEMA):	
	ICS 1-00(R2015)Indus	rial Control and Systems: General
	Requi	ements
	ICS 1.1-84(R2015)Safet	Guidelines for the Application,
	Insta	lation and Maintenance of Solid State
	Contro	1
	ICS 2-00(R2005)Indus	rial Control and Systems Controllers,
	Conta	tors, and Overload Relays Rated 600 Volts
	ICS 4-15Indus	rial Control and Systems: Terminal Blocks
	ICS 6-93(R2016)Indus	rial Control and Systems: Enclosures
	ICS 7-14Indus	rial Control and Systems: Adjustable-
	Speed	Drives
	ICS 7.1-14Safet	Standards for Construction and Guide for
	Selec	ion, Installation, and Operation of
	Adjus	able-Speed Drive Systems
Ε.	2. National Fire Protection Asso	iation (NFPA):
	70-17Natio	al Electrical Code (NEC)
F.	. Underwriters Laboratories Inc. (UL):	
	508A-13Indus	rial Control Panels
	508C-16Power	Conversion Equipment
	1449-14Surge	Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
 - 1. Circuit Breakers:
 - a. Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.
 - b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than

400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.

- c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.

D. Enclosures:

- 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
- 2. Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
- 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.

E. Motor control circuits:

- 1. Shall operate at not more than 120 Volts.
- 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
- 3. For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
- 4. Incorporate primary and secondary overcurrent protection for the control power transformers.

F. Overload relays:

- 1. ThermalTemperature Probe Thermal Relay Electronic type. Devices shall be NEMA type.
- 2. One for each pole.
- 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
- 4. Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-

- O-A switch shall be operable without opening enclosure door. $\mbox{H-O-A}$ switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - Units shall include thermal overload relays, on-off operator, redpilot light, normally open auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.

E. Unless otherwise indicated, provide full voltage non-reversing across-the-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify COTR before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

- g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
- h. Test all control and safety features of the motor controllers.
- i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COTR.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

2. Manuals:

a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-15International Building Code

C. National Electrical Manufacturers Association (NEMA):

FU 1-12Low Voltage Cartridge Fuses

KS 1-13 Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)

D. National Fire Protection Association (NFPA):

70-17National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

98-16 Enclosed and Dead-Front Switches

248 1-11Low Voltage Fuses

489-13Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.

- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.4 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Feeders: Class RK1, fast acting
- C. Motor Branch Circuits: Class RK1, time delay.
- D. Other Branch Circuits: Class RK1, time delay.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.

- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- C. Environmental Protection Agency (EPA):
 40 CFR 261Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC):

 CFR Title 47, Part 15 ..Radio Frequency Devices

 CFR Title 47, Part 18 ..Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA):

 LM-79-08Electrical and Photometric Measurements of

 Solid-State Lighting Products

	LM-80-15Measuring Lumen Maintenance of LED Light	
	Sources	
	LM-82-12Characterization of LED Light Engines and LED	
	Lamps for Electrical and Photometric Properties	
	as a Function of Temperature	
F.	Institute of Electrical and Electronic Engineers (IEEE):	
	C62.41-91(R1995)Surge Voltages in Low Voltage AC Power Circuits	
G.	. International Code Council (ICC):	
	IBC-15International Building Code	
Н.	H. National Electrical Manufacturer's Association (NEMA):	
	C78.376-14Chromaticity of Fluorescent Lamps	
	C82.1-04(R2015)Lamp Ballasts - Line Frequency Fluorescent Lamp	
	Ballasts	
	C82.2-02(R2016)Method of Measurement of Fluorescent Lamp	
	Ballasts	
	C82.4-17Lamp Ballasts - Ballasts for High-Intensity	
	Discharge and Low-Pressure Sodium (LPS) Lamps	
	(Multiple-Supply Type)	
	C82.11-17Lamp Ballasts - High Frequency Fluorescent Lamp	
	Ballasts	
	LL 9-11Dimming of T8 Fluorescent Lighting Systems	
	SSL 1-16 Electronic Drivers for LED Devices, Arrays, or	
	Systems	
I.	National Fire Protection Association (NFPA):	
	70-17National Electrical Code (NEC)	
	101-18Life Safety Code	
J.	Underwriters Laboratories, Inc. (UL):	
	496-17Lampholders	
	542-05Fluorescent Lamp Starters	
	844-12Luminaires for Use in Hazardous (Classified)	
	Locations	
	924-16Emergency Lighting and Power Equipment	
	935-01Fluorescent-Lamp Ballasts	
	1029-94	
	1029A-06Ignitors and Related Auxiliaries for HID Lamp	
	Ballasts	
	1598-08Luminaires	
	1574-04Track Lighting Systems	

2108-15Low-Voltage Lighting Systems
8750-15Light Emitting Diode (LED) Light Sources for
Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.

B. Sheet Metal:

- 1. Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
- 2. Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
- 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
- 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- D. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.

E. Metal Finishes:

- 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
- 2. Interior light reflecting finishes shall be white with not less than 85 percent reflectance, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.

F. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.

2.2 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.

F. Fixtures:

- 1. Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
- 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.3 LED LIGHT FIXTURES

A. General:

- 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
- LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
- 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: $120 277V (\pm 10\%)$ at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.

- 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.

B. LED Downlights:

1. Housing, LED driver, and LED module shall be products of the same manufacturer.

C. LED Troffers:

- 1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
- 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20-gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster

- frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
- b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
- 5. Hardware for surface mounting fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 6 mm (1/4 inch) studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - 1) Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.

- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 6. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - 1) Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - 2) The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - 3) The outlet box is supported vertically from the building structure.
 - d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 7. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine-gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and

- installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- F. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.

2. Electrical tests:

a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COTR. Observe for visually detectable flicker over full dimming range and replace defective components at no cost to the Government.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 00 10 GENERAL PROVISIONS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section shall apply to Divisions 27 and 28.

1.2 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Contractor shall provide shop drawing submittals as outlined in Division 01 for all materials and equipment specified within the following Division 27 and 28 specifications and/or specifically noted items called out on Signal Plan Sheets.

2. Manuals:

- a. Contractor shall include shop drawings, testing information and warranty information as part of O&M Manuals at completion of project as outlined in Division 01.
- b. Contractor shall also provide As-Built drawings of these systems at completion of project as outlined in Division 01.

PART 2 - PRODUCTS

2.1 N/A

PART 3 - EXECUTION

3.1 INSTALLATION

A. Existing nurse call and overhead door alarm system is currently installed in conduit. Any modifications to these system will also be required to be installed in conduit per NFPA and VA requirements.

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the design and installation of telecommunications cabling system including equipment, wiring, terminations, outlets, and testing.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Raceway and boxes for cable runs.

1.3 QUALITY ASSURANCE

- A. Work shall be installed in accordance with the manufacturer's recommendations of the equipment to be supplied and installed under this contract. Installations and materials shall be in accordance with latest edition of the Uniform Building Code (UBC), National Electrical Code (NEC), and Building Industry Consulting Service International (BICSI).
- B. Installer Qualifications: Company specializing in installing similar systems, with minimum five years documented experience.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit communication closet layout per communication standards and per provided layout.
 - b. Product data:
 - i. NOTE: All components shall be as specified or be 100% compatible (ie. completely interchangeable, etc.).
 - ii. Materials list of items proposed to be provided under this

section.

- iii. Manufacturer's specifications and other data needed to provide compliance with the specified requirements.
- c. Submit information on the labeling scheme that will be used.

 MUST be coordinated with the owner.
- d. Project Record Documents: Record actual locations and sizes of pathways and outlets.

1.5 QUALIFICATIONS

- A. All cabling and terminations shall be by a telecommunications contractor. This contractor shall be a certified installer with at least 5 years of verifiable experience. References may be requested.
- B. Installer: Personnel installing and terminating the Cabling system shall be trained for voice and data installations and testing work. All installers/testers shall provide proof of training. Training must be from a nationally recognized organization and must be able maintain system warranties of materials being installed. Proof of training shall be submitted as part of the submittal process prior to start of work.

1.6 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

1.7 SYSTEM DESCRIPTION

- A. Provide conduits, cable trays, backboards, racks, patch panels, termination blocks, cables, and outlets to form a raceway and wiring system for voice, data, and wireless access points (WAP's).
- B. Structured cabling work shall be installed in accordance with the latest BICSI Telecommunication Distribution Methods Manual. This manual shall be on site for reference at all times telecommunication work is in progress. All cable shall be color coded per BICSI Standards. Confirm CAT 6A termination EIA/TIA 568A or EIA/TIA 568B method with Owner prior to commencing any terminations.
- C. Total station wire length to each workstation area shall be a maximum of 90 meters (295 feet) and a minimum of 20 meters (60 feet). Provide 20 foot loop for each cable within IT closet.
- D. Combination Voice/Data Outlets shall consist of 4-11/16 inch by 4-11/16 inch by 2-1/8 inch deep J-box (42 cubic inches) with single gang mud ring and minimum of a 1 inch conduit. Conduit size shall be increased as required based on need to meet conduit fill or multiple conduits

provided to meet conduit fill requirements based on the number of cables ran to each outlet location. Each outlet shall include the number of RJ-45/8 wire modular jacks rated CAT 6A indicated or a minimum of two (2) where not noted. Each jack shall be fed by its own CAT 6A 4 pair cable. One of these jacks will be voice and the others will be data unless otherwise noted. All conduits and cables will be terminated at patch panels at their associated floor's IT room.

- E. Data Only Outlets shall consist of 4-11/16 inch by 4-11/16 inch by 2-1/8 inch deep J-box (42 cubic inches) with single gang mud ring and minimum of a 1 inch conduit. Conduit size shall be increased as required based on need to meet conduit fill or multiple conduits provided to meet conduit fill requirements based on the number of cables ran to each outlet location. Each outlet shall include the number of RJ-45/8 wire modular jacks rated CAT 6A indicated or a minimum of two (2) where not noted. Each jack shall be fed by its own CAT 6A 4 pair cable. All conduits and cables will be terminated at patch panels at their associated floor's IT room.
- F. Wall Phone Voice outlets shall consist of 4-11/16 inch by 4-11/16 inch by 2-1/8 inch deep J-box (42 cubic inches) with single gang mud ring and minimum of a 3/4 inch conduit and have appropriate face plate for hanging phone with one RJ-45/8 wire jack rated CAT 6A. All conduits and cables will be terminated at patch panels at their associated floor's IT room.
- G. Wireless Access Points (WAP's) shall consist of 4-11/16 inch by 4-11/16 inch by 2-1/8 inch deep J-box (42 cubic inches) with single gang mud ring and minimum of a 3/4 inch conduit include one CAT 6A 4 pair cable to each location terminated with an RJ-45/8 wire jack rated CAT 6A. All conduits and cables will be terminated at patch panels at their associated floor's IT room. WAP's will be provided and installed by the Owner.

PART 2 - PRODUCTS

2.1 CAT 6A CABLE

- A. UL Listed CAT 6A, Plenum Rated cable. Systimax GigaSPEED X10D 2091B ETL or equal by Commscope Uniprise, Hubbell, Panduit, or Hitachi. Wire size 23 AWG.
- B. Label both ends of cable. Label at faceplates and patch panels shall match VA Standard labeling scheme. Coordinate with VA prior to installing.

C. Patch Cord Assembly: Provide 2 patch cords per terminated cable. Patch cords shall be CAT 6A, 7 feet length for closet end and 10 feet for User/Outlet end connection.

2.2 SYSTEM COMPONENTS

- A. All components such as faceplates and RJ-45 jacks shall be by a single manufacturer and 100% compatible (ie. completely interchangeable, etc.). Male and Female RJ-45 jacks shall be CAT 6A rated. Materials shall be equal to Leviton or Panduit Netkey style.
- B. Faceplates shall be a minimum of 4 port with ID window or 6 port with ID windows provided where 6 port outlets are specifically noted.
- C. Wall phone plates shall have studs for hanging phone and one CAT 6A port.
- D. Rack Mounted Patch Panels shall be Leviton Model E2X1A-S48 or equal with rear cable management and angled panel cover. Provide quantity of Patch Panels as needed for all cables shown to be installed plus 20% spares. Patch Panels shall be provided with mounting and labeling kits. Provide fully loaded ATLAS-X1 E2XHD copper trunks CAT 6A UTP CMP cable assembly with bundle of 6 blue cables.

PART 3 - EXECUTION

3.1 TESTING OF COPPER AND FIBER SYSTEMS

- A. Test 100% of the cables installed. Conduct testing after terminations have been made at room jack and patch panels. Any cable that fails must be replaced and or re-terminated until it passes.
- B. Owner shall be provided the option to observe all testing. Contractor shall notify Owner's representative 48 hours before commencing testing so Owner can make arrangement for observing testing.
- C. Contractor shall provide a printed copy of all tests and test results and provide a copy within each of the O&M manuals. An electronic copy of the test results shall also be provided with the O&M manuals.
- D. Test all CAT 6A cable to current BICSI standards for CAT 6A cabling using properly calibrated test equipment. Test report shall identify the cable being tested by matching labeling scheme approved during the installation process. Test and record the following: NEXT (Near End Cross Talk) NEXT (Near End Cross Talk); Attenuation; ACR (Attenuation to Cross Talk Ratio); Length of cable; 4% or 2 feet whichever is greater; Impedance; Loop Resistance; Capacitance; Measure Wire Map; Capable of indicating pass or failure of testing.

SECTION 27 41 31 TELEVISION CABLING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the design and installation of television cabling system including equipment, wiring, terminations, outlets, and testing.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Raceway and boxes for cable runs.

1.3 QUALITY ASSURANCE

- A. Work shall be installed in accordance with the manufacturer's recommendations of the equipment to be supplied and installed under this contract. Installations and materials shall be in accordance with latest edition of the Uniform Building Code (UBC), National Electrical Code (NEC), and Building Industry Consulting Service International (BICSI).
- B. Installer Qualifications: Company specializing in installing similar systems, with minimum five years documented experience.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit floor plan layout of showing TV locations with cabling interconnection shown.
 - b. Product data:
 - i. NOTE: All components shall be as specified or be 100% compatible (ie. completely interchangeable, etc.).
 - ii. Materials list of items proposed to be provided under this

section.

- iii. Manufacturer's specifications and other data needed to provide compliance with the specified requirements.
- c. Submit information on the labeling scheme that will be used.

 MUST be coordinated with the owner.
- d. Project Record Documents: Record actual locations and sizes of pathways and TV locations.

1.5 QUALIFICATIONS

A. All cabling and terminations shall be by a telecommunications contractor. This contractor shall be a certified installer with at least 5 years of verifiable experience. References may be requested.

1.6 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

1.7 SYSTEM DESCRIPTION

- A. Provide conduits, junction boxes, cables, terminations and faceplates to form a complete and functioning Television Distribution System.
- B. TV Outlets shall consist of 4-11/16 inch by 4-11/16 inch by 2-1/8 inch deep J-box (42 cubic inches) with single gang mud ring and minimum of a 3/4 inch conduit.
- C. Provide TV outlet and cable (RG-6) from each outlet to the appropriate local splitter in telecom rooms and terminate to splitter(s). In addition, provide (1) CAT 6A data cable to each TV outlet. CAT 6A cable shall conform to specification 271500 Communications Structured Cabling and installed as outlined in that specification section.

PART 2 - PRODUCTS

2.1 VIDEO CABLE

A. Branch distribution cable shall be RG-6 Coax, 75 ohm, 100% shielded, plenum rated.

2.2 SYSTEM COMPONENTS

- A. Faceplates shall be by the same manufacturer as provided under 271500 Communications Structured Cabling.
- B. Connectors shall be Standard "F" connectors, 75 ohm back matched, Bandpass: 40Mhz to 1Ghz. Flatness: Plus or minus 0.5 dB or better over entire frequency range. Input and Output Return Loss: 20dB of greater for each component over complete frequency range.
- C. Amplifiers shall be Blonder Tongue Laboratories, Inc; Model BIDA 5900 Series or equal by Winegard, Beldon or Jerrold. Provide one single

channel VHF amplifier with automatic gain control for each required channel, including converted UHF channels. Provide 120V power for amplifiers from local receptacle circuit.

PART 3 - EXECUTION

3.1 TESTING

- A. CAT 6A cable shall be tested as outlined in 271500 Communications Structured Cabling.
- B. All new equipment shall be aligned as recommended per the manufacturer. Video signals shall be 100 IRE at the designation point. Sync levels shall be at -40 IRE. SC and horizontal phasing shall be done using a vector scope and waveform monitor. Provide documentation of signal strength for every TV outlet location and include in the O&M Manual for the project.
- C. Contractor shall provide a demonstration and training of operation to VA staff at completion of project.

SECTION 27 51 23 INTERCOMMUNICATIONS SYSTEMS (INTERCOM)

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the design and installation of intercom system including equipment, wiring, terminations, outlets, and testing.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Raceway and boxes for cable runs.

1.3 QUALITY ASSURANCE

- A. Work shall be installed in accordance with the manufacturer's recommendations of the equipment to be supplied and installed under this contract. Installations and materials shall be in accordance with latest edition of the Uniform Building Code (UBC), National Electrical Code (NEC), and Building Industry Consulting Service International (BICSI).
- B. Installer Qualifications: Company specializing in installing similar systems, with minimum five years documented experience.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit floor plan layout of speaker locations with cabling interconnection shown. Provide wiring connection details for all connections to speakers and head end equipment.
 - b. Product data:
 - i. NOTE: All components shall be as specified or be 100% compatible (ie. completely interchangeable, etc.).
 - ii. Materials list of items proposed to be provided under this

section.

- iii. Manufacturer's specifications and other data needed to provide compliance with the specified requirements.
- c. Project Record Documents: Record actual locations and sizes of pathways and speakers.

1.5 QUALIFICATIONS

A. All cabling and terminations shall be by a telecommunications contractor. This contractor shall be a certified installer with at least 5 years of verifiable experience. References may be requested.

1.6 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

1.7 SYSTEM DESCRIPTION

- A. Provide conduits, junction boxes, cables, backboxes and speakers to form a complete and functioning Intercom System.
- B. The existing Intercom system is a BIAMP VOCIA System.

PART 2 - PRODUCTS

2.1 N/A

PART 3 - EXECUTION

3.1 N/A

SECTION 28 13 00 ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the design and installation of access control system including equipment, wiring, terminations, outlets, and testing.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Raceway and boxes for cable runs.

1.3 QUALITY ASSURANCE

- A. Work shall be installed in accordance with the manufacturer's recommendations of the equipment to be supplied and installed under this contract. Installations and materials shall be in accordance with latest edition of the Uniform Building Code (UBC), National Electrical Code (NEC), and Building Industry Consulting Service International (BICSI).
- B. Installer Qualifications: Company specializing in installing similar systems, with minimum five years documented experience.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit floor plan layout of access control device and equipment locations with cabling interconnection shown. Provide wiring connection details for all devices, equipment and head end equipment.
 - b. Product data:
 - i. NOTE: All components shall be as specified or be 100% compatible (ie. completely interchangeable, etc.).

- ii. Materials list of items proposed to be provided under this section.
- iii. Manufacturer's specifications and other data needed to provide compliance with the specified requirements.
- c. Project Record Documents: Record actual locations and sizes of pathways, devices and equipment.

1.5 QUALIFICATIONS

A. All cabling and terminations shall be by a telecommunications contractor. This contractor shall be a certified installer with at least 5 years of verifiable experience. References may be requested.

1.6 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

1.7 SYSTEM DESCRIPTION

- A. Provide conduits, junction boxes, cables, backboxes and speakers to form a complete and functioning Access Control System.
- B. The existing Access Control System is a Johnson Controls C-Cure Access Control System. All new devices shall be provided by Johnson Controls that match similar devices being installed in other areas. All wiring shall be installed in conduit back to the Control Panel. The new devices and control panel will need to be integrated into the head end equipment of the C-Cure control system with all programming included as part of this project. Johnson Controls out of Sioux Falls, South Dakota is the servicing vendor that shall be hired for modifications and integration of this system. POC Jason Klocker at (605)362-5325.

PART 2 - PRODUCTS

2.1 N/A

PART 3 - EXECUTION

3.1 N/A

SECTION 28 31 00 FIRE DETECTION AND ALARM SYSTEM - VOICE EVACUATION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the design and installation of fire alarm system including equipment, wiring, terminations, outlets, and testing.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
 Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Raceway and boxes for cable runs.

1.3 QUALITY ASSURANCE

- A. Work shall be installed in accordance with the manufacturer's recommendations of the equipment to be supplied and installed under this contract. Installations and materials shall be in accordance with latest edition of the NFPA 70 National Electrical Code (NEC), NFPA 72 National Fire Alarm and Signaling Code, and NFPA 101 Life Safety Code.
- B. The installing company shall employ NICET (minimum Level II Fire Alarm Technology) technicians on site to guide the final check-out and to ensure the systems integrity. The equipment supplier shall employ NICET (minimum Level III fire alarm technology) technician at their local office to prepare installation drawings and verify compliance with the specifications.
- C. Installer Qualifications: Manufacturer authorized distributor and installer of Simplex Fire Alarm Systems, with minimum five years documented experience for installing Fire Alarm System. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications. Complete listing of all programming information, including all control events per device including an updated

input/output matrix. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.

1.4 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

1. Shop Drawings:

- a. Submit floor plan layout using AutoCAD 2019 or newer and include all contractor's information. Layering shall be by VA criteria as provided by the Contracting Officer's Representative (COR). Bid drawing files in AutoCAD format will be provided to the Contractor upon request. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA showing all Fire Alarm devices and equipment to include cabling interconnection.
- b. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- c. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.

- d. Provide power supply and battery calculations as noted within this specification.
- e. Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations. Include information indicating who will provide emergency service and perform post contract maintenance. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A printout of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder. A printout for all devices proposed on each signaling line circuit with spare capacity indicated.

f. Product data:

- i. NOTE: All components shall be as specified or be 100% compatible (ie. completely interchangeable, etc.).
- ii. Materials list of items proposed to be provided under this section.
- iii. Manufacturer's specifications and other data needed to

provide compliance with the specified requirements.

- g. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2019 or newer). As built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- h. Project Record Documents: Record actual locations of devices and equipment along with all cabling interconnections.
- i. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.

1.5 QUALIFICATIONS

A. All cabling and terminations shall be by a Simplex Fire Alarm System authorized contractor. This contractor shall be a certified installer with at least 5 years of verifiable experience. References may be requested.

1.6 WARRANTY

A. All work performed, and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.7 SYSTEM DESCRIPTION

- A. The existing Fire Alarm System serving the Ft. Mead VA Medical Complex is a Simplex Fire Alarm System. It is the intent of this project to integrate all of the work performed under this contract into the existing Simplex Fire Alarm System. The Contractor is to provide conduits, junction boxes, cables, terminations, devices and equipment to form a complete and functioning Fire Alarm System that is networked with the rest of Ft. Mead VA Medical Complex. The existing Fire Alarm Control Panel (FACP) that serves the area of work is located in Telephone Closet CTC1. All work performed as part of this project shall be integrated with this existing FACP. The existing fire alarm system response will be unchanged.
- B. Alarm, trouble and supervisory signals from all intelligent reporting devices shall be encoded on a Class B Signaling Line Circuit (SLC).
- C. Initiation Device Circuits (IDC) shall be wired Class B, as part of an addressable device connected by the SLC Circuit.
- D. Notification Appliance Circuits (NAC) shall be wired Class B, as part of an addressable device connected by the SLC Circuit.

E. In all cases, modifications to existing fire alarm system wiring shall match existing system wiring Class type.

PART 2 - PRODUCTS

2.1 GENERAL

A. All equipment and components shall be new unless specifically noted that certain components maybe reused. All equipment and components shall be manufactured by Simplex and be UL listed for use with the existing Simplex FACP. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES AND WIRE

- A. Conduit shall be in accordance with Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. All new conduits shall be installed in accordance with NFPA 70. Conduit fill shall not exceed 40 percent of interior cross sectional area. All new conduits shall be 3/4 inch (19 mm) minimum.
- B. All wiring for the Fire Alarm System shall be installed in conduit. Wiring shall be in accordance with NEC article 760 and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
- C. Terminal Boxes, Junction Boxes, and Cabinets shall be galvanized steel in accordance with UL requirements. All boxes shall be sized and installed in accordance with NFPA 70. Covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 STANDBY POWER SUPPLIES

A. Contractor shall perform power calculations to determine the number of power supplies needed to support the revised Second Floor Fire Alarm

System. Contractor shall supply the correct number of power supplies and then calculate power needed for the battery backup system. The Contractor shall provide the revised battery backup system to meet the revised load. The calculations for these systems shall be included as part of the shop drawing submittal. The battery system shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 15 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure. If required the battery charger shall also be upgraded to meet the new load requirements.

2.4 ALARM NOTIFICATION APPLIANCES

A. Speakers, speaker strobes and strobes shall all match the existing equipment. While speakers, speaker strobes and strobes are shown diagrammatically on the plans, the contractor will be responsible for meeting sound pressure requirements and visual requirements as required by NFPA 72. Audio amplifiers shall be provided as needed to ensure sound pressure levels are met.

2.5 ALARM INITIATION DEVICES

- A. Manual Pull Stations; Smoke Detectors; Duct Smoke Detectors; Heat Detectors; Water Flow and Pressure Switches; and Address Reporting Interface Devices shall all match existing equipment. While smoke detectors and heat detectors are shown on the plans, the contractor will be responsible for providing shop drawings and layouts that meet NFPA 72 requirements.
- B. Manual Pull Stations; Smoke Detectors; Duct Smoke Detectors; Heat Detectors; Water Flow and Pressure Switches; and Address Reporting Interface Devices shall all match existing equipment. While smoke detectors and heat detectors are shown on the plans, the contractor will be responsible for providing shop drawings and layouts that meet NFPA 72 requirements.

2.6 ELECTROMAGNETIC DOOR HOLDERS

- A. New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
- B. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.

- C. A maximum of twelve door holders shall be provided for each circuit.

 Door holders shall be wired to allow releasing doors by smoke zone.
- D. Door holder control circuits shall be electrically supervised.
- E. Smoke detectors shall not be incorporated as an integral part of door holders.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new conduit within finished spaces shall be concealed. If the Contractor feels that this is not possible in a space for some reason a request must be provided to install as exposed. If exposed conduits are approved they shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- F. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- G. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- H. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.

3.2 TYPICAL OPERATION

A. Activation of any manual pull station, water flow or pressure switch,

heat detector, or smoke detector shall cause the following operations to occur:

- 1. Operate the emergency voice communication system in Building 148. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm. Confirm this operation with the Ft. Meade VA Fire Department.
- 2. Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building 148.
- 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated.
- 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
- 5. Unlock the electrically locked exit doors on the floor of the alarm.
- B. Smoke detectors in the primary elevator lobbies of Buildings 148 shall, in addition to the above functions, return all elevators in the bank to the secondary floor.
- C. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor.
- D. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- E. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- F. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make

repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.

- Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
- 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
- 3. Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Four 2-hour sessions to Engineering and Fire Department staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble

shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose-leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

3.6 DIGITIZED VOICE MESSAGES

A. Digitized voice messages shall be provided for each smoke zone of Buildings indicate buildings. The messages shall be arranged with a 3 second alert tone, a "Code Red" or "Nurse Blaze" of "Doctor Firestone" message and a description of the fire alarm area (building number, floor, level, and smoke zone). A sample of such a message is as follows:

Alert Tone

Code Red

Building One Forty-eight, Second Floor, East Wing

Code Red

Building One Forty-eight, Second Floor, East Wing

Code Red

Building One Forty-eight, Second Floor, East Wing