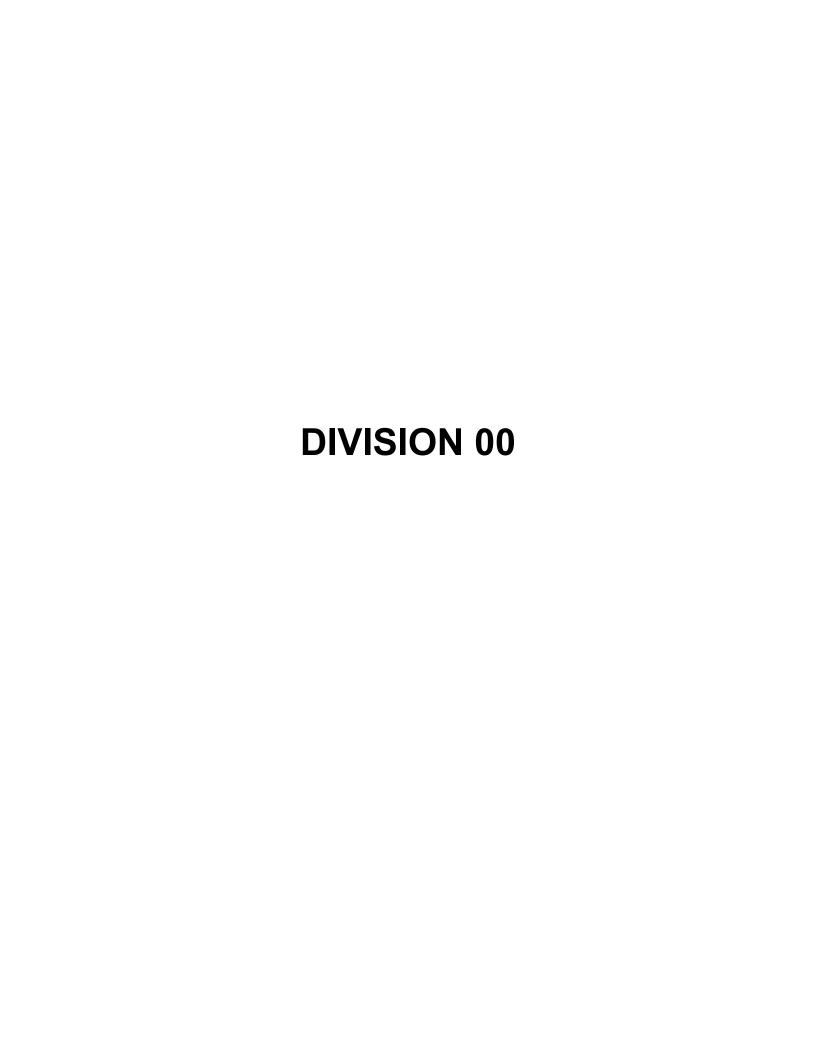


### **Specifications**

Fargo VA Health Care System
Fargo, ND 58102

### Correct Isolation Room Issues


VA Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

100% Bid Documents Submission

08/09/2021

BANCROFT ARCHITECTS + ENGINEERS

700 Nicholas Blvd. Suite 300 | Elk Grove Village, IL 60007
847.952.9362 | www.bancroft-ae.com



### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-2021

### DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

### TABLE OF CONTENTS Section 00 01 10

| SECTION NO. | DIVISION AND SECTION TITLES                      | DATE  |
|-------------|--------------------------------------------------|-------|
|             | DIVISION 00 - SPECIAL SECTIONS                   |       |
| 00 01 15    | List of Drawing Sheets                           | 05-20 |
|             | DIVISION 01 - GENERAL REQUIREMENTS               |       |
|             |                                                  |       |
| 01 00 00    | General Requirements                             | 01-21 |
| 01 33 23    | Shop Drawings, Product Data, and Samples         | 05-17 |
| 01 35 26    | Safety Requirements                              | 07-20 |
| 01 57 19    | Temporary Environmental Controls                 | 01-21 |
| 01 74 19    | Construction Waste Management                    | 01-21 |
| 01 91 00    | General Commissioning Requirements               | 10-15 |
|             | DIVISION 02 - EXISTING CONDITIONS                |       |
| 02 41 00    | Demolition                                       | 08-17 |
|             |                                                  |       |
|             | DIVISION 03 - CONCRETE                           |       |
|             |                                                  |       |
|             | DIVISION 04 - MASONRY                            |       |
|             | DIVISION 05 - METALS                             |       |
| 05 40 00    | Cold-Formed Metal Framing                        | 01-21 |
| 05 50 00    | Metal Fabrications                               | 08-18 |
|             | DIVISION 06 - WOOD, PLASTICS AND COMPOSITES      |       |
| 06 10 00    | Rough Carpentry                                  | 10-17 |
|             | DIVISION 07 - THERMAL AND MOISTURE PROTECTION    |       |
| 07 01 50.19 | Preparation and Modification to Existing Roofing | 01-21 |
| 07 22 00    | Roof and Deck Insulation                         | 01-21 |
| 07 84 00    | Firestopping                                     | 01-21 |
| 07 92 00    | Joint Sealants                                   | 10-17 |
|             | DIVISION 08 - OPENINGS                           |       |
|             |                                                  |       |

### CORRECT ISOLATION ROOM ISSUES

### Bancroft Architects + Engineers

04-01-2021

| SECTION NO. | DIVISION AND SECTION TITLES                             | DATE  |
|-------------|---------------------------------------------------------|-------|
| 08 11 13    | Hollow Metal Doors and Frames                           | 01-21 |
| 08 14 00    | Interior Wood Doors                                     | 01-21 |
| 08 71 00    | Door Hardware                                           | 01-21 |
|             | DIVISION 09 - FINISHES                                  |       |
|             |                                                         |       |
| 09 05 16    | Subsurface Preparation for Floor Finishes               | 01-21 |
| 09 22 16    | Non-Structural Metal Framing                            | 06-18 |
| 09 29 00    | Gypsum Board                                            | 04-20 |
| 09 51 00    | Acoustical Ceilings                                     | 12-18 |
| 09 65 13    | Resilient Base and Accessories                          | 01-21 |
| 09 65 16    | Resilient Sheet Flooring                                | 05-18 |
| 09 91 00    | Painting                                                | 01-21 |
|             | DIVISION 10 - SPECIALTIES                               |       |
|             |                                                         |       |
|             | DIVISION 11 - EQUIPMENT                                 |       |
|             | DIVISION II - EQUIPMENI                                 |       |
|             | DIVISION 12 - FURNISHINGS                               |       |
|             | DIVISION 12 - FORNISHINGS                               |       |
| 12 34 00    | Manufactured Plastic Casework                           | 10-15 |
| 12 36 00    | Countertops                                             | 12-18 |
|             | DIVISION 13 - SPECIAL CONSTRUCTION                      |       |
| 13 49 00    | Radiation Protection                                    | 02-16 |
|             | DIVISION 14- CONVEYING EQUIPEMENT                       |       |
|             | DIVIDION 11 CONVENTING EQUIPMENT                        |       |
|             | DIVISION 21- FIRE SUPPRESSION                           |       |
| 21 13 13    | Wet-Pipe Sprinkler Systems                              | 06-15 |
|             |                                                         |       |
|             | DIVISION 22 - PLUMBING                                  |       |
| 22 05 11    | Common Work Results for Plumbing                        | 09-20 |
| 22 05 23    | General-Duty Valves for Plumbing Piping                 | 09-20 |
| 22 07 11    | Plumbing Insulation                                     | 09-19 |
| 22 11 00    | Facility Water Distribution                             | 11-19 |
| 22 13 00    | Facility Sanitary and Vent Piping                       | 09-20 |
| 22 40 00    | Plumbing Fixtures                                       | 09-15 |
| 22 62 00    | Vacuum Systems for Laboratory and Healthcare Facilities | 09-15 |
| 22 63 00    | Gas Systems for Laboratory and Healthcare Facilities    | 09-15 |
|             |                                                         |       |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-2021

| SECTION NO. | DIVISION AND SECTION TITLES                                        | DATE   |
|-------------|--------------------------------------------------------------------|--------|
|             | DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)    |        |
|             |                                                                    |        |
| 23 05 11    | Common Work Results for HVAC                                       | 02-20  |
| 23 05 12    | General Motor Requirements for HVAC and Steam Generation Equipment | 02-20  |
| 23 05 41    | Noise and Vibration Control for HVAC Piping and Equipment          | 02-20  |
| 23 05 93    | Testing, Adjusting, and Balancing for HVAC                         | 02-20  |
| 23 07 11    | HVAC and Boiler Plant Insulation                                   | 02-20  |
| 23 08 00    | Commissioning of HVAC Systems                                      | 02-20  |
| 23 09 23    | Direct-Digital Control System for HVAC                             | 09-11  |
| 23 21 13    | Hydronic Piping                                                    | 02-20  |
| 23 31 00    | HVAC Ducts and Casings                                             | 02-20  |
| 23 34 00    | HVAC Fans                                                          | 02-20  |
| 23 36 00    | Air Terminal Units                                                 | 02-20  |
| 23 37 00    | Air Outlets and Inlets                                             | 02-20  |
| 23 40 00    | HVAC Air Cleaning Devices                                          | 03-20  |
|             |                                                                    |        |
|             | DIVISION 25 - INTEGRATED AUTOMATION                                |        |
|             |                                                                    |        |
|             |                                                                    |        |
|             | DIVISION 26 - ELECTRICAL                                           |        |
|             |                                                                    |        |
| 26 05 11    | Requirements for Electrical Installations                          | 01-16  |
| 26 05 19    | Low-Voltage Electrical Power Conductors and Cables                 | 01-17  |
| 26 05 26    | Grounding and Bonding for Electrical Systems                       | 01-17  |
| 26 05 33    | Raceway and Boxes for Electrical Systems                           | 01-18  |
| 26 09 23    | Lighting Controls                                                  | 01-18  |
| 26 24 16    | Panelboards                                                        | 01-18  |
| 26 27 26    | Wiring Devices                                                     | 01-18  |
| 26 29 21    | Enclosed Switches and Circuit Breakers                             | 01-17  |
| 26 43 13    | Surge Protective Devices                                           | 0 = 1, |
| 20 10 10    | Salge Treeserive Devices                                           | 01-18  |
|             | DIVISION 27 - COMMUNICATIONS                                       | 01 10  |
| 27 05 11    | Requirements for Communications Installations                      | 09-19  |
| 27 05 26    | Grounding and Bonding for Communications Systems                   | 06-15  |
| 27 05 33    | Raceways and Boxes for Communications Systems                      | 10-18  |
| 2/00,00     |                                                                    |        |
|             | Control, Communication and Signal Wiring                           | 06-15  |
| 27 10 00    | Control, Communication and Signal Wiring                           | 06-15  |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-20

### SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

| Drawing No.      | <u>Title</u>                                       |
|------------------|----------------------------------------------------|
| 00-GENERAL       |                                                    |
| 1-GI-00          | COVER SHEET                                        |
| 1-GI-01          | DRAWING INDEX AND PROJECT TEAM                     |
| 1-GI-02          | GENERAL - CONTRACTOR & BOD PROTOCOL NOTES          |
| 1-GI-03          | GENERAL SHEET NOTES                                |
| 1-GI-04          | SYMBOLS, ABBREVIATIONS AND LEGENDS                 |
| 1-GI-05          | MOUNTING HEIGHTS                                   |
| 1-GI-06          | LIFE SAFETY PLAN - 1ST, 2ND, 3RD AND 4TH FLOOR     |
| 1-GI-07          | INFECTION CONTROL GENERAL NOTES                    |
| 1-GI-08          | INFECTION CONTROL TYPICAL CLASS IV                 |
| 1-GI-09          | INFECTION CONTROL/ SEQUENCE PLANS - ED             |
| 1-GI-10          | INFECTION CONTROL/ SEQUENCE PLANS - DENTAL         |
| 1-GI-11          | INFECTION CONTROL/ SEQUENCE PLANS - ICU            |
| 1-GI-12          | INFECTION CONTROL/ SEQUENCE PLANS - MNU            |
|                  |                                                    |
| 07-ARCHITECTURAL |                                                    |
| 1-AS-01          | ARCHITECTURAL - GENERAL NOTES AND LEGENDS          |
| 1-AS-02          | ARCHITECTURAL - DEMOLITION PLANS - ED              |
| 1-AS-03          | ARCHITECTURAL - DEMOLITION PLANS - DENTAL          |
| 1-AS-04          | ARCHITECTURAL - DEMOLITION PLANS - ICU             |
| 1-AS-05          | ARCHITECTURAL - DEMOLITION PLANS - ICU ROOF        |
| 1-AS-06          | ARCHITECTURAL - DEMOLITION PLANS - MNU             |
| 1-AS-07          | ARCHITECTURAL - FLOOR PLANS - ED                   |
| 1-AS-08          | ARCHITECTURAL - FLOOR PLANS - DENTAL               |
| 1-AS-09          | ARCHITECTURAL - FLOOR PLANS - DENTAL ROOF          |
| 1-AS-10          | ARCHITECTURAL - FLOOR PLANS - ICU                  |
| 1-AS-11          | ARCHITECTURAL - FLOOR PLANS - MNU                  |
| 1-AS-12          | PARTITION TYPES AND DTLS, DOOR AND FINISH SCHEDULE |

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-20 1-AS-13 ARCHITECTURAL - INTERIOR ELEVATIONS 0-FIRE PROTECTION FIRE PROTECTION - GENERAL NOTES, ABBREVIATIONS FA-01FIRE PROTECTION - FIRST FLOOR - DEMOLITION PLAN FA-02 FA-03 FIRE PROTECTION - FIRST FLOOR - DEMOLITION PLAN - DENTAL FA-04 FIRE PROTECTION - THIRD FLOOR - DEMOLITION PLAN FA-05 FIRE PROTECTION - THIRD FLOOR - DEMOLITION PLAN - MNU FA-06 FIRE PROTECTION - FIRST FLOOR - ED FIRE PROTECTION - FIRST FLOOR - DENTAL FA-07 FA-08 FIRE PROTECTION - THIRD FLOOR - ICU FA-09 FIRE PROTECTION - THIRD FLOOR - MNU FA-10 FIRE PROTECTION - DETAILS 11-PLUMBING PL-01 PLUMBING - GENERAL NOTES AND SYMBOLS PL-02 PLUMBING - FIRST FLOOR - DEMOLITION UNDERFLOOR PLAN - DENTAL  $PI_{1}-0.3$ PLUMBING - FIRST FLOOR - DEMOLITION DOMESTIC WATER AND VENT PLAN - DENTAL PL-04 PLUMBING - FIRST FLOOR - DENTAL PL-05 PLUMBING - FIRST FLOOR - DENTAL PL-06 PLUMBING - DETAILS PL-07 PLUMBING - RISER DIAGRAMS 13-MECHANINCAL MECHANICAL NOTES AND SYMBOLS MH - 01MECHANICAL - DEMOLITION PLANS - ED MH - 02MECHANICAL - DEMOLITION PLANS - DENTAL MH - 03MH-04MECHANICAL - DEMOLITION PLANS - ICU MH-05MECHANICAL - DEMOLITION PLANS - MNU MH - 0.6MECHANICAL - ATTIC DEMOLITION PLAN - MNU MH-07MECHANICAL - ROOF AND FLOOR PLANS - ED

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| Bancro        | ort Architects + Engineers 05-01-20                  |
|---------------|------------------------------------------------------|
| MH-08         | MECHANICAL - ROOF AND FLOOR PLANS - DENTAL           |
| MH-09         | MECHANICAL - ROOF AND FLOOR PLANS - ICU              |
| MH-10         | MECHANICAL - FLOOR PLANS - MNU                       |
| MH-11         | MECHANICAL - ATTIC PLAN - MNU                        |
| MH-12         | MECHANICAL - DETAILS                                 |
| MH-13         | MECHANICAL - DETAILS                                 |
| MH-14         | MECHANICAL - DETAILS                                 |
| MH-15         | MEHCANICAL - DETAILS                                 |
| MH-16         | MECHANICAL - SCHEDULES                               |
| MH-17         | MECHANICAL - TEMPERATURE CONTROLS                    |
| MH-18         | MECHANICAL - TEMPERATURE CONTROLS                    |
|               |                                                      |
| 14-ELECTRICAL |                                                      |
| E-1           | ELECTRICAL NOTES, SYMBOL AND LEGEND                  |
| E-2           | ELECTRICAL - DEMOLITION PLANS - ED                   |
| E-3           | ELECTRICAL - DEMOLITION PLANS - ED ROOF              |
| E-4           | ELECTRICAL - DEMOLITION PLANS - DENTAL LIGHTING      |
| E-5           | ELECTRICAL - DEMOLITION PLANS - DENTAL POWER         |
| E-6           | ELECTRICAL - DEMOLITION PLANS - ICU LIGHTING         |
| E-7           | ELECTRICAL - DEMOLITION PLANS - MNU LIGHTING         |
| E-8           | ELECTRICAL - FLOOR PLANS - ED ROOF                   |
| E-9           | ELECTRICAL - FLOOR PLANS - DENTAL                    |
| E-10          | ELECTRICAL - FLOOR PLANS - DENTAL ROOF               |
| E-11          | ELECTRICAL - FLOOR PLANS - ICU ROOF                  |
| E-12          | ELECTRICAL - FLOOR PLANS - MNU ATTIC                 |
| E-13          | ELECTRICAL DETAILS                                   |
| E-14          | PANEL SCHEDULES AND PARTIAL ONE-LINE                 |
|               |                                                      |
| 20-MED GAS    |                                                      |
| MG-01         | MEDICAL GAS - GENERAL NOTES ABBREVIATIONS & SYMBOLS  |
| MG-02         | MEDICAL GAS - FIRST FLOOR - DEMOLITION PLAN - DENTAL |

- - - END - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

## SECTION 01 00 00 GENERAL REQUIREMENTS

#### **GENERAL**

#### 1.1 SAFETY REQUIREMENTS

A. Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

#### 1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Fargo VA Health Care System Correct Isolation Room Issues 437-21-170 as required by drawings and specifications.
- B. Visits to the site by Bidders through Contracting Officer only. Only one organized site visit shall be conducted per FAR 52.236-27 Alternate I.
- c. Offices of Bancroft Architects and Engineers as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- D. Before placement and installation of work subject to tests by testing laboratory retained by General Contractor and approved by VA, the Contractor shall notify the COR in sufficient time to enable personnel to be present at the site in time for witnessing taking and testing of specimens and field inspection. Such prior notice shall be not less than seven workdays unless otherwise designated by the COR.
- E. All employees of general contractor and subcontractors shall comply with VA security management program.

### 1.3 STATEMENT OF BID ITEM(S)

A. A single award shall be made on ITEM 1 (Base Bid), but in the event the offer exceeds funds available, a single award may be made on ITEM 2 or ITEM 3, etc., in that order based upon available funding. Offerors should quote a price on each ITEM.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- B. ITEM 1, BASE BID: Work includes but shall not be limited to, isolation room modifications, demolition, general construction, alterations, construction, mechanical (hydronic, ducting, plumbing, etc.), sprinklers, electrical (power, lights, systems, etc.) and other items required by the contract documents to fully construct Fargo VA Health Care System project 437-21-170, Correct Isolation Room Issues.
- C. ITEM 2, DEDUCT ALTERNATE NO.1: BASE BID less work eliminated under Deduct Alt. No. 1.
  - Deduct Alternate No. 1 shall eliminate all references and requirements pertaining to a "Commissioning Agent" within the contract documents.
- D. ITEM 3, DEDUCT ALTERNATE NO.2: BASE BID less work eliminated under Deduct Alt. No. 1 and Deduct Alt. No. 2:
  - Deduct Alternate No. 2 shall eliminate the requirement to remodel three existing negative pressure rooms in the 3-Main nursing unit (3A-42, 3A-46 and 3A-48). Delete M-EF-514 and M-EF-524. Delete one package of FH-3A-1 and FH-3A-2.
- E. ITEM 4, DEDUCT ALTERNATE NO.3: BASE BID less work eliminated under Deduct Alt. No. 1, Deduct Alt. No. 2 and Deduct Alternate No. 3:
  - 1. Deduct Alternate No. 3 shall eliminate the redundancy requirements for the five remaining HEPA Filters Units.

#### 1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

#### 1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
  - 1. The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
  - 2. The General Contractor is responsible for assuring that all sub-contractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- General Contractor's employees shall not enter the project site without appropriate badge.
   They may also be subject to inspection of their personal effects when entering or leaving the project site.
- 2. Before starting work the General Contractor shall give three week's notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 3. No photography of VA premises is allowed without written permission of the Contracting Officer. Patients and staff are not to be photographed at any time.
- 4. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.

### C. Key Control:

1. The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.

### 1.6 OPERATIONS AND STORAGE AREAS (FAR 52.236-10)

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work.
- c. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work,

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

- D. Working space and space available for storing materials shall be as determined by the COR.
- E. Workers are subject to rules of Fargo VA Medical Center applicable to their conduct.
- F. Execute work so as to interfere as little as possible with normal functioning of the Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
  - 1. Do not store materials and equipment in other than assigned areas.
  - 2. Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
  - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- G. Utilities Services: Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the COR or Utility Company involved.

### H. Phasing:

1. The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks.

- 2. To ensure such executions, Contractor shall furnish the COR with a schedule of approximate phasing dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR three weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such phasing dates to ensure accomplishment of this work in successive phases mutually agreeable to COR and Contractor.
- 3. Contractor shall take all measures and provide all material necessary for protecting existing equipment and property in affected areas of construction against dust and debris, so that equipment and affected areas to be used in the Medical Centers operations will not be hindered. Contractor shall permit access to Department of Veterans Affairs personnel and patients through other construction areas which serve as routes of access to such affected areas and equipment. These routes whether access or egress shall be isolated from the construction area by temporary partitions and have walking surfaces, lighting etc. to facilitate patient and staff access. Coordinate alteration work in areas occupied by Department of Veterans Affairs so that Medical Center operations will continue during the construction period.
- 4. Immediate areas of alterations not mentioned in preceding Subparagraph 1 will be temporarily vacated while alterations are performed.
- I. When a building and/or construction site is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore:
  - 1. Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
  - 2. Contractor shall maintain in operating condition existing fire protection and alarm equipment.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- J. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
  - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized.
  - 2. Contractor shall submit a request to interrupt any such services to COR, in writing, 21 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
  - 3. Contractor will be advised of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours at no added cost to the government.
  - 4. Major interruptions of any system must be requested, in writing, at least 21 calendar days prior to the desired time and shall be performed as directed by the COR.
  - In case of a contract construction emergency, service will be interrupted on approval of COR.
- K. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, shall be removed back to their source. Those which are indicated to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from and labeled clearly at both ends with project info that abandoned lines and date when abandoned. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- L. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
  - 1. Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
- M. Coordinate the work for this contract with other construction operations as directed by COR.

  This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

#### 1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both to the Contracting Officer. This report shall list by rooms and spaces:
  - 1. Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of buildings.
  - 2. Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
  - 3. Shall note any discrepancies between drawings and existing conditions at site.
  - 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor.
- c. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workers in executing work of this contract.
- D. Protection: Provide the following protective measures:
  - 1. Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
  - 2. Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
  - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

#### 1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
  - Reserved items which are to remain property of the Government are identified as noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
  - Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center.
  - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

# 1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS (FAR 52.236-9)

- A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workers, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.
- B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.
- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

#### 1.10 RESTORATION

A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work.

Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR.

Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work,

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.

- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, casework, countertops, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- c. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workers to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.

#### 1.11 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To ensure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- c. Contractor shall deliver two approved completed sets of as-built drawings in the hard copy and electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

#### 1.12 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
  - Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- 3. Units shall be properly lubricated, balanced, and aligned. Vibrations must be eliminated.
- 4. Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- c. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

### 1.13 TEMPORARY USE OF EXISTING ELEVATORS

A. Use of existing elevators for handling building materials and Contractor's personnel will be permitted subject to following provisions:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 1. Contractor makes all arrangements with the COR for use of elevators. The COR will ascertain that elevators are in proper condition.
- 2. Contractor covers and provides maximum protection of following elevator components:
  - a) Entrance jambs, heads soffits and threshold plates.
  - b) Entrance columns, canopy, return panels and inside surfaces of car enclosure walls.
  - c) Finish flooring.
- 3. Government will accept hoisting ropes of elevator and rope of each speed governor if they are worn under normal operation. However, if these ropes are damaged by action of foreign matter such as sand, lime, grit, stones, etc., during temporary use, they shall be removed and replaced by new hoisting ropes at the contractor's expense.
- 4. If brake lining of elevators are excessively worn or damaged during temporary use, they shall be removed and replaced by new brake lining at the contractor's expense.
- 5. All parts of main controller, starter, relay panel, selector, etc., worn or damaged during temporary use shall be removed and replaced with new parts at the contractor's expense, if recommended by elevator inspector after elevator is released by Contractor.
- 6. Place elevator in condition equal, less normal wear, to that existing at time it was placed in service of Contractor as approved by Contracting Officer.

### 1.14 TEMPORARY TOILETS

- A. Provide where directed, (for use of all Contractor's workers) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets where directed. Keep such places clean and free from flies and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.
  - 1. \*Contractor may have for use of Contractor's workers, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workers. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

1.15 AVAILABILITY AND USE OF UTILITY SERVICES

A. The Government shall make all reasonably required amounts of utilities available to the

Contractor from existing outlets and supplies, as specified in the contract. The Contractor shall

carefully conserve any utilities furnished without charge.

B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code

and as satisfactory to the Contracting Officer, shall install and maintain all necessary temporary

connections and distribution lines.

Electricity (for Construction and Testing): Furnish all temporary electric services.

1. Obtain electricity by connecting to the Medical Center electrical distribution system.

D. Water (for Construction and Testing): Furnish temporary water service.

1. Obtain water by connecting to the Medical Center water distribution system. Provide

reduced pressure backflow preventer at each connection as per code. Chief Engineer to

review and approve setup & equipment prior to installation. Water is available at no cost to

the Contractor.

2. Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted.

Failure to stop leakage or other wastes will be cause for revocation (at COR discretion) of

use of water from Medical Center's system.

1.16 TESTS

A. As per specification section 23 05 93 the contractor shall provide a written testing and

commissioning plan complete with component level, equipment level, sub-system level and

system level breakdowns. The plan will provide a schedule and a written sequence of what will

be tested, how and what the expected outcome will be. This document will be submitted for

approval prior to commencing work. The contractor shall document the results of the approved

plan and submit for approval with the as built documentation.

B. Pre-test mechanical and electrical equipment and systems and make corrections required for

proper operation of such systems before requesting final tests. Final test will not be conducted

unless pre-tested.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- c. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

#### 1.17 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic), approved submittals and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and two compact disc (two hard copies and two electronic copies each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

c. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

#### 1.18 RELOCATED EQUIPMENT ITEMS

- A. Contractor shall disconnect, dismantle as necessary, remove and reinstall in new location, all existing equipment and items indicated or otherwise shown to be relocated by the Contractor.
- B. Perform relocation of such equipment or items at such times and in such a manner as directed by the COR.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- c. Suitably cap existing service lines, such as steam, condensate return, water, drain, gas, air, vacuum and/or electrical, at the main whenever such lines are disconnected from equipment to be relocated. Remove abandoned lines in finished areas and cap as specified herein before under paragraph "Abandoned Lines".
- D. Provide all mechanical and electrical service connections, fittings, fastenings and any other materials necessary for assembly and installation of relocated equipment; and leave such equipment in proper operating condition.
- E. Contractor shall employ services of an installation engineer, who is an authorized representative of the manufacturer of this equipment to supervise assembly and installation of existing X-ray, dental and equipment, required to be relocated.
- F. All service lines such as noted above for relocated equipment shall be in place at point of relocation ready for use before any existing equipment is disconnected. Make relocated existing equipment ready for operation or use immediately after reinstallation.

#### 1.19 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide photographic documentation of construction progress and at selected milestones including electronic indexing, navigation, storage and remote access to the documentation, as per these specifications. Contractor to provide 25 photographs of the construction site daily showing work progress and turn over to the VA weekly. The commercial photographer or the subcontractor used for this work shall meet the following qualifications:
  - Demonstrable minimum experience of three (3) years in operation providing documentation.

### 1.20 LOCAL FARGO VA HEALTH CARE SYSTEM CONSTRUCTION CONTRACTOR ORIENTATION AND POLICIES

- A. Contracts: The following staff or resource people will be working with you at the Fargo VA Health Care System. Please feel free to contact these individuals with any questions:
  - 1. Chief Engineer: Shawn Bergan (701) 239-3700, ext. 93388 or (701) 239-3760

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 2. Project Engineer: Todd Dalzell (701) 239-3700, ext. 93362 or (701) 239-3760 or Dennis Langevin (701) 239-3700, ext. 93365 or (701) 239-3760.
- B. Vehicle Traffic Rules: All construction contractors shall park their vehicles in areas assigned by the Contracting Officer or Engineering Service representatives. All persons coming on the premises of the Fargo VA Health Care System must obey the posted traffic and parking rules. Police Service will issue tickets to contractor vehicles parked in areas other than those assigned.
- C. Keys/ID Badges: VA ID badges must be worn while you are on Medical Center premises. Contact Engineering Service to obtain an ID badge and any necessary keys. Contract staff are responsible for the security of keys and ID badges issued to them and may be charged for replacement cost. You must notify Engineering (ext. 3361) personnel immediately to report any loss, theft or suspected reproduction of a Medical Center key or access card.
- D. Smoking: Smoking is prohibited throughout the entire campus.
- E. Use of Government Telephones
  - Government telephones are for official Government business use.
     Contract staff may use telephones, for local calls only, to contact your place of employment or to address unforeseen events such as injury on the job, work schedule changes etc.

### F. Housekeeping

- All construction sites shall be kept clean, orderly and in sanitary condition.
- 2. All rags/cloth and rubbish soaked with flammable and/or combustible material shall be placed in a covered metal receptacle until being disposed.
- 3. A clear and unobstructed path must be maintained to all portable fire extinguishers, hose cabinets, pull stations, fire exits and electrical panels.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 4. Fire doors and smoke barrier doors shall not be blocked in a manner to prevent their protective operation in the event of a fire.
- 5. The use of wedges, stops, ropes, or other unapproved methods of holding doors open is prohibited.
- 6. All indoor trash containers over 20 gallons will be constructed of non-combustible materials and be covered or have a self-extinguishing cover.

#### G. Storage

- Any commodities that may be hazardous in combination with each other must be stored so they cannot come in contact with each other.
- 2. Store flammable and combustible liquids and gasses in approved storage containers.
- 3. A clear space of 18 inches will be maintained below sprinkler heads.
- 4. Items stored in tiers will be stacked, blocked, interlocked and limited in height to prevent sliding or collapse.
- 5. Materials will not be stored directly on the floor.
- 6. Storage areas will be kept free from accumulation of materials that constitute hazards.
- 7. Stairwells, stairways and corridors shall not be utilized for storage.
- 8. Storage will not be permitted within 3 feet of an electric panel in all directions.

#### H. Hazardous Materials

1. Discovery of any suspected asbestos containing material shall result in the contractor stopping work in the area and reporting the discovery immediately to the Engineering Office (ext. 3361)

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

or one of the contact persons indicated above. Engineering Service shall then evaluate the suspect material and if it contains asbestos shall arrange for the removal of the asbestos.

2. Contractors shall maintain and provide to the VA Project Engineer MSDS's for products used during construction which shall explain the labeling system and all other required information. Report any discovery of an existing hazardous material to Engineering Service, (ext. 3361).

#### I. Infection Control

- 1. PURPOSE: To prevent the acquisition of nosocomial infection in patients and healthcare workers during Medical Center renovation or construction activities.
- 2. The Contractor shall contact Engineering Service (239-3760 or EXT. 3361) prior to beginning construction in any areas so that a Pre-Construction Risk Assessment (PCRA) may be performed and all applicable forms completed. Once completed the Contractor shall obtain a completed and approved copy of a PCRA form for each area of work in which the Contractor is involved. The Contractor shall conform to all of the requirements (ILSM's, Infection Control Precautions, etc.) as noted on the completed forms. The Contractor shall post a copy of the completed form outside the construction barrier at each work site in plain view and accessible to VA Staff for verification that requirements noted on PCRA form are being adhered to.
- 3. General: The goal of Infection Control is to identify and reduce the risks of acquiring and transmitting infections among patients, employees, service workers and visitors to the Medical Center. During construction or renovation projects, hidden infectious disease hazards may be released into the air, carried on dust particles, on workers clothing or be present in damp areas or areas where water has collected. One particular organism of concern is a fungal organism known as Aspergillus.

Aspergillus can be found in decaying leaves and compost, plaster Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

and drywall, and settled dust. These organisms like many others encountered in our everyday lives usually do not cause problems in healthy people, however a hospital is full of sick patients. Aspergillus and other organisms can cause severe illness and even death in some patients. Therefore, it is critical that everyone do their best to help prevent conditions that might lead to the dispersion of this or other infectious organisms by:

- a. Maintaining barrier walls that keep dust and dirt inside the worksite.
- b. Maintaining a state of negative air pressure within the construction site to prevent dust and dirt from dispersing into the Medical Center from the worksite. The Contractor shall install bulb type pressure differential monitoring devices or an alarm system in temporary construction barriers and shall monitor and maintain negative air pressure in construction areas.
- c. Removing demolition debris in a manner that minimizes any contamination of the environment outside the worksite by dust and debris.
- d. Utilizing walk off mats and making sure clothing is free of loose soil and debris when leaving the construction site.
- e. Assuring that any water or sludge found during demolition of plumbing or in the construction process is collected and disposed of in a controlled manner.
- f. Keeping demolition chutes sealed when not in use to maintain dust control. Use a water spray to minimize dust generation when using chutes if possible.
- g. Using only designated entry and exit pathways.
- 4. Please feel free to contact Infection Control at ext. 3668 if you have questions or concerns.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 5. If you find any needles, syringes, sharp medical objects please do not handle or remove yourself. Contact the Medical Center project coordinator or Project Engineer at 239-3760 or at Medical Center extension 3361 for removal.
- 6. Infection control activities are critical in all areas of the Medical Center. Construction activities causing disturbance of existing dust, or generating new dust must be conducted in ways that will minimize dust generation and dispersion.
- 7. All construction/maintenance workers and contract workers must follow the infection control procedures as described in this guideline.
- 8. The following infection control procedures shall be followed at a minimum:
  - a. BARRIERS Complete all critical barriers before construction begins.
    - 1) Construction or renovation sites not capable of containment within a single room must be separated from patient-care areas and other critical areas by barriers that keep the dirt and dust inside the work site.
    - 2) The integrity of the barrier walls must assure a complete seal of the construction area from adjacent areas.
    - 3) Temporary barriers and enclosures must be dust proof with airtight seals maintained at the full perimeter of the walls, floors and upper decking, as well as all penetrations. Seal holes, pipes, conduits and punctures appropriately.
    - 4) Tightly sealing doors (zipper) or an overlapping flap of at least 2 feet in width of a durable poly must be used at points of personnel access, where

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

plastic/poly barriers are approved for use by VA Project Engineer.

5) Elevator shafts or stairways must be isolated outside of the construction field to prevent dispersion of dust from the work site.

#### b. ENVIRONMENTAL CONTROLS

- 1) Isolate the HVAC system in areas where work is being done to prevent contamination of the duct system.
- Maintain negative air pressure within work site. Utilize HEPA-filtration units if air is being recirculated.
- 3) Seal holes, pipes, conduits and punctures appropriately.
- 4) Provide a designated area within the work site where all personnel leaving the work site can vacuum off with a HEPA-filtered vacuum to remove all loose dust and debris from clothing.
- 5) Vacuum with a HEPA-filtered vacuum and/or wet mop frequently at entrance and exit points.
- immediately outside the construction area to remove dust and soil from shoes, cart wheels, etc. as personnel exit the area. The mats must be large enough to cover the entire exit and changed frequently to prevent accumulation of dust.

  Contractor shall place a form on a wall adjacent to each mat with space to record date, time and exchanger's signature so VA Staff can monitor that mats are changed at required frequency.
- 7) Contain construction debris during transport in covered containers.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 8) Debris must be removed from the construction area on a daily basis in covered carts using specified traffic patterns.
- 9) Control, collection and disposal must be provided for any drain liquid or sludge encountered when demolishing plumbing.

#### c. CLEANING

- The construction zone and adjacent areas must be maintained by wet mopping the area daily or more frequently as needed to minimize dust generation.
- 2) Final cleaning of the area must be completed prior to acceptance of the completed project area by VA.
- 3) Do not remove barriers from work area until the project is completed and area is thoroughly cleaned. Remove barrier materials carefully to minimize spreading of dirt and debris associated with construction.
- 4) Clothing shall be free of loose soil and debris before exiting the construction zone.
- Personnel entering sterile/invasive procedure areas will be provided with a disposable jump suit, head covering and shoe covers to wear while working in the area. They must be removed when exiting the area and new coverings obtained when reentering the areas.
- 6) Tools and equipment must be damp-wiped prior to entry and exit from sterile and invasive procedure areas.
- 7) Tools and equipment soiled with blood or body fluids must be cleaned with a hospital-approved disinfectant prior to removing from the area.
- d. ENVIRONMENTAL MONITORING AND COMPLETION

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 1) Infection Control, in cooperation with Engineering and Safety will make periodic visits to the work site to ensure compliance with the infection control quidelines.
- Whenever safe infection control conditions are not met the appropriate contractor will be notified to correct the conditions immediately.
- 3) All work will be stopped on a project if a hazardous infection control deficiency exists that would result in patients being put at significant risk.
- 4) Water supply lines shall be flushed before placing newly renovated or constructed areas into service. Industrial Hygiene tests as noted will assure the water supply lines are safe for use.

### J. Construction Safety

- The Medical Center policy is to provide an environment for patients, visitors and staff that is free from danger. Within the Medical Center, the NFPA Life Safety Code is followed. Interim life safety measures (ILSM's) are applied to all construction projects as necessary and are defined in construction contracts. Minimum ILSM's are:
  - a. Exits provide free and unobstructed egress.
  - b. Free and unobstructed access to emergency department/service for emergency forces.
  - c. Temporary construction partitions are in accordance with contract requirements.
  - d. Smoking is prohibited through the VA campus.
  - e. Storage, housekeeping and debris removal policies and procedures that reduce the flammable and combustible fire load are enforced.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

f. Hazard surveillance is increased in construction areas.

#### K. Fire Safety

- 1. The contractors shall coordinate all construction activities with the VA Engineering Service to determine if fire alarm initiating devices are located within the construction area. Engineering Service shall disable the appropriate alarm initiating devices. Once work in the area is complete it is the contractor's responsibility to contact Engineering Service to have the fire alarm initiation devices enabled.
- Fire alarm, detection and suppression systems are not to be impaired unless there is work on the system to be performed. If fire alarm, detection and suppression systems are impaired for more than four hours the contractor shall implement a fire watch, at no additional cost to the Government, in compliance with NFPA requirements and shall obtain VA Engineering Service approval.
- 3. Additional firefighting equipment is provided and employees are trained in its use.
- 4. Hot works permits and fire extinguishers are required when working with open flames, or hot items and for activities that may generate sparks. Contact Engineering Service to obtain a hot work permit.
- 5. In the event of a fire alarm, "Code Red" and the location of a fire will be communicated by an overhead announcement. The "all clear" is authorized by the Fargo Fire Department or by the personnel conducting the fire drill and will be communicated by an overhead announcement. If a fire or fire drill is located in or adjacent to the construction area, construction contractor staff shall be responsible for the following:
  - a. Be alert to the Code Red announcement.
  - b. Participate in fire drills.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- c. Follow the RACE Plan (Rescue, Alarm, Contain, Extinguish) if fire is discovered by a construction contractor.
- d. Close all corridor doors within the construction area.
- e. Evacuate the immediate area.

#### L. Utilities

- 1. Engineering (ext. 3361) is responsible for all utilities within the Medical Center. If there are problems or failures of the utilities, call extension 3361 during normal business hours (Monday through Friday, 8:00 a.m. to 4:30 p.m.). After hours and on weekends, contact the Police Service at ext. 3251 to report problems and failures. A utilities failure and its type/location will be communicated by a "Utility Failure" overhead announcement.
- 2. All utility service connections shall be reviewed with and approved by Engineering Service just prior to the connection being made with the existing utility. This condition shall apply to both temporary and permanent connections. This final utility system connection check is meant to ensure the following:
  - a. The Medical Center is prepared for the connection.
  - b. The contractor is prepared for the connection work, which shall include but not be limited to, all safety measures have been taken or are in place, backflow preventers are in place, hot work permits have been issued, fire watch is in place, fire alarm initiation devices have been disabled if necessary, etc.

#### M. Emergencies

"Disaster Alert" - The Medical Center has initiated a process that provides an "all-hazard" approach to disaster management. Construction contractor staff shall ensure corridors are free of obstructions and a foreman or representative shall report to the Engineering Service office for further instructions.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 2. Hostage Situations Immediately report to Police Service (ext. 2222), any incident in which the safety of any person is threatened by another.
- 3. "Bomb Threat" React calmly and evacuate. Notify Police Service (ext. 2222) if the threat poses immediate danger to a person or destruction of property. If you discover a suspicious object, do not touch or move the object.
- 4. Severe Weather In the event of an overhead announcement, all personnel are expected to take cover in windowless interior corridors that are not on the top floor of the building.
- 5. Armed Assailant React calmly and evacuate. Avoid area(s) where it has been indicated an armed assailant is in the building or on the ground.

### N. RECORDS MANAGEMENT OBLIGATIONS

### A. Applicability

This clause applies to all Contractors whose employees create, work with, or otherwise handle Federal records, as defined in Section B, regardless of the medium in which the record exists.

### B. Definitions

"Federal Record" as defined in 44 U.S.C. § 3301, includes all recorded information, regard-less of form or characteristics, made or received by a Federal agency under Federal law or in connection with the transaction of public business and preserved or appropriate for preservation by that agency or its legitimate successor as evidence of the organization, functions, policies, decisions, procedures, operations, or other activities of the United States Government or because of the informational value of data in them.

The term Federal record:

1. includes [Agency] records. Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 2. does not include personal materials.
- 3. applies to records created, received, or maintained by Contractors pursuant to their [Agency] contract.
- 4. may include deliverables and documentation associated with deliverables.

### C. Requirements

- 1. Contractor shall comply with all applicable records management laws and regulations, as well as National Archives and Records Administration (NARA) records policies, including but not limited to the Federal Records Act (44 U.S.C. chs. 21, 29, 31, 33), NARA regulations at 36 CFR Chapter XII Subchapter B, and those policies associated with the safeguarding of records covered by the Privacy Act of 1974 (5 U.S.C. 552a). These policies include the preservation of all records, regardless of form or characteristics, mode of transmission, or state of completion.
- 2. In accordance with 36 CFR 1222.32, all data created for Government use and delivered to, or falling under the legal control of, the Government are Federal records subject to the provisions of 44 U.S.C. chapters 21, 29, 31, and 33, the Freedom of Infor-mation Act (FOIA) (5 U.S.C. 552), as amended, and the Priva-cy Act of 1974 (5 U.S.C. 552a), as amended and must be managed and scheduled for disposition only as permitted by statute or regulation.
- 3. In accordance with 36 CFR 1222.32, Contractor shall maintain all records created for Government use or created in the course of performing the contract and/or delivered to, or under the legal control of the Government and must be managed in accordance with Federal law. Electronic records and associated metadata must be accompanied by sufficient technical documentation to permit understanding and use of the records and data.
- 4. Fargo VA Health Care System and its contractors are responsible for preventing the alienation or unauthorized destruction of records, including all forms of mutilation. Records may not be removed from the legal custody of [Fargo VA Health Care System] or destroyed except for Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

in accordance with the provisions of the agency records schedules and with the written concurrence of the Head of the Contracting Activity. Willful and unlawful destruction, damage or alienation of Federal records is subject to the fines and penalties imposed by 18 U.S.C. 2701. In the event of any unlawful or accidental removal, defacing, alteration, or destruction of records, Contractor must report to Fargo VA Health Care System. The agency must report promptly to NARA in accordance with 36 CFR 1230.

- 5. The Contractor shall immediately notify the appropriate Contracting Officer upon discovery of any inadvertent or unauthorized disclosures of information, data, documentary materials, records or equipment. Disclosure of non-public information is limited to authorized personnel with a need-to-know as described in the [contract vehicle]. The Contractor shall ensure that the appropriate personnel, administrative, technical, and physical safeguards are established to ensure the security and confidentiality of this information, data, documentary material, records and/or equipment is properly protected. The Contractor shall not remove material from Government facilities or systems, or facilities or systems operated or maintained on the Government's behalf, without the express written permission of the Head of the Contracting Activity. When in-formation, data, documentary material, records and/or equipment is no longer required, it shall be returned to [Fargo VA Health Care System] control or the Contractor must hold it until otherwise directed. Items returned to the Government shall be hand carried, mailed, emailed, or securely electronically trans-mitted to the Contracting Officer or address prescribed in the [contract vehicle]. Destruction of records is EXPRESSLY PROHIBITED unless in accordance with Paragraph (4).
- 6. The Contractor is required to obtain the Contracting Officer's approval prior to engaging in any contractual relation-ship (sub-contractor) in support of this contract requiring the disclosure of information, documentary material and/or records generated under, or relating to, contracts. The Contractor (and any sub-contractor) is required to abide by Government and [Fargo VA Health Care System] guidance for protecting

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

sensitive, proprietary information, classified, and controlled unclassified information.

- 7. The Contractor shall only use Government IT equipment for purposes specifically tied to or authorized by the contract and in accordance with Fargo VA Health Care System policy.
- 8. The Contractor shall not create or maintain any records containing any non-public [Fargo VA Health Care System] information that are not specifically tied to or authorized by the contract.
- 9. The Contractor shall not retain, use, sell, or disseminate copies of any deliverable that contains information covered by the Privacy Act of 1974 or that which is generally protect-ed from public disclosure by an exemption to the Freedom of Information Act.
- 10. The [Fargo VA Health Care System] owns the rights to all data and records produced as part of this contract. All deliverables under the contract are the property of the U.S. Government for which [Fargo VA Health Care System] shall have unlimited rights to use, dispose of, or disclose such data contained therein as it determines to be in the public interest. Any Contractor rights in the data or deliverables must be identified as required by FAR 52.227-11 through FAR 52.227-20.
- 11. Training. All Contractor employees assigned to this contract who create, work with, or otherwise handle records are required to take VHA-provided records management training. The Contractor is responsible for confirming training has been completed according to agency policies, including initial training and any annual or refresher training.
  - D. Flowdown of Requirements to Subcontractors
- 1. The Contractor shall incorporate the substance of this clause, its terms and requirements including this paragraph, in all subcontracts under this [contract vehicle], and require written subcontractor acknowledgment of same.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

2. Violation by a subcontractor of any provision set forth in this clause will be attributed to the Contractor.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

### **SECTION 01 33 23**

### SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

### 1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 05-01-17

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

- of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.
- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

### 1.3 SUBMITTAL REGISTER

- A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents but which have been omitted from the submittal register.
- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The General Contractor will provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.
- D. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- E. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

### 1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

### 1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain an excessive amount of irrelevant or unnecessary data will be returned without review.
- E. Provide a transmittal form for each submittal with the following information:
  - 1. VA Project title, location and number.
  - 2. VA Construction contract number.
  - 3. Date of the drawings and revisions.
  - 4. Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
  - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
  - 6. When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
  - 7. Product identification and location in project specifications and drawings.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

- requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

| CONTRACTOR                                                  |
|-------------------------------------------------------------|
| (Firm Name)                                                 |
|                                                             |
| <br> Approved                                               |
| Approved with corrections as noted on submittal data and/or |
| attached sheets(s)                                          |
|                                                             |
| SIGNATURE:                                                  |
| TITLE:                                                      |
| DATE:                                                       |
|                                                             |

### 1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format and one hard copy to VA COR, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer.
- B. Compile the electronic submittal file as a single, complete document.

  Name the electronic submittal file specifically according to its contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

- documents are scanned, Optical Character Resolution (OCR) routines are required.
- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the Contracting Officer.
- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the VA.

### 1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

### 1.8 OPERATION AND MAINTENANCE DATA

A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

### 1.9 TEST REPORTS

A. COR may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

#### 1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
  - 1. "Approved": authorizes the Contractor to proceed with the work covered.
  - 2. "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
  - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
  - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-17

reason it is not reviewed. Resubmit submittals after taking appropriate action.

### 1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

### 1.12 WITHHOLDING OF PAYMENT

A. Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### SECTION 01 35 26 SAFETY REQUIREMENTS

### 1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- A10.1-2011...........Pre-Project & Pre-Task Safety and Health

Planning

B. American Society of Safety Engineers (ASSE):

- A10.34-2012......Protection of the Public on or Adjacent to Construction Sites
- A10.38-2013......Basic Elements of an Employer's Program to
  Provide a Safe and Healthful Work Environment
  American National Standard Construction and
  Demolition Operations
- C. American Society for Testing and Materials (ASTM):
  - E84-2013......Surface Burning Characteristics of Building Materials
- D. The Facilities Guidelines Institute (FGI):
  - FGI Guidelines-2010 Guidelines for Design and Construction of Healthcare Facilities
- E. National Fire Protection Association (NFPA):
  - 10-2013.....Standard for Portable Fire Extinguishers
  - 30-2012......Flammable and Combustible Liquids Code
  - 51B-2014......Standard for Fire Prevention During Welding,
    Cutting and Other Hot Work
  - 70-2014.....National Electrical Code

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

| 02 01 20                                                                                                         |
|------------------------------------------------------------------------------------------------------------------|
| 70B-2013Recommended Practice for Electrical Equipment  Maintenance                                               |
| 70E-2015Standard for Electrical Safety in the Workplace                                                          |
| 99-2012Health Care Facilities Code                                                                               |
| 241-2013Standard for Safeguarding Construction, Alteration, and Demolition Operations                            |
| F. The Joint Commission (TJC)                                                                                    |
| TJC ManualComprehensive Accreditation and Certification Manual                                                   |
| G. U.S. Nuclear Regulatory Commission                                                                            |
| 10 CFR 20Standards for Protection Against Radiation                                                              |
| H. U.S. Occupational Safety and Health Administration (OSHA):                                                    |
| 29 CFR 1904Reporting and Recording Injuries & Illnesses                                                          |
| 29 CFR 1910Safety and Health Regulations for General Industry                                                    |
| 29 CFR 1926Safety and Health Regulations for Construction Industry                                               |
| CPL 2-0.124Multi-Employer Citation Policy                                                                        |
| I. VHA Directive                                                                                                 |
| VHA Directive 7712 FIRE PROTECTION                                                                               |
| VHA Directive 7715 safety and health during construction                                                         |
| VHA Directive 0058 va green purchasing program                                                                   |
| VHA Directive 7707 vha green environmental management system (gems) and governing environmental policy statement |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:

No impact - near miss incidents that should be investigated but are not required to be reported to the VA;

Minor incident/impact - incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;

Moderate incident/impact - Any work-related injury or illness that results in:

 Days away from work (any time lost after day of injury/illness onset);

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Restricted work;
- 3. Transfer to another job;
- 4. Medical treatment beyond first aid;
- 5. Loss of consciousness;
- 6. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
- 7. any incident that leads to major equipment damage (greater than \$5000).

These incidents must be investigated and are required to be reported to the VA;

Major incident/impact - Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.

F. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

### 1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances,

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Contracting Officer's Representative or Government Designated Authority.

### 1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
  - 1. Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
  - 2. Address both the Prime Contractors and the subcontractors work operations.
  - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
  - 4. Address all the elements/sub-elements and in order as follows:
    - a. SIGNATURE SHEET. Title, signature, and phone number of the following:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
- 2) Plan approver (company/corporate officers authorized to obligate the company);
- 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
- b. BACKGROUND INFORMATION. List the following:
  - 1) Contractor;
  - 2) VA Contract number;
  - 3) VA Project number and name;
  - 4) Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
  - A statement of the employer's ultimate responsibility for the implementation of his SOH program;
  - 2) Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
- 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
- 4) Requirements that no work shall be performed unless a designated competent person is present on the job site;
- 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
- 6) Lines of authority;
- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
  - 1) Identification of subcontractors and suppliers (if known);
  - 2) Safety responsibilities of subcontractors and suppliers.

### f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 3) Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- 4) OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs) and superintendents/foreman.
- g. SAFETY AND HEALTH INSPECTIONS.
  - 1) Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
  - 2) Any external inspections/certifications that may be required
     (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Contracting Officer's Representative:
  - 1) Exposure data (man-hours worked);
  - 2) Accident investigationreports;
  - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

include but are not be limited to procedures for addressing the risks associates with the following:

- 1) Emergency response;
- 2) Contingency for severe weather;
- 3) Fire Prevention;
- 4) Medical Support;
- 5) Posting of emergency telephone numbers;
- 6) Prevention of alcohol and drug abuse;
- 7) Site sanitation(housekeeping, drinking water, toilets);
- 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety;
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 23) Heat/Cold Stress Monitoring;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Contracting Officer's Representative Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 21 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- D. Once accepted by the Contracting Officer's Representative, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Contracting Officer's Representative. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

### 1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Contracting Officer's Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
- 2. The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
  - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
  - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Contracting Officer's Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 21 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Contracting Officer's Representative.

### 1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.

### 1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

### 1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Contracting Officer's Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 21 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Contracting Officer's Representative that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

### 1.9 INSPECTIONS:

A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Contracting Officer's Representative.

- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
  - 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
  - 2. The Contracting Officer's Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
  - 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
  - 4. A report of the inspection findings with status of abatement will be provided to the Contracting Officer's Representative within one week of the onsite inspection.

### 1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site.

Notify the Contracting Officer's Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Contracting Officer's Representative determine whether a government investigation will be conducted.

- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Contracting Officer's Representative within 5 calendar days of the accident. The Contracting Officer's Representative Representative or Government Designated Authority will provide copies of any required or special forms.
- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Contracting Officer's Representative.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Contracting Officer's Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Contracting Officer's Representative as requested.

### 1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
  - 1. Hard Hats unless written authorization is given by the Contracting Officer's Representative in circumstances of work operations that have limited potential for falling object hazards such as during

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.

- 2. Safety glasses unless written authorization is given by the Contracting Officer's Representative in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
- 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Contracting Officer's Representative in circumstances of no foot hazards.
- 4. Hearing protection Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

#### 1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities.

  Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Contracting Officer's Representative or Government Designated Authority before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Contracting Officer's Representative. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

issued for a construction project if the work is located in separate areas requiring separate classes.

- C. A dust control program will be establish and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Contracting Officer's Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- D. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
  - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
  - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
  - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
  - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
  - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Contracting Officer's Representative  ${\cal C}$

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.

- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials immediately.
- 7. At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.

### I. Final Cleanup:

- 1. Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
- 2. Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
- 3. All new air ducts shall be cleaned prior to final inspection.

### J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- 2. Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

3. All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

#### 1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
  - 1. Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
  - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
  - 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Contracting Officer's Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
  - 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or (flame on both sides of metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
  - 2. Install one-hour fire-rated temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
  - 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Contracting Officer's Representative
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Contracting Officer's Representative.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- K. Sprinklers: Install, test and activate new automatic sprinklers prior to removing existing sprinklers.
- L. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Contracting Officer's Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the Resident Engineer.
- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Contracting Officer's Representative.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer's Representative at least \_24\_\_\_ hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Contracting Officer's Representative.
- P. Smoking: Smoking is prohibited.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the Contracting Officer's Representative that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.

### 1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition refer to NFPA 70E for Work Involving Electrical Hazards). Any Contractor, subcontractor or temporary worker

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c).

- 1. Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
- 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.
- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the The Contracting Officer's Representative
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Contracting Officer's Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### 1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings and scaffolding work.
  - 1. The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
  - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
  - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.
  - 4. Fall protection while using a ladder will be governed by the OSHA requirements.

### 1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
  - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
- 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
- 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
  - 1. The Competent Person's name and signature;
  - 2. Dates of initial and last inspections.

### 1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Contracting Officer's Representative and/or other Government Designated Authority 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.
- D. Crane operators shall not carry loads
- 1. over the general public or VAMC personnel Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. over any occupied building unless
  - a. the top two floors are vacated
  - b. or overhead protection with a design live load of 300 psf is provided

### 1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

## 1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Contracting Officer's Representative . Obtain permits from Contracting Officer's Representative at least 24 hours in advance.

### 1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart  ${\tt X.}$
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 1. When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
- 2. In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

### 1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
  - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
  - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-11

# SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

### PART 1 - GENERAL

### 1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
  - 1. Adversely effect human health or welfare,
  - 2. Unfavorably alter ecological balances of importance to human life,
  - 3. Effect other species of importance to humankind, or;
  - 4. Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

## C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- 2. Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- 4. Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01 - 11

- of the United States" and would require a permit to discharge water from the governing agency.
- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
  - a. Sewage: Domestic sanitary sewage and human and animal waste.
  - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

### 1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

### 1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.

### 1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
  - 1. Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall provide a proposed Environmental Protection Plan.
    - a. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
    - b. Permits, licenses, and the location of the solid waste disposal
    - c. Drawings showing locations of any proposed temporary material storage area and sanitary facilities.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-11

B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

# SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
- D. Waste Management Plan development and implementation.
- E. Techniques to minimize waste generation.
- F. Sorting and separating of waste materials.
- G. Salvage of existing materials and items for reuse or resale.
- H. Recycling of materials that cannot be reused or sold.
- I. At a minimum the following waste categories shall be diverted from landfills:
- J. Inerts (eg, concrete, masonry and asphalt).
- K. Clean dimensional wood and palette wood.
- L. Metal products (eg, steel, wire, beverage containers, copper, etc).
- M. Cardboard, paper and packaging.
- N. Bitumen roofing materials.
- O. Plastics (eq, ABS, PVC).
- P. Gypsum board.
- Q. Insulation.
- R. Paint.

### 1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

## 1.3 QUALITY ASSURANCE

A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:

- 1. Excess or unusable construction materials.
- 2. Packaging used for construction products.
- 3. Poor planning and/or layout.
- 4. Construction error.
- 5. Over ordering.
- 6. Weather damage.
- 7. Contamination.
- 8. Mishandling.
- 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 25 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

### 1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and non-recyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.

- 1. On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
- 2. Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

### 1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Contracting Officer's Representative a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
  - 1. Procedures to be used for debris management.
  - 2. Techniques to be used to minimize waste generation.
  - 3. Analysis of the estimated job site waste to be generated:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
  - a. On site: Material separation, storage, protection where applicable.
  - b. Off site: Transportation means and destination. Include list of materials.
    - Description of materials to be site-separated and self-hauled to designated facilities.
    - 2) Description of mixed materials to be collected by designated waste haulers and removed from the site.
      - a) The names and locations of mixed debris reuse and recycling facilities or sites.
      - b) The names and locations of trash disposal landfill facilities or sites.
      - c) Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.
- E. Target waste diversion rate by material and an overall diversion rate.
- F. Final report documenting the results of implementation of the preconstruction waste management plan.

### 1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.
- B. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

1. Green Building Initiative (GBI): Green Globes for New Construction 2019

### PART 2 - PRODUCTS

### 2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

#### PART 3 - EXECUTION

### 3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

### 3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

### 3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices.

  Include the net total costs or savings for each salvaged or recycled material.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

### **SECTION 01 91 00**

## GENERAL COMMISSIONING REQUIREMENTS

### PART 1 - GENERAL

### 1.1 COMMISSIONING DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services specified in the Division 7, Division 21, Division 22, Division 23, Division 26, series sections of these specifications are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, including but not limited to Division 7, Division 8, Division 21, Division 22, Division 23, Division 26, series sections of the specification, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 10-01-15

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

encompass and coordinate the system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- 1. Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- 2. Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- 4. Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- 6. Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

## 1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Contracting Officer's Representative as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer.
- B. In this project, only two contract parties are recognized and communications on contractual issues are strictly limited to VA Contracting Officer's Representative and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the Contracting Officer's Representative and Contractor. It is also the

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

practice of the VA that communications between other parties of the project (Architect/Engineer) be conducted through the Contracting Officer's Representative.

- C. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and Contracting Officer's Representative. Thus, the procedures outlined in this specification must be executed within the following limitations:
  - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
  - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the Contracting Officer's Representative and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
  - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or Contracting Officer's Representative will issue an official directive to this effect.
  - 4. All parties to the Commissioning Process shall be individually responsible for alerting the Contracting Officer's Representative of any issues that they deem to constitute a potential contract change prior to acting on these issues.
  - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or Contracting Officer's Representative, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

### 1.3 RELATED WORK

A. Section 01 00 00 GENERAL REQUIREMENTS.

в. .

### 1.4 SUMMARY

- A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.
- B. The commissioning activities have been developed to support the VA requirements to meet guidelines for Federal Leadership in Environmental, Energy, and Economic Performance.

## 1.5 ACRONYMS

| List of Acronyms |                                                       |  |
|------------------|-------------------------------------------------------|--|
| Acronym          | Meaning                                               |  |
| A/E              | Architect / Engineer Design Team                      |  |
| AHJ              | Authority Having Jurisdiction                         |  |
| ASHRAE           | Association Society for Heating Air Condition and     |  |
|                  | Refrigeration Engineers                               |  |
| BOD              | Basis of Design                                       |  |
| BSC              | Building Systems Commissioning                        |  |
| CCTV             | Closed Circuit Television                             |  |
| CD               | Construction Documents                                |  |
| CMMS             | Computerized Maintenance Management System            |  |
| CO               | Contracting Officer (VA)                              |  |
| COR              | Contracting Officer's Representative (see also VA-RE) |  |
| COBie            | Construction Operations Building Information Exchange |  |
| CPC              | Construction Phase Commissioning                      |  |
| Сх               | Commissioning                                         |  |
| CxA              | Commissioning Agent                                   |  |
| CxM              | Commissioning Manager                                 |  |
| CxR              | Commissioning Representative                          |  |
| DPC              | Design Phase Commissioning                            |  |
| FPT              | Functional Performance Test                           |  |
| GBI-GG           | Green Building Initiative - Green Globes              |  |
| HVAC             | Heating, Ventilation, and Air Conditioning            |  |
| LEED             | Leadership in Energy and Environmental Design         |  |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

| List of Acronyms |                                                                 |  |
|------------------|-----------------------------------------------------------------|--|
| Acronym          | Meaning                                                         |  |
| NC               | Department of Veterans Affairs National Cemetery                |  |
| NCA              | Department of Veterans Affairs National Cemetery Administration |  |
| NEBB             | National Environmental Balancing Bureau                         |  |
| O&M              | Operations & Maintenance                                        |  |
| OPR              | Owner's Project Requirements                                    |  |
| PFC              | Pre-Functional Checklist                                        |  |
| PFT              | Pre-Functional Test                                             |  |
| SD               | Schematic Design                                                |  |
| SO               | Site Observation                                                |  |
| TAB              | Test Adjust and Balance                                         |  |
| VA               | Department of Veterans Affairs                                  |  |
| VAMC             | VA Medical Center                                               |  |
| VA CFM           | VA Office of Construction and Facilities Management             |  |
| VACO             | VA Central Office                                               |  |
| VA PM            | VA Project Manager                                              |  |
| VA-RE            | VA Resident Engineer                                            |  |
| USGBC            | United States Green Building Council                            |  |

### 1.6 DEFINITIONS

Acceptance Phase Commissioning: Commissioning tasks executed after most construction has been completed, most Site Observations and Static Tests have been completed and Pre-Functional Testing has been completed and accepted. The main commissioning activities performed during this phase are verification that the installed systems are functional by conducting Systems Functional Performance tests and Owner Training.

<u>Accuracy:</u> The capability of an instrument to indicate the true value of a measured quantity.

**Back Check:** A back check is a verification that an agreed upon solution to a design comment has been adequately addressed in a subsequent design review

<u>Basis of Design (BOD):</u> The Engineer's Basis of Design is comprised of two components: the Design Criteria and the Design Narrative, these documents record the concepts, calculations, decisions, and product

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

selections used to meet the Owner's Project Requirements (OPR) and to satisfy applicable regulatory requirements, standards, and guidelines.

Benchmarks: Benchmarks are the comparison of a building's energy usage to other similar buildings and to the building itself. For example, ENERGY STAR Portfolio Manager is a frequently used and nationally recognized building energy benchmarking tool.

Building Information Modeling (BIM): Building Information Modeling is a parametric database which allows a building to be designed and constructed virtually in 3D, and provides reports both in 2D views and as schedules. This electronic information can be extracted and reused for pre-populating facility management CMMS systems. Building Systems Commissioning (BSC): NEBB acronym used to designate its commissioning program.

<u>Calibrate:</u> The act of comparing an instrument of unknown accuracy with a standard of known accuracy to detect, correlate, report, or eliminate by adjustment any variation in the accuracy of the tested instrument.

<u>CCTV:</u> Closed circuit Television. Normally used for security surveillance and alarm detections as part of a special electrical security system.

<u>COBie:</u> Construction Operations Building Information Exchange (COBie) is an electronic industry data format used to transfer information developed during design, construction, and commissioning into the Computer Maintenance Management Systems (CMMS) used to operate facilities. See the Whole Building Design Guide website for further information (http://www.wbdg.org/resources/cobie.php)

<u>Commissionability:</u> Defines a design component or construction process that has the necessary elements that will allow a system or component to be effectively measured, tested, operated and commissioned

Commissioning Agent (CxA): The qualified Commissioning Professional who administers the Cx process by managing the Cx team and overseeing the Commissioning Process. Where CxA is used in this specification it means the Commissioning Agent, members of his staff or appointed members of the commissioning team. Note that LEED uses the term Commissioning Authority in lieu of Commissioning Agent.

<u>Commissioning Checklists:</u> Lists of data or inspections to be verified to ensure proper system or component installation, operation, and

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

function. Verification checklists are developed and used during all phases of the commissioning process to verify that the Owner's Project Requirements (OPR) is being achieved.

Commissioning Design Review: The commissioning design review is a collaborative review of the design professionals design documents for items pertaining to the following: owner's project requirements; basis of design; operability and maintainability (O&M) including documentation; functionality; training; energy efficiency, control systems' sequence of operations including building automation system features; commissioning specifications and the ability to functionally test the systems.

Commissioning Issue: A condition identified by the Commissioning Agent or other member of the Commissioning Team that adversely affects the commissionability, operability, maintainability, or functionality of a system, equipment, or component. A condition that is in conflict with the Contract Documents and/or performance requirements of the installed systems and components. (See also - Commissioning Observation).

<u>Commissioning Manager (CxM)</u>: A qualified individual appointed by the Contractor to manage the commissioning process on behalf of the Contractor.

<u>Commissioning Observation:</u> An issue identified by the Commissioning Agent or other member of the Commissioning Team that does not conform to the project OPR, contract documents or standard industry best practices. (See also Commissioning Issue)

<u>Commissioning Plan:</u> A document that outlines the commissioning process, commissioning scope and defines responsibilities, processes, schedules, and the documentation requirements of the Commissioning Process.

<u>Commissioning Process:</u> A quality focused process for enhancing the delivery of a project. The process focuses upon verifying and documenting that the facility and all of its systems, components, and assemblies are planned, designed, installed, tested, can be operated, and maintained to meet the Owner's Project Requirements.

<u>Commissioning Report:</u> The final commissioning document which presents the commissioning process results for the project. Cx reports include an executive summary, the commissioning plan, issue log, correspondence, and all appropriate check sheets and test forms.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

Commissioning Representative (CxR): An individual appointed by a subcontractor to manage the commissioning process on behalf of the subcontractor.

<u>Commissioning Specifications:</u> The contract documents that detail the objective, scope and implementation of the commissioning process as developed in the Commissioning Plan.

<u>Commissioning Team:</u> Individual team members whose coordinated actions are responsible for implementing the Commissioning Process.

<u>Construction Phase Commissioning:</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

<u>Contract Documents (CD):</u> Contract documents include design and construction contracts, price agreements and procedure agreements. Contract Documents also include all final and complete drawings, specifications and all applicable contract modifications or supplements.

<u>Construction Phase Commissioning (CPC):</u> All commissioning efforts executed during the construction process after the design phase and prior to the Acceptance Phase Commissioning.

Coordination Drawings: Drawings showing the work of all trades that are used to illustrate that equipment can be installed in the space allocated without compromising equipment function or access for maintenance and replacement. These drawings graphically illustrate and dimension manufacturers' recommended maintenance clearances. On mechanical projects, coordination drawings include structural steel, ductwork, major piping and electrical conduit and show the elevations and locations of the above components.

<u>Data Logging:</u> The monitoring and recording of temperature, flow, current, status, pressure, etc. of equipment using stand-alone data recorders.

<u>Deferred System Test:</u> Tests that cannot be completed at the end of the acceptance phase due to ambient conditions, schedule issues or other conditions preventing testing during the normal acceptance testing period.

<u>Deficiency:</u> See "Commissioning Issue".

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

<u>Design Criteria:</u> A listing of the VA Design Criteria outlining the project design requirements, including its source. These are used during the design process to show the design elements meet the OPR.

<u>Design Intent:</u> The overall term that includes the OPR and the BOD. It is a detailed explanation of the ideas, concepts, and criteria that are defined by the owner to be important. The design intent documents are utilized to provide a written record of these ideas, concepts and criteria.

<u>Design Narrative:</u> A written description of the proposed design solutions that satisfy the requirements of the OPR.

<u>Design Phase Commissioning (DPC):</u> All commissioning tasks executed during the design phase of the project.

Environmental Systems: Systems that use a combination of mechanical equipment, airflow, water flow and electrical energy to provide heating, ventilating, air conditioning, humidification, and dehumidification for the purpose of human comfort or process control of temperature and humidity.

**Executive Summary:** A section of the Commissioning report that reviews the general outcome of the project. It also includes any unresolved issues, recommendations for the resolution of unresolved issues and all deferred testing requirements.

**Functionality:** This defines a design component or construction process which will allow a system or component to operate or be constructed in a manner that will produce the required outcome of the OPR.

Functional Test Procedure (FTP): A written protocol that defines methods, steps, personnel, and acceptance criteria for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Industry Accepted Best Practice:</u> A design component or construction process that has achieved industry consensus for quality performance and functionality. Refer to the current edition of the NEBB Design Phase Commissioning Handbook for examples.

<u>Installation Verification:</u> Observations or inspections that confirm the system or component has been installed in accordance with the contract documents and to industry accepted best practices.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

Integrated System Testing: Integrated Systems Testing procedures entail testing of multiple integrated systems performance to verify proper functional interface between systems. Typical Integrated Systems

Testing includes verifying that building systems respond properly to loss of utility, transfer to emergency power sources, re-transfer from emergency power source to normal utility source; interface between HVAC controls and Fire Alarm systems for equipment shutdown, interface between Fire Alarm system and elevator control systems for elevator recall and shutdown; interface between Fire Alarm System and Security Access Control Systems to control access to spaces during fire alarm conditions; and other similar tests as determined for each specific project.

Issues Log: A formal and ongoing record of problems or concerns - and their resolution - that have been raised by members of the Commissioning Team during the course of the Commissioning Process.

<u>Lessons Learned Workshop:</u> A workshop conducted to discuss and document project successes and identify opportunities for improvements for future projects.

<u>Maintainability:</u> A design component or construction process that will allow a system or component to be effectively maintained. This includes adequate room for access to adjust and repair the equipment.

Maintainability also includes components that have readily obtainable repair parts or service.

Manual Test: Testing using hand-held instruments, immediate control
system readouts or direct observation to verify performance (contrasted
to analyzing monitored data taken over time to make the 'observation').

Owner's Project Requirements (OPR): A written document that details the project requirements and the expectations of how the building and its systems will be used and operated. These include project goals, measurable performance criteria, cost considerations, benchmarks, success criteria, and supporting information.

<u>Peer Review:</u> A formal in-depth review separate from the commissioning review processes. The level of effort and intensity is much greater than a typical commissioning facilitation or extended commissioning review. The VA usually hires an independent third-party (called the IDIQ A/E) to conduct peer reviews.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

<u>Precision:</u> The ability of an instrument to produce repeatable readings of the same quantity under the same conditions. The precision of an instrument refers to its ability to produce a tightly grouped set of values around the mean value of the measured quantity.

<u>Pre-Design Phase Commissioning:</u> Commissioning tasks performed prior to the commencement of design activities that includes project programming and the development of the commissioning process for the project

<u>Pre-Functional Checklist (PFC):</u> A form used by the contractor to verify that appropriate components are onsite, correctly installed, set up, calibrated, functional and ready for functional testing.

<u>Pre-Functional Test (PFT):</u> An inspection or test that is done before functional testing. PFT's include installation verification and system and component start up tests.

<u>Procedure or Protocol:</u> A defined approach that outlines the execution of a sequence of work or operations. Procedures are used to produce repeatable and defined results.

Range: The upper and lower limits of an instrument's ability to measure the value of a quantity for which the instrument is calibrated.

Resolution: This word has two meanings in the Cx Process. The first refers to the smallest change in a measured variable that an instrument can detect. The second refers to the implementation of actions that correct a tested or observed deficiency.

<u>Site Observation Visit:</u> On-site inspections and observations made by the Commissioning Agent for the purpose of verifying component, equipment, and system installation, to observe contractor testing, equipment start-up procedures, or other purposes.

<u>Site Observation Reports (SO):</u> Reports of site inspections and observations made by the Commissioning Agent. Observation reports are intended to provide early indication of an installation issue which will need correction or analysis.

<u>Special System Inspections:</u> Inspections required by a local code authority prior to occupancy and are not normally a part of the commissioning process.

<u>Static Tests:</u> Tests or inspections that validate a specified static condition such as pressure testing. Static tests may be specification or code initiated.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

**Start Up Tests:** Tests that validate the component or system is ready for automatic operation in accordance with the manufactures requirements.

**Systems Manual:** A system-focused composite document that includes all information required for the owners operators to operate the systems.

<u>Test Procedure:</u> A written protocol that defines methods, personnel, and expectations for tests conducted on components, equipment, assemblies, systems, and interfaces among systems.

<u>Testing:</u> The use of specialized and calibrated instruments to measure parameters such as: temperature, pressure, vapor flow, air flow, fluid flow, rotational speed, electrical characteristics, velocity, and other data in order to determine performance, operation, or function.

Testing, Adjusting, and Balancing (TAB): A systematic process or service applied to heating, ventilating and air-conditioning (HVAC) systems and other environmental systems to achieve and document air and hydronic flow rates. The standards and procedures for providing these services are referred to as "Testing, Adjusting, and Balancing" and are described in the Procedural Standards for the Testing, Adjusting and Balancing of Environmental Systems, published by NEBB or AABC.

Thermal Scans: Thermographic pictures taken with an Infrared Thermographic Camera. Thermographic pictures show the relative temperatures of objects and surfaces and are used to identify leaks, thermal bridging, thermal intrusion, electrical overload conditions, moisture containment, and insulation failure.

<u>Training Plan:</u> A written document that details, in outline form the expectations of the operator training. Training agendas should include instruction on how to obtain service, operate, startup, shutdown and maintain all systems and components of the project.

<u>Trending:</u> Monitoring over a period of time with the building automation system.

<u>Unresolved Commissioning Issue:</u> Any Commissioning Issue that, at the time that the Final Report or the Amended Final Report is issued that has not been either resolved by the construction team or accepted by the VA. Validation: The process by which work is verified as complete and operating correctly:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- 1. First party validation occurs when a firm or individual verifying the task is the same firm or individual performing the task.
- 2. Second party validation occurs when the firm or individual verifying the task is under the control of the firm performing the task or has other possibilities of financial conflicts of interest in the resolution (Architects, Designers, General Contractors and Third Tier Subcontractors or Vendors).
- 3. Third party validation occurs when the firm verifying the task is not associated with or under control of the firm performing or designing the task.

<u>Verification:</u> The process by which specific documents, components, equipment, assemblies, systems, and interfaces among systems are confirmed to comply with the criteria described in the Owner's Project Requirements.

<u>Warranty Phase Commissioning:</u> Commissioning efforts executed after a project has been completed and accepted by the Owner. Warranty Phase Commissioning includes follow-up on verification of system performance, measurement and verification tasks and assistance in identifying warranty issues and enforcing warranty provisions of the construction contract.

<u>Warranty Visit:</u> A commissioning meeting and site review where all outstanding warranty issues and deferred testing is reviewed and discussed.

Whole Building Commissioning: Commissioning of building systems such as Building Envelope, HVAC, Electrical, Special Electrical (Fire Alarm, Security & Communications), Plumbing and Fire Protection as described in this specification.

## 1.7 SYSTEMS TO BE COMMISSIONED

- A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning Agent.
- B. The following systems will be commissioned as part of this project:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

| Systems To Be Commissioned     |                                              |  |  |  |
|--------------------------------|----------------------------------------------|--|--|--|
| System                         | Description                                  |  |  |  |
| Building Exterior Closure      |                                              |  |  |  |
| Fire Suppression               |                                              |  |  |  |
| Plumbing                       |                                              |  |  |  |
| Dental Air Systems             | Packaged dental air compressor units, outlet |  |  |  |
|                                | certification, cross-connect verification    |  |  |  |
| Dental Evacuation and          | Packaged Dental Evacuation units, packaged   |  |  |  |
| Vacuum Systems                 | dental vacuum units, outlet certification,   |  |  |  |
|                                | cross-connection verification                |  |  |  |
| HVAC                           |                                              |  |  |  |
| Direct Digital Control         | Operator Interface Computer, Operator Work   |  |  |  |
| System**                       | Station (including graphics, point mapping,  |  |  |  |
|                                | trends, alarms), Network Communications      |  |  |  |
|                                | Modules and Wiring, Integration Panels. [DDC |  |  |  |
|                                | Control panels will be commissioned with the |  |  |  |
|                                | systems controlled by the panel]             |  |  |  |
| Electrical                     |                                              |  |  |  |
| Communications                 |                                              |  |  |  |
| Electronic Safety and Security |                                              |  |  |  |
| Renewable Energy Sources       |                                              |  |  |  |
| Site Utilities                 |                                              |  |  |  |
| Table Notes                    |                                              |  |  |  |

## 1.8 COMMISSIONING TEAM

- A. The commissioning team contracted by the Contractor shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, schedulers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.
- B. Members Appointed by Contractor:
  - 1. Contractor's Commissioning Manager: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- 2. Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning process through coordinated actions.
- 3. Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process.

### C. Members Appointed by VA:

- 1. User: Representatives of the facility user and operation and maintenance personnel.
- 2. A/E: Representative of the Architect and engineering design professionals.

### 1.9 VA'S COMMISSIONING RESPONSIBILITIES

- A. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
  - 1. Coordination meetings.
  - 2. Training in operation and maintenance of systems, subsystems, and equipment.
  - 3. Testing meetings.
  - 4. Witness and assist in Systems Functional Performance Testing.
  - 5. Demonstration of operation of systems, subsystems, and equipment.C.

## 1.10 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, subcontractors and shall hire Commissioning Agent.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors comply with the requirements of these specifications.
- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
  - 1. Participate in commissioning coordination meetings.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- 2. Conduct operation and maintenance training sessions in accordance with approved training plans.
- 3. Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
- 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
- 5. Review and comment on commissioning documentation.
- 6. Participate in meetings to coordinate Systems Functional Performance Testing.
- 7. Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
- 8. Provide information to the Commissioning Agent for developing commissioning plan.
- 9. Participate in training sessions for VA's operation and maintenance personnel.
- 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.
- 11. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

### 1.11 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.
- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.

- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; TAB Work; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues.

  Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

  Operation and maintenance documentation requirements are specified in Section 01 00 00 GENERAL REQUIREMENTS.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

### 1.12 COMMISSIONING DOCUMENTATION

- A. Commissioning Plan: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
  - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
  - 2. Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
  - 3. Identification of systems and equipment to be commissioned.
  - 4. Schedule of Commissioning Coordination meetings.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- 10. Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. Systems Functional Performance Test Procedures: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System Functional Performance Test procedure, regardless of system, subsystem, or equipment being tested, shall include, but not be limited to, the following:
  - 1. Name and identification code of tested system.
  - 2. Test number.
  - 3. Time and date of test.
  - 4. Indication of whether the record is for a first test or retest following correction of a problem or issue.
  - 5. Dated signatures of the person performing test and of the witness, if applicable.
  - 6. Individuals present for test.
  - 7. Observations and Issues.
  - 8. Issue number, if any, generated as the result of test.
  - 9. VA Project Number, VA Project Title and VA Contract Number.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- C. Pre-Functional Checklists: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.
- D. Test and Inspection Reports: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. Corrective Action Documents: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results.
- F. Commissioning Issues Log: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
  - 1. Creating an Commissioning Issues Log Entry:
    - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- b. Assign a descriptive title for the issue.
- c. Identify date and time of the issue.
- d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
- e. Identify system, subsystem, and equipment to which the issue applies.
- f. Identify location of system, subsystem, and equipment.
- g. Include information that may be helpful in diagnosing or evaluating the issue.
- h. Note recommended corrective action.
- Identify commissioning team member responsible for corrective action.
- j. Identify expected date of correction.
- k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
  - a. Log date correction is completed or the issue is resolved.
  - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
  - c. Identify changes to the Contract Documents that may require
  - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
  - e. Identify person(s) who corrected or resolved the issue.
  - f. Identify person(s) verifying the issue resolution.
- G. Final Commissioning Report: The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents and those that do not meet requirements of

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

the Contract Documents. The commissioning report will include, but is not limited to, the following:

- Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5, Commissioning Issues Log.
- 6. Listing of deferred and off season test(s) not performed, including the schedule for their completion.
- H. Addendum to Final Commissioning Report: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
  - 1. Documentation of deferred and off season test(s) results.
  - Completed Systems Functional Performance Test Procedures for off season test(s).
  - 3. Documentation that unresolved system performance issues have been resolved.
  - 4. Updated Commissioning Issues Log, including status of unresolved issues.
  - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. Systems Manual: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
  - Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- 2. Reference to Final Commissioning Plan.
- 3. Reference to Final Commissioning Report.
- 4. Approved Operation and Maintenance Data as submitted by the Contractor.

#### 1.13 SUBMITTALS

- A. Preliminary Commissioning Plan Submittal: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
  - 1. The Commissioning Team: A list of commissioning team members by organization.
  - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size.
  - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
  - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
  - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
  - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
  - 7. Systems Functional Performance Test Procedures: Preliminary stepby-step System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.

- B. Final Commissioning Plan Submittal: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. Systems Functional Performance Test Procedure: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. Pre-Functional Checklists: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. Test and Inspection Reports: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. Corrective Action Documents: The Commissioning Agent will submit corrective action documents to the Contracting Officer's Representative with copies to the Contractor and Architect.
- G. Preliminary Commissioning Report Submittal: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. Final Commissioning Report Submittal: The Commissioning Agent will submit two sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.
- 2. The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

### 1.14 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. The Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 30 days of contract award, the Contractor shall designate commissioning agent and a specific individual as the Commissioning Manager (CxM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 30 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CXR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

#### 1.15 QUALITY ASSURANCE

- A. Instructor Qualifications: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. Test Equipment Calibration: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals.

  Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test instruments. Instruments shall have been calibrated within six months prior to use.

#### 1.16 COORDINATION

- A. Management: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. Scheduling: The Contractor shall work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information (including, but not limited to, tasks, durations and predecessors) on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. Initial Schedule of Commissioning Events: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. Commissioning Coordinating Meetings: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. Systems Functional Performance Testing Coordination: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

#### PART 2 - PRODUCTS

#### 2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing.

  Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and following any repairs to the equipment. Calibration tags shall be affixed or certificates readily available.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

#### PART 3 - EXECUTION

#### 3.1 COMMISSIONING PROCESS ROLES AND RESPONSIBILITIES

A. The following table outlines the roles and responsibilities for the Commissioning Team members during the Construction Phase:

| Construction Phase |                                                                                                                                           | CxA = Commissioning Agent   |        |        |        |     | L = Lead        |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------|--------|--------|-----|-----------------|
|                    |                                                                                                                                           | COR = Contracting Officer's |        |        |        |     | P = Participate |
|                    |                                                                                                                                           |                             | entati | ve     |        |     | A = Approve     |
| Commissioning R    | oles & Responsibilities                                                                                                                   | A/E =                       | Design | Arch/  | Engine | eer | R = Review      |
|                    |                                                                                                                                           | PC = P                      | rime C | ontrac | ctor   |     | O = Optional    |
|                    |                                                                                                                                           | O&M = Gov't Facility O&M    |        |        |        |     |                 |
| Category           | Task Description                                                                                                                          | CxA COR A/E PC O&M          |        |        |        |     | Notes           |
| Meetings           | Construction Commissioning Kick Off meeting                                                                                               | L                           | А      | А      | Р      | 0   |                 |
|                    | Commissioning Meetings                                                                                                                    | L                           | А      | А      | Р      | 0   |                 |
|                    | Project Progress Meetings                                                                                                                 | Р                           | A      | А      | L      | 0   |                 |
|                    | Controls Meeting                                                                                                                          | L                           | А      | А      | Р      | 0   |                 |
|                    |                                                                                                                                           |                             |        |        |        |     |                 |
| Coordination       | Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support the OPR and BOD. | L                           | A      | А      | P      | N/A |                 |
|                    |                                                                                                                                           |                             |        |        |        |     |                 |
| Cx Plan & Spec     | Final Commissioning Plan                                                                                                                  | L                           | А      | А      | R      | 0   |                 |
|                    |                                                                                                                                           |                             |        |        |        |     |                 |

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

| Construction Phase                     |                                                   | CxA =  | Commis  | sioni  | L = Lead        |     |              |
|----------------------------------------|---------------------------------------------------|--------|---------|--------|-----------------|-----|--------------|
|                                        |                                                   |        | Contra  | cting  | P = Participate |     |              |
|                                        |                                                   |        | sentati | .ve    |                 |     | A = Approve  |
| Commissioning Roles & Responsibilities |                                                   | A/E =  | Design  | Arch   | /Engin          | eer | R = Review   |
|                                        |                                                   | PC = 1 | Prime C | Contra | ctor            |     | O = Optional |
|                                        |                                                   | O&M =  | Gov't   | Facil  | ity 0&          | M   |              |
| Category                               | Task Description                                  | CxA    | COR     | A/E    | PC              | O&M | Notes        |
| Schedules                              | Duration Schedule for Commissioning Activities    | L      | А       | А      | R               | N/A |              |
|                                        | Majortaja OPP an hahalf af Coman                  | T.     | 7       | 70     |                 |     |              |
| OPR and BOD                            | Maintain OPR on behalf of Owner                   |        | A       | А      | R               | 0   |              |
|                                        | Maintain BOD/DID on behalf of Owner               | L      | A       | A      | R               | 0   |              |
| Document                               | TAB Plan Review                                   | L      | A       | A      | R               | 0   |              |
| Reviews                                | Submittal and Shop Drawing Review                 | R      | A       | А      | L               | 0   |              |
|                                        | Review Contractor Equipment Startup<br>Checklists | L      | А       | А      | R               | N/A |              |
|                                        | Review Change Orders, ASI, and RFI                | L      | А       | А      | R               | N/A |              |
|                                        |                                                   |        |         |        |                 |     |              |
| Site                                   | Witness Factory Testing                           | P      | A       | А      | L               | 0   |              |
| Observations                           | Construction Observation Site Visits              | L      | А       | А      | R               | 0   |              |
|                                        |                                                   |        |         |        |                 |     |              |
| Functional                             | Final Pre-Functional Checklists                   | L      | A       | A      | R               | 0   |              |

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

| Construction Phase |                                                |        | Commis | sionir | L = Lead        |     |              |
|--------------------|------------------------------------------------|--------|--------|--------|-----------------|-----|--------------|
|                    |                                                |        | Contra |        | P = Participate |     |              |
|                    |                                                |        | entati | ve     | A = Approve     |     |              |
| Commissioning F    | coles & Responsibilities                       | A/E =  | Design | Arch   | Engine          | eer | R = Review   |
|                    |                                                | PC = F | rime C | ontrad | ctor            |     | O = Optional |
|                    |                                                |        | Gov't  | Facili |                 |     |              |
| Category           | Task Description                               | CxA    | COR    | A/E    | PC              | O&M | Notes        |
| Test Protocols     | Final Functional Performance Test<br>Protocols | L      | А      | А      | R               | 0   |              |
|                    |                                                |        |        |        |                 |     |              |
| Technical          | Issues Resolution Meetings                     | Р      | А      | А      | L               | 0   |              |
| Activities         |                                                |        |        |        |                 |     |              |
| Reports and        | Status Reports                                 | L      | A      | А      | R               | 0   |              |
| Logs               | Maintain Commissioning Issues Log              | L      | А      | А      | R               | 0   |              |
|                    |                                                |        |        |        |                 |     |              |
|                    | I .                                            |        |        |        | 1               | 1   |              |

B. The following table outlines the roles and responsibilities for the Commissioning Team members during the Acceptance Phase:

| Acceptance Pha                         | CxA =            | Commiss | L = Lead                                        |                           |    |     |              |
|----------------------------------------|------------------|---------|-------------------------------------------------|---------------------------|----|-----|--------------|
|                                        |                  |         | Contrac<br>entativ                              | P = Participate           |    |     |              |
| Commissioning Roles & Responsibilities |                  | A/E =   | Design                                          | A = Approve<br>R = Review |    |     |              |
|                                        |                  |         | PC = Prime Contractor  O&M = Gov't Facility O&M |                           |    |     | O = Optional |
| Category                               | Task Description | CxA     | COR                                             | A/E                       | PC | O&M | Notes        |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

| Acceptance Phase                       |                                                                                                                                      | CxA = | Commiss | L = Lead        |        |          |              |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----------------|--------|----------|--------------|
| Commissioning Roles & Responsibilities |                                                                                                                                      |       | Contrac | P = Participate |        |          |              |
|                                        |                                                                                                                                      |       | Design  |                 | Engine | er       | A = Approve  |
| Commissioning R                        | oles & Responsibilities                                                                                                              |       | rime Co |                 | _      | <u> </u> | R = Review   |
|                                        |                                                                                                                                      |       |         |                 |        |          | O = Optional |
|                                        |                                                                                                                                      | O&M = | Gov't F |                 | ty O&M |          |              |
| Category                               | Task Description                                                                                                                     | CxA   | COR     | A/E             | PC     | O&M      | Notes        |
| Meetings                               | Commissioning Meetings                                                                                                               | L     | А       | А               | Р      | 0        |              |
|                                        | Project Progress Meetings                                                                                                            | Р     | А       | А               | L      | 0        |              |
|                                        | Pre-Test Coordination Meeting                                                                                                        | L     | А       | А               | Р      | 0        |              |
|                                        | Lessons Learned and Commissioning<br>Report Review Meeting                                                                           | L     | А       | А               | Р      | 0        |              |
|                                        |                                                                                                                                      |       |         |                 |        |          |              |
| Coordination                           | Coordinate with [OGC's, AHJ, Vendors, etc.] to ensure that Cx interacts properly with other systems as needed to support OPR and BOD | L     | Р       | Р               | Р      | 0        |              |
|                                        |                                                                                                                                      |       |         |                 |        |          |              |
| Cx Plan & Spec                         | Maintain/Update Commissioning Plan                                                                                                   | L     | А       | А               | R      | 0        |              |
|                                        |                                                                                                                                      |       |         |                 |        |          |              |
| Schedules                              | Prepare Functional Test Schedule                                                                                                     | L     | А       | А               | R      | 0        |              |
|                                        |                                                                                                                                      |       |         |                 |        |          |              |
| OPR and BOD                            | Maintain OPR on behalf of Owner                                                                                                      | L     | А       | А               | R      | 0        |              |
|                                        | Maintain BOD/DID on behalf of Owner                                                                                                  | L     | А       | А               | R      | 0        |              |
|                                        |                                                                                                                                      |       |         |                 |        |          |              |
| Document<br>Reviews                    | Review Completed Pre-Functional Checklists                                                                                           | L     | A       | А               | R      | 0        |              |
|                                        | Pre-Functional Checklist Verification                                                                                                | L     | А       | А               | R      | 0        |              |
|                                        | Review Operations & Maintenance Manuals                                                                                              | L     | А       | А               | R      | R        |              |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

| Acceptance Phase                       |                                                          | CxA = Commissioning Agent                                                                                               |     |     |    |     | L = Lead                                            |
|----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----|-----|----|-----|-----------------------------------------------------|
| Commissioning Roles & Responsibilities |                                                          | COR = Contracting Officer's Representative  A/E = Design Arch/Engineer  PC = Prime Contractor  O&M = Gov't Facility O&M |     |     |    |     | P = Participate A = Approve R = Review O = Optional |
| Category Task Description              |                                                          |                                                                                                                         | COR | A/E | PC | O&M | Notes                                               |
|                                        | Training Plan Review                                     | L                                                                                                                       | А   | А   | R  | R   |                                                     |
|                                        | Warranty Review                                          | L                                                                                                                       | А   | А   | R  | 0   |                                                     |
|                                        | Review TAB Report                                        | L                                                                                                                       | А   | А   | R  | 0   |                                                     |
| Site                                   | Construction Observation Site Visits                     | L                                                                                                                       | A   | А   | R  | 0   |                                                     |
| Observations                           | Witness Selected Equipment Startup                       | L                                                                                                                       | А   | А   | R  | 0   |                                                     |
| Functional<br>Test Protocols           | TAB Verification  Systems Functional Performance Testing | L                                                                                                                       | A   | A   | R  | O P |                                                     |
|                                        | Retesting                                                | L                                                                                                                       | A   | A   | P  | P   |                                                     |
| Technical                              | Issues Resolution Meetings                               | P                                                                                                                       | А   | А   | L  | 0   |                                                     |
| Activities                             | Systems Training                                         | L                                                                                                                       | Р   | А   | Р  | Р   |                                                     |
| Reports and                            | Status Reports                                           | L                                                                                                                       | A   | А   | R  | 0   |                                                     |
| Logs                                   | Maintain Commissioning Issues Log                        | L                                                                                                                       | А   | А   | R  | 0   |                                                     |
|                                        | Final Commissioning Report                               | L                                                                                                                       | А   | А   | R  | R   |                                                     |
|                                        | Prepare Systems Manuals                                  | L                                                                                                                       | А   | А   | R  | R   |                                                     |
|                                        |                                                          |                                                                                                                         |     |     |    |     |                                                     |

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

C. The following table outlines the roles and responsibilities for the Commissioning Team members during the Warranty Phase:

| Warranty Phase                         |                                    | CxA = Commissioning Agent |                    |                 |             |   | L = Lead |
|----------------------------------------|------------------------------------|---------------------------|--------------------|-----------------|-------------|---|----------|
|                                        |                                    |                           | Contrac            | P = Participate |             |   |          |
|                                        |                                    | _                         | Design             | 0.70            | A = Approve |   |          |
| Commissioning Roles & Responsibilities |                                    |                           | _                  | R = Review      |             |   |          |
|                                        |                                    |                           | rime Co            | O = Optional    |             |   |          |
|                                        |                                    | O&M = Gov't Facility O&M  |                    |                 |             |   |          |
| Category                               | Task Description                   | CxA                       | CxA COR A/E PC O&M |                 |             |   | Notes    |
| Meetings                               | Post-Occupancy User Review Meeting | L                         | А                  | А               | Р           | Р |          |
|                                        |                                    |                           |                    |                 |             |   |          |
| Site<br>Observations                   | Periodic Site Visits               | L                         | А                  | А               | 0           | Р |          |
| Functional                             | Deferred and/or seasonal Testing   | L                         | А                  | А               | Р           | Р |          |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| Warranty Phase                         |                                                                              |                                                                                                                         | Commiss | L = Lead |   |   |                                                     |
|----------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|----------|---|---|-----------------------------------------------------|
| Commissioning Roles & Responsibilities |                                                                              | COR = Contracting Officer's Representative  A/E = Design Arch/Engineer  PC = Prime Contractor  O&M = Gov't Facility O&M |         |          |   |   | P = Participate A = Approve R = Review O = Optional |
| Category                               | Task Description                                                             | CxA COR A/E PC O&M                                                                                                      |         |          |   |   | Notes                                               |
| Test Protocols                         |                                                                              |                                                                                                                         |         |          |   |   |                                                     |
| Technical<br>Activities                | Issues Resolution Meetings                                                   | L                                                                                                                       | S       | А        | 0 | Р |                                                     |
|                                        | Post-Occupancy Warranty Checkup and review of Significant Outstanding Issues | L                                                                                                                       | А       |          | R | Р |                                                     |
| Reports and                            | Final Commissioning Report Amendment                                         | L                                                                                                                       | А       |          | R | R |                                                     |
| Logs                                   | Status Reports                                                               | L                                                                                                                       | А       |          | R | R |                                                     |
|                                        |                                                                              |                                                                                                                         |         |          |   |   |                                                     |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

#### 3.2 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
  - 1. Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
    - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.
    - b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
  - 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
    - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
    - b. The full startup plan shall at a minimum consist of the following items:
      - 1) The Pre-Functional Checklists.
      - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
      - 3) The manufacturer's normally used field checkout sheets.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- c. The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
- d. The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.

#### 3. Sensor and Actuator Calibration

- a. All field installed temperature, pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 21, Division 22, Division 23 and Division 26 specifications.
- b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.

### 4. Execution of Equipment Startup

- a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
- b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
- c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
- d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

#### 3.3 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.
- C. The Contractor shall be responsible for resolution of deficiencies.

#### 3.4 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

#### 3.5 DDC SYSTEM TRENDING FOR COMMISSIONING

- A. Trending is a method of testing as a standalone method or to augment manual testing. The Contractor shall trend any and all points of the system or systems at intervals specified below.
- B. Alarms are a means to notify the system operator that abnormal conditions are present in the system. Alarms shall be structured into three tiers Critical, Priority, and Maintenance.
  - 1. Critical alarms are intended to be alarms that require the immediate attention of and action by the Operator. These alarms shall be displayed on the Operator Workstation in a popup style window that is graphically linked to the associated unit's graphical display. The popup style window shall be displayed on top of any active window within the screen, including non DDC system software.
  - 2. Priority level alarms are to be printed to a printer which is connected to the Operator's Work Station. Additionally, Priority level alarms shall be able to be monitored and viewed through an active alarm application. Priority level alarms are alarms which

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- shall require reaction from the operator or maintenance personnel within a normal work shift, and not immediate action.
- 3. Maintenance alarms are intended to be minor issues which would require examination by maintenance personnel within the following shift.
- C. The Contractor shall provide graphical trending through the DDC control system of systems being commissioned. Trending requirements are indicated below and included with the Systems Functional Performance Test Procedures. Trending shall occur before, during and after Systems Functional Performance Testing. The Contractor shall be responsible for producing graphical representations of the trended DDC points that show each system operating properly during steady state conditions as well as during the System Functional Testing. These graphical reports shall be submitted to the Contracting Officer's Representative and Commissioning Agent for review and analysis before, during dynamic operation, and after Systems Functional Performance Testing. The Contractor shall provide, but not limited to, the following trend requirements and trend submissions:
  - 1. Pre-testing, Testing, and Post-testing Trend reports of trend logs and graphical trend plots are required as defined by the Commissioning Agent. The trend log points, sampling rate, graphical plot configuration, and duration will be dictated by the Commissioning Agent. At any time during the Commissioning Process the Commissioning Agent may recommend changes to aspects of trending as deemed necessary for proper system analysis. The Contractor shall implement any changes as directed by the Commissioning Agent. Any pre-test trend analysis comments generated by the Commissioning Team should be addressed and resolved by the Contractor, as directed by the Commissioning Agent, prior to the execution of Systems Functional Performance Testing.
  - 2. Dynamic plotting The Contractor shall also provide dynamic plotting during Systems Functional Performance testing at frequent intervals for points determined by the Systems Functional Performance Test Procedure. The graphical plots will be formatted and plotted at durations listed in the Systems Functional Performance Test Procedure.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 3. Graphical plotting The graphical plots shall be provided with a dual y-axis allowing 15 or more trend points (series) plotted simultaneously on the graph with each series in distinct color. The plots will further require title, axis naming, legend etc. all described by the Systems Functional Performance Test Procedure. If this cannot be sufficiently accomplished directly in the Direct Digital Control System then it is the responsibility of the Contractor to plot these trend logs in Microsoft Excel.
- 4. The following tables indicate the points to be trended and alarmed by system. The Operational Trend Duration column indicates the trend duration for normal operations. The Testing Trend Duration column indicates the trend duration prior to Systems Functional Performance Testing and again after Systems Functional Performance Testing. The Type column indicates point type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, Calc = Calculated Point. In the Trend Interval Column, COV = Change of Value. The Alarm Type indicates the alarm priority; C = Critical, P = Priority, and M = Maintenance. The Alarm Range column indicates when the point is considered in the alarm state. The Alarm Delay column indicates the length of time the point must remain in an alarm state before the alarm is recorded in the DDC. The intent is to allow minor, short-duration events to be corrected by the DDC system prior to recording an alarm.
- D. The Contractor shall provide the following information prior to Systems Functional Performance Testing. Any documentation that is modified after submission shall be recorded and resubmitted to the Contracting Officer's Representative and Commissioning Agent.
  - 1. Point-to-Point checkout documentation;
  - Sensor field calibration documentation including system name, sensor/point name, measured value, DDC value, and Correction Factor.
  - 3. A sensor calibration table listing the referencing the location of procedures to following in the O&M manuals, and the frequency at which calibration should be performed for all sensors, separated by system, subsystem, and type. The calibration requirements shall be submitted both in the O&M manuals and separately in a standalone

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

document containing all sensors for inclusion in the commissioning documentation. The following table is a sample that can be used as a template for submission.

4. Loop tuning documentation and constants for each loop of the building systems. The documentation shall be submitted in outline or table separated by system, control type (e.g. heating valve temperature control); proportional, integral and derivative constants, interval (and bias if used) for each loop. The following table is a sample that can be used as a template for submission.

#### 3.6 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance
  Testing is to demonstrate that each system is operating according to
  the Contract Documents. Systems Functional Performance Testing
  facilitates bringing the systems from a state of substantial completion
  to full dynamic operation. Additionally, during the testing process,
  areas of noncompliant performance are identified and corrected, thereby
  improving the operation and functioning of the systems. In general,
  each system shall be operated through all modes of operation (seasonal,
  occupied, unoccupied, warm-up, cool-down, part- and full-load, fire
  alarm and emergency power) where there is a specified system response.
  The Contractor shall verify each sequence in the sequences of
  operation. Proper responses to such modes and conditions as power
  failure, freeze condition, low oil pressure, no flow, equipment
  failure, etc. shall also be tested.
- C. Development of Systems Functional Performance Test Procedures: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. Purpose of Test Procedures: The purpose of each specific Systems
  Functional Performance Test is to verify and document compliance with
  the stated criteria of acceptance given on the test form.
  Representative test formats and examples are found in the Commissioning
  Plan for this project. (The Commissioning Plan is issued as a separate
  document and is available for review.) The test procedure forms
  developed by the Commissioning Agent will include, but not be limited
  to, the following information:
  - 1. VA project number
  - 2. VA project title
  - 3. VA contract number
  - 4. System and equipment or component name(s)
  - 5. Equipment location and ID number
  - 6. Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment
  - 7. Date
  - 8. Project name
  - 9. Participating parties
  - 10. A copy of the specification section describing the test requirements
  - 11. A copy of the specific sequence of operations or other specified parameters being verified
  - 12. Formulas used in any calculations
  - 13. Required pretest field measurements
  - 14. Instructions for setting up the test.
  - 15. Special cautions, alarm limits, etc.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 16. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
- 17. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
- 18. A section for comments.
- 19. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. Test Methods: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.
  - 1. Simulated Conditions: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
  - 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
  - 3. Simulated Signals: Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
  - 4. Altering Setpoints: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C  $(54\ F)$ , when the outside air temperature is above 12 C  $(54\ F)$ , temporarily change the lockout setpoint to be 2 C  $(4\ F)$  above the current outside air temperature.

- 5. Indirect Indicators: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.
- F. Setup: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. Sampling: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. Cost of Retesting: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. Coordination and Scheduling: The Contractor shall provide a minimum of 7 days' notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.

- J. Testing Prerequisites: In general, Systems Functional Performance
  Testing will be conducted only after Pre-Functional Checklists have
  been satisfactorily completed. The control system shall be sufficiently
  tested and approved by the Commissioning Agent and the VA before it is
  used to verify performance of other components or systems. The air
  balancing and water balancing shall be completed before Systems
  Functional Performance Testing of air-related or water-related
  equipment or systems are scheduled. Systems Functional Performance
  Testing will proceed from components to subsystems to systems. When the
  proper performance of all interacting individual systems has been
  achieved, the interface or coordinated responses between systems will
  be checked.
- K. Problem Solving: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

#### 3.7 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. Documentation: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled out forms with the O&M manual data.
- B. Nonconformance: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
  - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
- 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
- 4. When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
  - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.
  - b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
  - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
  - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.

- c. The Commissioning Agent will document the resolution process.
- d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. Cost of Retesting: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. Failure Due to Manufacturer Defect: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:
  - Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
  - 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
  - 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
- 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. Approval: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

#### 3.8 DEFERRED TESTING

- A. Unforeseen Deferred Systems Functional Performance Tests: If any Systems Functional Performance Test cannot be completed due to the building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.
- B. Deferred Seasonal Testing: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

### 3.9 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. Training Preparation Conference: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's Contracting Officer's Representative, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration as required by other Division 21, Division 22, Division 23, Division 26 and Division 27. The Training and Demonstration shall include, but is not limited to, the following:
  - 1. Review the Contract Documents.
  - 2. Review installed systems, subsystems, and equipment.
  - 3. Review instructor qualifications.
  - 4. Review instructional methods and procedures.
  - 5. Review training module outlines and contents.
  - 6. Review course materials (including operation and maintenance manuals).
  - 7. Review and discuss locations and other facilities required for instruction.
  - 8. Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
  - 9. For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. Training Module Submittals: The Contractor shall submit the following information to the VA and the Commissioning Agent:
  - 1. Instruction Program: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- Qualification Data: Submit qualifications for facilitator and/or instructor.
- 3. Attendance Record: For each training module, submit list of participants and length of instruction time.
- 4. Evaluations: For each participant and for each training module, submit results and documentation of performance-based test.
- 5. Demonstration and Training Recording:
  - a. General: Engage a qualified commercial photographer to record demonstration and training. Record each training module separately. Include classroom instructions and demonstrations, board diagrams, and other visual aids, but not student practice. At beginning of each training module, record each chart containing learning objective and lesson outline.
  - b. Video Format: Provide high quality color DVD color on standard size DVD disks.
  - c. Recording: Mount camera on tripod before starting recording, unless otherwise necessary to show area of demonstration and training. Display continuous running time.
  - d. Narration: Describe scenes on video recording by audio narration by microphone while demonstration and training is recorded. Include description of items being viewed. Describe vantage point, indicating location, direction (by compass point), and elevation or story of construction.
  - e. Submit two copies within seven days of end of each training module.
- 6. Transcript: Prepared on 8-1/2-by-11-inch paper, punched and bound in heavy-duty, 3-ring, vinyl-covered binders. Mark appropriate identification on front and spine of each binder. Include a cover sheet with same label information as the corresponding videotape. Include name of Project and date of videotape on each page.

#### D. Quality Assurance:

1. Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

2. Instructor Qualifications: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.

#### E. Training Coordination:

- 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
- 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
- 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit instruction program until operation and maintenance data has been reviewed and approved by the VA.

#### F. Instruction Program:

- 1. Program Structure: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
  - a. Dental equipment, including medical gas equipment.iping.
  - b. HVAC systems, including air handling equipment, air distribution systems, and terminal equipment and devices.
  - c. HVAC instrumentation and controls.
  - d. Lighting equipment and controls.
  - e. Communication systems, including intercommunication, surveillance, nurse call systems, public address, mass evacuation, voice and data, and entertainment television equipment.
- G. Training Modules: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
  - 1. Basis of System Design, Operational Requirements, and Criteria: Include the following:
    - a. System, subsystem, and equipment descriptions.
    - b. Performance and design criteria if Contractor is delegated design responsibility.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- c. Operating standards.
- d. Regulatory requirements.
- e. Equipment function.
- f. Operating characteristics.
- g. Limiting conditions.
- H, Performance curves.
- 2. Documentation: Review the following items in detail:
  - a. Emergency manuals.
  - b. Operations manuals.
  - c. Maintenance manuals.
  - d. Project Record Documents.
  - e. Identification systems.
  - f. Warranties and bonds.
  - g. Maintenance service agreements and similar continuing commitments.
- 3. Emergencies: Include the following, as applicable:
  - a. Instructions on meaning of warnings, trouble indications, and error messages.
  - b. Instructions on stopping.
  - c. Shutdown instructions for each type of emergency.
  - d. Operating instructions for conditions outside of normal operating limits.
  - e. Sequences for electric or electronic systems.
  - f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
  - a. Startup procedures.
  - b. Equipment or system break-in procedures.
  - c. Routine and normal operating instructions.
  - d. Regulation and control procedures.
  - e. Control sequences.
  - f. Safety procedures.
  - g. Instructions on stopping.
  - h. Normal shutdown instructions.
  - i. Operating procedures for emergencies.
  - j. Operating procedures for system, subsystem, or equipment failure.
  - k. Seasonal and weekend operating instructions.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 1. Required sequences for electric or electronic systems.
- m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
  - a. Alignments.
  - b. Checking adjustments.
  - c. Noise and vibration adjustments.
  - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
  - a. Diagnostic instructions.
  - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
  - a. Inspection procedures.
  - b. Types of cleaning agents to be used and methods of cleaning.
  - c. List of cleaning agents and methods of cleaning detrimental to product.
  - d. Procedures for routine cleaning
  - e. Procedures for preventive maintenance.
  - f. Procedures for routine maintenance.
  - g. Instruction on use of special tools.
- 8. Repairs: Include the following:
  - a. Diagnosis instructions.
  - b. Repair instructions.
  - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
  - d. Instructions for identifying parts and components.
  - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:
  - Preparation: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
  - 2. Instruction:
    - a. Facilitator: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-15

- of Veterans Affairs for number of participants, instruction times, and location.
- b. Instructor: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
  - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
- 3. Scheduling: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least 21 days' advance notice.
- 4. Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.
- 5. Cleanup: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

---- END ----

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

#### SECTION 02 41 00 DEMOLITION

#### 08-01-17

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION:

A. This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris.

#### 1.2 RELATED WORK:

- A. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- E. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS.

#### 1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-17

limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.

- E. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
  - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
  - Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- F. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Contracting Officer's Representative. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works.
- G. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- H. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS and Section 01 35 26, SAFETY REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-17

- A. Remove and legally dispose of all materials as part of project work.

  Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations.
- B. Remove existing utilities as indicated and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer's Representative.

#### 3.2 CLEAN-UP:

A. On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Contracting Officer's Representative. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

## SECTION 05 40 00 COLD-FORMED METAL FRAMING

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies materials and services required for installation of cold-formed steel, including tracks and required accessories as shown and specified. This Section includes the following:
  - 1. Floor Deck Reinforcement

#### 1.2 RELATED WORK

#### 1.3 DESIGN REQUIREMENTS

- A. Design steel in accordance with American Iron and Steel Institute Publication "Specification for the Design of Cold-Formed Steel Structural Members", except as otherwise shown or specified.
- B. Structural Performance: Engineer, fabricate and erect cold-formed metal framing with the minimum physical and structural properties indicated.
- C. Structural Performance: Engineer, fabricate, and erect cold-formed metal framing to withstand design loads within limits and under conditions required.

#### 1. Design Loads:

- a. Gravity, wind and seismic loading as indicated on the drawings or in this specification.
- 2. Design framing systems to provide for movement of framing members without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change (range) of 67 degrees C (120 degrees F).
- 3. Design framing system to accommodate deflection of primary building structure and construction tolerances, and to maintain clearances at openings.
- 4. Engineering Responsibility: Engage a fabricator who assumes undivided responsibility for engineering cold-formed metal framing by employing a qualified professional engineer to prepare design calculations, shop drawings, and other structural data.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. All items indicated below are required submittals requiring Contracting Officer's Representative (COR) review and approval
- B. Shop Drawings: Shop and erection drawings showing steel unit layout, connections to supporting members, and information necessary to complete installation as shown and specified.
- C. Manufacturer's Literature and Data: Showing steel component sections and specifying structural characteristics.
- D. Design of the light gauge for this project shall be provided by the contractor's structural engineer. Submit signed and sealed calculations performed by a structural engineer with at least 5 years experience in the design of light gauge metal and registered in the state of the project. Calculations shall be submitted with plans elevations and details for review and approval.

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Iron and Steel Institute (AISI): Specification and Commentary for the Design of Cold-Formed Steel Structural Members (2016)
- C. ASTM International (ASTM):

| A36/A36M-19    | .Standard Specification for Carbon Structural    |
|----------------|--------------------------------------------------|
|                | Steel                                            |
| A123/A123M-17  | .Standard Specifications for Zinc (Hot-Dip       |
|                | Galvanized) Coatings on Iron and Steel Products  |
| A153/A153M-16a | .Standard Specifications for Zinc Coating (Hot-  |
|                | Dip) on Iron and Steel Hardware                  |
| A307-14e1      | .Standard Specifications for Carbon Steel Bolts, |
|                | Studs, and Threaded Rod 60,000 PSI Tensile       |
|                | Strength                                         |
| A653/A653M-20  | .Standard Specification for Steel Sheet, Zinc    |
|                | Coated (Galvanized) or Zinc Iron Alloy Coated    |
|                | (Galvannealed) by the Hot Dip Process            |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21
C955-18e1......Standard Specification for Cold Formed Steel
Structural Framing Members
C1107/1107M-20.....Standard Specification for Packaged Dry,
Hydraulic-Cement Grout (Non-shrink)
E488/E488M-18....Standard Test Methods for Strength of Anchors
in Concrete Elements
E1190-11(2018).....Standard Test Methods for Strength of Power-

E1190-11(2018)......Standard Test Methods for Strength of Power-Actuated Fasteners Installed in Structural

Members

- D. American Welding Society (AWS):
  - D1.3/D1.3M-18.....Structural Welding Code-Sheet Steel
- E. Military Specifications (Mil. Spec.):

MIL-P-21035B............Paint, High Zinc Dust Content, Galvanizing Repair

F. VA Physical Security and Resiliency Design Manual October 1, 2020.

#### PART 2 - PRODUCTS

#### 2.1 MATERIALS

- A. Sheet Steel for joists, studs and accessories 16 gauge and heavier:
  ASTM A653, structural steel, zinc coated CP60 or G90, with a yield of
  340 MPa (50 ksi) minimum.
- B. Sheet Steel for joists, studs and accessories 18 gauge and lighter:
  ASTM A653, structural steel, zinc coated G60 or G90, with a yield of
  230 MPa (33 ksi) minimum.
- C. Galvanizing Repair Paint: MIL-P-21035B.
- D. Nonmetallic, Non-shrink Grout: Premixed, nonmetallic, noncorrosive, nonstaining grout containing selected silica sands, Portland cement, shrinkage-compensating agents, plasticizing and water-reducing agents, complying with ASTM C1107, with fluid consistency and a 30 minute working time.

### 2.2 FRAMING ACCESSORIES

A. Fabricate steel framing accessories of the same material and finish used for framing members, with a minimum yield strength of 230 MPa (33 ksi).

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 2.3 ANCHORS, CLIPS, AND FASTENERS

- A. Steel Shapes and Clips: ASTM A36, zinc coated by the hot-dip process according to ASTM A123.
- B. Expansion Anchors: Fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 5 times the design load, as determined by testing per ASTM E488 conducted by a qualified independent testing agency.
- C. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 10 times the design load, as determined by testing per ASTM E1190 conducted by a qualified independent testing agency.
- D. Mechanical Fasteners: Corrosion-resistant coated, self-drilling, self-threading steel drill screws. Low-profile head beneath sheathing, manufacturer's standard elsewhere.

### 2.4 REQUIREMENTS

- A. Welding in accordance with AWS D1.3
- B. Furnish members and accessories by one manufacturer only.

#### PART 3 - EXECUTION

### 3.1 **FABRICATION**

- A. Framing components may be preassembled into panels. Panels shall be square with components attached.
- B. Cut framing components squarely or as required for attachment. Cut framing members by sawing or shearing; do not torch cut.
- C. Hold members in place until fastened.
- D. Fasten cold-formed metal framing members by welding or screw fastening, as standard with fabricator. Wire tying of framing members is not permitted.
  - 1. Comply with AWS requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
  - 2. Locate mechanical fasteners and install according to cold-formed metal framing manufacturer's instructions with screw penetrating joined members by not less than 3 exposed screw threads.
- E. Where required, provide specified insulation in double header members and double jamb studs which will not be accessible after erection.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 3.2 TOLERANCES

- A. Vertical alignment (plumbness) of studs shall be within  $1/960 \, \mathrm{th}$  of the span.
- B. Horizontal alignment (levelness) of walls shall be within 1/960th of their respective lengths.
- C. Spacing of studs shall not be more than 3 mm (1/8 inch) +/- from the designed spacing providing that the cumulative error does not exceed the requirements of the finishing materials.
- D. Prefabricated panels shall be not more than 3 mm (1/8 inch) +/- out of square within the length of that panel.

#### 3.3 FIELD REPAIR

A. Touch-up damaged galvanizing with galvanizing repair paint.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

## SECTION 05 50 00 METAL FABRICATIONS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.

#### 1.2 RELATED WORK

A. Prime and finish painting: Section 09 91 00, PAINTING.

#### 1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
  - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
  - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
  - 3. Provide templates and rough-in measurements as required.
- C. Manufacturer's Certificates:
  - 1. Live load designs as specified.
- D. Design Calculations for specified live loads including dead loads.

#### 1.4 QUALITY ASSURANCE

- A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.
- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

#### 1.5 APPLICABLE PUBLICATIONS

| Α. | The publications listed below form a part of this specification to the | 9 |
|----|------------------------------------------------------------------------|---|
|    | extent referenced. The publications are referenced in the text by the  |   |
|    | basic designation only.                                                |   |

|    | basic designation only.                                |
|----|--------------------------------------------------------|
| В. | American Society of Mechanical Engineers (ASME):       |
|    | B18.6.1-97                                             |
|    | B18.2.2-87(R2010)Square and Hex Nuts                   |
| C. | American Society for Testing and Materials (ASTM):     |
|    | A36/A36M-14Structural Steel                            |
|    | A47-99(R2014)Malleable Iron Castings                   |
|    | A48-03(R2012)Gray Iron Castings                        |
|    | A53-12Pipe, Steel, Black and Hot-Dipped, Zinc-Coated   |
|    | Welded and Seamless                                    |
|    | A123-15Zinc (Hot-Dip Galvanized) Coatings on Iron and  |
|    | Steel Products                                         |
|    | A240/A240M-15Standard Specification for Chromium and   |
|    | Chromium-Nickel Stainless Steel Plate, Sheet           |
|    | and Strip for Pressure Vessels and for General         |
|    | Applications.                                          |
|    | A269-15Seamless and Welded Austenitic Stainless Steel  |
|    | Tubing for General Service                             |
|    | A307-14Carbon Steel Bolts and Studs, 60,000 PSI        |
|    | Tensile Strength                                       |
|    | A391/A391M-07(R2015)Grade 80 Alloy Steel Chain         |
|    | A786/A786M-15Rolled Steel Floor Plate                  |
|    | B221-14Aluminum and Aluminum-Alloy Extruded Bars,      |
|    | Rods, Wire, Shapes, and Tubes                          |
|    | B456-11Electrodeposited Coatings of Copper Plus Nickel |
|    | Plus Chromium and Nickel Plus Chromium                 |
|    | B632-08Aluminum-Alloy Rolled Tread Plate               |
|    | C1107-13Packaged Dry, Hydraulic-Cement Grout           |
|    | (Nonshrink)                                            |
|    | D3656-13Insect Screening and Louver Cloth Woven from   |
|    | Vinyl-Coated Glass Yarns                               |
|    | F436-16Hardened Steel Washers                          |

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18 F468-06(R2015)......Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws and Studs for General Use F593-13......Stainless Steel Bolts, Hex Cap Screws, and Studs F1667-15............Driven Fasteners: Nails, Spikes and Staples D. American Welding Society (AWS): D1.1-15..... Structural Welding Code Steel D1.2-14.....Structural Welding Code Aluminum D1.3-18.....Structural Welding Code Sheet Steel E. National Association of Architectural Metal Manufacturers (NAAMM) AMP 521-01(R2012).....Pipe Railing Manual AMP 500-06.....Metal Finishes Manual MBG 531-09(R2017)......Metal Bar Grating Manual MBG 532-09.....Heavy Duty Metal Bar Grating Manual F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings: SP 1-15......No. 1, Solvent Cleaning 

G. Federal Specifications (Fed. Spec):

RR-T-650E.....Treads, Metallic and Nonmetallic, Nonskid

#### PART 2 - PRODUCTS

#### 2.2 MATERIALS

- A. Structural Steel: ASTM A36.
- B. Primer Paint: As specified in Section 09 91 00, PAINTING.

#### 2.3 HARDWARE

- A. Rough Hardware:
  - 1. Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
  - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.

#### B. Fasteners:

- 1. Bolts with Nuts:
  - a. ASME B18.2.2.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

- b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
- c. ASTM F468 for nonferrous bolts.
- d. ASTM F593 for stainless steel.
- 2. Screws: ASME B18.6.1.
- 3. Washers: ASTM F436, type to suit material and anchorage.
- 4. Nails: ASTM F1667, Type I, style 6 or 14 for finish work.

#### 2.4 FABRICATION GENERAL

#### A. Material

- 1. Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.
- 2. Use material free of defects which could affect the appearance or service ability of the finished product.

#### B. Size:

- 1. Size and thickness of members as shown.
- 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.

#### C. Connections

- 1. Except as otherwise specified, connections may be made by welding, riveting or bolting.
- 2. Field riveting will not be approved.
- 3. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
- 4. Holes, for rivets and bolts: Accurately punched or drilled and burrs removed.
- 5. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
- 6. Use rivets and bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
- 7. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

- 1. Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
- 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
- 3. Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
- 4. Fasteners for securing metal fabrications to new construction only, may be by use of threaded or wedge type inserts or by anchors for welding to the metal fabrication for installation before the concrete is placed or as masonry is laid.
- 5. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts.

#### E. Workmanship

#### 1. General:

- a. Fabricate items to design shown.
- b. Furnish members in longest lengths commercially available within the limits shown and specified.
- c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
- d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
- e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
- f. Prepare members for the installation and fitting of hardware.
- g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges.
- h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.

### 2. Welding:

a. Weld in accordance with AWS.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

- b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
- c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
- d. Finish welded joints to match finish of adjacent surface.

#### 3. Joining:

- a. Miter or butt members at corners.
- b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.

#### 4. Cutting and Fitting:

- a. Accurately cut, machine and fit joints, corners, copes, and miters.
- b. Fit removable members to be easily removed.
- c. Design and construct field connections in the most practical place for appearance and ease of installation.
- d. Fit pieces together as required.
- e. Fabricate connections for ease of assembly and disassembly without use of special tools.
- f. Joints firm when assembled.
- g. Conceal joining, fitting and welding on exposed work as far as practical.
- h. Do not show rivets and screws prominently on the exposed face.
- i. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.

#### F. Finish:

- 1. Finish exposed surfaces in accordance with NAAMM AMP 500 Metal Finishes Manual.
- 2. Steel and Iron: NAAMM AMP 504.
  - a. Surfaces exposed in the finished work:
    - 1) Finish smooth rough surfaces and remove projections.
    - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

### b. Shop Prime Painting:

- 1) Surfaces of Ferrous metal:
  - a) Items not specified to have other coatings.
  - b) Galvanized surfaces specified to have prime paint.
  - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
  - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
  - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
- 2) Non ferrous metals: Comply with MAAMM-500 series.

#### G. Protection:

- Insulate aluminum surfaces that will come in contact with concrete, masonry, plaster, or metals other than stainless steel, zinc or white bronze by giving a coat of heavy-bodied alkali resisting bituminous paint or other approved paint in shop.
- 2. Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

#### 2.5 SUPPORTS

#### A. General:

- 1. Fabricate ASTM A36 structural steel shapes as shown.
- 2. Use clip angles or make provisions for welding hangers and braces to overhead construction.
- 3. Field connections may be welded or bolted.

### B. For Wall Mounted Items:

- 1. For items supported by metal stud partitions.
- 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick.
- 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported.
- 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud.

#### C. For Trapeze Bars:

1. Construct assembly above ceilings and design to support not less than a 340 kg (750 pound) working load at any point.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

- Fabricate trapeze supports if needed, with all exposed members, including screws, nuts, bolts and washers, fabricated of stainless steel.
- 3. Fabricate concealed components of structural steel shapes unless shown otherwise.
- 4. Stainless steel ceiling plate drilled for eye bolt.
- 5. Use modular channel where shown with manufacturers bolts and fittings.
  - a. Weld ends of steel angle braces to steel plates and secure to modular channel units as shown. Drill plates for anchor bolts.
  - b. Fabricate eye bolt, special clamp bolt, and plate closure full length of modular channel at ceiling line and secure to modular channel unit with manufacturers standard fittings.
- D. For Dental isolation boom light Light:
  - 1. Relocate Support system to suit equipment furnished.
  - 2. Drill leveling plate or use existing for light fixture bolts.

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
  - 1. Provide temporary bracing for such items until concrete or masonry is set.
  - 2. Place in accordance with setting drawings and instructions.
  - 3. Build strap anchors, into masonry as work progresses.
- C. Set frames of gratings, covers, corner guards, trap doors and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening.
- D. Field weld in accordance with AWS.
  - 1. Design and finish as specified for shop welding.
  - 2. Use continuous weld unless specified otherwise.
- E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.

- F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.
- H. Secure escutcheon plate with set screw.

#### 3.2 INSTALLATION OF SUPPORTS

- A. Anchorage to structure.
  - 1. Secure angles or channels and clips to overhead structural steel by continuous welding unless bolting is shown.
  - 2. Secure supports to concrete inserts by bolting or continuous welding as shown.
  - 3. Secure supports to mid height of concrete beams when inserts do not exist with expansion bolts and to slabs, with expansion bolts. unless shown otherwise.
  - 4. Secure steel plate or hat channels to stude as detailed.
- C. Supports for Wall Mounted items:
  - 1. Locate center of support at anchorage point of supported item.
  - 2. Locate support at top and bottom of wall hung cabinets.
  - 3. Locate support at top of floor cabinets and shelving installed against walls.
  - 4. Locate supports where required for items shown.
- E. Ceiling Support for Dental Procedure Light:
  - 1. Anchor support to structure above as shown.
  - 2. Set leveling plate as shown level with ceiling.
  - 3. Secure light to leveling plate in accordance with light manufacturer's requirements.

### 3.20 CLEAN AND ADJUSTING

A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-18

B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

## SECTION 06 10 00 ROUGH CARPENTRY

### 10-01-17

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION:

A. This section specifies steel blocking, framing, sheathing, furring, nailers, sub-flooring and rough hardware.

### 1.2 RELATED WORK:

- A. NOT USED.
- B. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.

### 1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Shop Drawings showing framing connection details, fasteners, connections and dimensions.
- D. Manufacturer's Literature and Data:
  - 1. Submit data for hardware and adhesives.
  - 2. Submit data for fire retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.

#### 1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 152 mm (6 inches) above grade and cover with well-ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

#### 1.5 QUALITY ASSURANCE:

A. Installer: A firm with a minimum of three (3) years' experience in the type of work required by this section.

### 1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA):

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | Banciole Alen                     | rtects   Engineers                              | 10-01-17 |
|----|-----------------------------------|-------------------------------------------------|----------|
|    | NDS-15Nationa                     | l Design Specification for Wood                 | 10-01-17 |
|    | Constru                           | action                                          |          |
|    | WCD1-01Details                    | for Conventional Wood Frame                     |          |
|    | Constru                           | action                                          |          |
| C. | . American Institute of Timber Co | nstruction (AITC):                              |          |
|    | A190.1-07Structu                  | ral Glued Laminated Timber                      |          |
| D. | . American Society of Mechanical  | Engineers (ASME):                               |          |
|    | B18.2.1-12(R2013)Square           | and Hex Bolts and Screws                        |          |
|    | B18.2.2-10Square                  | and Hex Nuts                                    |          |
|    | B18.6.1-81(R2008)Wood Sc          | rews                                            |          |
| Ε. | . American Plywood Association (A | APA):                                           |          |
|    | E30-11Engine                      | ered Wood Construction Guide                    |          |
| F. | . ASTM International (ASTM):      |                                                 |          |
|    | A653/A653M-13Steel S              | Sheet Zinc-Coated (Galvanized) or               | Zinc-    |
|    | Iron Al                           | loy Coated (Galvannealed) by the                | Hot Dip  |
|    | Process                           |                                                 |          |
|    | C954-11Steel I                    | orill Screws for the Application                | of       |
|    | Gypsum                            | Board or Metal Plaster Bases to                 | Steel    |
|    | Studs f                           | from $0.033$ inch $(2.24 \text{ mm})$ to $0.11$ | 2-inch   |
|    | (2.84 n                           | nm) in thickness                                |          |
|    | C1002-14Steel S                   | self-Piercing Tapping Screws for                | the      |
|    | Applica                           | tion of Gypsum Panel Products or                | Metal    |
|    | Plaster                           | Bases to Wood Studs or Metal St                 | uds      |
|    | D198-14Test Me                    | thods of Static Tests of Lumber                 | in       |
|    | Structu                           | ral Sizes                                       |          |
|    | D2344/D2344M-13Test Me            | thod for Short-Beam Strength of                 | Polymer  |
|    | Matrix                            | Composite Materials and Their La                | minates  |
|    | D2559-12aAdhesiv                  | es for Structural Laminated Wood                |          |
|    | Product                           | s for Use Under Exterior (Wet Us                | e)       |
|    | Exposu                            | e Conditions                                    |          |
|    | D3498-03(R2011)Adhesiv            | res for Field-Gluing Plywood to L               | umber    |
|    | Framing                           | for Floor Systems                               |          |
|    | D6108-13Test Me                   | thod for Compressive Properties                 | of       |
|    | Plastic                           | : Lumber and Shapes                             |          |
|    |                                   |                                                 |          |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | Bancroll Architects + Engineers                                |
|----|----------------------------------------------------------------|
|    | D6109-13Test Methods for Flexural Properties of                |
|    | Unreinforced and Reinforced Plastic Lumber and                 |
|    | Related Products                                               |
|    | D6111-13aTest Method for Bulk Density and Specific             |
|    | Gravity of Plastic Lumber and Shapes by                        |
|    | Displacement                                                   |
|    | D6112-13 Test Methods for Compressive and Flexural Creep       |
|    | and Creep-Rupture of Plastic Lumber and Shapes                 |
|    | F844-07a(R2013)Washers, Steel, Plan (Flat) Unhardened for      |
|    | General Use                                                    |
|    | F1667-13Nails, Spikes, and Staples                             |
| G. | American Wood Protection Association (AWPA):                   |
|    | AWPA Book of Standards                                         |
| Н. | Commercial Item Description (CID):                             |
|    | A-A-55615Shield, Expansion (Wood Screw and Lag Bolt Self       |
|    | Threading Anchors)                                             |
| I. | Forest Stewardship Council (FSC):                              |
|    | FSC-STD-01-001(Ver. 4-0)FSC Principles and Criteria for Forest |
|    | Stewardship                                                    |
| J. | Military Specification (Mil. Spec.):                           |
|    | MIL-L-19140ELumber and Plywood, Fire-Retardant Treated         |
| К. | Environmental Protection Agency (EPA):                         |
|    | 40 CFR 59(2014)National Volatile Organic Compound Emission     |
|    | Standards for Consumer and Commercial Products                 |
| L. | Truss Plate Institute (TPI):                                   |
|    | TPI-85Metal Plate Connected Wood Trusses                       |
| М. | U.S. Department of Commerce Product Standard (PS)              |
|    | PS 1-95Construction and Industrial Plywood                     |
|    | PS 20-10American Softwood Lumber Standard                      |
| N. | ICC Evaluation Service (ICC ES):                               |
|    | AC09Quality Control of Wood Shakes and Shingles                |
|    | AC174Deck Board Span Ratings and Guardrail Systems             |
|    | (Guards and Handrails)                                         |
|    |                                                                |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

#### PART 2 - PRODUCTS

#### 2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber must bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
  - Identifying marks are to be in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
  - Inspection agency for lumber approved by the Board of Review,
     American Lumber Standards Committee, to grade species used.
- B. Lumber Other Than Structural:
  - 1. Furring, blocking, nailers and similar items 101 mm (4 inches) and narrower Standard Grade; and, members 152 mm (6 inches) and wider, Number 2 Grade.

#### C. Sizes:

- 1. Conforming to PS 20.
- 2. Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- D. Moisture Content:
  - 1. Maximum moisture content of wood products is to be as follows at the time of delivery to site.
    - a. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
    - b. Lumber over 50 mm (2 inches) thick: 25 percent or less.

#### 2.2 HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
  - 1. ASME B18.2.1 and ASME B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
  - 2. Extend at least 203 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Provide 13 mm (1/2 inch) bolt unless shown otherwise.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

#### C. Washers

- 1. ASTM F844.
- 2. Provide zinc or cadmium coated steel or cast iron for washers exposed to weather.

#### D. Screws:

2. Wood to Steel: ASTM C954, or ASTM C1002.

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
  - 1. AFPA NDS for timber connectors.
  - 2. AITC A190.1 Timber Construction Manual for heavy timber construction.
  - 3. AFPA WCD1 for nailing and framing unless specified otherwise.
  - 4. APA for installation of plywood or structural use panels.
  - 5. TPI for metal plate connected wood trusses.

#### B. Fasteners:

- 2. Bolts:
  - a. Fit bolt heads and nuts bearing on wood with washers.
  - b. Countersink bolt heads flush with the surface of nailers.
  - c. Embed in concrete and solid masonry or provide expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
  - d. Provide toggle bolts to hollow masonry or sheet metal.
  - e. Provide bolts to steel over 2.84 mm (0.112 inch, 11 gage) in thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 610 mm (24 inch) intervals between end bolts. Provide clips to beam flanges.
- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
  - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
  - b. ASTM C954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be provided where practical to anchor to solid masonry, concrete, or steel.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

- D. Cut notch, or bore in accordance with AFPA WCD1 passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
  - 1. Install furring, blocking, nailers, and grounds where shown.
  - 2. Provide longest lengths practicable.
  - 3. Provide steel blocking where shown at openings and where shown or specified.
  - 4. Layers of Blocking or Plates:
    - a. Stagger end joints between upper and lower pieces.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

## SECTION 07 01 50.19 PREPARATION AND MODIFICATIONS TO EXISTING ROOFING

#### PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Roofing membrane and selective roofing system component removal for new roof membrane installation.
- B. Existing Roofing System: EPDM. System components include:
  - 1. EPDM Pavers.
  - 2. Aggregate ballast.
  - 3. Roof insulation.
  - 4. Roofing membrane.
  - 5. Cover board.
  - 6. Roof insulation.
  - 7. Substrate board.

### 1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Patching of Roof Deck and Parapet Sheathing if needed.
- B. NOT USED.

#### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- - FX-1 (R2016)......Standard Field Test Procedure for Determining the Withdrawal Resistance of Roofing Fasteners.
- C. American Society for Nondestructive Testing (ASNT):
  - SNT-TC-1A (2019)......Personnel Qualification and Certification for Nondestructive Testing.
- D. ASTM International (ASTM):
  - C208-12(2017)e2......Cellulosic Fiber Insulating Board.

  - C728-17a.....Perlite Thermal Insulation Board.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

C1177/C1177M-17.......Glass Mat Gypsum Substrate for Use as
Sheathing.

C1153-10(2015)......Location of Wet Insulation in Roofing Systems
Using Infrared Imaging.

C1278/C1278M-17......Standard Specification Fiber-Reinforced Gypsum
Panel.

D4263-83(2018)......Indicating Moisture in Concrete by the Plastic
Sheet Method.

E. U.S. Department of Commerce National Institute of Standards and
Technology (NIST):
DOC PS 1-19.......Structural Plywood.
DOC PS 2-18.......Performance Standard for Wood-Based

#### 1.4 PREINSTALLATION MEETINGS

A. Conduct preinstallation meeting minimum 30 days before beginning Work of this section.

Structural-Use Panels.

- 1. Required Participants:
  - a. Contracting Officer's Representative.
- 2. Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
  - a. Removal and installation schedule.
  - b. Removal and installation sequence.
  - c. Preparatory work.
  - d. Protection before, during, and after installation.
  - e. Removal and installation.
  - f. Temporary roofing including daily terminations.
  - q. Transitions and connections to other work.
  - h. Inspecting and testing.
  - i. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

#### 1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 1. Show size, configuration, and installation details.
- C. Manufacturer's Literature and Data:
  - 1. Description of each product.
  - 2. Description of temporary roof system and components.
  - 3. List of patching materials.
  - 4. Recover board fastening requirements.
  - 5. Existing roofing warrantor's instructions.
- D. Photographs: Document existing conditions potentially affected by roofing operations before work begins.
- E. Field Inspection Reports:
  - 1. Certify warrantor inspected completed roofing and existing warranty remains in effect.

#### 1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
  - 1. Approved by existing roofing system warrantor when work affects existing roofing system under warranty.

#### 1.7 FIELD CONDITIONS

- A. Building Occupancy: Perform work to minimize disruption to normal building operations.
  - 1. Provide notice minimum 3 weeks before beginning activities affecting normal building operations.
- B. Existing Roofing Available Information:
  - 1. The following may be available for Contractor reference:
    - a. Construction drawings and project manual.
  - 2. Examine available information before beginning work of this section.
- C. Weather Limitations: Proceed with reroofing preparation only during dry weather conditions.
  - 1. Remove only as much roofing in one day as can be made watertight in same day.

#### 1.8 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Existing Warranties: Perform work to maintain existing roofing warranty in effect.
  - 1. Notify warrantor before beginning, and upon completion of reroofing.
  - 2. Obtain warrantor's instructions for maintaining existing warranty.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

#### PART 2 - PRODUCTS

#### 2.1 MATERIALS

- A. Patching Materials: Match existing roofing system materials.
- B. Plywood Sheathing: See Section 06 10 00, ROUGH CARPENTRY.
- C. NOT USED.
- D. Temporary Protection Materials:
  - 1. Expanded Polystyrene (EPS) Insulation: ASTM C578-19.
  - 2. Plywood: NIST DOC PS 1-19, Grade CD Exposure 1-18.
  - 3. Oriented Strand Board (OSB): NIST DOC PS 2-18, Exposure 1.
- E. Temporary Roofing System Materials: Contractor's option.
- F. Recover Board: One of the following:
  - 1. Insulation: See Section 07 22 00, ROOF AND DECK INSULATION.
- G. Fasteners: Type and size required by roof membrane manufacturer to resist wind uplift.

#### PART 3 - EXECUTION

#### 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing roofing system indicated to remain.
  - 1. Cover roof membrane with temporary protection materials without impeding drainage.
  - 2. Limit traffic and material storage to protected areas.
  - 3. Maintain temporary protection until replacement roofing is completed.
- C. Protect existing construction and completed work from damage.
- D. Maintain access to existing walkways and adjacent occupied facilities.
- E. Coordinate use of rooftop fresh air intakes with Contracting Officer's Representative to minimize effect on indoor air quality.
- F. Ensure temporary protection materials are available for immediate use in case of unexpected rain.
- G. Ensure roof drainage remains functional.
  - 1. Keep drainage systems clear of debris.
  - 2. Prevent water from entering building and existing roofing system.
- H. Coordinate rooftop utilities remaining active during roofing work with Contacting Officer's Representative.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 01-01-21

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 3.2 RE-ROOFING PREPARATION - GENERAL

- A. Notify Contacting Officer's Representative of planned operations, daily.
  - 1. Identify location and extent of roofing removal.
  - 2. Request authorization to proceed.

#### 3.3 PARTIAL ROOFING SYSTEM REMOVAL

- A. Remove existing roofing completely, exposing structural roof deck at locations and to extent indicated on drawings.
  - 1. Remove cover board, roof insulation, vapor retarder, and substrate board.
  - 2. Remove or cut-off roofing system fasteners.

#### 3.4 ROOFING MEMBRANE AND SELECTIVE ROOFING SYSTEM COMPONENT REMOVAL

- A. Remove existing roofing membrane, only, in locations and to extent indicated on drawings.
- B. Visually inspect cover board, roof insulation, vapor retarder, and substrate board for moisture immediately after roof membrane removal.
  - 1. Coordinate with Contracting Officer's Representative to observe inspections.
  - 2. Identify wet roofing system components required to be removed.
  - 3. Mark roofing system removal locations and extents.
- C. Patch selective roofing system removals immediately after inspection and repair.
- D. Install patching materials to match existing roofing system.
- E. Patch roofing membrane to maintain building watertight, unless new roofing membrane is installed same day as removal and repair.

#### 3.5 DECK PREPARATION

- A. Inspect structural roof deck after roofing system removal.
- B. Concrete Roof Decks:
  - 1. Visually confirm concrete roof deck is dry.
  - 2. Perform moisture test according to ASTM D4263-83(2018) each day for each separate roof area.
    - a. Proceed with roofing work only when moisture is not observed.
- C. Steel Roof Decks:
  - 1. Visually inspect structural roof deck installation and fasteners.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

a. Notify Contracting Officer's Representative of unsuitable conditions and inadequate fastenings potentially affecting roof system performance.

Secure roof deck with additional fastenings as indicated if required upon new openings.

#### 3.6 TEMPORARY ROOFING

- A. Install temporary roofing to maintain building watertight.
- B. Remove temporary roofing before installing new roofing.
- C. Prepare temporary roofing to receive new roofing.

#### 3.7 EXISTING MEMBRANE PREPARATION FOR NEW ROOFING

- A. Remove existing roofing surface projections and irregularities. Produce smooth surface to receive recover boards.
  - 1. Broom clean existing surface.

#### 3.8 BASE FLASHING REMOVAL

- A. Expose base flashings to permit removal.
  - 1. Two-Piece Counterflashings: Remove cap flashing and store for reuse.
  - 2. Single Piece Counterflashings: Carefully bend counterflashing.
  - 3. Metal Copings: Remove decorative cap and store for reuse.
- B. Remove existing base flashings.
  - 1. Clean substrates to receive new flashings.
- C. Replace counterflashings damaged during removal.
  Counterflashings: See Section 07 60 00 FLASHING AND SHEET METAL.

#### 3.9 RECOVER BOARD INSTALLATION

- A. Install recover boards over existing roof insulation with butted joints. Stagger end joints in adjacent rows.
- B. Fasten recover boards to resist wind-uplift.
  - 1. Fastening Requirements: See ETHYLENE-PROPYLENE-DIENE-MONOMER (EPDM) ROOFING
  - 2. Uplift Resistance: Base on pull out resistance determined by specified field testing.

#### 3.10 FIELD QUALITY CONTROL

- A. Existing Roofing System Warrantor Services:
  - 1. Inspect reroofing preparation and roofing installation to verify compliance with existing warranty conditions.
  - 2. Submit reports of field inspections, and supplemental instructions issued during inspections.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 3.11 DISPOSAL

- A. Collect waste materials in containers.
- B. Remove waste materials from project site, regularly, to prevent accumulation.
- C. Legally dispose of waste materials.

- - E N D - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

## SECTION 07 22 00 ROOF AND DECK INSULATION

01-01-21

#### PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Roof and deck insulation, substrate board, and cover board on existing concrete and metal deck substrates ready to receive roofing or waterproofing membrane.
  - 2. Repairs and alteration work to existing roof insulation.

#### 1.2 RELATED WORK

A. Section 06 10 00, ROUGH CARPENTRY: Wood Cants, Blocking, and Edge Strips.

### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Society of Civil Engineers

ASCE 7-16......Minimum Design Loads and Associated Criteria for Buildings and Other Structures

C. American Society of Heating, Refrigeration and Air Conditioning
 (ASHRAE):

Standard 90.1-13.....Energy Standard for Buildings Except Low-Rise Residential Buildings.

D. ASTM International (ASTM):

C208-12(2017)e2......Cellulosic Fiber Insulating Board.

C552-17e1......Cellular Glass Thermal Insulation.

C726-17......Mineral Fiber Roof Insulation Board.

C728-17a.....Perlite Thermal Insulation Board.

C1177/C1177M-17......Glass Mat Gypsum Substrate for Use as Sheathing.

C1278/C1278M-17......Fiber-Reinforced Gypsum Panel.

C1289-19.....Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board.

C1396/C1396M-17......Gypsum Board.

D41/D41M-11 (2016).....Asphalt Primer Used in Roofing, Dampproofing, and Waterproofing.

D312/D312M-16a......Asphalt Used in Roofing.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

|    | 01-01-21                                                          |
|----|-------------------------------------------------------------------|
|    | D1970/D1970M-20Self-Adhering Polymer Modified Bituminous Sheet    |
|    | Materials Used as Steep Roofing Underlayment                      |
|    | for Ice Dam Protection.                                           |
|    | D2178/D2178M-15aAsphalt Glass Felt Used in Roofing and            |
|    | Waterproofing.                                                    |
|    | D2822/D2822M-05(2011)e1.Asphalt Roof Cement, Asbestos Containing. |
|    | D4586/D4586M-07(2018)Asphalt Roof Cement, Asbestos-Free.          |
|    | E84-20Surface Burning Characteristics of Building                 |
|    | Materials.                                                        |
|    | F1667-18aDriven Fasteners: Nails, Spikes, and Staples.            |
| Ε. | National Roofing Contractors Association (NRCA):                  |
|    | Manual-15The NRCA Roofing Manual: Membrane Roof Systems-          |
|    | 2019.                                                             |

- F. UL LLC (UL):
  - Listed Online Certifications Directory.
- G. U.S. Department of Agriculture (USDA):
  - USDA BioPreferred Program Catalog.
- H. U.S. Department of Commerce National Institute of Standards and Technology (NIST):

DOC PS 1-19.....Structural Plywood.

DOC PS 2-18......Performance Standard for Wood-Based Structural-Use Panels.

#### 1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
  - 1. Show size, configuration, and installation details.
    - a. Nailers, cants, and terminations.
- C. Manufacturer's Literature and Data:
  - 1. Description of each product.
- D. Qualifications: Substantiate qualifications meet specifications.
  - 1. Installer.

#### 1.5 OUALITY ASSURANCE

A. Installer Qualifications: Same installer as Division 07 roofing section installer.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 1.6 DELIVERY

- A. Comply with recommendations of NRCA Manual.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

#### 1.7 STORAGE AND HANDLING

- A. Comply with recommendations of NRCA Manual.
- B. Store products indoors in dry, weathertight facility.
- C. Protect products from damage during handling and construction operations.

#### 1.8 FIELD CONDITIONS

A. Environment: Install products when existing and forecasted weather permit installation according to manufacturer's instructions.

#### 1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant substrate board, vapor retarder, insulation, and cover board against material and manufacturing defects as part of Division 07 roofing system warranty.

#### PART 2 - PRODUCTS

### 2.1 SYSTEM PERFORMANCE

- A. On existing roofs confirm available insulation thickness and modify as required
- B. Insulation Thermal Performance:
- C. Match existing thickness and slope of existing (adjacent) insulation Fire and Wind Uplift Resistance: Provide roof insulation complying with requirements specified in Division 07 roofing section.
- D. Insulation on Metal Decking: UL labeled indicating compliance with one of the following:
  - 1. UL Listed.
  - 2. Insulation Surface Burning Characteristics: When tested according to ASTM E84.
    - a. Flame Spread Rating: 75 maximum.
    - b. Smoke Developed Rating: 150 maximum.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 2.2 PRODUCTS - GENERAL

- A. Provide each product from one manufacturer.
  - 1. Insulation:
    - a. Match Existing

#### 2.3 ADHESIVES

- A. Primer: ASTM D41/D41M.
- B. Asphalt: ASTM D312, Type III or IV for vapor retarders and insulation.
- C. Modified Asphaltic Insulation Adhesive: Insulation manufacturer's recommended modified asphaltic, asbestos-free, cold-applied adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- D. Bead-Applied Urethane Insulation Adhesive: Insulation manufacturer's recommended bead-applied, low-rise, one- or multicomponent urethane adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- E. Full-Spread Applied Urethane Insulation Adhesive: Insulation manufacturer's recommended spray-applied, low-rise, two-component urethane adhesive formulated to adhere roof insulation to substrate or to another insulation layer.
- F. Roof Cement: Asbestos free, ASTM D2822/D2822M, Type I or Type II; or, ASTM D4586/D4586M, Type I or Type II.

#### 2.4 ROOF AND DECK INSULATION

A. Roof and Deck Insulation, General: Preformed roof insulation boards approved by roofing manufacturer. Match existing.

#### 2.5 INSULATION ACCESSORIES

A. Substrate Board: Match existing.

#### 2.6 ACCESSORIES

- A. Fasteners: Corrosion-resistant carbon steel fasteners and galvalume-coated steel or plastic round plates for fastening substrate board and insulation to roof deck.
- B. Nails: ASTM F1667; type to suit application.

### PART 3 - EXECUTION

#### 3.1 EXAMINATION

A. Comply with requirements of Division 07 roofing section.

#### 3.2 PREPARATION

A. Examine and verify substrate suitability for product installation.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

B. Protect existing construction and completed work from damage.

### 3.3 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
  - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Comply with requirements of UL for insulated steel roof deck.
- C. Attach substrate board and other products to meet requirements of Division 07 roofing section.

#### 3.4 SUBSTRATE BOARD INSTALLATION

- A. Fasten substrate board to top flanges of steel decking to resist uplift pressures according requirements for specified roofing system.
  - 1. Locate the long dimension edge joints solidly bearing on top of decking ribs.

#### 3.5 VAPOR RETARDER INSTALLATION

- A. Vapor Retarder Installation, General:
  - 1. Install continuous vapor retarder on roof decks where indicated.
  - 2. At vertical surfaces, turn up vapor retarder to top of insulation or base flashing.
  - 3. Seal penetrations through vapor retarder with roof cement to prevent moisture entry from below.

### 3.6 INSULATION INSTALLATION

- A. Insulation Installation, General:
  - 1. Base Sheet: Where required by roofing system, install one lapped base sheet specified in Division 07 roofing section by mechanically fastening to roofing substrate before installation of insulation.
  - 2. Use same insulation as existing for roof repair and alterations unless specified otherwise.
- B. Insulation Thickness:
  - 1. Thickness of roof insulation to match existing.
- C. Lay insulating units with close joints, in regular courses and with end joints staggered.
  - 1. Stagger joints between layers minimum 150 mm (6 inches).
- D. Lay units with long dimension perpendicular to the rolled (longitudinal) direction of the roofing felt.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- E. Seal cut edges at penetrations and at edges against blocking with bitumen or roof cement.
- F. Cut to fit tightly against blocking or penetrations.
- G. Cover all insulation installed on the same day; comply with temporary protection requirements of Division 07 roofing section.
- H. Installation Method:
  - 1. Adhered Insulation:
    - a. Prime substrate as required.
    - b. Set each layer of insulation firmly in ribbons of bead-applied insulation adhesive.
    - c. Set each layer of insulation firmly in uniform application of full-spread insulation adhesive.
  - 2. Mechanically Fastened Insulation:
    - a. Fasten insulation according to requirements in Division 07 roofing section.
    - b. Fasten insulation to resist uplift pressures specified in Division 07 roofing section and ASCE-7.
  - 3. Mechanically Fastened and Adhered Insulation:
    - a. Fasten first layer of insulation according to "Mechanically Fastened Insulation" requirements.
    - b. Fasten each subsequent layer of insulation according to "Adhered Insulation" requirements.

#### 3.7 COVER BOARD INSTALLATION

- A. Install cover boards over insulation with long joints in continuous straight lines with staggered end joints.
- B. Offset cover board joints from insulation joints 150 mm (6 inches), minimum.
- C. Secure cover boards according to Mechanically Fastened Insulation requirements.

- - E N D - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

### 01-01-21 **0**

## SECTION 07 84 00 FIRESTOPPING

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

#### 1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealants and application.
- B. Section 23 31 00, HVAC DUCTS AND CASINGS: Fire and smoke damper assemblies in ductwork.
- C. Section 23 37 00, AIR OUTLETS AND INLETS: Fire and smoke damper assemblies in ductwork.

#### 1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Installer qualifications.
- C. Inspector qualifications.
- D. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- E. List of FM, UL, or WH classification number of systems installed.
- F. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- G. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

### 1.4 DELIVERY AND STORAGE

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 1.5 QUALITY ASSURANCE

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

#### 1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

| E84-20         | .Surface Burning Characteristics of Building     |
|----------------|--------------------------------------------------|
|                | Materials                                        |
| E699-16        | .Standard Specification for Agencies Involved in |
|                | Testing, Quality Assurance, and Evaluating of    |
|                | Manufactured Building Components                 |
| E814-13a(2017) | .Fire Tests of Penetration Firestop Systems      |
|                |                                                  |

E2174-20a......Standard Practice for On-Site Inspection of
Installed Firestop Systems
E2393-20.....Standard Practice for On-Site Inspection of

E2393-20......Standard Practice for On-Site Inspection of

Installed Fire Resistive Joint Systems and

Perimeter Fire Barriers

#### C. FM Global (FM):

Annual Issue Approval Guide Building Materials
4991-13......Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):
 Annual Issue Building Materials Directory

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- E. Annual Issue Fire Resistance Directory
  - 723-Edition 11(2018)....Standard for Test for Surface Burning
    Characteristics of Building Materials

1479-04(2015).....Fire Tests of Penetration Firestops

- F. Intertek Testing Services Warnock Hersey (ITS-WH):
  Annual Issue Certification Listings
- G. Environmental Protection Agency (EPA):

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

## PART 2 - PRODUCTS

#### 2.1 FIRESTOP SYSTEMS

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 inches) nominal pipe or 0.01 square meter (16 square inches) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
  - 1. Contain no flammable or toxic solvents.
  - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
  - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
  - 4. When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
  - 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
    - a. Sealants: 250 g/L.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- b. Sealant Primers for Nonporous Substrates: 250 g/L.
- c. Sealant Primers for Porous Substrates: 775 g/L.
- D. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- E. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- F. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals.

  Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- G. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
  - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
  - 2. For floor penetrations with annular spaces exceeding 101 mm (4 inches) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
  - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

### PART 3 - EXECUTION

## 3.1 EXAMINATION

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 3.2 PREPARATION

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials
- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

### 3.3 INSTALLATION

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.
- C. Install smoke stopping seals in smoke partitions.

### 3.4 CLEAN-UP

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

### 3.5 INSPECTIONS AND ACCEPTANCE OF WORK

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

### SECTION 07 92 00 JOINT SEALANTS

# PART 1 - GENERAL 1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

## 1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- B. Sound Rated Gypsum Partitions/Sound Sealants: Section 09 29 00, GYPSUM BOARD.

### 1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
  - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
  - 2. Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.
  - 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.

## 1.4 CERTIFICATION:

A. Contractor is to submit to the Contracting Officer Representative written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 10-01-17

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

#### 1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Installer qualifications.
- D. Contractor certification.
- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
  - 1. Primers
  - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

#### 1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
  - 1. Do not proceed with installation of joint sealants under following conditions:
    - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below
       4.4 degrees C (40 degrees F).
    - b. When joint substrates are wet.
- B. Joint-Width Conditions:
  - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
  - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

### 1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

#### 1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

#### 1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

#### 1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):

| C509-06          | .Elastomeric Cellular Preformed Gasket and       |
|------------------|--------------------------------------------------|
|                  | Sealing Material                                 |
| ~610 14          |                                                  |
| C612-14          | .Mineral Fiber Block and Board Thermal           |
|                  | Insulation                                       |
| C717-14a         | .Standard Terminology of Building Seals and      |
|                  | Sealants                                         |
| C734-06 (R2012)  | .Test Method for Low-Temperature Flexibility of  |
|                  | Latex Sealants after Artificial Weathering       |
| C794-10          | .Test Method for Adhesion-in-Peel of Elastomeric |
|                  | Joint Sealants                                   |
| C919-12          | .Use of Sealants in Acoustical Applications.     |
| C920-14a         | .Elastomeric Joint Sealants.                     |
| C1021-08 (R2014) | .Laboratories Engaged in Testing of Building     |
|                  | Sealants                                         |
| C1193-13         | .Standard Guide for Use of Joint Sealants.       |
| C1248-08 (R2012) | .Test Method for Staining of Porous Substrate by |
|                  | Joint Sealants                                   |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

C1330-02(R2013).....Cylindrical Sealant Backing for Use with Cold
Liquid Applied Sealants

C1521-13......Standard Practice for Evaluating Adhesion of
Installed Weatherproofing Sealant Joints

D217-10.....Test Methods for Cone Penetration of
Lubricating Grease

D1056-14....Specification for Flexible Cellular Materials—
Sponge or Expanded Rubber

E84-09....Surface Burning Characteristics of Building

C. Sealant, Waterproofing and Restoration Institute (SWRI).
The Professionals' Guide

Materials

D. Environmental Protection Agency (EPA):

40 CFR 59(2014)......National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

## PART 2 - PRODUCTS

#### 2.1 SEALANTS:

- C. Interior Sealants:
  - 1. VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
    - a. Architectural Sealants: 250 g/L.
    - b. Sealant Primers for Nonporous Substrates: 250 g/L.
    - c. Sealant Primers for Porous Substrates: 775 g/L.
  - 2. Provide location(s) of interior sealant as follows:
    - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.
    - b. Exposed isolation joints at top of full height walls.
- D. Acoustical Sealant:
  - 1. Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant have a consistency of 250 to 310 when tested in accordance with ASTM D217; remain flexible and adhesive

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining.

- 2. Provide location(s) of acoustical sealant as follows:
  - a. Exposed acoustical joint at sound rated partitions.
  - b. Concealed acoustic joints at sound rated partitions.
  - c. Joints where item pass-through sound rated partitions.

#### 2.2 COLOR:

A. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

#### 2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
  - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide self-adhesive tape where applicable.

## 2.5 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

## 2.6 PRIMER:

A. As recommended by manufacturer of caulking or sealant material.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

B. Stain free type.

## 2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

#### PART 3 - EXECUTION

#### 3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

#### 3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
  - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.
  - 2. Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
    - a. Concrete.
    - b. Masonry.
    - c. Unglazed surfaces of ceramic tile.
  - 3. Remove laitance and form-release agents from concrete.
  - 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 10-01-17

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

- a. Metal.
- b. Glass.
- c. Porcelain enamel.
- d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
  - 1. Do not leave gaps between ends of sealant backings.
  - 2. Do not stretch, twist, puncture, or tear sealant backings.
  - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
  - 1. Apply primer prior to installation of back-up rod or bond breaker tape.
  - 2. Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

## 3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.
- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

## 3.4 SEALANT DEPTHS AND GEOMETRY:

A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

### 3.5 INSTALLATION:

### A. General:

- 1. Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
- 2. Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
- 3. Do not install sealant type listed by manufacture as not suitable for use in locations specified.
- 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
- 5. Avoid dropping or smearing compound on adjacent surfaces.
- 6. Fill joints solidly with compound and finish compound smooth.
- 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
- 9. Apply compounds with nozzle size to fit joint width.
- 10. Replace sealant which is damaged during construction process.
- B. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
- C. Interior Sealants: Where gypsum board partitions are rated follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
  - 1. Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
  - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-17

- 3. Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
- 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
- 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

#### 3.6 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

## SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

## PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Hollow metal door frames for wood doors at interior locations.

#### 1.2 RELATED WORK

A. Section 08 71 00, DOOR HARDWARE: Door Hardware:

### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standard Institute (ANSI):
   A250.8-2014......Standard Steel Doors and Frames
- C. ASTM International (ASTM):

| A240/A240M-15bChromium and Chromium-Nickel Stainless Steel |
|------------------------------------------------------------|
| Plate, Sheet, and Strip for Pressure Vessels               |
| and for General Applications                               |

| A653/A653M-15 | .Steel | Shee | et, | Zinc-Co | ated | l (Galvanized) | or |     |
|---------------|--------|------|-----|---------|------|----------------|----|-----|
|               | Zinc-  | Iron | All | oy-Coat | ed ( | (Galvannealed) | by | the |
|               | Hot-D  | in   |     |         |      |                |    |     |

| A1008/A1008M-15Steel, Sheet, Cold-Rolled, Carbon, Structural, |
|---------------------------------------------------------------|
| High Strength Low Alloy and High Strength Low                 |
| Alloy with Improved Formability, Solution                     |
| Hardened, and Bake Hardenable                                 |

| B209-14  | .Aluminum | and | Aluminum-Alloy | Sheet | and | Plate |
|----------|-----------|-----|----------------|-------|-----|-------|
| B209M-14 | .Aluminum | and | Aluminum-Alloy | Sheet | and | Plate |
|          | (Metric)  |     |                |       |     |       |

| B221-14Alu | minum ar | d Aluminum | -Alloy | Extruded | Bars, |
|------------|----------|------------|--------|----------|-------|
| Rod        | s, Wire, | Profiles,  | and T  | ubes     |       |

| B221M-13 | .Alumin | num and | d Aluminum | -Alloy | Extr | uded Bars, |  |
|----------|---------|---------|------------|--------|------|------------|--|
|          | Rods,   | Wire,   | Profiles,  | and Tu | bes  | (Metric)   |  |

| D3656/D3656M-13 | .Insect | Screen | ing  | and  | Louver | Cloth | Woven | from |
|-----------------|---------|--------|------|------|--------|-------|-------|------|
|                 | Vinyl ( | Coated | Glas | s Ya | arns   |       |       |      |

| E90-09Labo | ratory Me | easure | ment of A | irborne Sound | d   |
|------------|-----------|--------|-----------|---------------|-----|
| Tran       | smission  | Loss   | of Buildi | ng Partitions | and |
| Flem       | ents      |        |           |               |     |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

| D. | Federal Specifications (Fed. Spec.):                               |
|----|--------------------------------------------------------------------|
|    | L-S-125BScreening, Insect, Nonmetallic                             |
| Ε. | Master Painters Institute (MPI):                                   |
|    | No. 18Primer, Zinc Rich, Organic                                   |
| F. | National Association of Architectural Metal Manufacturers (NAAMM): |
|    | AMP 500-06Metal Finishes Manual                                    |
| G. | National Fire Protection Association (NFPA):                       |
|    | 80-16Fire Doors and Other Opening Protectives                      |
| Н. | UL LLC (UL):                                                       |
|    | 10C-09Positive Pressure Fire Tests of Door Assemblies              |
|    | 1784-15Air Leakage Tests of Door Assemblies and Other              |
|    | Opening Protectives                                                |

- I. Department of Veterans Affairs
  - VA Physical Security and Resiliency Design Manual October 1, 2020

### 1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
  - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
  - 1. Description of each product.
  - 2. Include schedule showing each door and frame requirements fire label and smoke control label for openings.
  - 3. Installation instructions.
- D. Sustainable Construction Submittals:
  - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- E. Test reports: Certify each product complies with specifications.
  - 1. Sound rated door.
- F. Qualifications: Substantiate qualifications comply with specifications.
  - 1. Manufacturer with project experience list.

#### 1.5 OUALITY ASSURANCE

- A. Manufacturer Qualifications:
  - 1. Regularly manufactures specified products.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
  - a. Project Experience List: Provide contact names and addresses for completed projects.

#### 1.6 DELIVERY

- A. Fasten temporary steel spreaders across the bottom of each door frame before shipment.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- D. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

#### 1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight, conditioned, facility.
- B. Protect products from damage during handling and construction operations.

### 1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

#### PART 2 - PRODUCTS

#### 2.1 SYSTEM PERFORMANCE

- A. Design hollow metal frames complying with specified performance:
  - 1. Smoke Control Doors and Frames: UL 1784; NFPA 80 labeled, maximum 0.15424 cubic meter/second/square meter (3.0 cubic feet/minute/square foot) at 24.9 Pa (0.10 inches water gauge) pressure differential.

### 2.2 MATERIALS

A. Sheet Steel: ASTM A1008/A1008M, cold-rolled.

## 2.3 PRODUCTS - GENERAL

Provide hollow metal doors and frames from one manufacturer.

## 2.4 HOLLOW METAL FRAMES

- A. Hollow Metal Frames: ANSI A250.8; face welded. See drawings for sizes and designs.
  - 1. Interior Frames:
    - a. Level 1 Hollow Metal Doors: 1.0 mm (0.042 inch) thick.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- b. Wood Doors: 1.3 mm (0.053 inch) thick.
- B. Frame Materials:
  - 1. Interior Frames: Sheet steel

#### 2.5 FABRICATION

- A. Hardware Preparation: ANSI A250.8; for hardware specified in Section 08 71 00, DOOR HARDWARE.
- B. Hollow Metal Frame Fabrication:
  - 1. Terminated Stops: ANSI A250.8.
  - 2. Frame Anchors:
    - a. Floor anchors:
      - 1) Provide extension type floor anchors to compensate for depth of floor fills.
      - 2) Provide 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive floor fasteners.
      - 3) Provide 50 mm by 50 mm by 9 mm (2 inch by 2 inch by 3/8 inch) clip angle for lead lined frames, drilled for floor fasteners.
      - 4) Provide mullion 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two floor fasteners and frame anchor screws.
      - 5) Provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for floor fasteners and frame anchor screws for sill sections.
        - a) Space floor bolts50 mm (24 inches) on center.
    - b. Jamb anchors:
      - 1) Place anchors on jambs:
        - a) Near top and bottom of each frame.
        - b) At intermediate points at maximum 600 mm (24 inches) spacing.
      - 2) Form jamb anchors from steel minimum 1 mm (0.042 inch) thick.
      - 3) Anchors for stud partitions: Provide tabs for securing anchor to sides of studs. Provide one of the following:
        - a) Welded type.
        - b) Lock-in snap-in type.
      - 4) Anchors for frames set in prepared openings:

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- a) Steel pipe spacers 6 mm (1/4 inch) inside diameter, welded to plate reinforcing at jamb stops, or hat shaped formed strap spacers 50 mm (2 inches) wide, welded to jamb near stop.
- b) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass through frame and spacers.
- c) Two piece frames: Subframe or rough buck drilled for 6 mm (1/4 inch) bolts.
- 5) Modify frame anchors to fit special frame and wall construction.
- 6) Provide special anchors where shown on drawings and where required to suit application.

#### 2.6 FINISHES

- A. Steel: ANSI A250.8; shop primed.
- B. Finish exposed surfaces after fabrication.

### 2.7 ACCESSORIES

- A. Primers: ANSI A250.8.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Clips Connecting Members and Sleeves: Match door faces.
- E. Fasteners: stainless steel.
  - 1. Metal Framing: Steel drill screws.
- F. Anchors: stainless steel.

### PART 3 - EXECUTION

### 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Apply barrier coating to metal surfaces in contact with cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

#### 3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
  - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
  - 2. Install fire doors and frames according to NFPA 80.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

### 3.3 FRAME INSTALLATION

- A. Apply barrier coating to concealed surfaces of frames built into masonry.
- B. Plumb, align, and brace frames until permanent anchors are set.
  - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
  - 2. Use wood spreaders at bottom of frame when shipping spreader is removed.
  - 3. Where construction permits concealment, leave shipping spreaders in place after installation, otherwise remove spreaders when frames are set and anchored.
  - 4. Remove wood spreaders and braces when walls are built and jamb anchors are secured.

#### C. Floor Anchors:

- 1. Anchor frame jambs to floor with two expansion bolts.
  - a. Lead Lined Frames: Use 9 mm (3/8 inch) diameter bolts.
  - b. Other Frames: Use 6 mm (1/4 inch) diameter bolts.
- 2. Power actuated drive pins are acceptable to secure frame anchors to concrete floors.

#### D. Jamb Anchors:

- 1. Metal Framed Walls: Secure anchors to sides of studs with two fasteners through anchor tabs.
  - 1) 6 mm (1/4 inch) diameter expansion bolts on 600 mm (24 inch) centers.

## 3.4 DOOR INSTALLATION

- A. Install doors plumb and level.
- B. Adjust doors for smooth operation.
- C. Touch up damaged factory finishes.
  - 1. Repair galvanized surfaces with galvanized repair paint.
  - 2. Repair painted surfaces with touch up primer.

### 3.5 CLEANING

A. Clean exposed door and frame surfaces. Remove contaminants and stains.

### 3.6 PROTECTION

- A. Protect doors and frames from traffic and construction operations.
- B. Remove protective materials immediately before acceptance.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

C. Repair damage.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

## SECTION 08 14 00 INTERIOR WOOD DOORS

### PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Interior flush wood doors plastic laminate finish.

#### 1.2 RELATED WORK

- A. Section 08 71 00, DOOR HARDWARE: Door Hardware including hardware location (height).
- B. Section 08 11 13, HOLLOW METAL DOORS AND FRAMES: Installation of Doors.
- C. Section 08 71 00, DOOR HARDWARE: Installation of Door Hardware.
- D. Architectural Drawings Finish Legend: Door Finish.

#### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Window and Door Manufacturers Association (ANSI/WDMA):
  - 1. I.S. 1A-13 Architectural Wood Flush Doors.
  - 2. I.S. 6A-13 Interior Architectural Stile and Rails Doors.
- C. ASTM International (ASTM):
  - 1. E90-09(2016) Laboratory Measurements of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. National Fire Protection Association (NFPA):
  - 1. 80-16 Fire Doors and Other Opening Protectives.
  - 2. 252-12 Fire Tests of Door Assemblies.
- E. UL LLC (UL):
  - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
- F. Window and Door Manufacturers Association (WDMA):
  - 1. TM 7-14 Cycle-Slam Test.
  - 2. TM 8-14 Hinge Loading Test.
  - 3. TM 10-14 Screw Holding Capacity.

#### 1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
- 1. Show size, configuration, and fabrication and installation details. Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

8/9/2021

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 2. Indicate project specific requirements not included in Manufacturer's Literature and Data submittal.
- C. Manufacturer's Literature and Data:
  - 1. Description of each product.
- D. Samples:
  - 1. Corner section of flush veneered door 300 mm (12 inches) square, showing details of construction, labeled to show grade and type number and conformance to specified standard.
  - 2. Factory finish veneer sample where the prefinished option is accepted.
- E. Sustainable Construction Submittals:
  - 1. Low Pollutant-Emitting Materials: Show volatile organic compound types and quantities.
- F. Test Reports: Indicate products comply with specifications.
  - 1. Screw Holding Capacity Test.
  - 2. Cycle-Slam Test.
  - 3. Hinge-Loading Test.
- G. Operation and Maintenance Data:
  - 1. Care instructions for each exposed finish product.

## 1.5 QUALITY ASSURANCE

- A. Manufacturer Oualifications:
  - 1. Regularly and presently manufactures specified products.
  - 2. Manufactures specified products with satisfactory service on five similar installations for minimum five years.

#### 1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
  - 1. Minimum 0.15 mm (6 mil) polyethylene bags or cardboard packaging to remain unbroken during delivery and storage.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, and manufacture date.
  - 1. Identify door opening corresponding to Door Schedule.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging. Retain packaging for door protection after installation.

## 1.7 STORAGE AND HANDLING

A. Store products indoors in dry, weathertight, conditioned facility. Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 1. Store doors according to ANSI/WDMA I.S. 1A.
- B. Protect products from damage during handling and construction operations.

### 1.8 FIELD CONDITIONS

- A. Environment:
  - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
  - 2. Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
  - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

Comply with door manufacturer's instructions for relative humidity.

### 1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant interior factory finished wood doors against material and manufacturing defects.
  - 1. Warranty Period: Lifetime of original installation.

### PART 2 - PRODUCTS

#### 2.1 PRODUCTS - GENERAL

- A. Architectural Drawings Finish Legend.
- B. Provide each product from one manufacturer.
- C. Sustainable Construction Requirements:
  - 1. Low Pollutant-Emitting Materials: Comply with Low VOC limits for the following products:
  - 2. Paints and coatings.

### 2.2 FLUSH WOOD DOORS

- A. General:
  - 1. ANSI/WDMA I.S. 1A, Extra Heavy Duty.
  - 2. Adhesive: Type II.
  - 3. Core: Structural composite lumber, except when mineral core is required for fire rating.
  - 4. Thickness: 44 mm (1-3/4 inches) unless otherwise shown or specified.
- B. Faces:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 1. ANSI/WDMA I.S. 1A.
- 2. Door Edges: Same as laminate used for door face.

#### 2.3 FABRICATION

- A. Factory machine interior wood doors to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
  - 1. Factory fit fire rated doors according to NFPA 80.
- B. Rout doors for hardware using templates and location heights specified in Section 08 71 00, DOOR HARDWARE.
- C. Factory fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (2 inches) of door thickness undercut where shown.
- D. Clearances between Doors and Frames and Floors:
  - 1. Fire Rated Doors: Comply with NFPA 80.
    - a. Doors with Automatic Bottom Seal: Maximum clearance 10 mm (3/8 inch) at threshold.
    - b. Other Door Bottoms: Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
  - 2. Door Jambs, Heads, and Meeting Stiles: Maximum 3 mm (1/8 inch).
- E. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- F. Identify each door on top edge.
  - Mark with stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, date of manufacture and quality.
  - 2. Mark door or provide separate certification including name of inspection organization.
  - 3. Identify door manufacturing standard, including glue type.
  - 4. Identify veneer and quality certification.
  - 5. Identification of preservative treatment for stile and rail doors.

## 2.4 FINISHES

- A. Field Finished Doors: Seal top and bottom edges of doors with two coats of catalyzed polyurethane or water resistant sealer.
- B. Factory Transparent Finish:
  - 1. Factory finish flush wood doors with specified laminate.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### PART 3 - EXECUTION

#### 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
  - 1. Verify door frames are properly anchored.
  - 2. Verify door frames are plumb, square, in plane, and within tolerances for door installation.
- B. Protect existing construction and completed work from damage.

#### 3.2 INSTALLATION

- A. Install products according to manufacturer's instructions and approved submittal drawings.
  - 1. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

### 3.3 PROTECTION

- A. After installation, place shipping container over door and tape in place.
  - 1. Do not apply tape to door faces and edges.
- B. Provide protective covering over exposed hardware in addition to covering door.
- C. Maintain covering in good condition until removal is directed by Contracting Officer's Representative.

- - E N D - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

## **SECTION 08 71 00**

## DOOR HARDWARE

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

## 1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Painting: Section 09 91 00, PAINTING.

#### 1.3 GENERAL

- A. All hardware shall comply with ABAAS, (Architectural Barriers Act Accessibility Standard) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- D. The following items shall be of the same manufacturer, except as otherwise specified:
  - 1. Mortise locksets.
  - 2. Hinges for hollow metal and wood doors.
  - 3. Surface applied overhead door closers.

#### 1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
  - 1. Locks, latchsets, and panic hardware: 5 years.
  - 2. Door closers and continuous hinges: 10 years.

#### 1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

### 1.6 SUBMITTALS

A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Submit 6 copies of the schedule per Section

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 01-01-21

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

01 33 23. Submit 2 final copies of the final approved schedules to VAMC  ${\it COR}$  as record copies.

B. Hardware Schedule: AHC certified hardware consultant to prepare and submit hardware schedule in the following form:

| Hardware<br>Item | Quantity | Size | Reference<br>Publication<br>Type No. | Finish | Mfr.<br>Name<br>and<br>Catalog<br>No. | Key<br>Control<br>Symbols | UL Mark (if fire rated and listed) | ANSI/BHMA<br>Finish<br>Designation |
|------------------|----------|------|--------------------------------------|--------|---------------------------------------|---------------------------|------------------------------------|------------------------------------|
|                  |          |      |                                      |        |                                       |                           |                                    |                                    |
|                  |          |      |                                      |        |                                       |                           |                                    |                                    |
|                  |          |      |                                      |        |                                       |                           |                                    |                                    |

- C. Samples and Manufacturers' Literature:
- D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

## 1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to COR for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number.

### 1.8 INSTRUCTIONS

- A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.
  - 1. Keys, cores, pins, etc, and keying information will be furnished to the VA Fargo locksmith to pin cores and install.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

### 1.9 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.

| В. | ASTM | International | (ASTM): |  |
|----|------|---------------|---------|--|
|----|------|---------------|---------|--|

| F883-13                               | .Padlocks                                       |  |
|---------------------------------------|-------------------------------------------------|--|
| E2180-18                              | .Standard Test Method for Determining the       |  |
|                                       | Activity of Incorporated Antimicrobial Agent(s) |  |
| In Polymeric or Hydrophobic Materials |                                                 |  |
| Amorican National Stand               | arda Instituto/Puildors Hardwaro Manufacturors  |  |

|    | E2180-18Standard Test Method for Determining the                      |  |
|----|-----------------------------------------------------------------------|--|
|    | Activity of Incorporated Antimicrobial Agent(s)                       |  |
|    | In Polymeric or Hydrophobic Materials                                 |  |
| С. | American National Standards Institute/Builders Hardware Manufacturers |  |
|    | Association (ANSI/BHMA):                                              |  |
|    | A156.1-06Butts and Hinges                                             |  |
|    | A156.2-03Bored and Pre-assembled Locks and Latches                    |  |
|    | A156.3-08Exit Devices, Coordinators, and Auto Flush Bolts             |  |
|    | A156.4-08Door Controls (Closers)                                      |  |
|    | A156.5-14Cylinders and Input Devices for Locks.                       |  |
|    | A156.6-05Architectural Door Trim                                      |  |
|    | A156.8-05Door Controls-Overhead Stops and Holders                     |  |
|    | A156.11-14Cabinet Locks                                               |  |
|    | A156.12-05Interconnected Locks and Latches                            |  |
|    | A156.13-05Mortise Locks and Latches Series 1000                       |  |
|    | A156.14-07Sliding and Folding Door Hardware                           |  |
|    | A156.15-06Release Devices-Closer Holder, Electromagnetic              |  |
|    | and Electromechanical                                                 |  |
|    | A156.16-08Auxiliary Hardware                                          |  |
|    | A156.17-04Self-Closing Hinges and Pivots                              |  |
|    | A156.18-06Materials and Finishes                                      |  |
|    | A156.20-06Strap and Tee Hinges, and Hasps                             |  |
|    | A156.21-09Thresholds                                                  |  |
|    | A156.22-05Door Gasketing and Edge Seal Systems                        |  |
|    | A156.23-04Electromagnetic Locks                                       |  |
|    | A156.24-03Delayed Egress Locking Systems                              |  |
|    |                                                                       |  |

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

A156.25-07 ......Electrified Locking Devices

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | 01 01 21                                               |
|----|--------------------------------------------------------|
|    | A156.26-06Continuous Hinges                            |
|    | A156.28-07Master Keying Systems                        |
|    | A156.29-07Exit Locks and Alarms                        |
|    | A156.30-03High Security Cylinders                      |
|    | A156.31-07Electric Strikes and Frame Mounted Actuators |
|    | A156.36-10Auxiliary Locks                              |
|    | A250.8-03Standard Steel Doors and Frames               |
| D. | National Fire Protection Association (NFPA):           |
|    | 80-10Fire Doors and Other Opening Protectives          |
|    | 101-09Life Safety Code                                 |
| Ε. | Underwriters Laboratories, Inc. (UL):                  |
|    | Building Materials Directory (2008)                    |

### PART 2 - PRODUCTS

### 2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
  - 1. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide.
- B. Provide quantity and size of hinges per door leaf as follows:
  - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
  - 2. Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
  - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
  - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm  $\times$  114 mm (4-1/2 inches  $\times$  4-1/2 inches) hinges.
  - 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
  - 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm  $\times$  114 mm (5 inches  $\times$  4-1/2 inches).
  - 7. Provide heavy-weight hinges where specified.
    - 8. At doors weighing 330 kg (150 pounds) or more, furnish 127 mm (5 inch) high hinges.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 01-01-21

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

### 2.2 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
  - 1. The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
  - 2. Where specified, closer shall have hold-open feature.
  - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
  - 4. Material of closer body shall be forged or cast.
  - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
  - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
  - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
  - 8. Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
  - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
  - 10. Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
  - 11. Provide parallel arm closers with heavy duty rigid arm.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 12. Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
- 13. Provide all surface closers with the same body attachment screw pattern for ease of replacement and maintenance.
- 14. All closers shall have a 1 ½" (38mm) minimum piston diameter.

#### 2.3 DOOR STOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.

#### 2.4 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Cylinders shall be furnished with construction removable cores and construction master keys. Cylinder shall be removable by special key or tool. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks, and any other type lock included in the Great Grand Master Key System. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4 inch) throw, unless shorter throw allowed by the door manufacturer's fire label
- B. In addition to above requirements, locks and latches shall comply with following requirements:

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

1. Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade 2. All locksets and latchsets shall have lever handles fabricated from cast stainless steel. Provide sectional (lever x rose) lever design matching existing. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks. Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide nonferrous mortise lock case.

#### 2.5 KEYS

A. Furnish keys in quantities as follows:

| Locks/Keys     | Quantity    |
|----------------|-------------|
| Cylinder locks | 2 keys each |

### 2.6 KICK PLATES AND DOOR EDGING

- A. Conform to ANSI Standard A156.6.
- B. Provide protective plates as specified below:
  - 1. Kick plates of metal, Type J100 series.

Provide kick plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick. Provide kick plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick plates to within 6 mm (1/4 inch) of each edge of doors. For jamb stop requirements, see specification sections pertaining to door frames.

#### 2.7 FINISHES

A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
  - 1. Hinges --interior doors: 652 or 630.
  - 2. Pivots: Match door trim.
  - 3. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
  - 4. Thresholds: Mill finish aluminum.
  - 5. Cover plates for floor hinges and pivots: 630.
  - 6. Other primed steel hardware: 600.

Hardware Finishes for Existing Buildings: U.S Standard finishes shall match finishes of hardware in (similar) existing spaces except where otherwise specified.

D. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

### 2.8 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

| Finish | Base Metal      |
|--------|-----------------|
| 652    | Steel           |
| 626    | Brass or bronze |
| 630    | Stainless steel |

## PART 3 - EXECUTION

## 3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval. //
- B. For new buildings locate hardware on doors at heights specified below, with all hand-operated hardware centered within 864 mm (34 inches) to 1200 mm (48 inches), unless otherwise noted:
- C. Hardware Heights from Finished Floor:

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- 1. Locksets and latch sets centerline of strike 1024 mm (40-5/16 inches).
- 2. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

#### 3.2 INSTALLATION

- A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment.
- B. Hinge Size Requirements:

| Door Thickness                              | Door Width                                              | Hinge Height          |
|---------------------------------------------|---------------------------------------------------------|-----------------------|
| 45 mm (1-3/4 inch)                          | 900 mm (3 feet) and less                                | 113 mm (4-1/2 inches) |
| 45 mm (1-3/4 inch)                          | Over 900 mm (3 feet) but not more than 1200 mm (4 feet) | 125 mm (5 inches)     |
| 35 mm (1-3/8 inch) (hollow core wood doors) | Not over 1200 mm (4 feet)                               | 113 mm (4-1/2 inches) |

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by COR. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.
- E. Hinges Required Per Door:

| Door Description                                                     | Number butts |
|----------------------------------------------------------------------|--------------|
| Doors over 1500 mm (5 ft) high and not over 2280 mm (7 ft 6 in) high | 3 butts      |

F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete. Fiber or rawl plugs and adhesives are not permitted.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

G. After locks have been installed; show in presence of COR that keys operate their respective locks in accordance with keying requirements.

### 3.3 FINAL INSPECTION

- A. Installer to provide letter to VA COR that upon completion, installer has visited the Project and has accomplished the following:
  - 1. Re-adjust hardware.
  - 2. Evaluate maintenance procedures and recommend changes or additions, and instruct VA personnel.
  - 3. Identify items that have deteriorated or failed.
  - 4. Submit written report identifying problems.

#### 3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of COR and VA Locksmith.

#### 3.5 HARDWARE SETS

- A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be required. Disregard hardware sets listed in specifications but not shown on drawings.
- B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

  ELECTRIC HARDWARE ABBREVIATIONS LEGEND:

ADO = Automatic Door Operator

EMCH = Electro-Mechanical Closer-Holder

MHO = Magnetic Hold-Open (wall- or floor-mounted)

C. INTERIOR SINGLE DOORS

HW-3E

Each Door to Have: NON-RATED

Hinges QUANTITY & TYPE AS REQUIRED

1 Office Lock F04

1 Floor Stop L02121 x 3 FASTENERS

1 Set Self-Adhesive Seals R0Y154

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- - - E N D - - -

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

## SECTION 09 05 16 SUBSURFACE PREPARATION FOR FLOOR FINISHES

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies subsurface preparation requirements for areas to
- B. receive the installation of applied and resinous flooring. This section includes removal of existing floor coverings, testing concrete for moisture and pH, remedial floor coating for concrete floor slabs having unsatisfactory moisture or pH conditions, floor leveling and repair as required.

### 1.2 RELATED WORK

A. Section 07 92 00, JOINT SEALANTS.

## 1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and TEST DATA.
- B. Written approval confirming product compatibility with subfloor material manufacturer and the flooring manufacturer
- C. Product Data:
  - 1. Moisture remediation system
  - 2. Underlayment Primer
  - 3. Cementitious Self-Leveling Underlayment
  - 4. Cementitious Trowel-Applied Underlayment (Not suitable for resinous floor finishes)
- D. Test Data:
  - 1. Moisture test and pH results performed by a qualified independent testing agency or warranty holding manufacturer's technical representative.

### 1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. ASTM International (ASTM):

| D638-14(2014)Standar | d Test | Method | for | Tensile | Properties | of |
|----------------------|--------|--------|-----|---------|------------|----|
| Plastic              | S      |        |     |         |            |    |

- D4259-18(2019)......Standard Practice for Preparation of Concrete by Abrasion Prior to Coating Application.
- C109/C109M-20b(2020)....Standard Test Method for Compressive Strength

  of Hydraulic Cement Mortars (Using 2-in. or

  [50-mm] Cube Specimens
- 7234-19(2020)..........Standard Test Method for Pull-Off Adhesion

  Strength of Coatings on Concrete Using Portable

  Pull-Off Adhesion Testers
- E96/E96M-16(2016).....Standard Test Methods for Water Vapor

  Transmission of Materials
- F710-1e1(2020)......Standard Practice for Preparing Concrete Floors
  to Receive Resilient Flooring
- F1869-16a.....Standard Test Method for Measuring Moisture

  Vapor Emission Rate of Concrete Subfloor Using

  Anhydrous Calcium Chloride
- F2170-19a(2020)......Standard Test Method for Determining Relative

  Humidity in Concrete Floor Slabs Using in situ

  Probes
- C348-20(2020).....Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars
- C191-19(2020)......Standard Test Method for Time of Setting of
  Hydraulic Cement by Vicat Needle

## PART 2 - PRODUCTS

#### 2.1

## 2.1 CEMENTITIOUS SELF-LEVELING UNDERLAYMENT

- A. System Descriptions:
  - 1. High performance self-leveling underlayment resurfacer. Single component, self-leveling, cementitious material designed for easy

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

application as an underlayment for all types of flooring materials. It is used for substrate repair and leveling.

- B. Products: Subject to compliance with applicable fire, health, environmental, and safety requirements for storage, handling, installation, and clean up. Gypsum-based products are unacceptable.
- C. System Characteristics:
  - 1. Wearing Surface: smooth
  - 2. Thickness: Ranges from feathered edge to 1", per application.

    Applications greater than 1" require additional 3/8" aggregate to mix or as recommended by manufacturer.
- D. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- E. Compressive Strength: Minimum 4100 psi in 28 days in accordance with ASTM C109/C109M.
- F. Flexural Strength: Minimum 1000 psi in 28 days in accordance with ASTM C348
- G. Dry Time: Per manufacturers specifications
- H. Primer: compatible and as recommended by manufacturer for use over intended substrate
  - a. Aggregates: for applications greater than linch, require additional 3/8" aggregate to mix.

I.

| Property                           | Test            | Value                                    |  |
|------------------------------------|-----------------|------------------------------------------|--|
| Compressive Strength               | ASTM C109/C109M | 2,200 psi @ 24 hrs<br>3,000 psi @ 7 days |  |
| Initial set time<br>Final Set time | ASTM C191       | 30-45 min.<br>1 to 1.5 hours             |  |
| Bond Strength                      | ASTM D7234      | 100% bond to concrete failure            |  |

# 2.2 CEMENTITIOUS TROWEL-APPLIED UNDERLAYMENT (NOT SUITABLE FOR RESINOUS FLOOR FINISHES)

- A. Underlayment shall be calcium aluminate cement-based, containing Portland cement. Gypsum-based products are unacceptable.
- B. Compressive Strength: Minimum 4000 psi in 28 days
- C. Trowel-applied underlayment shall not contain silica quartz (sand).

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

D. Dry Time: Underlayment shall receive the application of floor covering in 15-20 minutes or per manufacturer's instructions.

### PART 3 - EXECUTION

## 3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before testing and not less than three days after testing.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation.
- C. Do not install materials when the temperatures of the substrate or materials are not within 60-85 degrees F/ 16-30 degrees C.

## 3.2 SURFACE PREPARATION

- A. Existing concrete slabs with existing floor coverings:
  - 1. Conduct visual observation of existing floor covering for adhesion, water damage, alkaline deposits, and other defects.
  - 2. Remove existing floor covering and adhesives. Comply with local, state and federal regulations and the RFCI Recommended Work Practices for Removal of Resilient Floor Coverings, as applicable to the floor covering being removed.
- B. Concrete shall meet the requirements of ASTM F710 and be sound, solid, clean, and free of all oil, grease, dirt, curing compounds, and any substance that might act as a bond-breaker before application. As required prepare slab by mechanical methods. No chemicals or solvents shall be used.
- C. General: Prepare and clean substrates according to flooring manufacturer's written instructions for substrate indicated.
- D. Prepare concrete substrates per ASTM D4259 as follows:
  - 1. Comply with manufacturer's written instructions.
- E. Repair damaged and deteriorated concrete according to flooring manufacturer's written recommendations.
- F. Verify that concrete substrates are dry.
- G. Perform anhydrous calcium chloride test, ASTM F 1869. Proceed with application only after substrates have maximum moisture-vapor-emission rate of per flooring manufactures formal and project specific written recommendation.
- H. Provide a written report showing test placement and results.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- I. Prepare joints in accordance with Section 07 92 00, JOINT SEALANTS and material manufacturer's instructions.
- J. Alkalinity: Measure surface pH in accordance with procedures provided in ASTM F710 or as outlined by qualified testing agency or flooring manufacturer's technical representative.
- K. Tolerances: Subsurface shall meet the flatness and levelness tolerance specified on drawings or recommended by the floor finish manufacturer. Tolerance shall also not to exceed 1/4" deviation in 10'. As required, install underlayment to achieve required tolerance.
- L. Other Subsurface: For all other subsurface conditions, such as wood or metal, contact the floor finish or underlayment manufacturer, as appropriate, for proper preparation practices.

# 3.3 MOISTURE REMEDIATION COATING

- A. Where results of relative humidity testing (ASTM F2170) exceed the requirements of the specified flooring manufacturer, apply remedial coating as specified to correct excessive moisture condition.
- B. Prior to remedial floor coating installation mechanically prepare the concrete surface to provide a concrete surface profile in accordance with ASTM D4259.
- C. Mix and apply moisture remediation coating in accordance with manufacturer's instructions.

## 3.4 CEMENTITOUS UNDERLAYMENT

- A. Install cementitious self-leveling underlayment as required to correct surface defects, floor flatness or levelness corrections to meet the tolerance requirements as or detailed on drawings, address non-moving cracks or joints, provide a smooth surface for the installation of floor covering.
- B. Mix and apply in accordance with manufacturer's instructions.

### 3.5 PROTECTION

A. Prior to the installation of the finish flooring, the surface of the underlayment should be protected from abuse by other trades by the use of plywood, tempered hardwood, or other suitable protection.

### 3.6 FIELD QUALITY CONTROL

A. Where specified, field sampling of products shall be conducted by a qualified, independent testing facility.

- - - E N D - - -

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

## **SECTION 09 22 16** NON-STRUCTURAL METAL FRAMING

## PART 1 - GENERAL

### 1.1 DESCRIPTION

This section specifies steel studs wall systems, shaft wall systems, ceiling or soffit suspended or furred framing, wall furring, fasteners, and accessories for the screw attachment of gypsum board, or other building boards.

### 1.2 RELATED WORK

- A. Support for wall mounted items: Section 05 50 00, METAL FABRICATIONS.
- B. Ceiling suspension systems for acoustical tile or panels and lay in gypsum board panels: Section 09 51 00, ACOUSTICAL CEILINGS Section 09 29 00, GYPSUM BOARD.

### 1.3 TERMINOLOGY

- A. Description of terms shall be in accordance with ASTM C754, ASTM C11, ASTM C841 and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by beams, trusses, or bar joists. In interstitial spaces with walk-on floors the underside of the walk-on floor is the underside of structure overhead.
- C. Thickness of steel specified is the minimum bare (uncoated) steel thickness.

### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Studs, runners and accessories.
  - 2. Hanger inserts.
  - 3. Channels (Rolled steel).
  - 4. Furring channels.
  - 5. Screws, clips and other fasteners.
- C. Shop Drawings:
  - 1. Typical ceiling suspension system.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

- 2. Typical metal stud and furring construction system including details around openings and corner details.
- 3. Typical shaft wall assembly
- 4. Typical fire rated assembly and column fireproofing showing details of construction same as that used in fire rating test.
- D. Test Results: Fire rating test designation, each fire rating required for each assembly.

## 1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C754.

#### 1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society For Testing And Materials (ASTM) A641-09.....Zinc-Coated (Galvanized) Carbon Steel Wire A653/653M-11.....Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by Hot-Dip Process. C11-10......Terminology Relating to Gypsum and Related Building Materials and Systems C635-07......Manufacture, Performance, and Testing of Metal Suspension System for Acoustical Tile and Lay-in Panel Ceilings C636-08......Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels C645-09......Non-Structural Steel Framing Members C754-11.....Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products C841-03(R2008)......Installation of Interior Lathing and Furring C954-10......Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness E580-11......Application of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Requiring Moderate Seismic Restraint.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

### PART 2 - PRODUCTS

# 2.1 STEEL STUDS AND RUNNERS (TRACK)

- A. ASTM C645, modified for thickness specified and sizes as shown.
  - 1. Use C 645 steel, 0.75 mm (0.0296-inch) minimum base-metal (30 mil).
  - 2. Runners same thickness as studs.
  - 3. Exception: Members that can show certified third party testing with gypsum board in accordance with ICC ES AC86 (Approved May 2012) need not meet the minimum thickness limitation or minimum section properties set forth in ASTM C 645. The submission of an evaluation report is acceptable to show conformance to this requirement. Use C 645 steel, 0.48mm (0.019 inch) minimum base-metal (19 mil).
- B. Provide not less than two cutouts in web of each stud, approximately 300 mm (12 inches) from each end, and intermediate cutouts on approximately 600 mm (24-inch) centers.
- C. Doubled studs for openings and studs for supporting concrete backer-board.
- D. Studs 3600 mm (12 feet) or less in length shall be in one piece.
- E. Shaft Wall Framing:
  - 1. Conform to rated wall construction.
  - 2. C-H Studs or C-T Studs.
  - 3. E Studs.
  - 4. J Runners.
  - 5. Steel Jamb-Strut.

## 2.2 FURRING CHANNELS

- A. Rigid furring channels (hat shape): ASTM C645.
- B. Resilient furring channels:
  - 1. Not less than 0.45 mm (0.0179-inch) thick bare metal.
  - 2. Semi-hat shape, only one flange for anchorage with channel web leg slotted on anchorage side, channel web leg on other side stiffens fastener surface but shall not contact anchorage surface other channel leg is attached to.
- C. "Z" Furring Channels:
  - 1. Not less than 0.45 mm (0.0179-inch)-thick base metal, with 32 mm (1-1/4 inch) and 19 mm (3/4-inch) flanges.
  - 2. Web furring depth to suit thickness of insulation.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

06-01-18

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

D. Rolled Steel Channels: ASTM C754, cold rolled; or, ASTM C841, cold rolled.

## 2.3 FASTENERS, CLIPS, AND OTHER METAL ACCESSORIES

- A. ASTM C754, except as otherwise specified.
- B. For fire rated construction: Type and size same as used in fire rating test.
- C. Fasteners for steel studs thicker than 0.84 mm (0.033-inch) thick. Use ASTM C954 steel drill screws of size and type recommended by the manufacturer of the material being fastened.
- D. Clips: ASTM C841 (paragraph 6.11), manufacturer's standard items.

  Clips used in lieu of tie wire shall have holding power equivalent to that provided by the tie wire for the specific application.
- E. Concrete ceiling hanger inserts (anchorage for hanger wire and hanger straps): Steel, zinc-coated (galvanized), manufacturers standard items, designed to support twice the hanger loads imposed and the type of hanger used.
- F. Tie Wire and Hanger Wire:
  - 1. ASTM A641, soft temper, Class 1 coating.
  - 2. Gage (diameter) as specified in ASTM C754 or ASTM C841.
- G. Attachments for Wall Furring:
- 1. Manufacturers standard items fabricated from zinc-coated (galvanized) steel sheet.
- 2. For concrete or masonry walls: Metal slots with adjustable inserts or adjustable wall furring brackets. Spacers may be fabricated from 1 mm (0.0396-inch) thick galvanized steel with corrugated edges.
- H. Power Actuated Fasteners: Type and size as recommended by the manufacturer of the material being fastened.

## PART 3 - EXECUTION

# 3.1 INSTALLATION CRITERIA

- A. Where fire rated construction is required for walls, partitions, columns, beams and floor-ceiling assemblies, the construction shall be same as that used in fire rating test.
- B. Construction requirements for fire rated assemblies and materials shall be as shown and specified, the provisions of the Scope paragraph (1.2) of ASTM C754 and ASTM C841 regarding details of construction shall not apply.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

### 3.2 INSTALLING STUDS

- A. Install studs in accordance with ASTM C754, except as otherwise shown or specified.
- B. Space studs not more than 16 inches on center.
- C. Cut studs 6 mm to 9 mm (1/4 to 3/8-inch) less than floor to underside of structure overhead when extended to underside of structure overhead.
- D. Where studs are shown to terminate above suspended ceilings, provide bracing as shown or extend studs to underside of structure overhead.
- E. Extend studs to underside of structure overhead for all partitions and insulated exterior wall furring.

## F. Openings:

- 1. Frame jambs of openings in stud partitions and furring with two studs placed back to back or as shown.
- 2. Fasten back to back studs together with 9 mm (3/8-inch) long Type S pan head screws at not less than 600 mm (two feet) on center, staggered along webs.
- 3. Studs fastened flange to flange shall have splice plates on both sides approximately 50 X 75 mm (2 by 3 inches) screwed to each stud with two screws in each stud. Locate splice plates at 600 mm (24 inches) on center between runner tracks.

## G. Fastening Studs:

- 1. Fasten studs located adjacent to partition intersections, corners and studs at jambs of openings to flange of runner tracks with two screws through each end of each stud and flange of runner.
- 2. Do not fasten studs to top runner track when studs extend to underside of structure overhead.

## H. Chase Wall Partitions:

- 1. Locate cross braces for chase wall partitions to permit the installation of pipes, conduits, carriers and similar items.
- 2. Use studs or runners as cross bracing not less than 63 mm (2-1/2) inches wide).
- I. Form control joint, with double study spaced 13 mm (1/2-inch) apart.

## 3.3 INSTALLING WALL FURRING FOR FINISH APPLIED TO ONE SIDE ONLY

- A. In accordance with ASTM C754, or ASTM C841 except as otherwise specified or shown.
- B. Wall furring-Stud System:

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

- 1. Framed with 63 mm (2-1/2 inch) or narrower studs, 16 inches on center.
- 2. Brace as specified in ASTM C754 for Wall Furring-Stud.
- 3. Securely fasten braces to each stud with two Type S pan head screws at each bearing.
- C. Direct attachment to masonry or concrete; rigid channels or "Z" channels:
  - 1. Install rigid (hat section) furring channels at 16 inches on center, horizontally or vertically.
  - Install "Z" furring channels vertically spaced not more than 16 inches on center.
  - 3. At corners where rigid furring channels are positioned horizontally, provide mitered joints in furring channels.
  - 4. Ends of spliced furring channels shall be nested not less than 200 mm (8 inches).
  - 5. Fasten furring channels to walls with power-actuated drive pins or hardened steel concrete nails. Where channels are spliced, provide two fasteners in each flange.
  - 6. Locate furring channels at interior and exterior corners in accordance with wall finish material manufacturers printed erection instructions. Locate "Z" channels within 100 mm (4 inches) of corner.
- D. Installing Wall Furring-Bracket System: Space furring channels not more than 400 mm (16 inches) on center.

## 3.4 INSTALLING SUPPORTS REQUIRED BY OTHER TRADES

- A. Provide for attachment and support of electrical outlets, plumbing, or heating fixtures, recessed type plumbing fixture accessories, access panel frames, wall bumpers, toilet stall partitions, dressing booth partitions, urinal screens, chalkboards, tackboards, wall-hung casework, handrail brackets, recessed fire extinguisher cabinets and other items like auto door buttons and auto door operators supported by stud construction.
- B. Provide additional studs where required. Install metal backing plates, or special metal shapes as required, securely fastened to metal studs.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

### 3.5 INSTALLING SHAFT WALL SYSTEM

- A. Conform to UL Design No. U438 for two-hour fire rating.
- B. Position J runners at floor and ceiling with the short leg toward finish side of wall. Securely attach runners to structural supports with power driven fasteners at both ends and 600 mm (24 inches) on center.
- C. After liner panels have been erected, cut C-H studs and E studs, from 9 mm (3/8-inch) to not more than 13 mm (1/2-inch) less than floor-to-ceiling height. Install C-H studs between liner panels with liner panels inserted in the groove.
- D. Install full-length steel E studs over shaft wall line at intersections, corners, hinged door jambs, columns, and both sides of closure panels.
- E. Suitably frame all openings to maintain structural support for wall:
  - 1. Provide necessary liner fillers and shims to conform to label frame requirements.
  - 2. Frame openings cut within a liner panel with E studs around perimeter.
  - 3. Frame openings with vertical E studs at jambs, horizontal J runner at head and sill.

### 3.6 INSTALLING FURRED AND SUSPENDED CEILINGS OR SOFFITS

- A. Install furred and suspended ceilings or soffits in accordance with ASTM C754 or ASTM C841 except as otherwise specified or shown for screw attached gypsum board ceilings or soffits.
  - 1. Space framing at 400 mm (16-inch) centers for metal lath anchorage.
  - 2. Space framing at 600 mm (24-inch) centers for gypsum board anchorage.
- B. Where bar joists or beams are more than 1200 mm (48 inches) apart, provide intermediate hangers so that spacing between supports does not exceed 1200 mm (48 inches). Use clips, bolts, or wire ties for direct attachment to steel framing.
- C. Existing concrete construction exposed or concrete on steel decking:
  - 1. Use power actuated fasteners either eye pin, threaded studs or drive pins for type of hanger attachment required.
  - 2. Install fasteners at approximate mid height of concrete beams joists. Do not install in bottom of beams.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-18

- F. Steel decking without concrete topping:
  - 1. Do not fasten to steel decking 0.76 mm (0.0299-inch) or thinner.
  - 2. Toggle bolt to decking 0.9 mm (0.0359-inch) or thicker only where anchorage to steel framing is not possible.
- G. Installing suspended ceiling system for gypsum board (ASTM C635 Option):
  - 1. Install only for ceilings to receive screw attached gypsum board.
  - 2. Install in accordance with ASTM C636.
    - a. Install main runners spaced 1200 mm (48 inches) on center.
    - b. Install 1200 mm (four foot) tees not over 600 mm (24 inches) on center; locate for edge support of gypsum board.
    - c. Install wall track channel at perimeter.
- H. Installing Ceiling Bracing System:
  - 1. Construct bracing of 38 mm (1-1/2 inch) channels for lengths up to 2400 mm (8 feet) and 50 mm (2 inch) channels for lengths over 2400 mm (8 feet) with ends bent to form surfaces for anchorage to carrying channels and over head construction. Lap channels not less than 600 mm (2 feet) at midpoint back to back. Screw or bolt lap together with two fasteners.
  - 2. Install bracing at an approximate 45 degree angle to carrying channels and structure overhead; secure as specified to structure overhead with two fasteners and to carrying channels with two fasteners or wire ties.

## 3.7 TOLERANCES

- A. Fastening surface for application of subsequent materials shall not vary more than 3 mm (1/8-inch) from the layout line.
- B. Plumb and align vertical members within 3 mm (1/8-inch.)
- C. Level or align ceilings within 3 mm (1/8-inch.)

- - - E N D - - -

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

## SECTION 09 29 00 GYPSUM BOARD

## 04-01-20

## PART 1 - GENERAL

### 1.1 DESCRIPTION

This section specifies installation and finishing of gypsum board.

#### 1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 05 40 00, COLD-FORMED METAL FRAMING, and Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Lead lined wallboard: Section 13 49 00, RADIATION PROTECTION.

### 1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: The underside of structure overhead shall be the underside of the floor or roof construction.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

## 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Cornerbead and edge trim.
  - 2. Finishing materials.
  - 3. Laminating adhesive.
  - 4. Gypsum board, each type.

## C. Shop Drawings:

- 1. Typical gypsum board installation, showing corner details, edge trim details and the like.
- 2. Typical sound rated assembly, showing treatment at perimeter of partitions and penetrations at gypsum board.
- 3. Typical shaft wall assembly.
- 4. Typical fire rated assembly and column fireproofing, indicating details of construction same as that used in fire rating test.
- E. Test Results:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

- 1. Fire rating test, each fire rating required for each assembly.
- 2. Sound rating test.
- F. Certificates: Certify that gypsum board types, gypsum backing board types, cementitious backer units, and joint treating materials do not contain asbestos material.

## 1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

In accordance with the requirements of ASTM C840.

#### 1.6 ENVIRONMENTAL CONDITIONS

In accordance with the requirements of ASTM C840.

#### 1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM):
  - C11-15.......Terminology Relating to Gypsum and Related
    Building Materials and Systems

    C475-15.....Joint Compound and Joint Tape for Finishing
    Gypsum Board

    C840-13....Application and Finishing of Gypsum Board

    C919-12...Sealants in Acoustical Applications
  - C954-15......Steel Drill Screws for the Application of

    Gypsum Board or Metal Plaster Bases to Steel

    Stud from 0.033 in. (0.84mm) to 0.112 in.

(2.84mm) in thickness

- C1002-14.....Steel Self-Piercing Tapping Screws for the

  Application of Gypsum Panel Products or Metal

  Plaster Bases to Wood Studs or Steel Studs
- C1047-14.....Accessories for Gypsum Wallboard and Gypsum

  Veneer Base
- C1177-13......Glass Mat Gypsum Substrate for Use as Sheathing
- C1178/C1178M-18......Specification for Coated Glass Mat Water

  Resistant Backing Panel

C1658-13......Glass Mat Gypsum Panels

Latest Edition.....Fire Resistance Directory

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

D. Inchcape Testing Services (ITS):

Latest Editions.....Certification Listings

## PART 2 - PRODUCTS

### 2.1 GYPSUM BOARD

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise.
- B. Coreboard or Shaft Wall Liner Panels.
  - 1. ASTM C1396, Type X.
  - 2. ASTM C1658: Glass Mat Gypsum Panels,
  - 3. Coreboard for shaft walls 300, 400, 600 mm (12, 16, or 24 inches) wide by required lengths 25 mm (one inch) thick with paper faces treated to resist moisture.
- C. Paper facings shall contain 100 percent post-consumer recycled paper content.

#### 2.2 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet or rigid PVC plastic.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

#### 2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

## 2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of  $50~\rm{g/l}$ .

# PART 3 - EXECUTION

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

### 3.1 GYPSUM BOARD HEIGHTS

A. Extend all layers of gypsum board from floor to underside of structure overhead on all partitions.

### 3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
  - 1. For single-ply construction, use perpendicular application.
  - 2. For two-ply assembles:
    - a. Use perpendicular application.
    - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
- G. Walls (Except Shaft Walls):
  - 1. When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
  - 2. When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
  - 3. Stagger screws on abutting edges or ends.
  - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
  - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

- wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
- 6. For three-ply gypsum board assemblies, apply plies in same manner as for two-ply assemblies, except that heads of fasteners need only be driven flush with surface for first and second plies. Apply third ply of wallboard in same manner as second ply of two-ply assembly, except use fasteners of sufficient length enough to have the same penetration into framing members as required for two-ply assemblies.
- 7. No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
- 8. Control Joints ASTM C840 and as follows:
  - a. Locate at both side jambs of openings if gypsum board is not "yoked". Use one system throughout.
  - b. Not required for wall lengths less than 9000 mm (30 feet).
  - c. Extend control joints the full height of the wall or length of soffit/ceiling membrane.
- 9. Offset gypsum board ½" from floor in all applications.
- H. Electrical and Telecommunications Boxes:
  - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.

### I. Accessories:

- Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
- 2. Install in one piece, without the limits of the longest commercially available lengths.
- 3. Corner Beads:
  - a. Install at all vertical and horizontal external corners and where shown.
  - b. Use screws only. Do not use crimping tool.
- 4. Edge Trim (casings Beads):
  - a. At both sides of expansion and control joints unless shown otherwise.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

- b. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
- c. Where gypsum board surfaces of non-load bearing assemblies abut load bearing members.
- d. Where shown.

## 3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9 mm (3/8 inch) from ends and edges of sheathing and 200 mm (8 inches) on center. Space screws a maximum of 200 mm (8 inches) on center on intermediate framing members.
- D. Apply 600 mm by 2400 mm (2 foot by 8 foot) sheathing boards horizontally with tongue edge up.
- E. Apply 1200 mm by 2400 mm or 2700 mm (4 ft. by 8 ft. or 9 foot) gypsum sheathing boards vertically with edges over framing.

## 3.3 CAVITY SHAFT WALL

- A. Coordinate assembly with Section 09 22 16, NON-STRUCTURAL METAL FRAMING, for erection of framing and gypsum board.
- B. Conform to UL Design No. U438 or FM WALL CONSTRUCTION 12-2/HR (Nonbearing for two-hour fire rating. Conform to FM WALL CONSTRUCTION 25-1/HR (Non-loadbearing) for one-hour fire rating where shown.
- C. Cut coreboard (liner) panels 25 mm (one inch) less than floor-toceiling height, and erect vertically between J-runners on shaft side.
  - 1. Where shaft walls exceed 4300 mm (14 feet) in height, position panel end joints within upper and lower third points of wall.
  - 2. Stagger joints top and bottom in adjacent panels.
- D. Gypsum Board:
  - 1. Two hour wall:
    - a. Erect base layer (backing board) vertically on finish side of wall with end joints staggered. Fasten base layer panels to studs with 25 mm (one inch) long screws, spaced 16" vertically on center.
    - b. Use laminating adhesive between plies in accordance with UL or  ${\tt FM}$  if required by fire test.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

- c. Apply face layer of gypsum board required by fire test vertically over base layer with joints staggered and attach with screws of sufficient length to secure to framing staggered from those in base, spaced 300 mm (12 inches) on center.
- 2. One hour wall with one layer on finish side of wall: Apply face layer of gypsum board vertically. Attach to studs with screws of sufficient length to secure to framing, spaced 300 mm (12 inches) on center in field and along edges.
- 3. Where coreboard is covered with face layer of gypsum board, stagger joints of face layer from those in the coreboard base.
- E. Treat joints, corners, and fasteners in face layer as specified for finishing of gypsum board.

### 3.5 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
  - 1. Gypsum board is fastened and held close to framing or furring.
  - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the construction. Sanding is not required of non decorated surfaces.

## 3.6 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

04-01-20

- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide smoke tight construction.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

# SECTION 09 51 00 ACOUSTICAL CEILINGS

## PART 1 - GENERAL

### 1.1 SUMMARY

- A. Section Includes:
  - 1. Acoustical units.
  - 2. Metal ceiling suspension system for acoustical ceilings.
  - 3. Adhesive application.

## 1.2 RELATED REQUIREMENTS

- A. Color, pattern, and location of each type of acoustical unit: See drawings for information.
- B. Ceiling Suspension System: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.

### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
  - 1. A641/A641M-09a(2014) Zinc-coated (Galvanized) Carbon Steel Wire.
  - 2. A653/A653M-15e1 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-coated (Galvannealed) by the Hot-Dip Process.
  - 3. C423-09a Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method.
  - 4. C634-13 Terminology Relating to Environmental Acoustics.
  - 5. C635/C635M-13a Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Lay-in Panel Ceilings.
  - 6. C636/C636M-13 Installation of Metal Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels.
  - 7. D1779-98(2011) Adhesive for Acoustical Materials.
  - 8. E84-15b Surface Burning Characteristics of Building Materials.
  - 9. E119-16 Fire Tests of Building Construction and Materials.
  - 10. E413-16 Classification for Rating Sound Insulation.
  - 11. E580/E580M-14 Installation of Ceiling Suspension Systems for Acoustical Tile and Lay-in Panels in Areas Subject to Earthquake Ground Motions.
  - 12. E1264-14 Classification for Acoustical Ceiling Products.
- C. International Organization for Standardization (ISO):

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 12-18

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

1. ISO 14644-1 - Classification of Air Cleanliness.

#### 1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
  - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
  - 1. Description of each product.
  - 2. Ceiling suspension system indicating manufacturer recommendation for each application.
  - 3. Installation instructions.
  - 4. Warranty.

## D. Samples:

- 1. Acoustical units, 150 mm (6 inches) in size, each type, including units specified to match existing.
  - a. Submit quantity required to show full color and texture range.
- 2. Suspension system, trim and molding, 300 mm (12 inches) long.
- 3. Colored markers for access service.
- 4. Approved samples may be incorporated into work.
- E. Sustainable Construction Submittals:
  - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- F. Certificates: Certify each product complies with specifications.
  - 1. Acoustical units, each type.
- G. Qualifications: Substantiate qualifications comply with specifications.
  - 1. Manufacturer with project experience list.
- H. Operation and Maintenance Data:
  - 1. Care instructions for each exposed finish product.

#### 1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
  - 1. Regularly manufactures specified products.
  - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
    - a. Project Experience List: Provide contact names and addresses for completed projects.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

#### 1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

#### 1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight and conditioned facility.
- B. Protect products from damage during handling and construction operations.

### 1.8 FIELD CONDITIONS

- A. Environment:
  - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
  - Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions continuously, beginning 48 hours before installation until Government occupancy.
  - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

## 1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

## PART 2 - PRODUCTS

## 2.1 SYSTEM DESCRIPTION

A. Ceiling System: Acoustical ceilings units on exposed grid suspension systems.

## 2.2 SYSTEM PERFORMANCE

- A. Design product complying with specified performance:
  - 1. Maximum Deflection: 1/360 of span, maximum.
- B. Surface Burning Characteristics: When tested according to ASTM E84.
  - 1. Flame Spread Rating: 75 maximum in exits and exit corridors. 200 maximum in all other areas.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

2. Smoke Developed Rating: 450 maximum.

### 2.3 PRODUCTS - GENERAL

- A. Architectural Drawings: Finish Schedule.
- B. Provide acoustical units from one manufacturer.
  - 1. Provide each product exposed to view from one production run.
- C. Provide suspension system from same manufacturer.
- D. Sustainable Construction Requirements:
  - 1. Select products with recycled content to achieve overall Project recycled content requirement.
  - 2. Steel Recycled Content: 30 percent total recycled content, minimum.
  - 3. Biobased Content: 37 percent by weight biobased material, minimum.
  - 4. Low Pollutant-Emitting Materials: Comply with VOC limits for the following products:
    - a. Non-flooring adhesives and sealants.

### 2.4 ACOUSTICAL UNITS

### A. General:

- 1. Ceiling Panel and Tile: ASTM E1264, bio-based content according to USDA Bio-Preferred Product requirements.
  - a. Mineral Fiber: 3.6 kg/sq. m (3/4 psf) weight, minimum.
  - b. Integrally colored units.
- 2. Classification: Provide type and form as follows:
  - a. Type III Units Mineral base with water-based painted finish maximum 10 g/l VOC; Form 2 - Water felted, minimum 16 mm (5/8 inch) thick.
  - b. NRC (Noise Reduction Coefficient): ASTM C423, minimum 0.55 unless specified otherwise.
  - c. CAC (Ceiling Attenuation Class): ASTM E413, 40-44 range unless specified otherwise.
  - d. LR (Light Reflectance): Minimum 0.75.
- 3. Lay-in panels: Sizes as indicated on Drawings, with square edges
  - a. Sizes: See drawings and finish schedule
    - 1) Edge and Joint Detail: Square edges and joints as required to suit suspension and access system.

# 2.5 METAL SUSPENSION SYSTEM

A. General: ASTM C635, intermediate-duty, except as otherwise specified.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

12-18

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

- 1. Suspension System: Provide the following:
  - a. Galvanized cold-rolled steel, bonderized.
- 2. Main and Cross Runner: Use same construction Do not use lighter-duty sections for cross runners.
- B. Exposed Grid Suspension System: Support of lay-in panels.
  - 1. Grid Width: 22 mm (7/8 inch) minimum with 8 mm (5/16 inch) minimum panel bearing surface.
  - 2. Molding: Fabricate from the same material with same exposed width and finish.
  - 3. Finish: Baked-on enamel flat texture finish.
    - a. Color: To match adjacent acoustical units unless specified otherwise in Architectural Drawings Finish Schedule.
- C. Carrying Channels Secondary Framing: Cold-rolled or hot-rolled steel, black asphaltic paint finish, rust free.
  - 1. Weight per 300 m (per thousand linear feet), minimum:

| Size |        | Cold-rolled |       | Hot-rolled |       |
|------|--------|-------------|-------|------------|-------|
| mm   | inches | kg          | pound | kg         | pound |
| 38   | 1-1/2  | 215.4       | 475   | 508        | 1120  |
| 50   | 2      | 267.6       | 590   | 571.5      | 1260  |

- D. Anchors and Inserts: Provide anchors or inserts to support twice the loads imposed by hangers.
  - 1. Hanger Inserts: Steel, zinc-coated (galvanized after fabrication).
    - a. Flush ceiling insert type:
      - 2) Designed to provide a shell covered opening over a wire loop to permit attachment of hangers and keep concrete out of insert recess.
      - 3) Insert opening inside shell approximately 16 mm (5/8 inch) wide by 9 mm (3/8 inch) high over top of wire.
      - 4) Wire 5 mm (3/16 inch) diameter with length to provide positive hooked anchorage in concrete.
- E. Clips: Galvanized steel, designed to secure framing member in place.
- F. Tile Splines: ASTM C635.
- G. Wire: ASTM A641.
  - 1. Size:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

- a. Wire Hangers: Minimum diameter 2.68 mm (0.1055 inch).
- b. Bracing Wires: Minimum diameter 3.43 mm (0.1350 inch).

## 2.6 ACCESSORIES

- A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.
- B. Perimeter Seal: Vinyl, polyethylene or polyurethane open cell sponge material, density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
  - 1. Thickness: As required to fill voids between back of wall molding and finish wall.
  - 2. Size: Minimum 9 mm (3/8 inch) wide strip.
- C. Access Identification Markers: Colored markers with pressure sensitive adhesive on one side, paper or plastic, 6 to 9 mm (1/4 to 3/8 inch) diameter.
  - 1. Color Code: Provide the following color markers for service identification:

| Color         | Service                                  |
|---------------|------------------------------------------|
| Red           | Sprinkler System: Valves and Controls    |
| Green         | Domestic Water: Valves and Controls      |
| Yellow        | Chilled Water and Heating Water          |
| Green/White   | Thermostat Mixing Valve                  |
| Letters       |                                          |
| Blue          | Ductwork: Dampers and Controls           |
| Black         | Gas: Laboratory, Medical, Air and Vacuum |
| Red Tab/White | Ductwork: Fire Damper (Match Existing)   |
| Letters       |                                          |
| White         | Vav's (Match Existing)                   |
| Tab/Black     |                                          |
| Letters       |                                          |

## PART 3 - EXECUTION

## 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

- C. Remove existing acoustical panels and suspension system to permit new installation.
  - 1. Dispose of removed materials.

## 3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
  - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

### 3.3 ACOUSTICAL UNIT INSTALLATION

- A. Applications:
  - 1. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Layout acoustical unit symmetrically, with minimum number of joints.
- C. Installation:
  - 1. Install acoustic tiles after wet finishes have been installed and solvents have cured.
  - 2. Install lay-in acoustic panels in exposed grid with minimum 6 mm (1/4 inch) bearing at edges on supports.
    - a. Install tile to lay level and in full contact with exposed grid.
    - b. Replace cracked, broken, stained, dirty tile.
  - 3. Markers:
    - a. Install color coded markers to identify the various concealed piping, mechanical, and plumbing systems.
    - b. Attach colored markers to exposed grid on opposite sides of the units providing access.
    - c. Attach marker on exposed ceiling surface of upward access acoustical unit.
- D. Touch up damaged factory finishes.
  - 1. Repair painted surfaces with touch up primer.

## 3.4 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General: Install according to ASTM C636.
  - Use direct or indirect hung suspension system or combination of both.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

- 2. Support a maximum area of 1.48 sq. m (16 sq. ft.) of ceiling per hanger.
- 3. Prevent deflection in excess of 1/360 of span of cross runner and main runner.
- 4. Provide additional hangers located at each corner of support components.
- 5. Provide minimum 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam unless furred system is shown.
- 6. Provide main runners minimum 1200 mm (48 inches) in length.
- 7. Install hanger wires vertically. Angled wires are not acceptable.
- B. Direct Hung Suspension System: ASTM C635.
  - 1. Support main runners by hanger wires attached directly to the structure overhead.
  - 2. Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.

## C. Anchorage to Structure:

## 1. Concrete:

- a. Install hanger inserts and wire loops required for support of hanger and bracing wire. Install hanger wires with looped ends through steel deck when steel deck does not have attachment device.
- b. Use eye pins or threaded studs with screw-on eyes in existing or already placed concrete structures to support hanger and bracing wire. Install in sides of concrete beams or joists at mid height.

### 2. Steel:

- a. Install carrying channels for attachment of hanger wires.
  - 1) Size and space carrying channels to support load within performance limit.
  - 2) Attach hangers to steel carrying channels, spaced four feet on center, unless area supported or deflection exceeds the amount specified.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-18

- b. Attach carrying channels to the bottom flange of steel beams spaced not 1200 mm (4 feet) on center before fireproofing is installed. Weld or use steel clips for beam attachment.
- c. Attach hangers to bottom chord of bar joists or to carrying channels installed between the bar joists when hanger spacing prevents anchorage to joist. Rest carrying channels on top of the bottom chord of the bar joists, and securely wire tie or clip to joist.
- D. Indirect Hung Suspension System: ASTM C635.
  - Space carrying channels for indirect hung suspension system maximum 1200 mm (4 feet) on center. Space hangers for carrying channels maximum 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
  - 2. Support main runners by specially designed clips attached to carrying channels.

### 3.5 CEILING TREATMENT

- A. Moldings:
  - 1. Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
  - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- B. Existing ceiling:
  - 1. Where extension of existing ceilings occurs, match existing.
  - 2. Where acoustical units are salvaged and reinstalled or joined, use salvaged units within a space. Do not mix new and salvaged units within a space which results in contrast between old and new acoustic units.
  - 3. Comply with specifications for new acoustical units for new units required to match appearance of existing units.

## 3.6 CLEANING

A. Clean exposed surfaces. Remove contaminants and stains.

- - - E N D - - -

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01 - 21

# SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

## PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - 1. Resilient base (RB) adhered to interior walls and partitions.

## 1.2 RELATED REQUIREMENTS

A. Sheet Flooring Integral Base: Section 09 65 16, RESILIENT SHEET FLOORING.

## 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
  - 1. F1344-15 Rubber Floor Tile.
  - 2. F1859-14 Rubber Sheet Floor Covering without Backing.
  - 3. F1860-14 Rubber Sheet Floor Covering with Backing.
  - 4. F1861-08(2012)e1 Resilient Wall Base.
  - 5. D4259-88(2012) Abrading Concrete.
- C. Federal Specifications (Fed. Spec.):
  - 1. RR-T-650E Treads, Metallic and Non-Metallic, Skid-Resistant.
- D. International Concrete Repair Institute (ICRI):
  - 1. 310.2R-13 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays.

## 1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Description of each product.
  - 2. Installation instructions.
- C. Samples:
  - 1. Resilient Base: 150 mm (6 inches) long, each type and color.
  - 2. Sheet Rubber Flooring: 300 mm (12 inches) square, each type and color.
- D. Sustainable Construction Submittals:

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01 - 21

- Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- 2. Low Pollutant-Emitting Materials:
  - a. Stair Treads and Sheet Rubber Flooring: Submit FloorScore label.
  - b. Show volatile organic compound types and quantities.
- E. Operation and Maintenance Data:
  - 1. Care instructions for each exposed finish product.

#### 1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

## 1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage when handling and during construction operations.

### 1.7 FIELD CONDITIONS

- A. Environment:
  - 1. Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum 48 hours before installation.
  - 2. Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
  - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

#### 1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

## PART 2 - PRODUCTS

## 2.1 PRODUCTS

- A. Architectural Drawings Finish Schedule
- B. Provide each product from one manufacturer and from one production run.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01 - 21

- C. Sustainable Construction Requirements:
  - 1. Sheet Rubber Flooring Recycled Content: 90 percent total recycled content, minimum.

### 2.2 RESILIENT BASE

- A. Resilient Base: 3 mm (1/8 inch) thick, 100 mm (4 inches) high.
  - 1. Type: Rubber or vinyl; use one type throughout.
  - 2. ASTM F1861, Type TP thermoplastic rubber or Type TV thermoplastic vinyl, Group 2 layered.
- B. Applications:
  - 1. Other Locations: Style B Cove.

### 2.3 SHEET RUBBER FLOORING

A. Sheet Rubber Flooring (SRF): ASTM F1859 or ASTM F1860; Rubber, 900 mm (36 inches) wide, 3 mm (1/8 inch) thick, smooth face.

## 2.4 PRIMER (FOR CONCRETE FLOORS)

A. Primer: Type recommended by adhesive manufacturer.

## 2.5 LEVELING COMPOUND (FOR CONCRETE FLOORS)

A. Leveling Compound: Provide products mixed with latex or polyvinyl acetate resins.

## 2.6 ADHESIVES

A. Adhesives: Low pollutant-emitting, water based type recommended by adhered product manufacturer for each application.

## PART 3 - EXECUTION

### 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing base, and/or landing flooring to permit new installation.
  - 1. Dispose of removed materials.
- D. Correct substrate deficiencies.
  - 1. Fill cracks, pits, and depressions with leveling compound.
  - 2. Remove protrusions; grind high spots.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01 - 21

- 3. Apply leveling compound to achieve 3 mm (1/8 inch) in 3 m (10 feet) maximum surface variation.
- E. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
  - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
  - 2. Surface Profile: ICRI Guideline No. 310.2R.
- F. Allow substrate to dry and cure.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.

### 3.2 INSTALLATION GENERAL

- A. Install products according to manufacturer's instructions.
  - 1. When instructions deviate from specifications, submit proposed resolution for Contracting Officer consideration.

## 3.3 RESILIENT BASE INSTALLATION

- A. Applications:
  - 1. Install resilient base in rooms scheduled on Drawings.
  - 2. Install resilient base on casework and locker toe spaces, and other curb supported fixed equipment.
  - 3. Extend resilient base into closets, alcoves, and cabinet knee spaces, and around columns within scheduled room.
- B. Lay out resilient base with minimum number of joints.
  - 1. Length: 600 mm (24 inches) minimum, each piece.
  - 2. Locate joints 150 mm (6 inches) minimum from corners and intersection of adjacent materials.
- C. Installation:
  - 1. Apply adhesive uniformly for full contact between resilient base and substrate.
  - Set resilient base with hairline butted joints aligned along top edge.
- D. Field Factory form corners and end stops.
  - 1. V-groove back of outside corner.
  - 2. V-groove face of inside corner and notch cove for miter joint.
- E. Roll resilient base ensuring complete adhesion.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01 - 21

## 3.4 SHEET RUBBER FLOORING INSTALLATION

- A. Applications:
  - 1. Install sheet rubber flooring.
- B. Lay out sheet rubber flooring symmetrically, with minimum number of joints.
  - 1. Locate floor joints centered under doors.
- C. Installation:
  - 1. Apply adhesive uniformly for full contact between sheet rubber flooring and substrate.
  - 2. Install sheet rubber flooring with 1 mm (0.04 inch) maximum width seams, perimeter joints, and joints with adjacent flooring.
    - a. Scribe sheet rubber flooring tight to interrupting surfaces.
  - 3. Roll sheet rubber flooring ensuring complete adhesion.

## 3.5 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed resilient base, resilient stair treads, and sheet rubber flooring surfaces. Remove contaminants and stains.
  - 1. Clean with mild detergent. Leave surfaces free of detergent residue.
- C. Polish exposed resilient base to gloss sheen.

#### 3.6 PROTECTION

- A. Prohibit traffic on sheet rubber flooring 72 hours, minimum, after installation.
- B. Protect products from construction traffic and operations.
  - Cover resilient sheet rubber flooring with reinforced kraft paper, and plywood or hardboard.
  - 2. Maintain protection until directed by Contracting Officer's Representative.
- C. Replace damaged products and re-clean.
  - Damaged Products include cut, gouged, scraped, torn, and unbonded products.

- - E N D - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

### SECTION 09 65 16

### RESILIENT SHEET FLOORING

### PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - Resilient sheet flooring (RSF) with chemically welded seams and integral cove base.
  - 2. Welded seam sheet flooring (WSF) with heat welded seams and integral cove base.

### 1.2 RELATED REQUIREMENTS

- A. Color, Pattern and Texture: Architectural Drawings Finish Schedule.
- B. Resilient Base over Base of Lockers, Equipment and Casework: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

#### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
  - 1. D4259-88(2012) Abrading Concrete.
  - 2. E648-15el Standard Test Method for Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source.
  - 3. E662-15a Standard Test Method for Specific Optical Density of Smoke Generated by Solid Materials.
  - 4. F1303-04(2014) Sheet Vinyl Floor Covering with Backing.
  - 5. F1860-14 Rubber Sheet Floor Covering with Backing.
  - 6. F1913-04(2014) Vinyl Sheet Floor Covering Without Backing.
- C. International Concrete Repair Institute (ICRI):
  - 1. 310.2R-13 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, and Polymer Overlays, and Concrete Repair.
- D. SCS Global Services (SCS):
  - 1. FloorScore.

### 1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
  - 1. Show size, configuration, and fabrication and installation details.
- B. Manufacturer's Literature and Data:

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

- 1. Description of each product.
- 2. Application Installation instructions.
- Warranty.

### C. Samples:

- 1. Sheet material, 38 mm by 300 mm (1-1/2 inch by 12 inch), of each color and pattern with welded seam using specified welding rod 300 mm (12 inches) square for each type, pattern and color.
- 2. Cap strip and fillet strip, 300 mm (12 inches) for integral base.
- 3. Shop Drawings and Certificates: Layout of joints showing patterns where joints are expressed, and type and location of obscure type joints. Indicate orientation of directional patterns.
- 4. Certificates: Quality Control Certificate Submittals and lists specified in paragraph, QUALIFICATIONS.
- 5. Edge strips: 150 mm (6 inches) long each type.
- 6. Primer: Pint container, each type.
- D. Sustainable Construction Submittals:
  - 1. Low Pollutant-Emitting Materials:
    - a. Sheet Flooring: Submit FloorScore label.
    - b. Identify volatile organic compound types and quantities.
- E. Certificates: Certify each product complies products comply with specifications.
  - 1. Heat welded seaming is manufacturer's prescribed method of installation.
- F. Qualifications: Substantiate qualifications comply with specifications.
  - 1. Manufacturer with project experience list.
  - 2. Installer with project experience list.

### 1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A company specializing in installation with minimum three (3) years' experience and employs experienced flooring installers who have retained, and currently hold, an INSTALL Certification, or a certification from a comparable certification program.
  - 1. Installers to be certified by INSTALL or a comparable certification program with the following minimum criteria:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

- a. US Department of Labor approved four (4) year apprenticeship program, 160 hours a year.
- b. Career long training.
- c. Manufacturer endorsed training.
- d. Fundamental journeyman skills certification.
- B. Furnish product type materials from the same production run.

### 1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

### 1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.
- B. Protect products from damage during handling and construction operations.

#### 1.8 FIELD CONDITIONS

### A. Environment:

- Work Area Ambient Temperature Range: Minimum 18 to 38 degrees C (65 to 100 degrees F) continuously, beginning 48 hours before installation. Maintain room temperature above 18 degrees C (65 degrees F) after installation.
- 2. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.

### 1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant resilient sheet flooring against material and manufacturing defects.
  - 1. Warranty Period: 2 years.

### PART 2 - PRODUCTS

### 2.1 SYSTEM PERFORMANCE

A. Sheet Flooring:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

- 1. Critical Radiant Flux: ASTM E648; 0.45 watts per sq.cm or more, Class I.
- 2. Smoke Density: ASTM E662; less than 450.

### 2.2 PRODUCTS - GENERAL

- A. Basis of Design: Architectural Drawings Finish Schedule.
- B. Provide vinyl sheet color and pattern from one production run.
- C. Sustainable Construction Requirements:
  - 1. Low Pollutant-Emitting Materials: Comply with VOC limits for the following products:
    - a. Flooring Adhesives and Sealants.
    - b. Vinyl Sheet Flooring.

### 2.3 RESILIENT SHEET FLOORING

- A. Resilient Sheet Flooring (RSF): ASTM F1303; Type II, Grade 1, vinyl, with backing.
  - 1. Wear Surface: Smooth.
  - 2. Wear Layer Thickness: Minimum 0.51 mm (0.020 inches).
  - 3. Total Thickness: 2 mm (0.080 inches).
- B. Sheet Size: Provide maximum size sheet produced by manufacturer to minimize joints.
  - 1. Minimum Width: 1200 mm (48 inches).

### 2.4 WELDED SEAM SHEET FLOORING

- A. Welded Seam Sheet Flooring (WSF): ASTM F1860; Type I, Type II rubber, with backing.
  - 1. Wear Surface: Smooth.
  - 2. Wear Layer Thickness: Minimum 1.0 mm (0.040 inches).
  - 3. Total Thickness: 2 mm (0.080 inches).
- B. Sheet Size: Provide maximum size sheet produced by manufacturer to minimize joints.
  - 1. Minimum Width: 1200 mm (48 inches).

### 2.5 ACCESSORIES

- A. Welding Rod: Flooring manufacturer's standard, in color matching field color of sheet flooring.
- B. Adhesives: Water resistant type recommended by flooring manufacturer to suit application.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

### C. Base Accessories:

- 1. Fillet Strip: 19 mm (3/4 inch) radius fillet strip compatible with flooring material.
- 2. Cap Strip: Zero edge J-Shape extruded flanged reducer strip compatible with flooring material approximately 25 mm (1 inch) exposed height with 13 mm (1/2 inch) flange.

### D. Leveling Compound:

1. Provide cementitious type with latex or polyvinyl acetate resins additive.

#### E. Primer:

1. Type recommended by adhesive or flooring manufacturer.

### F. Edge Strips:

- 1. Extruded aluminum, mill finish, mechanically cleaned.
- 2. 28 mm (1-1/8 inch) wide, 6 mm (1/4 inch) thick, bevel one edge to 3 mm (1/8 inch) thick.
- 3. Drill and counter sink edge strips for flat head screws. Space holes near ends and approximately 225 mm (9 inches) on center.
- 4. Fasteners: Stainless steel, type to suit application.

#### G. Sealant:

- 1. As specified in Section 07 92 00, JOINT SEALANTS.
- 2. Compatible with flooring.
- H. Polish: Type recommended by flooring manufacturer to suit application and anticipated traffic.

### PART 3 - EXECUTION

### 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Remove existing sheet flooring to permit new installation.
  - 1. Do not use solvents for removing adhesives.
  - 2. Dispose of removed materials.
- D. Ensure interior finish work such as plastering, drywall finishing, concrete, terrazzo, ceiling work, and painting work is complete and dry before installation.
  - 1. Complete mechanical, electrical, and other work above ceiling line.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

- Ensure heating, ventilating, and air conditioning systems are installed and operating to maintain temperature and humidity requirements.
- E. Correct substrate deficiencies.
  - 1. Fill cracks, pits, and dents with leveling compound.
  - 2. Grind, sand, or cut away protrusions. Grind high spots.
  - 3. Level flooring substrate to 3 mm (1/8 inch) maximum variation.
- F. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
  - 1. Mechanically clean concrete floor substrate according to ASTM D4259.
  - 2. Surface Profile: ICRI 310.2R CSP 3 to CSP 4.
- G. Perform flooring manufacturer's recommended bond, substrate moisture content, and pH tests.
- H. Broom or vacuum clean substrates immediately before flooring installation.
- I. Primer: Apply primer according to manufacturer's instructions.

### 3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions.
  - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

### 3.3 INSTALLATION OF FLOORING

- A. Flooring Layout:
  - Arrange pattern in one direction with side and end joints pattern matched.
  - 2. Arrange sheets to minimize seams.
  - 3. Locate seams in inconspicuous and low traffic areas, minimum 150 mm (6 inches) away from parallel joints in flooring substrates.
- B. Match edges of flooring for color shading and pattern at seams.
- C. Install flooring flush with adjacent floor finishes.
- D. Extend flooring into toe spaces, door reveals, closets, and similar openings.
- E. Install flooring fully adhered to substrate.
  - 1. Air pockets or loose edges are not acceptable.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

- 2. Trim sheet materials tight to flooring penetrations; seal joints at pipe with waterproof sealant specified in Section 07 92 00, JOINT SEALANTS.
- F. Butt joints tight, without gaps and bulges.
- G. Installation of Edge Strips:
  - 1. Install edge strips at flooring terminations and transitions to other floor finishes.
  - Locate edge strips under center lines of doors unless otherwise indicated.
  - 3. Set edge strips in adhesive and mechanically fasten to substrate.

### 3.4 INTEGRAL COVE BASE INSTALLATION

- A. Set preformed fillet strip at floor intersection with walls and other vertical surfaces.
- B. Extend flooring over fillet strip and 100 mm (4 inches) 150 mm (6 inches) up wall surface.
- C. Form straight or radius internal and external corners to suit Application.
- D. Adhere base to wall surface.
- E. Terminate base exposed top edge with cap strip. Seal cap strip to wall with sealant.
- F. Weld joints as specified for flooring.

### 3.5 HEAT WELDING

- A. Heat weld joints of flooring and base using welding rod.
- B. Rout joint insert welding rod into routed space, and fuse flooring and welding rods for seamless, watertight installation.
  - 1. Fuse joints for seamless weld.
- C. Finish joints flush, free from voids, and recessed or raised areas.

### 3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean and polish materials.
- C. Vacuum floor thoroughly.
- D. Perform initial maintenance according to flooring manufacturer's instructions.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-18

1. Delay washing flooring until adhesive is fully set and welded joints can contain wash water.

### 3.7 PROTECTION

- A. Protect flooring from traffic and construction operations.
- B. Keep traffic off sheet flooring for minimum 24 hours after installation.
- C. Cover flooring with reinforced kraft paper, and plywood or hardboard.
- D. Remove protective materials immediately before acceptance.
- E. Repair damage.
- F. Apply polish to vinyl flooring.
- G. Buff flooring to uniform sheen.

- - E N D - -

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

# SECTION 09 91 00 PAINTING

### PART 1 - GENERAL

#### 1.1 DESCRIPTION:

- A. Work of this Section includes all labor, materials, equipment, and services necessary to complete the painting and finishing as shown on the construction documents and/or specified herein, including, but not limited to, the following:
  - 1. Prime coats which may be applied in shop under other sections.
  - 2. Prime painting unprimed surfaces to be painted under this Section.
  - 3. Painting items furnished with a prime coat of paint, including touching up of or repairing of abraded, damaged or rusted prime coats applied by others.
  - 4. Painting ferrous metal (except stainless steel) exposed to view.
  - 5. Painting gypsum drywall exposed to view.
  - 6. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.
  - 7. Incidental painting and touching up as required to produce proper finish for painted surfaces, including touching up of factory finished items.
  - 8. Painting of any surface not specifically mentioned to be painted herein or on construction documents, but for which painting is obviously necessary to complete the job, or work which comes within the intent of these specifications, is to be included as though specified.

### 1.2 RELATED WORK:

- A. Activity Hazard Analysis: Section 01 35 26, SAFETY REQUIREMENTS.
- B. Type of Finish, Color, and Gloss Level of Finish Coat: Architectural Drawings Finish Schedule.

### 1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals as described below:
  - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Painter qualifications.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- D. Manufacturer's Literature and Data:
  - 1. Before work is started, or sample panels are prepared, submit manufacturer's literature and technical data, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one (1) list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.
- F. Sample of identity markers.
- G. Manufacturers' Certificates indicating compliance with specified requirements:
  - 1. Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.

#### 1.4 DELIVERY AND STORAGE:

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
  - 1. Name of manufacturer.
  - 2. Product type.
  - 3. Batch number.
  - 4. Instructions for use.
  - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
  - 1. Federal Specification Number, where applicable, and name of material.
  - 2. Surface upon which material is to be applied.
  - 3. Specify Coat Types: Prime; body; finish; etc.
- C. Maintain space for storage, and handling of painting materials and equipment in a ventilated, neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 7 and 30 degrees C (45 and 85 degrees F).

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

### 1.5 QUALITY ASSURANCE:

- A. Qualification of Painters: Use only qualified journeyman painters for the mixing and application of paint on exposed surfaces. Submit evidence that key personnel have successfully performed surface preparation and application of coating on a minimum of three (3) similar projects within the past three (3) years.
- B. Paint Coordination: Provide finish coats which are compatible with the prime paints used. Review other Sections of these specifications in which prime paints are to be provided to ensure compatibility of the total coatings system for the various substrates. Upon request from other subcontractors, furnish information on the characteristics of the finish materials proposed to be used, to ensure that compatible prime coats are used. Provide barrier coats over incompatible primers or remove and reprime as required. Notify the Contracting Officer Representative (COR) in writing of any anticipated problems using the coating systems as specified with substrates primed by others.

### 1.6 REGULATORY REQUIREMENTS:

- A. Paint materials are to conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
  - 1. Volatile Organic Compounds (VOC) Emissions Requirements: Field-applied paints and coatings that are inside the waterproofing system to not exceed limits of authorities having jurisdiction.

### 2. Lead-Based Paint:

- a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
- b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
- c. Do not use coatings having a lead content.
- 3. Asbestos: Provide materials that do not contain asbestos.
- 4. Chromate, Cadmium, Mercury, and Silica: Provide materials that do not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 5. Human Carcinogens: Provide materials that do not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
- 6. Use high performance acrylic paints in place of alkyd paints.

### 1.7 SAFETY AND HEALTH

- A. Apply paint materials using safety methods and equipment in accordance with the following:
  - 1. Comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN, including the Activity Hazard Analysis (AHA) as specified in Section 01 35 26, SAFETY REQUIREMENTS. The AHA is to include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone.
- B. Safety Methods Used During Paint Application: Comply with the requirements of SSPC PA Guide 10.
- C. Toxic Materials: To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of:
  - 1. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation.
  - 2. 29 CFR 1910.1000.
  - 3. ACHIH-BKLT and ACGHI-DOC, threshold limit values.

#### 1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH):

  ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical

  Substances and Physical Agents and Biological

  Exposure Indices (BEIs)
  - ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)
- C. ASME International (ASME):
  - A13.1-07(R2013)......Scheme for the Identification of Piping Systems
- D. Code of Federal Regulation (CFR):

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | 40 CFR 59 Determination of Volatile Matter Content, Water |
|----|-----------------------------------------------------------|
|    | Content, Density Volume Solids, and Weight Solids         |
|    | of Surface Coating                                        |
| Ε. | Commercial Item Description (CID):                        |
|    | A-A-1272APlaster Gypsum (Spackling Compound)              |
| F. | Federal Specifications (Fed Spec):                        |
|    | TT-P-1411APaint, Copolymer-Resin, Cementitious (For       |
|    | Waterproofing Concrete and Masonry Walls) (CEP)           |
| G. | Master Painters Institute (MPI):                          |
|    | 1Aluminum Paint                                           |
|    | 4 Interior/ Exterior Latex Block Filler                   |
|    | 5Exterior Alkyd Wood Primer                               |
|    | 7Exterior Oil Wood Primer                                 |
|    | 8 Exterior Alkyd, Flat MPI Gloss Level 1                  |
|    | 9 Exterior Alkyd Enamel MPI Gloss Level 6                 |
|    | 10 Exterior Latex, Flat                                   |
|    | 11 Exterior Latex, Semi-Gloss                             |
|    | 18Organic Zinc Rich Primer                                |
|    | 22Aluminum Paint, High Heat (up to 590% - 1100F)          |
|    | 27 Exterior / Interior Alkyd Floor Enamel, Gloss          |
|    | 31Polyurethane, Moisture Cured, Clear Gloss               |
|    | 36Knot Sealer                                             |
|    | 43 Interior Satin Latex, MPI Gloss Level 4                |
|    | 44                                                        |
|    | 45Interior Primer Sealer                                  |
|    | 46Interior Enamel Undercoat                               |
|    | 47Interior Alkyd, Semi-Gloss, MPI Gloss Level 5           |
|    | 48Interior Alkyd, Gloss, MPI Gloss Level 6                |
|    | 50 Interior Latex Primer Sealer                           |
|    | 51                                                        |
|    | 52Interior Latex, MPI Gloss Level 3                       |
|    | 53 Interior Latex, Flat, MPI Gloss Level 1                |
|    | 54Interior Latex, Semi-Gloss, MPI Gloss Level 5           |
|    | 59 Interior/Exterior Alkyd Porch & Floor Enamel, Low      |
|    | Gloss                                                     |
|    |                                                           |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| 60i                        | nterior/Exterior Latex Porch & Floor Paint, Low   |
|----------------------------|---------------------------------------------------|
|                            | iloss                                             |
|                            | nterior Alkyd Fire Retardant, Clear Top-Coat (ULC |
|                            | pproved)                                          |
|                            | nterior Latex Fire Retardant, Top-Coat (ULC       |
|                            | pproved)                                          |
|                            | nterior/ Exterior Latex Porch & Floor Paint,      |
| G                          | iloss                                             |
| 71Po                       | olyurethane, Moisture Cured, Clear, Flat          |
| 77E                        | poxy Cold Cured, Gloss                            |
| 79M.                       | Marine Alkyd Metal Primer                         |
| 90                         | nterior Wood Stain, Semi-Transparent              |
| 91w                        | Wood Filler Paste                                 |
| 94E.                       | xterior Alkyd, Semi-Gloss                         |
| 95F                        | ast Drying Metal Primer                           |
| 98н                        | igh Build Epoxy Coating                           |
| 101E                       | poxy Anti-Corrosive Metal Primer                  |
| 108H                       | igh Build Epoxy Coating, Low Gloss                |
| 114                        | nterior Latex, Gloss                              |
| 119E                       | xterior Latex, High Gloss (acrylic)               |
| 134                        | alvanized Water Based Primer                      |
| 135N                       | on-Cementitious Galvanized Primer                 |
| 138I                       | nterior High-Performance Latex, MPI Gloss Level 2 |
| 139I                       | nterior High-Performance Latex, MPI Gloss Level 3 |
| 140I                       | nterior High-Performance Latex, MPI Gloss Level 4 |
| 141I                       | nterior High-Performance Latex (SG) MPI Gloss     |
| L                          | evel 5                                            |
| 163E                       | xterior Water Based Semi-Gloss Light Industrial   |
| C                          | oating, MPI Gloss Level 5                         |
| Society for Protective Co. | atings (SSPC):                                    |
| SSPC SP 1-82(R2004)S       | colvent Cleaning                                  |
| SSPC SP 2-82(R2004)H       | and Tool Cleaning                                 |
| SSPC SP 3-28(R2004)P       | ower Tool Cleaning                                |
| SSPC SP 10/NACE No.2N      | -                                                 |
| SSPC PA Guide 10G          | uide to Safety and Health Requirements            |
|                            |                                                   |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- H. Maple Flooring Manufacturer's Association (MFMA):
- I. U.S. National Archives and Records Administration (NARA):
  29 CFR 1910.1000......Air Contaminants
- J. Underwriter's Laboratory (UL)

### PART 2 - PRODUCTS

### 2.1 MATERIALS:

A. Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents.

### 2.2 PAINT PROPERTIES:

- A. Use ready-mixed (including colors), except two component epoxies, polyurethanes, polyesters, paints having metallic powders packaged separately and paints requiring specified additives.
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle compatible with substrate and finish coats specified.
- C. Provide undercoat paint produced by the same manufacturer as the finish coats. Use only thinners approved by the paint manufacturer and use only to recommended limits.
- D. VOC Content: For field applications that are inside the weatherproofing system, paints and coating to comply with VOC content limits of authorities having jurisdiction and the following VOC content limits:
  - 1. Flat Paints and Coatings: 50 g/L.
  - 2. Primers, Sealers, and Undercoaters: 200 g/L.
- E. VOC test method for paints and coatings is to be in accordance with 40 CFR 59 (EPA Method 24). Part 60, Appendix A with the exempt compounds' content determined by Method 303 (Determination of Exempt Compounds) in the South Coast Air Quality Management District's (SCAQMD) "Laboratory Methods of Analysis for Enforcement Samples" manual.

### 2.3 Biobased Content

- A. Paint products shall comply with bio-based standards for biobased materials.
- B. The minimum-content standards are based on the weight (not the volume) of the material.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

#### PART 3 - EXECUTION

### 3.1 JOB CONDITIONS:

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
  - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
  - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each day's work.
- B. Atmospheric and Surface Conditions:
  - 1. Do not apply coating when air or substrate conditions are:
    - a. Less than 3 degrees C (5 degrees F) above dew point.
    - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the COR and the product manufacturer. Under no circumstances are application conditions to exceed manufacturer recommendations.
    - c. When the relative humidity exceeds 85 percent; or to damp or wet surfaces, unless otherwise permitted by the paint manufacturer's printed instructions.
  - 2. Maintain interior temperatures until paint dries hard.
  - 3. Do no exterior painting when it is windy and dusty.
  - 4. Do not paint in direct sunlight or on surfaces that the sun will warm.
  - 5. Apply only on clean, dry and frost-free surfaces except as follows:
    - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces only when allowed by manufacturer's printed instructions.
    - b. Concrete and masonry when permitted by manufacturer's recommendations, dampen surfaces to which water thinned acrylic and cementitious paints are applied with a fine mist of water on hot dry days to prevent excessive suction and to cool surface.
  - 6. Varnishing:
    - a. Apply in clean areas and in still air.
    - b. Before varnishing vacuum and dust area.
    - c. Immediately before varnishing wipe down surfaces with a tack rag.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

#### 3.2 INSPECTION:

A. Examine the areas and conditions where painting and finishing are to be applied and correct any conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until unsatisfactory conditions are corrected to permit proper installation of the work.

### 3.3 GENERAL WORKMANSHIP REQUIREMENTS:

- A. Application may be by brush or roller.
- B. Protect work at all times. Protect all adjacent work and materials by suitable covering or other method during progress of work. Upon completion of the work, remove all paint and varnish spots from floors, glass and other surfaces. Remove from the premises all rubbish and accumulated materials of whatever nature not caused by others and leave work in a clean condition.
- C. Remove and protect hardware, accessories, device plates, lighting fixtures, and factory finished work, and similar items, or provide in place protection. Upon completion of each space, carefully replace all removed items by workmen skilled in the trades involved.
- D. Materials are to be applied under adequate illumination, evenly spread and flowed on smoothly to avoid runs, sags, holidays, brush marks, air bubbles and excessive roller stipple.
- E. Apply materials with a coverage to hide substrate completely. When color, stain, dirt or undercoats show through final coat of paint, the surface is to be covered by additional coats until the paint film is of uniform finish, color, appearance and coverage, at no additional cost to the Government.
- F. All coats are to be dry to manufacturer's recommendations before applying succeeding coats.

### 3.4 SURFACE PREPARATION:

#### A. General:

1. The Contractor shall be held wholly responsible for the finished appearance and satisfactory completion of painting work. Properly prepare all surfaces to receive paint, which includes cleaning, sanding, and touching-up of all prime coats applied under other Sections of the work. Broom clean all spaces before painting is

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- started. All surfaces to be painted or finished are to be completely dry, clean and smooth.
- 2. See other sections of specifications for specified surface conditions and prime coat.
- 3. Perform preparation and cleaning procedures in strict accordance with the paint manufacturer's instructions and as herein specified, for each particular substrate condition.
- 4. Clean surfaces before applying paint or surface treatments with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry. Schedule the cleaning and painting so that dust and other contaminants from the cleaning process will not fall in wet, newly painted surfaces.
- 5. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
  - a. Concrete: 12 percent.
  - b. Fiber-Cement Board: 12 percent.
  - c. Masonry (Clay and CMU's): 12 percent.
  - d. Gypsum Board: 12 percent.

### C. Ferrous Metals:

- Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
- 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
- 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
  - a. Fill flat head countersunk screws used for permanent anchors.
  - b. Do not fill screws of item intended for removal such as glazing beads.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
- 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.

### C. Gypsum Board:

- 1. Remove efflorescence or finishing materials.
- 2. Remove dust, dirt, and other deterrents to paint adhesion.
- 3. Fill holes, cracks, and other depressions with CID-A-A-1272A finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for gypsum board.

### 3.5 PAINT PREPARATION:

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two (2) component and two (2) part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

### 3.6 APPLICATION:

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three (3) coats; prime, body, and finish. When two (2) coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by COR.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- E. Apply by brush or roller.
- F. Do not paint in closed position operable items such as access doors and panels, window sashes, overhead doors, and similar items except overhead roll-up doors and shutters.

### 3.7 PRIME PAINTING:

- A. After surface preparation, prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- F. Metals except boilers, incinerator stacks, and engine exhaust pipes:
  - 1. Steel and iron: MPI 79 (Marine Alkyd Metal Primer) and MPI 95 (Fast Drying Metal Primer). Use MPI 101 (Cold Curing Epoxy Primer) where MPI 77 (Epoxy Cold Cured, Gloss MPI 98 (High Build Epoxy Coating), MPI 108 (High Build Epoxy Marine Coating finish is specified.
  - 2. Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer) and MPI 135 (Non-Cementitious Galvanized Primer).
  - 3. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer).

### G. Gypsum Board:

- 1. Surfaces scheduled to have MPI 53 (Interior Latex, Flat) and MPI 52 (Interior Latex, MPI Gloss Level 3
- 2. Primer: MPI 50 (Interior Latex Primer Sealer) except use MPI 45 (Interior Primer Sealer) MPI 46 (Interior Enamel Undercoat) bathrooms.

### 3.8 INTERIOR FINISHES:

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Finish Schedule in Architectural Drawings.
- B. Metal Work:
  - 1. Apply to exposed surfaces.
  - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
  - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) unless specified otherwise.
- b. Two (2) coats of MPI 48 (Interior Alkyd Gloss) MPI 51 (Interior Alkyd, Eggshell).
- c. One (1) coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss) on exposed interior surfaces of alkyd-amine enamel prime finished windows.

### C. Gypsum Board:

1. One (1) coat of MPI 45 (Interior Primer Sealer) plus two (2) coat of MPI 52 (Interior Latex, Gloss Level 3).

### I. Miscellaneous:

1. Apply where specified in Finish Schedule in Architectural Drawings.

### 3.9 REFINISHING EXISTING PAINTED SURFACES:

- A. Clean, patch and repair existing surfaces as specified under "Surface Preparation". No "telegraphing" of lines, ridges, flakes, etc., through new surfacing is permitted. Where this occurs, sand smooth and re-finish until surface meets with COR's approval.
- B. Remove and reinstall items as specified under "General Workmanship Requirements".
- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Sand or dull glossy surfaces prior to painting.
- H. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

### 3.10 PAINT COLOR:

A. Color and gloss of finish coats is specified in finish schedule located in the drawings and to match existing conditions.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- B. For additional requirements regarding color see Articles, "REFINISHING EXISTING PAINTED SURFACE" and "MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE".
- C. Coat Colors:
  - 1. Color of priming coat: Lighter than body coat.
  - 2. Color of body coat: Lighter than finish coat.
  - Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
  - 1. Paint to match color of casework where casework has a paint finish.
  - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

### E. Color:

- 1. Paint items having no color specified in Finish Schedule in Architectural Drawings to match surrounding surfaces.
- 2. Paint colors as specified in Finish Schedule in Architectural Drawings except for following:
  - a. White: Exterior unfinished surfaces of enameled plumbing fixtures.
  - b. Gray: Heating, ventilating, air conditioning and refrigeration equipment (except as required to match surrounding surfaces), and water and sewage treatment equipment and sewage ejection equipment.
  - c. Federal Safety Red: Exposed fire protection piping hydrants, post indicators, electrical conducts containing fire alarm control wiring, and fire alarm equipment.
  - d. Federal Safety Orange: Entire lengths of electrical conduits containing feeders 600 volts or more.
- B. Apply paint systems on properly prepared and primed surface as follows:
  - 1. Interior Locations:
    - a. Apply two (2) coats of MPI 47 (Interior Alkyd, Semi-Gloss) to following items:
      - 1) Metal under 94 degrees C (201 degrees F) of items such as bare piping, fittings, hangers and supports.
      - 2) Equipment and systems such as hinged covers and frames for control cabinets and boxes, cast-iron radiators, electric conduits and panel boards.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

3) Heating, ventilating, air conditioning, plumbing equipment, and machinery having shop prime coat and not factory finished.

### 3.11 BUILDING AND STRUCTURAL WORK FIELD PAINTING:

- A. Painting and finishing of interior and exterior work except as specified here-in-after.
  - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Finish Schedule in Architectural Drawings.
  - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
  - 3. Painting of ferrous metal and galvanized metal.
  - 4. Identity painting and safety painting.
- B. Building and Structural Work not Painted:
  - 1. Prefinished items:
    - a. Casework, doors, metal panels, wall covering, and similar items specified factory finished under other sections.
    - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
  - 2. Finished surfaces:
    - a. Hardware except ferrous metal.
    - b. Signs, fixtures, and other similar items integrally finished.
  - 3. Concealed surfaces:
    - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
    - b. Inside walls or other spaces behind access doors or panels.
    - c. Surfaces concealed behind permanently installed casework and equipment.
  - 4. Moving and operating parts:
    - a. sprinkler heads, and sensing devices.
  - 5. Labels:
    - a. Code required label, such as Underwriters Laboratories Inc.,

      Intertek Testing Service or Factory Mutual Research Corporation.
    - b. Identification plates, instruction plates, performance rating, and nomenclature.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 6. Galvanized metal:
  - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
  - b. Except where specifically specified to be painted.
- 7. Ceilings, walls, columns in interstitial spaces.

### 3.12 IDENTITY PAINTING SCHEDULE:

- A. Identify designated service in new buildings or projects with extensive remodeling in accordance with ASME A13.1, unless specified otherwise, on exposed piping, piping above removable ceilings, piping in accessible pipe spaces, interstitial spaces, and piping behind access panels. For existing spaces where work is minor match existing.
  - 1. Legend may be identified using snap-on coil plastic markers or by paint stencil applications.
  - 2. Apply legends adjacent to changes in direction, on branches, where pipes pass through walls or floors, adjacent to operating accessories such as valves, regulators, strainers and cleanouts a minimum of 12.2 M (40 feet) apart on straight runs of piping. Identification next to plumbing fixtures is not required.
  - 3. Locate Legends clearly visible from operating position.
  - 4. Use arrow to indicate direction of flow using black stencil paint.
  - 5. Identify pipe contents with sufficient additional details such as temperature, pressure, and contents to identify possible hazard. Insert working pressure shown on construction documents where asterisk appears for High, Medium, and Low-Pressure designations as follows:
    - a. High Pressure 414 kPa (60 psig) and above.
    - b. Medium Pressure 104 to 413 kPa (15 to 59 psig).
    - c. Low Pressure 103 kPa (14 psig) and below.
    - d. Add Fuel oil grade numbers.
  - 6. Legend name in full or in abbreviated form as follows:

|                  |              | COLOR OF       | COLOR OF   | COLOR OF | LEGEND           |
|------------------|--------------|----------------|------------|----------|------------------|
|                  | PIPING       | EXPOSED PIPING | BACKGROUND | LETTERS  | ABBREVIATIONS    |
|                  |              |                |            |          |                  |
| Blow-off         |              |                | Green      | White    | Blow-off         |
| Boiler Feedwater |              |                | Green      | White    | Blr Feed         |
| A/C Co           | ndenser Wate | r              |            |          |                  |
| Supply           |              |                | Green      | White    | A/C Cond Wtr Sup |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| A/C Condenser Water      |               |        |       |                  |
|--------------------------|---------------|--------|-------|------------------|
| Return                   |               | Green  | White | A/C Cond Wtr Ret |
| Chilled Water Supply     |               | Green  | White | Ch. Wtr Sup      |
| Chilled Water Return     |               | Green  | White | Ch. Wtr Ret      |
| Shop Compressed Air      |               | Blue   | White | Shop Air         |
| Air-Instrument Controls  |               | Green  | White | Air-Inst Cont    |
| Drain Line               |               | Green  | White | Drain            |
| Emergency Shower         |               | Green  | White | Emg Shower       |
| High Pressure Steam      |               | Green  | White | H.P. *           |
| High Pressure Condensate | e             |        |       |                  |
| Return                   |               | Green  | White | H.P. Ret *       |
| Medium Pressure Steam    |               | Green  | White | M. P. Stm *      |
| Medium Pressure Condens  | ate           |        |       |                  |
| Return                   |               | Green  | White | M.P. Ret*        |
| Low Pressure Steam       |               | Green  | White | L.P. Stm *       |
| Low Pressure Condensate  |               |        |       |                  |
| Return                   |               | Green  | White | L.P. Ret *       |
| High Temperature Water   |               |        |       |                  |
| Supply                   |               | Green  | White | H. Temp Wtr Sup  |
| High Temperature Water   |               |        |       | -                |
| Return                   |               | Green  | White | H. Temp Wtr Ret  |
| Hot Water Heating Supply | У             | Green  | White | H. W. Htg Sup    |
| Hot Water Heating Return |               | Green  | White | H. W. Htg Ret    |
| Gravity Condensate Retu  | rn            | Green  | White | Gravity Cond Ret |
| Pumped Condensate Return | n             | Green  | White | Pumped Cond Ret  |
| Vacuum Condensate Return | n             | Green  | White | Vac Cond Ret     |
| Fuel Oil - Grade         | Brown         | White  | Fuel  | Oil-Grade        |
| (Diesel Fuel included u  | nder Fuel Oil | _)     |       |                  |
| Boiler Water Sampling    |               | Green  | White | Sample           |
| Chemical Feed            |               | Green  | White | Chem Feed        |
| Continuous Blow-Down     |               | Green  | White | Cont. B D        |
| Pumped Condensate        |               | Green  | White | Pump Cond        |
| Pump Recirculating       |               | Green  | White | Pump-Recirc.     |
| Vent Line                |               | Green  | White | Vent             |
| Alkali                   |               | Orange | Black | Alk              |
| Bleach                   |               | Orange | Black | Bleach           |
| Detergent                |               | Yellow | Black | Det              |
| Liquid Supply            |               | Yellow | Black | Liq Sup          |
| Reuse Water              |               | Yellow | Black | Reuse Wtr        |
| Cold Water (Domestic)    | White         | Green  | White | C.W. Dom         |
| Hot Water (Domestic)     |               |        |       |                  |
| Supply                   | White         | Yellow | Black | H.W. Dom         |
|                          |               |        |       |                  |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| Return                            | White | Yellow | Black       | H.W. Dom Ret      |
|-----------------------------------|-------|--------|-------------|-------------------|
| Tempered Water                    | White | Yellow | Black       | Temp. Wtr         |
| Ice Water                         |       |        |             |                   |
| Supply                            | White | Green  | White       | Ice Wtr           |
| Return                            | White | Green  | White       | Ice Wtr Ret       |
| Reagent Grade Water               |       | Green  | White       | RG                |
| Reverse Osmosis                   |       | Green  | White       | RO                |
| Sanitary Waste                    |       | Green  | White       | San Waste         |
| Sanitary Vent                     |       | Green  | White       | San Vent          |
| Storm Drainage                    |       | Green  | White       | St Drain          |
| Pump Drainage                     |       | Green  | White       | Pump Disch        |
| Chemical Resistant Pipe           |       |        |             |                   |
| Waste                             |       | Orange | Black       | Acid Waste        |
| Vent                              |       | Orange | Black       | Acid Vent         |
| Atmospheric Vent                  |       | Green  | White       | ATV               |
| Silver Recovery                   |       | Green  | White       | Silver Rec        |
| Oral Evacuation                   |       | Green  | White       | Oral Evac         |
| Fuel Gas                          |       | Yellow | Black       | Gas               |
| Fire Protection Water             |       |        |             |                   |
| Sprinkler                         | Red   | Red    | White       | Auto Spr          |
| Standpipe                         | Red   | Red    | White       | Stand             |
| Sprinkler                         | Red   | Red    | White       | Drain             |
|                                   |       |        |             |                   |
| Hot Water Supply Dom.             |       | C      | Title ! L e | II W Com Dom / CM |
| Solar Water Hot Water Return Dom. |       | Green  | White       | H.W. Sup Dom/SW   |
| Solar Water                       |       | Green  | White       | H.W. Ret Dom/SW   |
|                                   |       |        |             |                   |

- 7. See Sections for methods of identification, legends, and abbreviations of the following:
  - a. Medical Gases and vacuum lines: Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES / Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
  - b. Conduits containing high voltage feeders over 600 volts: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS
- B. Fire and Smoke Partitions:
  - 1. Identify partitions above ceilings on both sides of partitions except within shafts in letters not less than 64 mm (2 1/2 inches) high.
  - 2. Stenciled message: "SMOKE BARRIER" or, "FIRE BARRIER" as applicable.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 3. Locate not more than 6096 mm (20 feet) on center on corridor sides of partitions, and with a least one (1) message per room on room side of partition.
- 4. Use semi-gloss paint of color that contrasts with color of substrate.

### 3.13 PROTECTION CLEAN UP, AND TOUCH-UP:

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

# SECTION 12 34 00 MANUFACTURED PLASTIC CASEWORK

### PART 1 - GENERAL

#### 1.1 DESCRIPTION:

- A. This section specifies interchangeable modular plastic casework system.
- B. System includes support components, storage units, accessories, electrical wiring chases, for wall hung, and island arrangements.

#### 1.2 RELATED WORK:

- A. Section 07 92 00, JOINT SEALANTS: Sealants.
- B. Section 09 22 16, NON-STRUCTURAL METAL FRAMING: Backing Plates for Wall Mounted Casework.
- C. Section 09 65 13, RESILIENT BASE AND ACCESSORIES: Resilient Base.
- D. NOT USED.
- E. Section 12 36 00, COUNTERTOPS: Countertop Construction and Materials and Items Installed in Countertops.
- F. Division 22, PLUMBING: Plumbing Requirements Related to Casework.

#### 1.3 OUALITY ASSURANCE:

- A. Approval by Contracting Officer Representative (COR) is required of manufacturer and installer based upon certification of qualifications specified.
- B. Manufacturer's Qualifications:
  - Manufacturer is regularly engaged in design and manufacture of modular plastic casework, casework components and accessories of scope and type similar to indicated requirements for a period of not less than five (5) years.
  - 2. Manufacturer has successfully completed at least three (3) projects of scope and type similar to indicated requirements.
  - 3. Submit manufacturer's qualifications and list of projects, including owner contact information.
- C. Installer Qualifications:
  - 1. Installer has completed at least three (3) projects in last five (5) years in which these products were installed.
  - 2. Submit installer qualifications.

Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

### 1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Product data:
  - Manufacturer's literature and other data showing compliance with the specification for materials.
- C. Certification:
  - 1. Manufacturer's qualifications specified.
  - 2. Installer's qualifications specified.
- D. Shop drawings:
  - 1. Drawings complete, accurate and to scale.
  - 2. Show:
    - a. Location of each component.
    - b. Dimensions and clearance as required.
    - c. Identify each component with both drawing identification and manufacturer's product number.
    - d. Details including cuts, holes, scribes, attachments and specialized construction requirements.
  - Installation procedures: Show dimensions, methods of assembly, anchorage, installation and conditions relating to adjoining work.
  - 4. Placement Listing: Itemized listing by room number of components provided.
  - 5. Complete listing of each component used.
  - 6. Include the weight of each component.
- E. Operational and Maintenance Manual.
- F. Manufacturer's warranty.

### 1.5 DELIVERY, STORAGE AND HANDLING:

- A. Deliver, store and handle to prevent damage and deterioration until final acceptance of project.
- B. Deliver and store materials in manufacturer's original, labeled containers after building is enclosed and wet work is complete and dry.
- C. Store materials in a secure, locked area.
- D. Repair or replace damaged items due to storage or handling. Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

### 1.6 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their plastic casework for a minimum of five (5) years from date of installation and final acceptance by the Government. Submit manufacturer warranty.

#### 1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation.
- B. American Hardwood Association:
  A135.4-12.....Basic Hardwood
- D. ASTM International (ASTM):

A36/A36M-19............Carbon Structural Steel
A240/A240M-20.......Chromium and Chromium-Nickel Stainless
Steel Plate, Sheet, and Strip for
Pressure Vessels and for General
Applications

A283/A283M-18.....Low and Intermediate Tensile Strength

Carbon Steel Plates

A423/A423M-09(R2014)....Seamless and Electric-Welded Low-Alloy Steel Tubes

A568/A568M-19a......Steel, Sheet, Carbon, Structural and
High-Strength, Low-Alloy Hot-Rolled and
Cold-Rolled, General Requirements

A1008/A1008M-20......Steel Sheet, Carbon Cold-Rolled, Commercial Quality

B221-14......Aluminum and Aluminum-Alloy Extruded

Bars, Rods Wire, Profiles and Tubes

B221M-13.....Aluminum and Aluminum-Alloy Extruded

Bars, Rods Wire, Profiles and Tubes

(Metric)

Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

|                                      | Bancroft Architects + Engineers                            |  |  |  |
|--------------------------------------|------------------------------------------------------------|--|--|--|
|                                      | 01-01-21 B456-17 Electrodeposited Coatings of Copper Plus, |  |  |  |
|                                      | Nickel Plus Chromium and Nickel Plus                       |  |  |  |
|                                      | Chromium                                                   |  |  |  |
|                                      | D1201-13Polyester Thermosetting Molding Compound           |  |  |  |
|                                      | D4673-16)Acrylonitrile-Butadiene-Styrene (ABS)             |  |  |  |
|                                      | Molding and Extrusion Materials                            |  |  |  |
|                                      | E84-20Surface Burning Characteristics of                   |  |  |  |
|                                      | Plastics and Alloys Building Materials                     |  |  |  |
| E. Code of Federal Regulation (CFR): |                                                            |  |  |  |
|                                      | 40 CFR 59-2016Determination of Volatile Matter Content,    |  |  |  |
|                                      | Water Content, Density Volume Solids, and                  |  |  |  |
|                                      | Weight Solids of Surface Coating                           |  |  |  |
| F.                                   | National Association of Architectural Metal Manufacturers  |  |  |  |
|                                      | (NAAMM):                                                   |  |  |  |
|                                      | AMP 500 Series-06Metal Finishes Manual                     |  |  |  |
| G.                                   | National Electrical Manufacturers Association (NEMA):      |  |  |  |
|                                      | LD 3-05High Pressure Decorative Laminates                  |  |  |  |
| Н.                                   | . American Welding Society (AWS):                          |  |  |  |
|                                      | D1.1/D1.1M-20Structural Welding Code Steel                 |  |  |  |
|                                      | D9.1/D9.1M-18)Sheet Metal Welding Code                     |  |  |  |
| I.                                   | . National Fire Protection Association (NFPA):             |  |  |  |
|                                      | 70-20National Electric Code (NEC)                          |  |  |  |
| J.                                   | U.S. Department of Commerce, Product Standard (PS):        |  |  |  |
|                                      | PS1-95Construction and Industrial Plywood                  |  |  |  |
| К.                                   | Scientific Equipment and Furniture Association (SEFA):     |  |  |  |
|                                      | 2.3-10Installation of Scientific Laboratory                |  |  |  |
|                                      | Furniture and Equipment                                    |  |  |  |
| L.                                   | Underwriters Laboratories (UL):                            |  |  |  |
|                                      | onderwiredis Edsbirdsbirds (OI).                           |  |  |  |

### PART 2 - PRODUCT

### 2.1 DESIGN REQUIREMENTS:

A. Provide components which are alike by one (1) manufacturer with specified flexibility and interchangeability requirements.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

437-13.....Key Locks

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- B. Components interchangeable to form flexible system which will accommodate change:
  - 1. Dimensions of products are nominal and shown on construction documents and schedules.
  - 2. Hanging components modular on same increments.
  - 3. Selectively removable and replaceable without disturbing adjacent components.
- C. Combustibility: Maximum flame spread rating of 25 and smoke development of 450 when tested in accordance with ASTM E84.
- D. Basic Support Components:
  - 1. Service Modules:
    - a. Steel support frames designed to support storage assemblies and work surfaces, enclosed plumbing and electrical lines and hold fixtures.
    - b. Used to form work area configurations that are easily rearranged.
    - c. Modules maybe installed as wall-attached structures or in freestanding configurations.
    - d. Adjacent modules capable of being joined together.
    - e. Equip module with adjustable floor guides to compensate for uneven floors.
    - f. Modules equipped with stability accessories such as floor anchors and wall attachments brackets as required. Show details on shop drawings.
    - g. Provide access panels for easy access to interior of pipe chase areas. Access panels supported individually and not tied into each other.
    - h. Modules contain method to secure piping for fixtures, electrical outlets and sinks. Detail on shop drawing.
    - i. Enclose modules to floor with a removable panel.
    - j. Modules have end panels where noted. End panels capable of supporting storage assemblies.
    - k. Modules shipped completely finished preassembled, ready for installation.
  - 2. Vertical Wall Strips:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- a. Fabricated of steel or aluminum.
- b. Wall-mounted designed to suspend selected components that require vertical height adjustments.
- c. Vertical adjustment 25 mm (1 inch) maximum.
- d. Only one (1) wall strip is required between side by side suspended components.
- e. Attach wall strips to walls or service modules by mechanical fasteners. Wall strips may be an integral part of service modules.

### 3. Horizontal Support Rail:

- a. Fabricated of steel or aluminum.
- b. Designed to suspend selected components in one place, allowing them to be removed and replaced in same or different location.
- c. Rail designed to be supported from vertical rails or service modules.
- d. Rail configuration able to receive each hanging component.
- e. Rail able to be cut to any length using simple hand tool or applied to form continuous runs.
- f. System designed to eliminate area of potential dust accumulation or bacteriological growth.
- g. Attach rail to walls or service modules with mechanical fasteners to provide a permanent installation.

### 4. Panel Support System:

- a. Steel hanger supports with slots of 25 mm (1 inch) intervals for suspension of casework or countertops.
- b. Adjustable level or slides to provide uniform height on adjacent units.
- c. Allow removal, replacement or relocation without removing adjacent panels.
- d. Capable of installation on top of finished floor without use of fasteners to floors.
- e. Have electrical channels as specified in electrical components with two (2) duplex outlets per panel side.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- f. Heights from 865 mm (34 inches) to 2032 mm (80 inches) standard with manufacturer.
- g. Widths from 305 mm (12 inches) to 1220 mm (48 inches) standard with manufacturer.
- h. Connectors to withstand weight of loaded components and stress of movement under loaded conditions, including a variety of panel configurations and panels of differing heights.

### E. Live Load Capacity:

- 1. Loads in addition to weight of components supported.
- 2. Panel types; minimum of 130 kg (300 pounds) maximum of 500 kg (1100 pounds.) per panel per sides.
- 3. Open panel types: Minimum of 86 kg (190 pounds), maximum of 181 kg (400 pounds).
- 4. Vertical wall strips: Minimum 272 Kg (600 pound.).
- 5. Under counter storage units: 91 kg (200 pounds.).
  - a. Manufacturers standard modular sizes acceptable
- 6. Drawers: 181 kg (400 pounds.) for drawers 101 mm (4 inches) deep.

### F. Finish:

- Existing cabinets any additional accessories to match finish.
- 2. More than one (1) color may be selected for units.

### 2.2 MATERIALS:

- A. Carbon Structural Steel: ASTM A36/A36M.
- B. Stainless Steel: ASTM A240/A240M Type 302B with number 4 finish minimum.
- C. Steel plates: ASTM A283/A283M.
- D. Sheet Steel: ASTM A1008/A1008M or ASTM A568/A568M.
- E. Steel Tubes: ASTM A423/A423M.
- F. Aluminum: ASTM B221M (B221).
- G. ABS compounds: ASTM D4673.
- H. Plastic Laminate: NEMA LD-3.
- I. Hardboard: AHA A135.4, Class 1, tempered.
- J. Particleboard: ANSI A208.1; no added urea formaldehyde.

Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- K. Plywood, Softwood: Prod. Std. PS1, five (5) ply construction from 13 mm to 28 mm (1/2 inch to 1-1/8 inch) thickness, and seven (7) ply for 31 mm (1-1/4 inch) thickness.
- L. Adhesive: Provide adhesive with VOC content of 250 g/L or less when calculated according to 40 CFR 59, (EPA Method 24).

### 2.3 FABRICATION:

- A. Manufacturer's standard design of modular casework system meeting design requirements.
  - 1. Casework requirements specified are intended to establish minimum requirements.
  - 2. Dimensions of components shown on construction documents are nominal to represent module requirements.
  - 3. Provide components compatible with each other as to color, finish and hardware.
- B. Fabricate frames and rails of steel or aluminum as standard with modular casework manufacturer's system.
- C. Finish metals in accordance with NAAMM AMP 500-505 and plated steel in accordance with ASTM B456 as standard with modular casework manufacturer's system.
- D. Fabricate steel components of ASTM A36/A36M, ASTM A283/A283M, ASTM A1008/A1008M or ASTM A568/A568M as standard with casework system manufacturer.

### 2.4 PRODUCTS OF OTHER COMPONENTS DIRECTLY RELATED TO CASEWORK:

- A. Refer to Section 07 92 00, JOINT SEALANTS for work related to sealants used in conjunction with joints of countertops, casework systems, and adjacent materials.
- B. Refer to Section 09 65 13, RESILIENT BASE AND ACCESSORIES for work related to rubber base adhered to casework systems.
- C. Refer to Section 09 22 16, NON-STRUCTURAL METAL FRAMING for backing plates used in conjunction with wall assemblies for the attachment of casework systems.
- D. Refer to Section 12 36 00, COUNTERTOPS for work related to plastic laminate, acid-resistant plastic laminate, metal, molded resin, wood, and methyl methacrylic polymer countertops and/or

Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

shelving used in conjunction with casework systems. When countertop materials are provided by the casework manufacturer, include the following features:

- 1. Capable of being suspended from vertical support rails or horizontal wall strips or service modules.
- 2. Provided with rounded corners and impact resistant material on exposed edges.
- 3. Capable of being easily relocated and installed without tools.
- 4. Capable of being suspended and easily changed under counter mounted storage units.
- 5. Provide leveling adjustment capability so units can be brought into a level position.
- 6. Secured using fasteners. Show detail on shop drawings.
- E. Refer to Section 12 36 00, COUNTERTOPS for work related to and integral with countertop systems such as pegboards, funnel and graduate racks.
- F. Refer to Division 22, PLUMBING for the following work related to casework systems:
  - Sinks, faucets and other plumbing service fixtures, venting, and piping systems.
  - 2. Compressed air, gas, vacuum and piping systems.
- G. Refer to Division 26, ELECTRICAL for the following work related to casework systems:
  - 1. Connections and wiring devices.
  - 2. Connections and lighting fixtures except when factory installed by the manufacturer.

### PART 3 - EXECUTION

### 3.1 COORDINATION:

- A. Begin only after work of other trades in complete, i.e. wall and floor finish completed, ceilings installed, light fixtures and diffusers installed and connected, and area is free of trash and debris.
- B. Verify location and size of mechanical and electrical services as required and perform cutting of components of work installed by other trades.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- C. Verify reinforcement of walls and partitions for support and anchorage of casework.
- D. Coordinate with other Divisions and Sections of the specification for work related to installation of casework systems to avoid interference and completion of service connections.

#### 3.2 INSTALLATION:

- A. Install casework in accordance with manufacturer's written instructions.
  - 1. Install in available space; arranged for safe and convenient operation and maintenance.
  - 2. Align cabinets for flush joints except where shown otherwise on construction documents.
  - 3. Install with bottom of wall cabinets in alignment and tops of base cabinets aligned level, plumb, true, and straight to a tolerance of 3.2 mm in 2438 mm (1/8 inch in 96 inches).
  - 4. Install corner cabinets with hinges on corner side with filler or spacers sufficient to allow opening of drawers.

### B. Support Rails:

- 1. Install true to horizontal at heights shown on construction documents; maximum tolerance for uneven floors is plus or minus 13 mm (1/2 inch).
- 2. Shim as necessary to accommodate variations in wall surface not exceeding  $5\ \mathrm{mm}\ (3/16\ \mathrm{inch})$  at fastener.

### C. Wall Strips:

- 1. Install true to vertical and spaced as shown and spaced as shown on construction documents.
- 2. Align slots to assure that hanging units will be level.

### D. Plug Buttons:

- Install plug buttons in predrilled or prepunched perforations not used.
- 2. Use chromium plate plug buttons or buttons finish to match adjacent surfaces.
- E. Seal junctures of casework systems with mildew-resistant silicone sealants as specified in Section 07 92 00, JOINT SEALANTS.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

#### 3.3 CLOSURES AND FILLER PLATES:

- A. Close openings larger than 6 mm (1/4 inch) wide between cabinets and adjacent walls with flat, steel closure strips, scribed to required contours, or machined formed steel fillers with returns, secure with sheet metal screws to tubular or channel members of units, or bolts where exposed on inside.
- B. Where ceilings interfere with installation of sloping tops, omit sloping tops and provide flat steel filler plates.
- C. Secure filler plates to casework top members, unless shown otherwise on construction documents.
- D. Secure filler plates more than 152 mm (6 inches) in width top edge to a continuous 25 x 25 mm (1 x 1 inch) 0.889 mm (1/16 inch) thick steel formed steel angle with screws.
- E. Anchor angle to ceiling with toggle bolts.
- F. Install closure strips at exposed ends of pipe space and offset opening into concealed space.
- G. Finish closure strips and fillers with same finishes as cabinets.

### 3.4 FASTENINGS AND ANCHORAGE:

- A. Do not anchor to wood ground strips.
- B. Provide hat shape metal spacers where fasteners span gaps or spaces.
- C. Use 6 mm (1/4 inch) diameter toggle or expansion bolts, or other appropriate size and type fastening device for securing casework to walls or floor. Use expansion bolts shields having holding power beyond tensile and shear strength of bolt and breaking strength of bolt head.
- D. Use 6 mm (1/4 inch) diameter hex bolts for securing cabinets together.
- E. Use 6 mm (1/4 inch) by minimum 38 mm (1-1/2 inch) length lag bolt anchorage to wood blocking for concealed fasteners.
- F. Use not less than No. 12 or 14 wood screws with not less than 38 mm (1 1/2 inch) penetration into wood blocking.
- G. Space fastening devices 305 mm (12 inches) on center with minimum of three (3) fasteners in 915 or 1220 mm (3 or 4 foot) unit width.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

- H. Anchor floor mounted cabinets with a minimum of four (4) bolts through corner gussets. Anchor bolts may be combined with or separate from leveling device.
- I. Secure cabinets in alignment with hex bolts or other internal fastener devices removable from interior of cabinets without special tools. Do not use fastener devices which require removal of tops for access.
- J. Where units abut end to end, anchor together at top and bottom of sides at front and back. Where units are back to back, anchor backs together at corners with hex bolts placed inconspicuously inside casework.
- K. Where type, size, or spacing of fastenings is not shown or specified on construction documents, show proposed fastenings and method of installation on shop drawings.

### 3.5 ADJUSTMENTS:

- A. Adjust equipment to insure proper alignment and operation.
- B. Replace or repair damaged or improperly operating materials, components or equipment.

### 3.6 CLEANING:

- A. Immediately following installation, clean each item, removing finger marks, soil and foreign matter resulting from work of this section.
- B. Remove from job site trash, debris and packing materials resulting from work of this section.
- C. Leave installed areas clean of dust and debris resulting from work of this section.

#### 3.7 INSTRUCTIONS:

- A. Provide operational and cleaning manuals and verbal instructions in accordance with Article INSTRUCTIONS, SECTION 01 00 00, GENERAL REQUIREMENTS.
- B. Provide in service training both prior to and after facility opening. Coordinate in service activities with COR.
- C. Commencing at least seven (7) days prior to opening of facility, provide one (1) four (4) hour day of on-site orientation and

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

01-01-21

technical instruction on use and cleaning procedures application of products and systems specified herein.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-01-18

### SECTION 12 36 00 COUNTERTOPS

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies casework countertops with integral accessories.
- B. Integral accessories include:
  - 1. Sinks with traps and drains.
  - 4. Electrical Receptacles.

#### 1.2 RELATED WORK

- B. DIVISION 22, PLUMBING.
- C. DIVISION 26, ELECTRICAL.

#### 1.3 SUBMITTALS

- A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Existing counters and items are scheduled to be modified and reinstalled. If new components are needed provide appropriate Submittal.

#### 1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Hardboard Association (AHA):

A135.4-95.....Basic Hardboard

C. Composite Panel Association (CPA):

A208.1-09......Particleboard

D. American Society of Mechanical Engineers (ASME):

A112.18.1-12.....Plumbing Supply Fittings

A112.1.2-12.....Air Gaps in Plumbing System

A112.19.3-08(R2004).....Stainless Steel Plumbing Fixtures (Designed for Residential Use)

E. American Society for Testing and Materials (ASTM):

A167-99 (R2009).....Stainless and Heat-Resisting Chromium-Nickel

Steel Plate, Sheet and Strip

A1008-10.....Steel, Sheet, Cold-Rolled, Carbon, Structural,

High Strength, Low Alloy

D256-10......Pendulum Impact Resistance of Plastic

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    |                          | 12 01 10                                      |
|----|--------------------------|-----------------------------------------------|
|    | D570-98 (R2005)          | Water Absorption of Plastics                  |
|    | D638-10                  | Tensile Properties of Plastics                |
|    | D785-08                  | Rockwell Hardness of Plastics and Electrical  |
|    |                          | Insulating Materials                          |
|    | D790-10                  | Flexural Properties of Unreinforced and       |
|    |                          | Reinforced Plastics and Electrical Insulating |
|    |                          | Materials                                     |
|    | D4690-99(2005)           | Urea-Formaldehyde Resin Adhesives             |
| F. | Federal Specifications   | (FS):                                         |
|    | A-A-1936                 | Adhesive, Contact, Neoprene Rubber            |
| G. | U.S. Department of Comme | erce, Product Standards (PS):                 |
|    | PS 1-95                  | Construction and Industrial Plywood           |
| Н. | National Electrical Manu | afacturers Association (NEMA):                |
|    | LD 3-05                  | High Pressure Decorative Laminates            |

## PART 2 - PRODUCTS

### 2.1 MATERIALS

- A. Plastic Laminate: NEMA LD 3.
  - 1. Concealed backing sheet Type BKL.
  - 2. Decorative surfaces:
    - a. Flat components: Type GP-HGL.
    - b. Post forming: Type PF-HGP.
- J. Fasteners:
  - 1. Metals used for welding same metal as materials joined.
  - 2. Use studs, bolts, spaces, threaded rods with nuts or screws suitable for materials being joined with metal splice plates, channels or other supporting shape.

### 2.2 SINKS

- B. Stainless Steel:
  - 1. Existing sinks salvaged and reinstalled.

## 2.3 TRAPS AND FITTINGS

- A. Material as specified in DIVISION 22, PLUMBING.
- C. For Stainless Steel Sinks:
  - 1. Either cast or wrought brass or stainless steel P-traps and drain fittings; ASME A112.18.1

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 12-01-18

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-01-18

2. Flat strainer, except where cup strainer or overflow standpipe specified.

## 2.4 WATER FAUCETS

- A. ASME A112.18.1.
  - 1. Cast or forged brass, compression type with replaceable seat and stem assembly or replaceable cartridge.
  - 2. Indexed lever handles either with or without head.
  - 3. Gooseneck minimum clearance above countertop of 190 mm (7-1/2 inches), bent 180 degrees for vertical discharge.
  - 4. Swing spouts elevated to clear handles.
  - 5. Exposed brass surfaces chromium plated.
  - 6. Cast combination hot and cold fixture with one piece body for multiple outlets.
  - 7. Adapter type connection which will permit field conversion of swing spouts to fixed or gooseneck grouts or vice versa.
  - 8. Pedestals Top for Laboratory or Pharmacy:
    - a. Modern design tapered to a round base, factory assembled and tested.
    - b. Brass shanks, locknuts and washers for attaching to top or curbs.

### 2.6 FIXTURE IDENTIFICATION

- A. Code fixtures with full view plastic index buttons.
- B. Use following colors and codes:

| SERVICE           | COLOR       | CODE      | COLOR OF LETTERS |
|-------------------|-------------|-----------|------------------|
| Cold Water        | Dark Green  | CW        | White            |
| Hot Water         | Red         | HW        | White            |
| Laboratory Air    | Orange      | AIR       | Black            |
| Fuel Gas          | Dark Blue   | GAS       | White            |
| Laboratory Vacuum | Yellow      | VAC       | Black            |
| Distilled Water   | White       | DW        | Black            |
| Deionized Water   | White       | DI        | Black            |
| Oxygen            | Light Green | OXY       | White            |
| Hydrogen          | Pink        | Н         | Black            |
| Nitrogen          | Gray        | N         | Black            |
| All Other Gases   | Light Blue  | CHEM.SYM. | Black            |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-01-18

#### 2.7 ELECTRICAL RECEPTACLES

A. Hospital grade per electrical specifications.

### 2.10 COUNTERTOPS

- A. Fabricate in largest sections practicable.
- B. Fabricate with joints flush on top surface.
- C. Fabricate countertops to overhang front of cabinets and end of assemblies 25 mm (one inch) except where against walls or cabinets.
- D. Provide 1 mm (0.039 inch) thick metal plate connectors or fastening devices (except epoxy resin tops).
- E. Join edges in a chemical resistant waterproof cement or epoxy cement, except weld metal tops.
- F. Fabricate with end splashes where against walls or cabinets.
- G. Splash Backs and End Splashes:
  - 1. Not less than 19 mm (3/4 inch) thick.
  - 2. Height 100 mm (4 inches) unless noted otherwise.
  - 3. Laboratories and pharmacy heights or where fixtures or outlets occur: Not less than 150 mm (6 inches) unless noted otherwise.
  - 4. Fabricate epoxy splash back in maximum lengths practical of the same material.

### I. Plastic Laminate Countertops:

- 1. Fabricate plastic laminate on five-ply plywood or particleboard core 19 mm (3/4 inch) thick with plastic laminate backing sheet.
- 2. Front edge over cabinets not less than 38 mm (1-1/2 inches) thick except where plastic "T" insert is used, not less than 19 mm (3/4 inch) thick.
- 3. Exposed Surface and edges of decorative laminated plastic or laboratory chemical resistant surface.
  - a. Use chemical resistant surface on tops 6A, 6B, and 6C.
  - b. Use decorative surface tops when noted plastic laminate, for tops 10A, 10B and 10C.
- S. Countertop products shall comply with following standards for biobased materials:

| Material Type   | Percent by Weight            |
|-----------------|------------------------------|
| Composite Panel | 89 percent biobased material |
| Hardwood        | 89 percent biobased material |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

12-01-18

| Particleboard | 89 percent biobased material |
|---------------|------------------------------|
| Plywood       | 89 percent biobased material |

The minimum-content standards are based on the weight (not the volume) of the material in the insulating core only.

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Before installing countertops verify that wall surfaces have been finished as specified and that mechanical and electrical service locations are as required.
- B. Secure countertops to supporting rails of cabinets with metal fastening devices, or screws through pierced slots in rails.
  - 1. Where type, size or spacing of fastenings is not shown or specified, submit shop drawings showing proposed fastenings and method of installation.
  - 2. Use round head bolts or screws.
  - 3. Use epoxy or silicone to fasten the epoxy resin countertops to the cabinets.
  - 4. Use wood or sheet metal screws for wood or plastic laminate tops; minimum penetration into top 16 mm (5/8 inch), screw size No 8, or 10.

#### D. Sinks

- 1. Install stainless steel sink in plastic laminate tops with epoxy compound to form watertight seal under shelf rim.
  - a. Install faucets and fittings on sink ledges with watertight seals where shown.
- E. Faucets, Fixtures, and Outlets:
  - 1. Seal opening between fixture and top.
  - 2. Secure to top with manufacturers standard fittings.

### 3.2 PROTECTION AND CLEANING

- A. Tightly cover and protect against dirt, water, and chemical or mechanical injury.
- B. Clean at completion of work.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-16

# SECTION 13 49 00 RADIATION PROTECTION

### PART 1 - GENERAL

#### 1.1 SUMMARY

- A. Section Includes:
  - Radiation protection with lead materials and lead lined products where indicated on drawings.

### 1.2 RELATED REQUIREMENTS

A. Joint treatment of Lead-Lined Gypsum Board: Section 09 29 00, GYPSUM BOARD.

#### 1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
  - 1. A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
  - 2. C90-14 Loadbearing Concrete Masonry Units.
  - 3. C1002-14 Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs.
  - 4. C1396/C1396M-14a Gypsum Board.
  - 5. D1187/D1187M-97(2011)el Asphalt-Base Emulsions for Use as Protective Coatings for Metal.
- C. Federal Specifications (Fed. Spec.):
  - 1. QQ-L-201F(2)-65 Lead Sheet.
- D. National Council on Radiation Protection & Measurements (NCRP):
  - Report No. 102-89 Medical X-Ray, Electron Beam and Gamma-Ray Protection for Energies Up to 50 MeV (Equipment Design, Performance and Use).
  - Report No. 147-04 Structural Shielding Design for Medical X-Ray Imaging Facilities.
- E. National Institute of Standards and Technology (NIST):
  - 1. PS 1-09 Structural Plywood.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-16

### 1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting minimum 30 days before beginning Work of this section.
  - 1. Required Participants:
    - a. Contracting Officer's Representative.
    - b. Architect/Engineer.
    - c. Contractor.
    - d. Installer.
    - e. Other installers responsible for adjacent and intersecting work, including <installer> and <installer>.

#### 1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
  - 1. Show size, configuration, and fabrication and installation details.
  - 2. Show type, location, and thickness of radiation protection.
- C. Manufacturer's Literature and Data:
  - 1. Description of each product.
  - 2. Installation instructions.
  - 3. Warranty.
- D. Test Reports: Certify each product complies with specifications.
  - 1. Lead control windows.
  - 2. Lead lined wood doors.
  - 3. Hardware.
  - 4. Lead lined door frames.
- E. Qualifications: Substantiate qualifications comply with specifications.
  - 1. Manufacturer with project experience list .
- F. Delegated Design Drawings and Calculations: Signed and sealed by responsible design professional.
- G. Operation and Maintenance Data:
  - 1. Care instructions for each exposed finish product.
  - 2. Start-up, maintenance, troubleshooting, emergency, and shut-down instructions for each operational product.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-16

### 1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
  - 1. Regularly manufactures specified products.
  - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
    - a. Project Experience List: Provide contact names and addresses for completed projects.
  - 3. Approval by Contracting Officer is required for product or service of proposed manufacturer and suppliers, and will be based upon submission by Contractor of certification that:
  - 4. Manufacturer regularly and presently manufactures lead radiation shielding as specified as one of its principal products.

#### 1.7 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant lead lined doors against material and manufacturing defects.
  - Defects Include: Warp or twist exceeding 6 mm (1/4 inch) in any face dimension of door (including full diagonal), measured minimum six months after doors have been hung and finished.
  - 2. Warranty Period: Two years.

## PART 2 - PRODUCTS

### 2.1 MATERIALS

- A. Lead Sheet: Fed. Spec. QQ-L-201, Grade C, 1/16"
- B. Lead Lined Gypsum Wallboard:
  - 1. Gypsum Wallboard: ASTM C1396/C1396M, Type X, 16 mm (5/8 inch) thick.
  - 2. Apply sheet lead in thicknesses shown, unpierced and in one piece.
  - 3. Plywood Panels: NIST PS 1, Grade A-A interior type, 9 mm (3/8 inch) thick.

### C. Fasteners:

- 1. Cadmium or chromium plated steel screws for securing lead louvers.
- 2. Standard Steel Drill Screws: ASTM C1002, with lead washers for application of lead lined sheet materials to metal studs.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-16

### 3. Nails:

- a. Use barbed lead head nails for application of lead lined materials to wood furring strips.
- b. Length: Sufficient to penetrate furring strips minimum 25 mm (1 inch).
- c. Cast-Lead Head Thickness: Equal protection of penetrated lead shielding.
- D. Lead Discs Thickness: Equal protection of fastener penetrated lead shielding, diameter 25 mm (1 inch) larger than fastener.

#### 2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Sustainable Construction Requirements:
  - 1. Low Pollutant-Emitting Materials: Materials: Comply with VOC limits for the following products:
    - a. Non-Flooring Adhesives and Sealants.
- C. Radiation Shielding Products: Conform to applicable requirements of NCRP Report No. 147 and NCRP Report No. 102.
- D. General: Provide lead lining for items occurring within partitions matching radiation protection equivalent to adjacent partitions.

### PART 3 - EXECUTION

### 3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Apply lead lined gypsum wallboard to metal studs as indicated on drawings.
- C. Predrill or drill pilot holes for nails or screws necessary to prevent deforming fastener and lead shielding and to prevent distorting wallboard.
- D. Apply wallboard vertically with lead linings placed next to supports.
- E. Install sheet lead strips behind joints in same thickness used for wallboard.
  - 1. Lead Strips: 45 mm (1-3/4 inches) wide.
  - 2. Lead Angles at Corners: 45 mm by 45 mm (1-3/4 by 1-3/4 inch).
  - 3. Secure the lead strips to supports at outer edges of strips.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-16

#### F. Wallboard:

- 1. Fasten to supports using screws and lead washers or discs at maximum 250 mm (10 inches) on centers.
- 2. Make provisions for connection with lead lined door frames and for cutouts for vision panels.
- 3. Joint treatment of lead lined gypsum board panels and fastening depressions as specified in Section 09 29 00, GYPSUM BOARD.

## 3.2 INSTALLATION OF SUPPLEMENTAL LEAD SHIELDING

- A. Line or cover penetrations of wall lead, pipe chases, columns fasteners and other interruptions with sheet lead.
  - Install sheet lead free of waves, lumps and wrinkles and with as few joints as possible.
  - 2. Joints in sheet lead to provide radiation protection equivalent to adjacent sheet lead.
  - 3. Finish joints smooth and neat.
- B. Provide lead shielding for spaces around outlet boxes, junction boxes, film illuminators, and pipes, to achieve radiation protection equaling radiation protection specified for adjacent wall surface.

#### 3.3 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
  - 1. Lead radiation shielding will be tested after radiation producing equipment is installed.
  - 2. Additional testing required due to correction and replacement of defective work will be done by Government at Contractor's expense.

#### 3.4 SIGNAGE SCHEDULE

A. Install on exterior wall by door (latch side) with radiation shielding information

SURFACES OF THIS ROOM HAVE BEEN PROTECTED WITH SHEET LEAD OF THE FOLLOWING THICKNESS TO A HEIGHT OF 2100 mm (7 feet) ABOVE FLOOR SLAB:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-16

| COMPONENT  | TOTAL LEAD     | OTAL LEAD  |  |
|------------|----------------|------------|--|
|            | LEAD THICKNESS | EQUIVALENT |  |
|            |                | PROTECTION |  |
| PARTITIONS | 1/16"          | 1/16"      |  |

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

# SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic wet-pipe system complete and ready for operation, for all portions of Building.
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

#### 1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 09 91 00, PAINTING.
- D. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.

### 1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
  - 1. Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
  - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
    - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).

#### 3. Zoning:

a. Sprinkler Zones are existing, to remain the same.

#### 1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

### 1. Qualifications:

- a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1/8 inch scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
  - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- 5. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
  - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
    - 1) One full size (or size as directed by the COR) printed copy.
    - 2) One complete set in electronic pdf format.
    - 3) One complete set in AutoCAD format or a format as directed by the COR.
  - b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

## 1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

## 1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    |                                                | 06-01-15 |
|----|------------------------------------------------|----------|
|    | 13-2019Installation of Sprinkler Systems       |          |
|    | 25-2020Inspection, Testing, and Maintenance of | Water-   |
|    | Based Fire Protection Systems                  |          |
|    | 101-2021Life Safety Code                       |          |
|    | 170-20-21Fire Safety Symbols                   |          |
| C. | Underwriters Laboratories, Inc. (UL):          |          |
|    | Fire Protection Equipment Directory (2011)     |          |
| D. | Factory Mutual Engineering Corporation (FM):   |          |
|    | Approval Guide                                 |          |

### PART 2 - PRODUCTS

#### 2.1 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13
  - 1. Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
  - 2. Piping sizes 2 inches and smaller shall be black steel Schedule 40 with threaded end connections.
  - 4. Plastic piping shall not be permitted.
  - 5. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

## 2.3 FIRE DEPARTMENT SIAMESE CONNECTION (NOT USED)

### 2.4 SPRINKLERS

A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.
- 2.5 SPRINKLER CABINET (NOT USED)
- 2.6 SPRINKLER SYSTEM SIGNAGE (NOT USED)
- 2.7 SWITCHES: (NOT USED)
- 2.8 GAUGES (NOT USED)
- 2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING
  - A. Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.
- 2.10 WALL, FLOOR AND CEILING PLATES
  - A. Provide chrome plated steel escutcheon plates.
- 2.11 ANTIFREEZE SOLUTION (NOT USED)
- 2.12 VALVE TAGS (NOT USED)

## PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of seven feet six inches. Piping shall not

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.
- C. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- D. Firestopping shall be provided for all penetrations of walls or floors. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- E. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler. All exposed sprinkler pipes shall be painted red to match existing.
- F. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- G. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least three week prior to the planned interruption.

## 3.2 INSPECTION AND TEST (NOT USED)

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

# SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
  - 1. Exposed: Piping and equipment exposed to view in finished rooms.
  - 2. Exterior: Piping and equipment exposed to weather be it temperature, humidity, precipitation, wind or solar radiation.
- C. Abbreviations/Acronyms:
  - 1. ABS: Acrylonitrile Butadiene Styrene
  - 2. AC: Alternating Current
  - 3. ACR: Air Conditioning and Refrigeration
  - 4. A/E: Architect/Engineer
  - 5. AFF: Above Finish Floor
  - 6. AFG: Above Finish Grade
  - 7. AI: Analog Input
  - 8. AISI: American Iron and Steel Institute
  - 9. AO: Analog Output
  - 10. ASHRAE: American Society of Heating Refrigeration, Air Conditioning Engineers
  - 11. ASJ: All Service Jacket
  - 12. ASME: American Society of Mechanical Engineers
  - 13. ASPE: American Society of Plumbing Engineers
  - 14. AWG: American Wire Gauge
  - 15. BACnet: Building Automation and Control Network
  - 16. BAg: Silver-Copper-Zinc Brazing Alloy
  - 17. BAS: Building Automation System
  - 18. BCuP: Silver-Copper-Phosphorus Brazing Alloy
  - 19. bhp: Brake Horsepower
  - 20. Btu: British Thermal Unit
  - 21. Btu/h: British Thermal Unit per Hour
  - 22. BSG: Borosilicate Glass Pipe
  - 23. C: Celsius

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 24. CA: Compressed Air
- 25. CD: Compact Disk
- 26. CDA: Copper Development Association
- 27. CGA: Compressed Gas Association
- 28. CFM: Cubic Feet per Minute
- 29. CI: Cast Iron
- 30. CLR: Color
- 31. CO: Contracting Officer
- 32. COR: Contracting Officer's Representative
- 33. CPVC: Chlorinated Polyvinyl Chloride
- 34. CR: Chloroprene
- 35. CRS: Corrosion Resistant Steel
- 36. CWP: Cold Working Pressure
- 37. CxA: Commissioning Agent
- 38. dB: Decibels
- 39. db(A): Decibels (A weighted)
- 40. DCW: Domestic Cold Water
- 41. DDC: Direct Digital Control
- 42. DFU: Drainage Fixture Units
- 43. DHW: Domestic Hot Water
- 44. DHWR: Domestic Hot Water Return
- 45. DHWS: Domestic How Water Supply
- 46. DI: Digital Input
- 47. DI: Deionized Water
- 48. DISS: Diameter Index Safety System
- 49. DN: Diameter Nominal
- 50. DO: Digital Output
- 51. DOE: Department of Energy
- 52. DVD: Digital Video Disc
- 53. DWG: Drawing
- 54. DWH: Domestic Water Heater
- 55. DWS: Domestic Water Supply
- 56. DWV: Drainage, Waste and Vent
- 57. ECC: Engineering Control Center
- 58. EL: Elevation
- 59. EMCS: Energy Monitoring and Control System

Contract No. 36C26319D0044

Station Project No. 437-21-170

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 60. EPA: Environmental Protection Agency
- 61. EPACT: Energy Policy Act
- 62. EPDM: Ethylene Propylene Diene Monomer
- 63. EPT: Ethylene Propylene Terpolymer
- 64. ETO: Ethylene Oxide
- 65. F: Fahrenheit
- 66. FAR: Federal Acquisition Regulations
- 67. FD: Floor Drain
- 68. FDC: Fire Department (Hose) Connection
- 69. FED: Federal
- 70. FG: Fiberglass
- 71. FNPT: Female National Pipe Thread
- 72. FOR: Fuel Oil Return
- 73. FOS: Fuel Oil Supply
- 74. FOV: Fuel Oil Vent
- 75. FPM: Fluoroelastomer Polymer
- 76. FSK: Foil-Scrim-Kraft Facing
- 77. FSS: VA Construction & Facilities Management, Facility Standards Service
- 78. FU: Fixture Units
- 79. GAL: Gallon
- 80. GCO: Grade Cleanouts
- 81. GPD: Gallons per Day
- 82. GPH: Gallons per Hour
- 83. GPM: Gallons per Minute
- 84. HDPE: High Density Polyethylene
- 85. HEFP: Healthcare Environment and Facilities Program (replacement for OCAMES)
- 86. HEX: Heat Exchanger
- 87. Hg: Mercury
- 88. HOA: Hands-Off-Automatic
- 89. HP: Horsepower
- 90. HVE: High Volume Evacuation
- 91. Hz: Hertz
- 92. ID: Inside Diameter
- 93. IE: Invert Elevation

Contract No. 36C26319D0044

Station Project No. 437-21-170

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 94. INV: Invert
- 95. IPC: International Plumbing Code
- 96. IPS: Iron Pipe Size
- 97. IW: Indirect Waste
- 98. IWH: Instantaneous Water Heater
- 99. Kg: Kilogram
- 100. kPa: Kilopascal
- 101. KW: Kilowatt
- 102. KWH: Kilowatt Hour
- 103. lb: Pound
- 104. lbs/hr: Pounds per Hour
- 105. LNG: Liquid Natural Gas
- 106. L/min: Liters per Minute
- 107. LOX: Liquid Oxygen
- 108. L/s: Liters per Second
- 109.m: Meter
- 110. MA: Medical Air
- 111. MAWP: Maximum Allowable Working Pressure
- 112. MAX: Maximum
- 113. MBH: 1000 Btu per Hour
- 114. MED: Medical
- 115. MER: Mechanical Equipment Room
- 116. MFG: Manufacturer
- 117. mg: Milligram
- 118. mg/L: Milligrams per Liter
- 119. ml: Milliliter
- 120. mm: Millimeter
- 121. MIN: Minimum
- 122. MV: Medical Vacuum
- 123. N2: Nitrogen
- 124. N20: Nitrogen Oxide
- 125. NC: Normally Closed
- 126. NF: Oil Free Dry (Nitrogen)
- 127. NG: Natural Gas
- 128. NIC: Not in Contract
- 129. NO: Normally Open

Contract No. 36C26319D0044

Station Project No. 437-21-170

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 130. NOM: Nominal
- 131. NPTF: National Pipe Thread Female
- 132. NPS: Nominal Pipe Size
- 133. NPT: Nominal Pipe Thread
- 134. NTS: Not to Scale
- 135.02: Oxygen
- 136. OC: On Center
- 137. OD: Outside Diameter
- 138. OSD: Open Sight Drain
- 139. OS&Y: Outside Stem and Yoke
- 140. PA: Pascal
- 141. PBPU: Prefabricated Bedside Patient Units
- 142. PD: Pressure Drop or Difference
- 143. PDI: Plumbing and Drainage Institute
- 144. PH: Power of Hydrogen
- 145. PID: Proportional-Integral-Differential
- 146. PLC: Programmable Logic Controllers
- 147. PP: Polypropylene
- 148. ppb: Parts per Billion
- 149. ppm: Parts per Million
- 150. PSI: Pounds per Square Inch
- 151. PSIA: Pounds per Square Inch Atmosphere
- 152. PSIG: Pounds per Square Inch Gauge
- 153. PTFE: Polytetrafluoroethylene
- 154. PVC: Polyvinyl Chloride
- 155. PVDF: Polyvinylidene Fluoride
- 156. RAD: Radians
- 157. RO: Reverse Osmosis
- 158. RPM: Revolutions Per Minute
- 159. RTD: Resistance Temperature Detectors
- 160. RTRP: Reinforced Thermosetting Resin Pipe
- 161. SAN: Sanitary Sewer
- 162. SCFM: Standard Cubic Feet per Minute
- 163. SDI: Silt Density Index
- 164. SMACNA: Sheet Metal and Air Conditioning Contractors National

## Association

Contract No. 36C26319D0044

Station Project No. 437-21-170

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 165. SPEC: Specification
- 166. SPS: Sterile Processing Services
- 167. SQFT/SF: Square Feet
- 168. SS: Stainless Steel
- 169. STD: Standard
- 170. SUS: Saybolt Universal Second
- 171. SWP: Steam Working Pressure
- 172. TD: Temperature Difference
- 173. TDH: Total Dynamic Head
- 174. TEFC: Totally Enclosed Fan-Cooled
- 175. TEMP: Temperature
- 176. TFE: Tetrafluoroethylene
- 177. THERM: 100,000 Btu
- 178. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 179. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 180. TIL: Technical Information Library http://www.cfm.va.gov/til/indes.asp
- 181. T/P: Temperature and Pressure
- 182. TYP: Typical
- 183. USDA: U.S. Department of Agriculture
- 184. V: Vent
- 185. V: Volt
- 186. VA: Veterans Administration
- 187. VA CFM: VA Construction & Facilities Management
- 188. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 189. VAC: Vacuum
- 190. VAC: Voltage in Alternating Current
- 191. VAMC: Veterans Administration Medical Center
- 192. VHA OCAMES: This has been replaced by HEFP.
- 193. VSD: Variable Speed Drive
- 194. VTR: Vent through Roof
- 195. W: Waste
- 196. WAGD: Waste Anesthesia Gas Disposal
- 197. WC: Water Closet
- 198. WG: Water Gauge

Contract No. 36C26319D0044

Station Project No. 437-21-170

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

199. WOG: Water, Oil, Gas

200. WPD: Water Pressure Drop

201. WSFU: Water Supply Fixture Units

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING.
- H. Section 22 07 11, PLUMBING INSULATION.
- I. Section 22 11 00, FACILITY WATER DISTRIBUTION.
- J. Section 22 13 00, FACILITY SANITARY AND VENT PIPING.
- K. Section 22 40 00, PLUMBING FIXTURES.
- L. Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
- M. Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.

### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

B31.1-2013.....Power Piping

ASME Boiler and Pressure Vessel Code -

BPVC Section IX-2019.... Welding, Brazing, and Fusing Qualifications

C. American Society for Testing and Materials (ASTM):

A36/A36M-2019......Standard Specification for Carbon Structural Steel

5000

A575-96(2013)e1......Standard Specification for Steel Bars, Carbon,

Merchant Quality, M-Grades

E84-2013a.....Standard Test Method for Surface Burning

Characteristics of Building Materials

E119-2012a.....Standard Test Methods for Fire Tests of

Building Construction and Materials

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

|       | 09-01-20                                                               |
|-------|------------------------------------------------------------------------|
| D.    | International Code Council, (ICC):                                     |
|       | IBC-2018International Building Code                                    |
|       | IPC-2018International Plumbing Code                                    |
| Ε.    | Manufacturers Standardization Society (MSS) of the Valve and Fittings  |
|       | <pre>Industry, Inc:</pre>                                              |
|       | SP-58-2018Pipe Hangers and Supports - Materials, Design,               |
|       | Manufacture, Selection, Application and                                |
|       | Installation                                                           |
| F.    | Military Specifications (MIL):                                         |
|       | P-21035BPaint High Zinc Dust Content, Galvanizing                      |
|       | Repair (Metric)                                                        |
| G.    | National Fire Protection Association (NFPA):                           |
|       | 51B-2019 Standard for Fire Prevention During Welding,                  |
|       | Cutting and Other Hot Work                                             |
|       | 99-2018Healthcare Facilities Code                                      |
| Н.    | NSF International (NSF):                                               |
|       | 61-2019 Drinking Water System Components - Health                      |
|       | Effects                                                                |
|       | 372-2016Drinking Water System Components - Lead Content                |
| I.    | Department of Veterans Affairs (VA):                                   |
|       | PG-18-102014(R18)Plumbing Design Manual                                |
|       | PG-18-13-2017(R18)Barrier Free Design Guide                            |
| 1.4 s | UBMITTALS                                                              |
| Α.    | Submittals, including number of required copies, shall be submitted in |
|       | accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and     |
|       | SAMPLES.                                                               |
|       |                                                                        |

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and

it is assumed by the VA that all submittals do meet the VA

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- D. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- G. Manufacturer's Literature and Data including: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
  - 1. Equipment and materials identification.
  - 2. Firestopping materials.
  - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
  - 4. Wall, floor, and ceiling plates.
- H. Coordination/Shop Drawings:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
- 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 3/8-inch equal to 1 foot. Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
- 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- 4. In addition, for plumbing systems, provide details of the following:
  - a. Mechanical equipment rooms.
  - b. Interstitial space.
  - c. Hangers, inserts, supports, and bracing.
  - d. Pipe sleeves.
- I. Plumbing Maintenance Data and Operating Instructions:
  - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
  - 2. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
    - a. Include complete list indicating all components of the systems.
    - b. Include complete diagrams of the internal wiring for each item of equipment.
    - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
  - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

### 1.5 QUALITY ASSURANCE

A. Mechanical, electrical, and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional plumbing.

#### B. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 7. Asbestos products or equipment or materials containing asbestos is prohibited.
- 8. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- C. Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
  - Qualify welding processes and operators for piping according to ASME BPVC, Section IX, "Welding and Brazing Qualifications". Provide proof of current certification to CO.
  - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
  - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
  - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the association code.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- D. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- E. Execution (Installation, Construction) Quality:
  - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
  - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution. Failure of the Contractor to resolve or call attention to any discrepancies or deficiencies to the COR will result in the Contractor correcting at no additional cost or time to the Government.
  - 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
  - 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
  - 5. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.

- F. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- G. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- H. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- I. Cleanliness of Piping and Equipment Systems:
  - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
  - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
  - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
  - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

## 1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
  - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
  - 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

#### 1.7 AS-BUILT DOCUMENTATION

Bancroft-AE Project No. 18-121

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three—ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

  Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
  - As-built drawings are to be provided, with a copy of them on AutoCAD version 2019 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and Contract No. 36C26319D0044
  Station Project No. 437-21-170

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics\_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

## 1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

  Maintain the interior of building at 65 degrees F minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- D. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

necessary acceptance and the equipment will then be under the control and operation of Government personnel.

#### PART 2 - PRODUCTS

#### 2.1 MATERIALS FOR VARIOUS SERVICES

- A. Steel pipe shall contain a minimum of 25 percent recycled content.
- B. Solder or flux containing lead shall not be used.
- C. Material or equipment containing lead shall not be used.
- D. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.

## 2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
  - 1. All components of an assembled unit need not be products of same manufacturer.
  - Constituent parts that are alike shall be products of a single manufacturer.
  - 3. Components shall be compatible with each other and with the total assembly for intended service.
  - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

## 2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 2.4 SAFETY GUARDS (NOT USED)
- 2.5 LIFTING ATTACHMENTS (NOT USED)
- 2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING (NOT USED)
- 2.7 VARIABLE SPEED MOTOR CONTROLLERS (NOT USED)
- 2.8 EQUIPMENT AND MATERIALS IDENTIFICATION
  - A. Use symbols, nomenclature and equipment numbers specified, shown in the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
  - B. Valve Tags and Lists:
    - 1. Plumbing: Provide for all valves (Fixture stops not included).
    - 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain. Coordinate the valve tags with the Shops Foreman prior to installation for compliance.
      - a. Valve number shall be labeled as follows: M-V-XXX-XXXXX-XXX.
        - The first letter of the valve tag refers to the building number. M refers to Main Hospital.
        - 2) V stands for "Valve."
        - 3) The first grouping of XXX indicates the type of piping. Refer to 09 91 00 Painting specification for labels for different types of piping (i.e. HWH is Hot Water Heating, DC is Domestic Cold Water, DH is Domestic Hot Water, and DR is Domestic Recirculating Hot Water).
        - 4) The second grouping of XXXXX indicates the room number.
        - 5) The final grouping of XXX refers to the valve number in the  ${\tt room.}$
    - 3. Valve lists: Typed (using a word processing program) plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets of the valve list for a 3-ring notebook. A copy

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

of the valve list shall be mounted in picture frames for mounting to a wall.

4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling. Additionally provide a hardcopy drawing and AutoCAD copy (compatible with current Fargo VA version of CADD) of valve locations.

### 2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

### 2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

### 2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC Submittals based on the International Building Code (IBC requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 500 pounds shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
  - 1. Concrete insert: Type 18, MSS SP-58.
  - 2. Self-drilling expansion shields and machine bolt expansion anchors:

    Permitted in concrete not less than 100 mm (4 inches) thick when
    approved by the COR for each job condition.
  - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- D. For Attachment to Steel Construction: MSS SP-58.
  - 1. Welded attachment: Type 22.
  - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 1-1/2 inches minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 1-5/8 inches by 1-5/8 inches, No. 12 gauge, designed to accept special spring held, hardened steel nuts.
  - 1. Allowable hanger load: Manufacturers rating less 200 pounds.
  - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 1/2 inch galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- G. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
  - 1. General Types (MSS SP-58):
    - a. Standard clevis hanger: Type 1; provide locknut.
    - b. Riser clamps: Type 8.
    - c. Wall brackets: Types 31, 32 or 33.
    - d. Roller supports: Type 41, 43, 44 and 46.
    - e. Saddle support: Type 36, 37 or 38.
    - f. Turnbuckle: Types 13 or 15.
    - g. U-bolt clamp: Type 24.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

#### h. Copper Tube:

- Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
- 2) For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
- 3) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending 1 inch beyond steel support or clamp.
- 2. Plumbing Piping (Other Than General Types):
  - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
  - b. Chrome plated piping: Chrome plated supports.
  - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
  - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gauge) minimum.
- H. Pre-insulated Calcium Silicate Shields:
  - 1. Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
  - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
  - 3. Shield thickness shall match the pipe insulation.
  - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
    - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

### 2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
  - 1. For sleeves: Extend sleeve 1 inch above finished floor and provide sealant for watertight joint.
  - 2. For blocked out floor openings: Provide 1-1/2 inch angle set in silicone adhesive around opening.
  - 3. For drilled penetrations: Provide 1-1/2 inch angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are prohibited through beams or ribs, sleeves shall be provided for pipe passing through floors, interior walls, and partitions.
- E. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- F. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- G. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 1 inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 1 inch in diameter. Interior openings shall be

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- H. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

### 2.13 TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

## 2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 3/32 inch for floor plates. For wall and ceiling plates, not less than 0.025 inch for up to 3 inch pipe, 0.035 inch for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

## 2.15 ASBESTOS

A. Materials containing asbestos are prohibited.

### PART 3 - EXECUTION

### 3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown in the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
  - 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR.
  - 2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
  - 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Protection and Cleaning:
  - 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.
  - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum.
- J. Gauges, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gauges shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Work in Existing Building:
  - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS,
    Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00
    00, GENERAL REQUIREMENTS for relocation of existing equipment,
    alterations and restoration of existing building(s).
  - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.

### 3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are prohibited in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

### 3.3 RIGGING (NOT USED)

### 3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall not be drilled or burned in structural steel.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 1/2 inch clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.

### E. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

### F. Floor Supports:

 Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 2 inch excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

## 3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

## 3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated in the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided at no additional cost or time to the Government. Where work is in an operating building, approved protection from dust and debris shall be provided at all times for the safety of building personnel and maintenance of building operation and environment of the building.
- B. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered.

Structural integrity of the building system shall be maintained.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

C. All valves including gate, globe, ball, and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

## 3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the building and facilities for beneficial use by the Government, the building facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
  - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
  - 2. The following Material and Equipment shall NOT be painted:
    - a. Copper, brass, aluminum, stainless steel and bronze surfaces.
    - b. Valve stems and rotating shafts.
    - c. Name plates.
  - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
  - 4. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
  - 5. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

#### 3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory-built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

### 3.9 STARTUP AND TEMPORARY OPERATION

A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

### 3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

## 3.11 OPERATION AND MAINTENANCE MANUALS

A. All new and temporary equipment and all elements of each assembly shall be included.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- B. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- C. Lubrication instructions, type and quantity of lubricant shall be included.
- D. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- E. Set points of all interlock devices shall be listed.
- F. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- G. Emergency procedures for shutdown and startup of equipment and systems.

#### 3.12 COMMISSIONING (NOT USED)

3.13 DEMONSTRATION AND TRAINING (NOT USED)

- - - E N D - - -

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

# SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Section 22 07 11, PLUMBING INSULATION
- E. Section 22 11 00, FACILITY WATER DISTRIBUTION.
- F. Section 22 13 00, FACILITY SANITARY AND VENT PIPING
- G. Section 22 40 00, PLUMBING FIXTURES
- H. Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES
- I. Section 22 63 00, GAS SYSTEMS FOR LABORATORIES AND HEALTHCARE FACILITIES

#### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

A112.14.1-2003......Backwater Valves

C. American Society of Sanitary Engineering (ASSE):

1001-2017......Performance Requirements for Atmospheric Type

Vacuum Breakers

1003-2009......Performance Requirements for Water Pressure

Reducing Valves for Domestic Water Distribution

Systems

1011-2017..... Performance Requirements for Hose Connection

Vacuum Breakers

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- D. American Society for Testing and Materials (ASTM): E. International Code Council (ICC): IPC-2018.....International Plumbing Code F. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2018.....Standard Marking Systems for Valves, Fittings, SP-80-2019......Bronze Gate, Globe, Angle, and Check Valves SP-85-2011......Gray Iron Globe & Angle Valves, Flanged and Threaded Ends SP-110-2010......Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends G. National Environmental Balancing Bureau (NEBB): 8th Edition 2015 Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems H. NSF International (NSF):

  - 61-2019......Drinking Water System Components Health Effects
  - 372-2016................Drinking Water System Components Lead Content
- I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR):
  - 10th Edition......Manual of Cross-Connection Control

### 1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
  - 1. Ball Valves.
  - 2. Gate Valves.
  - 3. Balancing Valves.
  - 4. Check Valves.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 5. Thermostatic Mixing Valves.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts and troubleshooting guide:
  - 1. Include complete list indicating all components of the systems.
  - 2. Include complete diagrams of the internal wiring for each item of equipment.
  - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
  - 4. Piping diagrams of thermostatic mixing valves to be installed.

#### 1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
  - 1. Protect internal parts against rust and corrosion.
  - 2. Protect threads, flange faces, grooves, and weld ends.
  - 3. Set angle, gate, and globe valves closed to prevent rattling.
  - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
  - 5. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
  - 1. Maintain valve end protection.
  - 2. Store valves indoors and maintain at higher than ambient dew point temperature.

#### 1.6 AS BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

### PART 2 - PRODUCTS

#### 2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials.

  Bronze valves made with copper alloy (brass) containing greater than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 2 inch stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- D. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- E. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit <a href="http://www.biopreferred.gov">http://www.biopreferred.gov</a>.

### 2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
  - 1. 2 inches and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 150 psig and a CWP rating of 600 psig. The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.

## 2.3 MANUAL BALANCING VALVES

A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitted with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.

## 2.4 THERMOSTATIC BALANCING VALVES (NOT USED)

## 2.5 CHECK VALVES

A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

#### 2.6 GLOBE VALVES

A. 75 mm or DN75 (3 inches) or smaller: Class 150, bronze globe valve with non-metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B62 with solder ends, copper-silicon bronze stem, PTFE or TFE disc, and malleable iron hand wheel.

## 2.7 WATER PRESSURE REDUCING VALVE AND CONNECTIONS (NOT USED)

- 2.8 BACKWATER VALVE (NOT USED)
- 2.9 BACKFLOW PREVENTERS (NOT USED)
- 2.10 CHAINWHEELS (NOT USED)

#### 2.11 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
  - 1. Shall meet ASSE requirements for water temperature control.
  - 2. The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.
  - 3. No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
  - 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
  - 5. Valve finish shall be chrome plated in exposed areas.
  - 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.
  - 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
  - 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 9. Provide mixing valves with integral check valves with screens and stop valves.
- B. Water Temperature Limiting Devices:
  - 1. Application: Single plumbing fixture point-of-use such as sinks or lavatories.
  - 2. Standard: ASSE 1070.
  - 3. Pressure Rating: 861 kPa (125 psig).
  - 4. Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
  - 5. Connections: Threaded union, compression or soldered inlets and outlet.
  - 6. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.

#### PART 3 - EXECUTION

#### 3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and
- D. Do not attempt to repair defective valves; replace with new valves.

## 3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

E. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

#### 3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
  - 1. Calibrated balancing valves.
  - 2. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

#### 3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

### 3.5 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

### 3.6 COMMISSIONING (NOT USED)

### 3.7 DEMONSTRATION AND TRAINING (NOT USED)

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

# SECTION 22 07 11 PLUMBING INSULATION

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
  - 1. Plumbing piping and equipment.

#### B. Definitions:

- 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
- 4. Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
- 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
- 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 7. FSK: Foil-scrim-Kraft facing.
- 8. Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
- 9. Density:  $kg/m^3$  kilograms per cubic meter (Pcf pounds per cubic foot).
- 10. Thermal conductance: Heat flow rate through materials.
  - a. Flat surface: Watts per square meter (BTU per hour per square foot).

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- F. Section 22 11 00, FACILITY WATER DISTRIBUTION
- G. Section 22 13 00, FACILITY SANITARY AND VENT
- H. Section 22 40 00, PLUMBING FIXTURES
- I. Section 22 62 00, VACUUM SYSTEMS FOR LABORATORIES AND HEALTHCARE FACIITIES
- J. Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACIITIES

### 1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

|     |                         |                                                  | 09-01-19 |
|-----|-------------------------|--------------------------------------------------|----------|
| В.  | American Society for Te | sting and Materials (ASTM):                      |          |
|     | B209-2014               | .Standard Specification for Aluminum and         |          |
|     |                         | Aluminum-Alloy Sheet and Plate                   |          |
|     | C411-2011               | .Standard Test Method for Hot-Surface            |          |
|     |                         | Performance of High-Temperature Thermal          |          |
|     |                         | Insulation                                       |          |
|     | C449-2007 (R2013)       | .Standard Specification for Mineral Fibe         | r        |
|     |                         | Hydraulic-Setting Thermal Insulating an          | d        |
|     |                         | Finishing Cement                                 |          |
|     | C450-2008 (R2014)       | .Standard Practice for Fabrication of Th         | ermal    |
|     |                         | Insulating Fitting Covers for NPS Pipin          | g, and   |
|     |                         | Vessel Lagging                                   |          |
|     | Adjunct to C450         | .Compilation of Tables that Provide Reco         | mmended  |
|     |                         | Dimensions for Prefab and Field Thermal          |          |
|     |                         | Insulating Covers, etc.                          |          |
|     | C533-2013               | .Standard Specification for Calcium Sili         | cate     |
|     |                         | Block and Pipe Thermal Insulation                |          |
|     | C534/C534M-2014         | .Standard Specification for Preformed Fl         | exible   |
|     |                         | Elastomeric Cellular Thermal Insulation          | in       |
|     |                         | Sheet and Tubular Form                           |          |
|     | C547-2015               | .Standard Specification for Mineral Fibe         | r Pipe   |
|     |                         | Insulation                                       |          |
|     | C552-2014               | .Standard Specification for Cellular Gla         | SS       |
|     |                         | Thermal Insulation                               |          |
|     | C553-2013               | .Standard Specification for Mineral Fibe         | r        |
|     |                         | Blanket Thermal Insulation for Commerci          | al and   |
|     |                         | Industrial Applications                          |          |
|     | C591-2013               | .Standard Specification for Unfaced Pref         | ormed    |
|     |                         | Rigid Cellular Polyisocyanurate Thermal          |          |
|     |                         | Insulation                                       |          |
|     | C680-2014               | .Standard Practice for Estimate of the ${\rm H}$ | eat Gain |
|     |                         | or Loss and the Surface Temperatures of          |          |
|     |                         | Insulated Flat, Cylindrical, and Spheri          | cal      |
|     |                         | Systems by Use of Computer Programs              |          |
|     | C612-2014               | .Standard Specification for Mineral Fibe         | r Block  |
|     |                         | and Board Thermal Insulation                     |          |
| ntr | act No. 36C26319D0044   |                                                  |          |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|       | C1126-2014              | $\begin{tabular}{ll} 09-01-19\\ . Standard Specification for Faced or Unfaced \end{tabular}$ |
|-------|-------------------------|----------------------------------------------------------------------------------------------|
|       |                         | Rigid Cellular Phenolic Thermal Insulation                                                   |
|       | C1136-2012              | .Standard Specification for Flexible, Low                                                    |
|       |                         | Permeance Vapor Retarders for Thermal                                                        |
|       |                         | Insulation                                                                                   |
|       | C1710-2011              | .Standard Guide for Installation of Flexible                                                 |
|       | 01710 2011              | Closed Cell Preformed Insulation in Tube and                                                 |
|       |                         | Sheet Form                                                                                   |
|       | D1660/D1660M_10075 /201 |                                                                                              |
|       | D1000/D1000M-199/a (201 | 4)el Standard Specification for Glass Fabrics                                                |
|       |                         | (Woven and Treated) for Roofing and                                                          |
|       | T04 0015                | Waterproofing                                                                                |
|       | E84-2015a               | .Standard Test Method for Surface Burning                                                    |
|       |                         | Characteristics of Building Materials                                                        |
|       | E2231-2015              | .Standard Practice for Specimen Preparation and                                              |
|       |                         | Mounting of Pipe and Duct Insulation to Assess                                               |
|       |                         | Surface Burning Characteristics                                                              |
| С.    | Federal Specifications  |                                                                                              |
|       | L-P-535E-1979           | .Plastic Sheet (Sheeting): Plastic Strip; Poly                                               |
|       |                         | (Vinyl Chloride) and Poly (Vinyl Chloride -                                                  |
|       |                         | Vinyl Acetate), Rigid.                                                                       |
| D.    | International Code Coun | cil, (ICC):                                                                                  |
|       | IMC-2012                | .International Mechanical Code                                                               |
| Ε.    | Military Specifications | (Mil. Spec.):                                                                                |
|       | MIL-A-3316C (2)-1990    | .Adhesives, Fire-Resistant, Thermal Insulation                                               |
|       | MIL-A-24179A (2)-1987   | .Adhesive, Flexible Unicellular-Plastic Thermal                                              |
|       |                         | Insulation                                                                                   |
|       | MIL-PRF-19565C (1)-1988 | .Coating Compounds, Thermal Insulation, Fire-and                                             |
|       |                         | Water-Resistant, Vapor-Barrier                                                               |
|       | MIL-C-20079H-1987       | .Cloth, Glass; Tape, Textile Glass; and Thread,                                              |
|       |                         | Glass and Wire-Reinforced Glass                                                              |
| F.    | National Fire Protectio | n Association (NFPA):                                                                        |
|       | 90A-2015                | .Standard for the Installation of Air-                                                       |
|       |                         | Conditioning and Ventilating Systems                                                         |
| G.    | Underwriters Laboratori | es, Inc (UL):                                                                                |
|       |                         | .Standard for Test for Surface Burning                                                       |
|       |                         | Characteristics of Building Materials                                                        |
| ontra | act No. 36C26319D0044   | -                                                                                            |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

1887-2004 (R2013)......Standard for Fire Test of Plastic Sprinkler

Pipe for Visible Flame and Smoke

Characteristics

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; https://insulationinstitute.org/toolsresources/

#### 1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

### D. Shop Drawings:

- 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
  - a. Insulation materials: Specify each type used and state surface burning characteristics.
  - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
  - c. Insulation accessory materials: Each type used.
  - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
  - e. Make reference to applicable specification paragraph numbers for coordination.
  - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

#### 1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
  - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:
    - **4.3.3.1** Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.
    - 4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).
    - 4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
    - 4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.
  - 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
  - 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
  - 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

### 1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include approved submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be hard copy and electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

  Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.

  Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2019 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

#### 1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers.

Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

#### PART 2 - PRODUCTS

#### 2.1 MINERAL FIBER

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

#### 2.2 MINERAL WOOL OR REFRACTORY FIBER (NOT USED)

### 2.3 RIGID CELLULAR PHENOLIC FOAM (NOT USED)

#### 2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m<sup>3</sup> (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to  $482 \ \text{degrees} \ \text{C} \ (900 \ \text{degrees} \ \text{F})$  with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

### 2.5 POLYISOCYANURATE CLOSED-CELL RIGID (NOT USED)

#### 2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

## 2.7 CALCIUM SILICATE (NOT USED)

### 2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 1 mil thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 1-1/2 inch lap on longitudinal joints and minimum 3 inch butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all interior piping. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 30 inch-pounds for interior locations and 80 inch-pounds for exterior or exposed locations or where the insulation is subject to damage.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- E. When all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 30 inch-pounds for interior locations and 80 inch-pounds for exterior or exposed locations or where the insulation is subject to damage.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.03 inches. Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.

## 2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of  $48 \text{ kg/m}^3$  (3.0 pcf).

| Nominal Pipe Size and Accessories Material (Insert Blocks) |                      |  |  |
|------------------------------------------------------------|----------------------|--|--|
| Nominal Pipe Size inches                                   | Insert Blocks inches |  |  |
| Up through 5                                               | 6 long               |  |  |

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of  $48~{\rm kg/m^3}$  (3.0 pcf).

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

### 2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

#### 2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

### 2.12 REINFORCEMENT AND FINISHES

A. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

#### 2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

#### 2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

#### PART 3 - EXECUTION

## 3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers.
- D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- G. Plumbing work not to be insulated unless otherwise noted:
  - 1. Piping and valves of fire protection system.
  - 2. Chromium plated brass piping.
- H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- I. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited.
- J. Firestop Pipe insulation:
  - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
  - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
    - a. Pipe risers through floors
    - b. Pipe through walls and floors
- K. Provide PVC jackets over insulation as follows:
  - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
  - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

### 3.2 INSULATION INSTALLATION

- A. Molded Mineral Fiber Pipe and Tubing Covering:
  - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
  - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
  - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
  - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
  - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least  $50\ \mathrm{mm}$  (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- B. Flexible Elastomeric Cellular Thermal Insulation:
  - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
  - 2. Pipe and tubing insulation:
    - a. Use proper size material. Do not stretch or strain insulation.
    - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

- c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

#### 3.3 COMMISSIONING (NOT USED)

### 3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

| Insulation Thickness Millimeters (Inches)                                           |                                                                  |                     |                                                 |                     |                           |  |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|-------------------------------------------------|---------------------|---------------------------|--|
| Nominal                                                                             |                                                                  | Nominal 1           | Pipe Size Millimeters                           |                     | (Inches)                  |  |
| Operating<br>Temperature<br>Range/Service                                           | Insulation<br>Material                                           | Less than<br>25 (1) | 25 - 32<br>(1 - 1 <sup>1</sup> / <sub>4</sub> ) | 38 - 75<br>(1½ - 3) | 100 (4)<br>and<br>Greater |  |
| 38-60 degrees C<br>(100-140 degrees F)<br>(Domestic Hot Water<br>Supply and Return) | Mineral Fiber (Above ground piping only)                         | 38 (1.5)            | 38 (1.5)                                        | 50 (2.0)            | 50 (2.0)                  |  |
| 38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)          | Flexible Elastomeric Cellular Thermal (Above ground piping only) | 38 (1.5)            | 38 (1.5)                                        | 50 (2.0)            | 50 (2.0)                  |  |
| 38-60 degrees C<br>(100-140 degrees F)<br>(Domestic Hot Water<br>Supply and Return) | Cellular Glass<br>Thermal                                        | 38 (1.5)            | 38 (1.5)                                        | 50 (2.0)            | 50 (2.0)                  |  |
| (4-15 degrees C<br>(40-60 degrees F)                                                | Flexible Elastomeric Cellular Thermal (Above ground piping only) | 25 (1.0)            | 25(1.0)                                         | 25 (1.0)            | 25 (1.0)                  |  |

Contract No. 36C26319D0044 Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| 4-15 degrees C    | Cellular Glass | 38 (1.5) | 38 (1.5) | 38 (1.5) | 38 (1.5) |
|-------------------|----------------|----------|----------|----------|----------|
| (40-60 degrees F) | Thermal        |          |          |          |          |
|                   |                |          |          |          |          |

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

# SECTION 22 11 00 FACILITY WATER DISTRIBUTION

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING VALVES
- H. Section 22 07 11, PLUMBING INSULATION.
- I. SECTION 22 11 00, FACILITY WATER DISTRIBUTION.
- J. Section 22 13 00, FACILITY SANITARY AND VENT PIPING
- K. Section 22 40 00, PLUMBING FIXTURES
- L. Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.
- M. Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
  - A13.1-2007 (R2013).....Scheme for Identification of Piping Systems
    B16.3-2011......Malleable Iron Threaded Fittings: Classes 150
    and 300
  - B16.9-2012......Factory-Made Wrought Buttwelding Fittings
    B16.11-2011.....Forged Fittings, Socket-Welding and Threaded
    B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|                                                            | 05-01-21                                 |
|------------------------------------------------------------|------------------------------------------|
| B16.15-2013Cast Copper                                     | Alloy Threaded Fittings: Classes         |
| 125 and 250                                                |                                          |
| B16.18-2012Cast Copper                                     | Alloy Solder Joint Pressure              |
| Fittings                                                   |                                          |
| B16.22-2013Wrought Copy                                    | per and Copper Alloy Solder-Joint        |
| Pressure Fit                                               | ctings                                   |
| B16.24-2011Cast Copper                                     | Alloy Pipe Flanges and Flanged           |
| Fittings: C                                                | lasses 150, 300, 600, 900, 1500, and     |
| 2500                                                       |                                          |
| ASME Boiler and Pressure Vessel Code                       | ∍ -                                      |
| BPVC Section IX-2015Welding, Bra                           | azing, and Fusing Qualifications         |
| C. American Society of Sanitary Enginee                    | ers (ASSE):                              |
| 1010-2004Performance                                       | Requirements for Water Hammer            |
| Arresters                                                  |                                          |
| D. American Society for Testing and Mat                    | cerials (ASTM):                          |
| A47/A47M-1999 (R2014)Standard Spe                          | ecification for Ferritic Malleable       |
| Iron Casting                                               | js – – – – – – – – – – – – – – – – – – – |
| A53/A53M-2012Standard Spe                                  | ecification for Pipe, Steel, Black       |
| and Hot-Dipp                                               | ped, Zinc-Coated, Welded and             |
| Seamless                                                   |                                          |
| A183-2014Standard Spe                                      | ecification for Carbon Steel Track       |
| Bolts and Nu                                               | ıts                                      |
| A269/A269M-2014e1Standard Spe                              | ecification for Seamless and Welded      |
| Austenitic S                                               | Stainless Steel Tubing for General       |
| Service                                                    |                                          |
| A312/A312M-2015Standard Spe                                | ecification for Seamless, Welded,        |
| and Heavily                                                | Cold Worked Austenitic Stainless         |
| Steel Pipes                                                |                                          |
| A403/A403M-2014Standard Spe                                | ecification for Wrought Austenitic       |
| Stainless St                                               | teel Piping Fittings                     |
| A536-1984 (R2014)Standard Spe                              | ecification for Ductile Iron             |
| Castings                                                   |                                          |
| A733-2013Standard Spe                                      | ecification for Welded and Seamless      |
| Carbon Steel                                               | l and Austenitic Stainless Steel         |
| Pipe Nipples                                               | 5                                        |
| B32-2008 (R2014)Standard Spe                               | ecification for Solder Metal             |
| Contract No. 36C26319D0044  Station Project No. 437-21-170 |                                          |
| Bancroft-AE Project No. 18-121                             | 8/9/2021                                 |
| 22 11 00                                                   | _ ')                                     |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| 05-01-21                                                        |
|-----------------------------------------------------------------|
| B43-2014Standard Specification for Seamless Red Brass           |
| Pipe, Standard Sizes                                            |
| B61-2008 (R2013)Standard Specification for Steam or Valve       |
| Bronze Castings                                                 |
| B62-2009Standard Specification for Composition Bronze           |
| or Ounce Metal Castings                                         |
| B75/B75M-2011Standard Specification for Seamless Copper Tube    |
| B88-2014Standard Specification for Seamless Copper              |
| Water Tube                                                      |
| B584-2014Standard Specification for Copper Alloy Sand           |
| Castings for General Applications                               |
| B687-1999 (R2011)Standard Specification for Brass, Copper, and  |
| Chromium-Plated Pipe Nipples                                    |
| C919-2012Standard Practice for Use of Sealants in               |
| Acoustical Applications                                         |
| D1785-2012Standard Specification for Poly (Vinyl                |
| Chloride) (PVC) Plastic Pipe, Schedules 40, 80,                 |
| and 120                                                         |
| D2000-2012Standard Classification System for Rubber             |
| Products in Automotive Applications                             |
| D2564-2012Standard Specification for Solvent Cements for        |
| Poly (Vinyl Chloride) (PVC) Plastic Piping                      |
| Systems                                                         |
| D2657-2007Standard Practice for Heat Fusion Joining of          |
| Polyolefin Pipe and Fittings                                    |
| D2855-1996 (R2010)Standard Practice for Making Solvent-Cemented |
| Joints with Poly (Vinyl Chloride) (PVC) Pipe                    |
| and Fittings                                                    |
| D4101-2014Standard Specification for Polypropylene              |
| Injection and Extrusion Materials                               |
| E1120-2008Standard Specification for Liquid Chlorine            |
| E1229-2008Standard Specification for Calcium Hypochlorite       |
| F2389-2010Standard Specification for Pressure-rated             |
| Polypropylene (PP) Piping Systems                               |
| F2620-2013Standard Practice for Heat Fusion Joining of          |
| Polyethylene Pipe and Fittings                                  |
| 22 at No. 36036310D0044                                         |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | 05-01-21                                                            |
|----|---------------------------------------------------------------------|
|    | F2769-2014Standard Specification for Polyethylene of                |
|    | Raised Temperature (PE-RT) Plastic Hot and                          |
|    | Cold-Water Tubing and Distribution Systems                          |
| Ε. | American Water Works Association (AWWA):                            |
|    | C110-2012Ductile-Iron and Gray-Iron Fittings                        |
|    | C151-2009Ductile Iron Pipe, Centrifugally Cast                      |
|    | C153-2011Ductile-Iron Compact Fittings                              |
|    | C203-2008Coal-Tar Protective Coatings and Linings for               |
|    | Steel Water Pipelines - Enamel and Tape - Hot<br>Applied            |
|    | C213-2007Fusion-Bonded Epoxy Coating for the Interior               |
|    | and Exterior of Steel Water Pipelines                               |
|    | C651-2014Disinfecting Water Mains                                   |
| F. | American Welding Society (AWS):                                     |
|    | A5.8M/A5.8-2011-AMD1Specification for Filler Metals for Brazing and |
|    | Braze Welding                                                       |
| G. | International Code Council (ICC):                                   |
|    | IPC-2012International Plumbing Code                                 |
| н. | Manufacturers Specification Society (MSS):                          |
|    | SP-58-2009Pipe Hangers and Supports - Materials, Design,            |
|    | Manufacture, Selection, Application, and                            |
|    | Installation                                                        |
|    | SP-72-2010aBall Valves with Flanged or Butt-Welding Ends            |
|    | for General Service                                                 |
|    | SP-110-2010Ball Valves Threaded, Socket-Welding, Solder             |
|    | Joint, Grooved and Flared Ends                                      |
| I. | NSF International (NSF):                                            |
|    | 14-2015Plastics Piping System Components and Related                |
|    | Materials                                                           |
|    | 61-2014a Drinking Water System Components - Health                  |
|    | Effects                                                             |
|    | 372-2011Drinking Water System Components - Lead Content             |
| J. | Plumbing and Drainage Institute (PDI):                              |
|    | PDI-WH 201-2010Water Hammer Arrestors                               |
| К. | Department of Veterans Affairs:                                     |
|    | H-18-8-2013Seismic Design Handbook                                  |
|    | act No. 36C26319D0044<br>on Project No. 437-21-170                  |
|    | oft-AE Project No. 18-121 8/9/2021                                  |
|    | 22 11 00 4                                                          |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

H-18-10.....Plumbing Design Manual

#### 1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
  - 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
  - 1. Include complete list indicating all components of the systems.
  - 2. Include complete diagrams of the internal wiring for each item of equipment.
  - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

### 1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- C. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

### 1.6 SPARE PARTS (NOT USED)

#### 1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in hard copy and electronic version on compact disc or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

  Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2019 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

### PART 2 - PRODUCTS

#### 2.1 MATERIALS

A. Material or equipment containing lead are prohibited. Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

### 2.2 UNDERGROUND WATER SERVICE CONNECTIONS TO BUILDINGS (NOT USED)

### 2.3 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
- B. Fittings for Copper Tube:
  - 1. Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
  - 2. Mechanical press-connect fittings for copper pipe and tube <a href="mailto:are"><u>are</u></a>
    <a href="mailto:prohibited">prohibited</a>. See Plumbing Design Manual for additional information.
  - 3. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
  - 4. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- E. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

### 2.4 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment, and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
  - 1. Pipe: ASTM B43, standard weight.
  - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
  - 3. Nipples: ASTM B687, Chromium-plated.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

- 4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.
- 2.5 ETHYLENE OXIDE (ETO) STERILIZER WATER SUPPLY PIPING (NOT USED)
- 2.6 TRAP PRIMER WATER PIPING (NOT USED)
- 2.7 STRAINERS (NOT USED)
- 2.8 DIELECTRIC FITTINGS
  - A. Provide dielectric couplings or unions between pipe of dissimilar metals.

#### 2.9 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.
- 2.10 WATER HAMMER ARRESTER (NOT USED)

### PART 3 - EXECUTION

### 3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
  - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
  - 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
  - 3. All pipe runs shall be laid out to avoid interference with other work/trades.
  - 4. Install union and shut-off valve on pressure piping at connections to equipment.
  - 5. Pipe Hangers, Supports and Accessories:
    - a. All piping shall be supported per the IPC, MSS SP-58, and SMACNA as required.
- b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.

- c. Floor, Wall and Ceiling Plates, Supports, Hangers:
  - 1) Solid or split un-plated cast iron.
  - 2) All plates shall be provided with set screws.
  - 3) Pipe Hangers: Height adjustable clevis type.
  - 4) Concrete Inserts: "Universal" or continuous slotted type.
  - 5) Hanger Rods: Mild, low carbon steel, fully threaded or
    Threaded at each end with two removable nuts at each end for
    positioning rod and hanger and locking each in place.
  - 6) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel.

    Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
  - 7) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
  - 8) Hangers and supports utilized with insulated pipe and tubing shall have 180-degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
  - 9) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 20 feet for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
  - 10) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

on the criteria from the manufacturer regarding their restraint design.

6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

### 7. Penetrations:

- a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING.
  Completely fill and seal clearances between raceways and openings with the firestopping materials.
- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- B. Domestic Water piping shall conform to the following:
  - 1. Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot and cold water circulating lines with no traps.
  - 2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

### 3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 21 calendar days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

05-01-21

- with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- D. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

### 3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- 3.4 COMMISSIONING (NOT USED)
- 3.5 DEMONSTRATION AND TRAINING (NOT USED)

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

# SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- D. Section 07 92 00, JOINT SEALANTS: Sealant products.
- E. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- G. Section 22 05 23, GENERAL DUTY VALVES FOR PLUMBING PIPING
- H. Section 22 07 11, PLUMBING INSULATION.
- I. Section 22 11 00, FACILITY WATER DISTRIBUTION
- J. Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES
- K. Section 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES.

#### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007.....Identification of Piping Systems

A112.36.2M-1991.....Cleanouts

A112.6.3-2019......Floor and Trench Drains

B1.20.1-2013......Pipe Threads, General Purpose (Inch)

B16.1-2015......Gray Iron Pipe Flanges and Flanged Fittings

Classes 25, 125, and 250

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|      |                         | 00.01.00                                                  |
|------|-------------------------|-----------------------------------------------------------|
|      | B16.4-2016              | 09-01-20 .Grey Iron Threaded Fittings Classes 125 and 250 |
|      | B16.15-2018             | .Cast Copper Alloy Threaded Fittings, Classes             |
|      |                         | 125 and 250                                               |
|      | B16.18-2018             | .Cast Copper Alloy Solder Joint Pressure                  |
|      |                         | Fittings                                                  |
|      | B16.21-2016             | .Nonmetallic Flat Gaskets for Pipe Flanges                |
|      | B16.22-2018             | .Wrought Copper and Copper Alloy Solder-Joint             |
|      |                         | Pressure Fittings                                         |
|      | B16.23-2016             | .Cast Copper Alloy Solder Joint Drainage                  |
|      |                         | Fittings: DWV                                             |
|      | B16.24-2016             | .Cast Copper Alloy Pipe Flanges and Flanged               |
|      |                         | Fittings, and Valves: Classes 150, 300, 600,              |
|      |                         | 900, 1500, and 2500                                       |
|      | B16.29-2017             | .Wrought Copper and Wrought Copper Alloy Solder-          |
|      |                         | Joint Drainage Fittings: DWV                              |
|      | B16.39-2014             | .Malleable Iron Threaded Pipe Unions Classes              |
|      |                         | 150, 250, and 300                                         |
|      | B18.2.1-2012            | .Square, Hex, Heavy Hex, and Askew Head Bolts             |
|      |                         | and Hex, Heavy Hex, Hex Flange, Lobed Head, and           |
|      |                         | Lag Screws (Inch Series)                                  |
| С.   | American Society of San | itary Engineers (ASSE):                                   |
|      | 1001-2017               | .Performance Requirements for Atmospheric Type            |
|      |                         | Vacuum Breakers                                           |
|      | 1018-2001               | .Performance Requirements for Trap Seal Primer            |
|      |                         | Valves - Potable Water Supplied                           |
|      | 1044-2015               | .Performance Requirements for Trap Seal Primer            |
|      |                         | Devices - Drainage Types and Electronic Design            |
|      |                         | Types                                                     |
|      | 1079-2012               | .Performance Requirements for Dielectric Pipe             |
|      |                         | Unions                                                    |
| D.   | American Society for Te | sting and Materials (ASTM):                               |
|      | A53/A53M-2018           | .Standard Specification for Pipe, Steel, Black            |
|      |                         | And Hot-Dipped, Zinc-coated, Welded and                   |
|      |                         | Seamless                                                  |
|      | A74-2017                | .Standard Specification for Cast Iron Soil Pipe           |
|      |                         | and Fittings                                              |
| n+r: | act No 36C26319D0044    |                                                           |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| A888-2018a        | 09-01-20 .Standard Specification for Hubless Cast Iron |
|-------------------|--------------------------------------------------------|
|                   | Soil Pipe and Fittings for Sanitary and Storm          |
|                   | Drain, Waste, and Vent Piping Applications             |
| B32-2008 (R2014)  | .Standard Specification for Solder Metal               |
|                   | .Standard Specification for Seamless Red Brass         |
|                   | Pipe, Standard Sizes                                   |
| B88-2016          | .Standard Specification for Seamless Copper            |
|                   | Water Tube                                             |
| в306-2013         | .Standard Specification for Copper Drainage Tube       |
|                   | (DWV)                                                  |
| B687-1999(R2016)  | .Standard Specification for Brass, Copper, and         |
|                   | Chromium-Plated Pipe Nipples                           |
| B813-2016         | .Standard Specification for Liquid and Paste           |
|                   | Fluxes for Soldering of Copper and Copper Alloy        |
|                   | Tube                                                   |
| B828-2016         | .Standard Practice for Making Capillary Joints         |
|                   | by Soldering of Copper and Copper Alloy Tube           |
|                   | and Fittings                                           |
| C564-2014         | .Standard Specification for Rubber Gaskets for         |
|                   | Cast Iron Soil Pipe and Fittings                       |
| D2321-2018        | .Standard Practice for Underground Installation        |
|                   | of Thermoplastic Pipe for Sewers and Other             |
|                   | Gravity-Flow Applications                              |
| D2564-2012(R3018) | .Standard Specification for Solvent Cements for        |
|                   | Poly(Vinyl Chloride) (PVC) Plastic Piping              |
|                   | Systems                                                |
| D2665-2014        | .Standard Specification for Poly(Vinyl Chloride)       |
|                   | (PVC) Plastic Drain, Waste, and Vent Pipe and          |
|                   | Fittings                                               |
| D2855-2015        | .Standard Practice for Two-Step (Primer and            |
|                   | Solvent Cement) Method of Joining Poly(Vinyl           |
|                   | Chloride) (PVC) or Chlorinated Poly (Vinyl             |
|                   | Chloride) CPVCP Pipe and Piping Components with        |
|                   | Tapered Sockets                                        |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|       | 09-01-20 D5926-2015Standard Specification for Poly(Vinyl Chloride)     |
|-------|------------------------------------------------------------------------|
|       | (PVC) Gaskets for Drain, Waste, and Vent (DWV),                        |
|       | Sewer, Sanitary, and Storm Plumbing Systems                            |
|       | F402-2018Standard Practice for Safe Handling of Solvent                |
|       | Cements, Primers, and Cleaners Used for Joining                        |
|       | Thermoplastic Pipe and Fittings                                        |
|       | F477-2014Standard Specification for Elastomeric Seals                  |
|       | (Gaskets) for Joining Plastic Pipe                                     |
|       | F1545-2015e1Standard Specification for Plastic-Lined                   |
|       | Ferrous Metal Pipe, Fittings, and Flanges                              |
| E.    | Cast Iron Soil Pipe Institute (CISPI):                                 |
|       | 2006Cast Iron Soil Pipe and Fittings Handbook                          |
|       | 301-2012Standard Specification for Hubless Cast Iron                   |
|       | Soil Pipe and Fittings for Sanitary and Storm                          |
|       | Drain, Waste, and Vent Piping Applications                             |
|       | 310-2012Specification for Coupling for Use in                          |
|       | Connection with Hubless Cast Iron Soil Pipe and                        |
|       | Fittings for Sanitary and Storm Drain, Waste,                          |
|       | and Vent Piping Applications                                           |
| F.    | Copper Development Association, Inc. (CDA):                            |
|       | A4015-14/19Copper Tube Handbook                                        |
| G.    | International Code Council (ICC):                                      |
|       | IPC-2018International Plumbing Code                                    |
| Н.    | Manufacturers Standardization Society (MSS):                           |
|       | SP-123-2018Non-Ferrous Threaded and Solder-Joint Unions                |
|       | for Use with Copper Water Tube                                         |
| I.    | National Fire Protection Association (NFPA):                           |
|       | 70-2020National Electrical Code (NEC)                                  |
| J.    | Underwriters' Laboratories, Inc. (UL):                                 |
|       | 508-99 (R2013)Standard For Industrial Control Equipment                |
| 1.4 S | SUBMITTALS                                                             |
| A.    | Submittals, including number of required copies, shall be submitted in |

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

SAMPLES.

accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
  - 1. Piping.
  - 2. Pipe Fittings.
  - 3. Traps.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
  - 1. Include complete list indicating all components of the systems.
  - 2. Include complete diagrams of the internal wiring for each item of equipment.
  - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

### 1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

#### 1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

### PART 2 - PRODUCTS

## 2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
  - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
    - a. Interior waste and vent piping above grade.
  - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or no-hub or hubless).

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
- 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
- 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

### B. Copper Tube, (DWV):

- 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
- 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
- 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
- 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

### 2.2 PUMP DISCHARGE PIPING (NOT USED)

#### 2.3 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
  - 1. The Pipe shall meet ASTM B43, regular weight.
  - 2. The Fittings shall conform to ASME B16.15 ASTM D2665.
  - 3. Nipples shall conform to ASTM B687, Chromium-plated.
  - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens,

  Chrome-plated brass piping is not required. The pipe materials

  specified under the paragraph "Sanitary Waste, Drain, and Vent Piping"

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

#### 2.4 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
  - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

### 2.5 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 4 inches; and not less than 4 inches for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 24 inches shall be provided for clearing a clogged sanitary line.
- B. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

### 2.6 FLOOR DRAINS (NOT USED)

#### 2.7 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are prohibited on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

### 2.8 PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS (NOT USED)

### 2.9 PENETRATION SLEEVES (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends.

  Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow greater than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- J. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

### 3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
  - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
  - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead-free alloy solder conforming to ASTM B32 shall be used.

#### 3.3 SPECIALTY PIPE FITTINGS

A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

## 3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 12 inches of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
  - 1. NPS 1-1/2 inch to NPS 2 inch60 inches with 3/8 inch rod.
  - 2. NPS 3 inch60 inches1/2 inch rod.
  - 3. NPS 4 inch to NPS 5 inch60 inches with 5/8 inch rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 15 feet.
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
  - 1. Solid or split unplated cast iron.
  - 2. All plates shall be provided with set screws.
  - 3. Height adjustable clevis type pipe hangers.
  - 4. Adjustable floor rests and base flanges shall be steel.
  - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
  - 6. Riser clamps shall be malleable iron or steel.
  - 7. Rollers shall be cast iron.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- 8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted in the contract documents for proper installation of hangers, supports and accessories. If the vertical distance exceeds 20 feet for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

### I. Penetrations:

- 1. Fire Stopping: Where pipes pass through, walls, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.

### 3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before fixtures are connected. A water test or air test shall be conducted, as directed.
  - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 10 feet of next preceding section so that each joint or pipe except upper most 10 feet of system has been submitted to a test of at least a 10 foot head of water. Water shall be kept in the system,

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-20

- or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
- 2. For an air test, an air pressure of 5 psig gauge shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gauge shall be used for the air test.
- 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
- 4. Final Tests: Either one of the following tests may be used.
  - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
  - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.
- 3.6 COMMISSIONING (NOT USED)
- 3.7 DEMONSTRATION AND TRAINING (NOT USED)

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

# SECTION 22 40 00 PLUMBING FIXTURES

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 22 07 11, PLUMBING INSULATION.
- G. Section 22 11 0, FACILITY WATER DISTRIBUTION.
- H. Section 22 13 00, FACILITY SANITARY AND VENT PIPING.
- I. Section 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE.
- J. SECTION 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE.

#### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME):
  - A112.6.1M-1997 (R2012)..Supports for Off-the-Floor Plumbing Fixtures for Public Use
  - A112.19.1-2013......Enameled Cast Iron and Enameled Steel Plumbing Fixtures
  - A112.19.2-2013......Ceramic Plumbing Fixtures
  - A112.19.3-2008......Stainless Steel Plumbing Fixtures
- C. American Society for Testing and Materials (ASTM):
  - A276-2013a......Standard Specification for Stainless Steel Bars and Shapes

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | 09-01-15                                                           |
|----|--------------------------------------------------------------------|
|    | B584-2008Standard Specification for Copper Alloy Sand              |
|    | Castings for General Applications                                  |
| D. | CSA Group:                                                         |
|    | B45.4-2008 (R2013)Stainless Steel Plumbing Fixtures                |
| Ε. | National Association of Architectural Metal Manufacturers (NAAMM): |
|    | AMP 500-2006Metal Finishes Manual                                  |
| F. | American Society of Sanitary Engineering (ASSE):                   |
|    | 1016-2011Automatic Compensating Valves for Individual              |
|    | Showers and Tub/Shower Combinations                                |
| G. | NSF International (NSF):                                           |
|    | 14-2013Plastics Piping System Components and Related               |
|    | Materials                                                          |
|    | 61-2013Drinking Water System Components - Health                   |
|    | Effects                                                            |
|    | 372-2011Drinking Water System Components - Lead Content            |
| Н. | American with Disabilities Act (A.D.A)                             |
| I. | International Code Council (ICC):                                  |
|    | IPC-2015International Plumbing Code                                |
|    |                                                                    |

### 1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.

### 1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

#### 1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in hard copy and electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

  Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.

  Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD version 2021 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

#### PART 2 - PRODUCTS

#### 2.1 MATERIALS

A. Material or equipment containing lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.

### 2.2 STAINLESS STEEL (NOT USED)

### 2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

#### 2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

#### 2.5 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. Aerators are prohibited.
- B. Flow Control Restrictor:
  - Capable of restricting flow from 0.5 gpm to 1.5 gpm for lavatories;
     2.0 gpm to 2.2 gpm for sinks.
  - 2. Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 25 psig and 80 psig.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- 3. Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.
- 2.6 CARRIERS (NOT USED)
- 2.7 WATER CLOSETS (NOT USED)
- 2.8 URINALS (NOT USED)
- 2.9 BATHTUBS (NOT USED)
- 2.10 LAVATORIES
  - A. Existing lavatory to be reused.
    - 1. Drain: cast or wrought brass with flat grid strainer, offset tailpiece, brass, chrome plated.
    - 2. Stops: Angle type. See paragraph "Stops".
    - 3. Trap: Cast copper alloy, 1 1/2 inches by 1 1/4 inches P-trap, adjustable with connected elbow and 1.4mm thick (17 gauge) tubing extension to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to the wall.
    - 4. Provide cover for exposed piping, drain, stops and trap per A.D.A.
- 2.11 SINKS AND LAUNDRY TUBS (NOT USED)
- 2.12 DISPENSER, DRINKING WATER (NOT USED)
- 2.13 SHOWER BATH FIXTURE (NOT USED)
- 2.14 EMERGENCY FIXTURES (NOT USED)
- 2.15 HYDRANT, HOSE BIBB AND MISCELLANEOUS DEVICES (NOT USED)
- 2.16 MENTAL HEALTH PLUMBING FIXTURES (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm  $(1\ 1/4\ \text{inches})$  into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Aerators are prohibited on lavatories and sinks.
- I. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

#### 3.2 CLEANING

- A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.
- 3.3 WATERLESS URINAL (NOT USED)
- 3.4 COMMISSIONING (NOT USED)
- 3.5 DEMONSTRATION AND TRAINING (NOT USED)

---END---

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

### SECTION 22 62 00 VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Central Laboratory and Healthcare Vacuum Systems: This section describes the labor, equipment, and services necessary for and incidental to the installation of piped medical vacuum systems. Medical vacuum shall be installed started, tested, and ready for use. The scope of work shall include all necessary piping, fittings, valves, cabinets, station outlets and inlets, rough ins, ceiling services, gages, alarms including low voltage wiring, vacuum pumps, electric motors and starters, receivers, and all necessary parts, accessories, connections and equipment for a complete and operational system. Match existing station inlet terminal connections.
- B. The contractor shall provide all D.I.S.S connection elements and accessories required for a complete system according to the most recent edition of NFPA 99, Gas and Vacuum Systems.
- C. All necessary connections to owner furnished equipment shall be made as indicated on the contract documents. A separate construction isolation valve shall be made at the point of connection to an existing vacuum system.
- D. Pressure testing, cross connection testing and final testing per NFPA 99 shall be performed.
- E. The contractor shall retain a qualified third party medical vacuum verifier acceptable to the engineer of record and VA to perform and attest to final verification of the systems. The contractor shall make all corrections as determined by this third party verifier, including additional testing if necessary to attain full and unqualified certification at no additional time or cost to the Government.
- F. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

## 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 07 84 00, FIRESTOPPING: Sealing around pipe penetrations to maintain the integrity of time rated construction.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- C. Section 07 92 00, JOINT SEALANTS: Sealing around pipe penetrations through the floor to prevent moisture migration.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 22 05 23: GENERAL DUTY VALVES FOR PLUMBING PIPING.
- F. SECTION 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES: Laboratory and healthcare gas piping and equipment.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Alarm interface with BAS.
- H. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Control wiring.
- I. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.
- J. Section 26 27 26, WIRING DEVICES: Electrical wiring and accessories.

### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the test by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
  - A13.1-2007 (R2013).....Scheme for the Identification of Piping Systems
    B16.15-2013......Cast Copper Alloy Threaded Fittings: Classes
    125 and 250
  - B16.22-2013......Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings
  - B16.50-2013.....Wrought Copper and Copper Alloy Braze-Joint

    Pressure Fittings
  - B40.100-2013..... Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Code -
  - BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications
- C. American Society of Sanitary Engineers (ASSE):
  - 6000 Series-2012......Professional Qualifications Standard for Medical Gas Systems Personnel
- D. American Society for Testing and Materials (ASTM):
  - B819-2000 (R2011)......Standard Specification for Seamless Copper Tube for Medical Gas Systems

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

| Ε. | American Welding Society (AWS):                                     |
|----|---------------------------------------------------------------------|
|    | A5.8M/A5.8-2011-AMD1Specification for Filler Metals for Brazing and |
|    | Braze Welding                                                       |
|    | B2.2/B2.2M-2010Specification for Brazing Procedure and              |
|    | Performance Qualification                                           |
| F. | Compressed Gas Association (CGA):                                   |
|    | P-9-2008                                                            |
| G. | Manufacturing Standardization Society (MSS):                        |
|    | SP-110-2010Ball Valves Threaded, Socket-Welding, Solder             |
|    | Joint, Grooved and Flared Ends                                      |
| I. | National Fire Protection Association (NFPA):                        |
|    | 70-2014National Electrical Code                                     |
|    | 99-2021Health Care Facilities Code                                  |

#### 1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
  - 1. Complete specifications for the product intended to be installed, dimensional drawings, and wiring schematics.
  - 2. Package drawing indicating package style, dimensions when complete, method of disassembly and sizes of subsections for rigging and installation.
  - 3. Piping.
  - 4. Valves.
  - 5. Station inlets, and rough in assemblies.
- D. Station Inlets: A letter from manufacturer shall be submitted stating that inlets are designed and manufactured to comply with NFPA 99. Inlet

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- shall bear label of approval as an assembly, of Underwriters
  Laboratories, Inc., or Associated Factory Mutual Research Corporation.
- E. Certification: The completed systems have been installed, tested, purged and analyzed in accordance with the requirements of this specification. Certification shall be submitted to COR.
- F. A notarized affidavit from the verifier stating that the verifier undertakes to verify this project and thus agrees to disqualify themselves from supplying any equipment which shall be included in the scope of their verification. No verifier who supplies equipment shall be permitted to verify that equipment. Statement declaring that the vacuum system manufacturer has no fiduciary interest in the verifier and that the verifier is not an agent or representative of the vacuum system manufacturer. Statement declaring that the contractor has no fiduciary interest in the third party verifier and that the third party verifier has no fiduciary interest in the contractor.

#### 1.5 OUALITY ASSURANCE

- A. Contractor shall include with submittals an affidavit attesting to compliance with all relevant paragraphs of NFPA 99 most recent edition. Personnel assembling medical vacuum and WAGD system shall meet NFPA 99 5.1.10.11.10 "Qualification of Installers" and hold medical gas endorsements as under ASSE Standard Series 6000. The Contractor shall, on company letterhead, furnish documentation attesting that all installed piping materials were purchased cleaned and complied with the requirements of NFPA 99 5.1.10.1 and 5.1.10.2.
- B. Equipment Installer: The equipment installer shall provide documentation proving that the personnel installing the equipment meet the standards set by ASSE Standard Series 6000. Show technical qualifications and previous experience in installing medical gas equipment on three similar projects. Submit names, phone numbers, and addresses of referenced projects. The equipment installer shall perform the following coordination functions:
  - 1. Coordinate with other trades to ensure timely installations and avoid conflicts and interferences.
  - Coordinate and field verify with the metal stud partition installer and/or mason to ensure anchors, sleeves and similar items are

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- provided in sufficient time to avoid delays; chases and openings are properly sized and prepared.
- 3. Coordinate with VA to ensure medical vacuum inlets, whether owner supplied or contractor supplied, in walls, ceiling and all equipment is provided by the same Medical Vacuum Equipment Manufacturer satisfactory to the owner.
- 4. The contractor shall coordinate with the Medical Vacuum System.

  Verifier to deliver a complete, operational, and tested medical gas installation ready for owner's use.
- C. Equipment Supplier: The Equipment supplier shall demonstrate evidence of installing equivalent product at three installations similar to this project that has been in satisfactory and efficient operation for three years. Names, phone numbers, and addresses where the product is installed shall be submitted for verification.
- D. Medical Gas System Testing Organization: The Medical vacuum verifier shall show documentation proving that the medical gas verifier meets the standards set by ASSE Standard Series 6000. The testing shall be conducted by a party technically competent and experienced in the field of medical gas pipeline testing. Such testing shall be performed by a third party testing company independent of the installing and general contractor.
- E. Names of three projects where testing of vacuum systems has been performed by the testing agency shall be provided. The name of the project, names of such persons at that project who supervised the work for the project owner, or who accepted the report for the project owner, and a written statement that the projects listed required work of similar scope to that set forth in this specification shall be included in the documentation.
- F. The testing agency's detailed procedure shall be followed in the testing of this project and submitted to COR 10 working days prior to testing. In the testing agency's procedure documentation, include details of the testing sequence, procedures for cross connection tests, outlet function tests, alarm tests, purity tests, etc., as required by this specification. For purity test procedures, data on test methods,

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- types of equipment to be used, calibration sources and method references shall be submitted.
- G. Installation and Startup: The manufacturer shall provide factory authorized representatives to review the installation and perform the initial startup of the system. The factory authorized representatives shall submit a report to the COR and to the Contractor. The Contractor shall make all corrections identified by the factory authorized representative at no additional cost or time to the Government.
- H. Certification: The Final inspection documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits allowed by this specification.
- I. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

### 1.6 MAINTENANCE SUPPORT (NOT USED)

### 1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- any special knowledge or tools the owner shall be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Adobe PDF and Auto-CAD version 2021 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

#### PART 2 - PRODUCTS

### 2.1 GENERAL PRODUCT REQUIREMENTS

A. A single Medical Vacuum Equipment Manufacturer shall match existing conditions supply the medical vacuum system(s) to include outlets, medical air, instrument air, vacuum and WAGD sources.

### 2.2 PIPING

- A. Copper Tubing: Copper tubing shall be type "K" or "L", ASTM B819, seamless copper tube, hard drawn temper, with wrought copper fittings conforming to ASME B16.22 or brazing fittings complying with ASME B16.50. The copper tubing size designated reflects nominal inside diameter. All tubing and fittings shall be labeled "ACR/OXY", "OXY", "OXY/MED", "ACR/MED", or "MED".
- B. Brazing Alloy: The brazing alloy shall comply with AWS A5.8M/A5.8, Classification BCuP, greater than 538 degrees C (1000 degrees F) melting temperature. Flux shall be strictly prohibited for copper to copper connections.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

### 2.3 EXPOSED LABORATORY AND HEALTHCARE VACUUM PIPING (NOT USED)

### 2.4 VALVES (NOT USED)

#### 2.7 STATION INLETS

- A. Vacuum Station inlets to match existing Fargo VA:
  - 1. Station inlets shall be for designated service, consisting of a quick coupler, quick disconnect type with inlet supply tube.
  - 2. The outlet station shall be made, cleaned, and packaged to NFPA 99 standards and shall be UL listed and CSA certified.
  - 3. A coupler shall be provided that is non-interchangeable with other services, and leak proof under three times normal working pressure.
  - 4. Each station inlet shall be equipped with an automatic valve to conform with NFPA 99. Valves shall be placed in the assembly to provide easy access after installation for servicing and replacement, and to facilitate line blow-out, purging, and testing.
  - 5. Each inlet shall be securely fastened to structure and provide each with a capped stub length of 7 mm (1/4 inches) (10 mm outside diameter) (3/8 inches outside diameter) tubing for connection to supply tubing. Stub tubing shall be labeled for appropriate service. Rough in shall be indexed and gas specified latch valve with non-interchangeable safety keying with color coded gas service identification.
  - 6. Completion kits (valve body and face plate) shall be installed for the remainder of required tests.

## 2.8 STATION INLETS (NOT USED)

#### 2.9 STATION INLET ROUGH-IN

- A. Station inlet rough in shall be flush mounted, and protected against corrosion. Rough in shall be anchored securely to unit or wall construction.
- B. The modular cover plate shall be constructed from die cast plate, two piece 0.85 mm (22 gage) stainless steel or 1.6 mm (16 gage) chromium plated metal, secured to rough in with stainless steel or chromium plated countersunk screws. The latch mechanism shall be designed for one handed, single thrust mounting and one handed fingertip release of secondary equipment.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

C. Permanent, metal or plastic, identification plates shall be provided securely fastened at each inlet opening, with inscription for appropriate service using color coded letters and background. Metal plates shall have letters embossed on baked on enamel background. Color coding for identification plates is as follows:

| SERVICE LABEL  | IDENTIFICATION PLATE COLORS       |
|----------------|-----------------------------------|
| MEDICAL VACUUM | Black letters on white background |

- 2.10 CEILING SERVICES (NOT USED)
- 2.11 VACUUM SWITCHES (NOT USED)
- 2.12 VACUUM BOTTLE BRACKET (NOT USED)
- 2.13 LABORATORY VACUUM SYSTEMS (NOT USED)
- 2.14 MEDICAL VACUUM SYSTEMS (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. All installation shall be performed in strict accordance with NFPA 99 5.1.10. Brazing procedures shall be as detailed in NFPA 99 5.1.10.4. Brazing shall be performed only by brazers qualified under NFPA 99 5.1.10.11.10.
- B. Cast escutcheon shall be installed with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- C. Open ends of tube shall be capped or plugged at all times or otherwise sealed until final assembly to prevent infiltration of any foreign matter.
- D. Piping shall be cut square and accurately with a tube cutter (<u>sawing is prohibited</u>) to measurements determined at place of installation. The tubing shall be reamed to remove burrs, being careful not to expand tube, and so no chips of copper remain in the tube. The tubing shall be worked into place without springing or forcing. The tubing shall be bottomed in socket so there are no gaps between tube and fitting. Care shall be exercised in handling equipment and tools used in cutting or reaming of tube to prevent oil or grease from being introduced into the

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- tubing. Where contamination has occurred, material shall be no longer suitable for vacuum service and new, sealed tube sections used.
- E. Piping shall be supported with pipe trays or hangers at intervals as shown on the contract drawings or as defined in NFPA 99. Piping shall not be supported by other piping. Isolation of copper piping from dissimilar metals shall be of a firm, positive nature. Duct tape is prohibited as an isolation material.
- F. Valves and other equipment shall be rigidly supported to prevent strain on tube or joints.
- G. Piping exposed to physical damage shall be protected.
- H. During any brazing operation, the interior of the pipe shall be purged continuously with oil free, dry nitrogen NF, following the procedure in NFPA 99 5.1.10.4.5. At the completion of any section, all open pipe ends shall be capped using an EXTERNAL cap. The flow of purged gas shall be maintained until joint is cool to touch. The use of flux is prohibited when making of joints between copper to copper pipes and fittings.
- I. Threaded joints in piping systems shall be avoided.
- J. Tubing shall not be bent. Fittings shall be used in all change of direction or angle.
- K. After installation of the piping, but before installation of the outlet valves, blow lines clear using nitrogen NF per NFPA 99.
- L. After initial leakage testing is completed, the piping shall be allowed to remain pressurized with testing gas until testing agency performs final tests.
- M. Penetrations:
  - 1. Fire Stopping: Where pipes pass through walls, or floors, fire stopping shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, Clearances between raceways and openings with the fire stopping material shall be completely filled and sealed.
  - 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- N. Piping shall be labeled with name of service, identification color and direction of flow. Where non-standard pressures are piped, pressure shall be labeled. Labels shall be placed at least once every 6.1 m (20 feet) of linear run or once in each story (whichever is more frequent). A label shall additionally be placed immediately on each side of all wall or floor penetrations. Pipe labels shall be self adhesive vinyl type or other water resistant material with permanent adhesive colored in accordance with NFPA 99 Table 5.1.11 and shall be visible on all sides of the pipe. Each master alarm signal shall be labeled for function after ring out. Each zone valve shall be labeled and each area alarm labeled for the area of control or surveillance after test. Labels shall be permanent and of a type approved by the VAMC.
- O. Alarms and valves shall be labeled for service and areas monitored or controlled. Coordinate with the VAMC for final room or area designations. Valves shall be labeled with name and identification color of the gas and direction of flow.

#### 3.2 INSTALLER TESTING

- A. Prior to declaring the lines ready for final verification, the installing contractor shall strictly follow the procedures for verification as described in NFPA 99 5.1.12.2 and attest in writing over the notarized signature of an officer of the installing company the following;
  - 1. That all brazing was conducted by brazers qualified to ASSE Standard Series 6000 and holding current medical gas endorsements.
  - 2. That all brazing was conducted with nitrogen purging. (Procedure per NFPA 99 5.1.10.4.5).
  - 3. That the lines have been blown clear of any construction debris using oil free dry nitrogen or air are clean and ready for use. (Procedure per NFPA 99 5.1.12.2.2).
  - 4. That the assembled piping, prior to the installation of any devices, maintained a test pressure 1 1/2 times the standard pressures listed in NFPA 99 Table 5.1.11 without leaks. (Procedure per NFPA 99 5.1.12.2.3).
- 5. That after installation of all devices, the pipeline was proven leak free for 24 hours at a pressure 20 percent above the standard Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- pressures listed in NFPA 99 Table 5.1.11. (Procedure per NFPA 99 5.1.12.2. 6)
- 6. That the systems have been checked for cross connections and none were found. (Procedure per NFPA 99 5.1.12.2.4)
- 7. That the manufacturer has started up all medical air compressors, medical vacuum pumps WAGD producers, liquid oxygen system(s) and manifolds, and that they are in operating order.
- B. Four originals of the affidavit, shall be distributed; (2) to the COR,(1) to the general contractor, and (1) to the verifier (www.mgpho.org).

#### 3.3 VERIFIER TESTING

- A. Prior to handing over the systems to VAMC, the contractor shall retain a verifier acceptable to the engineer of record and VA who shall follow strictly the procedures for verification as described in NFPA 99 5.1.12.3 and provide a written report and certificate bearing the notarized signature of an officer of the verification company on company letterhead which contains at least the following:
  - 1. A current ACORD insurance certificate indicating professional liability coverage in the minimum amount of \$1 Million per occurrence, and general aggregate liability in the minimum amount of \$1 Million, valid and in force when the project is to be verified. General liability insurance alone is not acceptable.
  - 2. An affidavit bearing the notarized signature of an officer of the verification company stating that the verification company is not the supplier of any equipment used on this project or tested in this report and that the verification contractor has no relationship to, or pecuniary interest in, the manufacturer, seller, or installer of any equipment used on this project or tested in this report.
  - 3. A listing of all tests performed, listing each source, outlet, valve and alarm included in the testing.
  - 4. An assertion that all tests were performed by a Medical Vacuum System Certified Medical Gas or vacuum Verifier or by individuals qualified to perform the work and holding valid qualifications to ASSE 6030 and under the immediate supervision a Verifier. Include the names, credential numbers and expiration dates for all individuals working on the project.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- 5. A statement that equipment used was calibrated at least within the last six months by a method traceable to a National Bureau of Standard Reference and enclosing certificates or other evidence of such calibration(s). Where outside laboratories are used in lieu of on site equipment, those laboratories shall be named and their original reports enclosed.
- 6. A statement that where and when needed, equipment was re calibrated during the verification process and describing the method(s) used.
- 7. A statement that the systems were tested and found to be free of debris to a procedure per NFPA 99 5.1.12.3.7.
- 8. The flow from each outlet when tested to a procedure per NFPA 99 5.1.12.3.10.
- 9. A statement that the systems were tested and found to have no cross-connections to a procedure per NFPA 99 5.1.12.3.3.
- 10. A statement that the systems were tested and found to be free of contaminants to a procedure per NFPA 99 5.1.12.3.8 except that the purity standard shall be 2 ppm difference for halogenated hydrocarbons and 1 ppm total hydrocarbons (as methane).
- 16. The concentration of each component of NFPA 99 Table 5.1.12.3.11 in the medical air after 24 hours of operation of the medical air source.
- 17. The concentration of each gas at each outlet as specified in NFPA 99 5.1.12.3.11.
- B. Perform and document all cross connection tests, labeling verification, supply system operation, and valve and alarm operation tests as required by, and in accordance with NFPA 99 and the procedures set forth in pre-qualification documentation.
- C. Verify that the systems, as installed, meet or exceed the requirements of NFPA 99, this specification, and that the systems operate as required.
- D. Piping purge test: For each positive pressure gas system, verify cleanliness of piping system. Filter a minimum of 1000 liters (35 cubic feet) of gas through a clean white 0.45 micron filter at a minimum velocity of 3.5 fpm. Filter shall show no discoloration, and shall

accrue no more than 0.1 mg of matter. Test each zone at the outlet most Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

remote from the source. Perform test with the use of an inert gas as described in CGA P-9. Retest until all tests pass at no additional time or cost to the Government.

#### E. Inlet flow test:

- 1. Test all inlets for flow. Perform test with the use of an inert gas as described in CGA P-9.
- 2. Needle valve vacuum inlets shall draw no less than 1.0 SCFM with adjacent inlet flowing, at a dynamic inlet pressure of 40 kPa (12 inches Hg), and a static vacuum of 10 kPa (3 inches Hg).
- 3. Vacuum inlets shall draw no less than 85 Lpm (3.0 SCFM) with adjacent inlet flowing, at a dynamic inlet pressure of 40 kPa (12 inches Hg), and a static vacuum of 50 kPa (15 inches Hg).
- 4. Anesthesia evacuation inlets shall draw no less than 1 L/mm (1.0 SCFM) at a dynamic inlet pressure of 40 kPa (12 inches Hg), and a static vacuum of 50 kPa (15 inches Hg).
- 3.4 CONNECTION TO EXISTING LABORATORY VACUUM SYSTEM (NOT USED)
- 3.5 COMMISSIONING (NOT USED)
- 3.6 DEMONSTRATION AND TRAINING (NOT USED)

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

# SECTION 22 63 00 GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Central Laboratory and Healthcare Gas Systems: Consisting of oxygen, nitrous oxide, nitrogen, and compressed air services; complete, ready for operation, including all necessary piping, fittings, valves, cabinets, station outlets, rough-ins, and all necessary parts, accessories, connections and equipment. Match existing station outlet and inlet terminal connections.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Sealing around pipe penetrations to maintain the integrity of time rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around pipe penetrations through the floor to prevent moisture migration.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General requirements and items common to more than one section of Division 22.
- F. SECTION 22 62 00, VACUUM SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES: Vacuum Piping and Equipment.

### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
  - A13.1-2007 (R2013).....Scheme for the Identification of Piping Systems
    B16.15-2013......Cast Copper Alloy Threaded Fittings: Classes
    125 and 250
  - B16.22-2013......Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings
  - B16.50-2013......Wrought Copper and Copper Alloy Braze-Joint

    Pressure Fittings

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

|       | BPVC Section IX-2015Welding, Brazing, and Fusing Qualifications     |
|-------|---------------------------------------------------------------------|
| С.    | American Society of Sanitary Engineers (ASSE):                      |
|       | 6000 Series-2012Professional Qualifications Standard for            |
|       | Medical Gas Systems Personnel                                       |
| D.    | American Society for Testing and Materials (ASTM):                  |
|       | B819-2000 (R2011)Standard Specification for Seamless Copper Tube    |
|       | for Medical Gas Systems                                             |
| Ε.    | American Welding Society (AWS):                                     |
|       | A5.8M/A5.8-2011Specification for Filler Metals for Brazing and      |
|       | Braze Welding                                                       |
|       | B2.2/B2.2M-2010Specification for Brazing Procedure and              |
|       | Performance Qualification                                           |
| F.    | Compressed Gas Association (CGA):                                   |
|       | C-9-2013Standard Color Marking of Compressed Gas                    |
|       | Containers for Medical Use                                          |
|       | G-4.1-2009Cleaning Equipment for Oxygen Service                     |
|       | G-10.1-2008Commodity Specification for Nitrogen                     |
|       | P-9-2008                                                            |
| G.    | Manufacturing Standardization Society (MSS):                        |
|       | SP-110-2010Ball Valves Threaded, Socket-Welding, Solder             |
|       | Joint, Grooved and Flared Ends                                      |
| Н.    | National Electrical Manufacturers Association (NEMA):               |
|       | ICS 6-1993 (R2001, R2006) Industrial Control and Systems Enclosures |
| I.    | National Fire Protection Association (NFPA):                        |
|       | 99-2021Health Care Facilities Code                                  |
| .4 ST | UBMITTALS                                                           |
| _     |                                                                     |

### 1.4

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 63 00, GAS SYSTEMS FOR LABORATORY AND HEALTHCARE FACILITIES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights,

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

materials, applications, standard compliance, model numbers, size, and capacity.

- 1. Piping.
- 2. Valves.
- 6. Station outlets and rough-in assemblies.
- D. Station Outlets: Submit letter from manufacturer stating that outlets are designed and manufactured to comply with NFPA 99. Outlet shall bear label of approval as an assembly, of Underwriters Laboratories, Inc., or Associated Factory Mutual Research Corporation.
- E. Certification: The completed systems have been installed, tested, purged, analyzed and verified in accordance with the requirements of this specification. Certification shall be submitted to COR.

### 1.5 QUALITY ASSURANCE

- A. Materials and Installation: In accordance with NFPA 99 and as specified.
- B. Equipment Installer: Show technical qualifications and previous experience in installing laboratory and healthcare equipment on three similar projects. Submit names, phone numbers, and addresses of referenced projects. Installers shall meet the qualifications of ASSE Standard Series 6000.
- C. Equipment Supplier: Provide evidence of equivalent product installed at three installations similar to this project that has been in satisfactory and efficient operation for three years. Submit names, phone numbers, and addresses where the product is installed.
- D. Laboratory and healthcare System Testing Organization: The testing shall be conducted by a party technically competent and experienced in the field of laboratory and healthcare pipeline testing. Testing and systems verification shall be performed by personnel meeting the qualifications of ASSE Standard Series 6000. Such testing shall be performed by a party other than the installing contractor.
- E. Provide the names of three projects where testing of medical or laboratory gases systems has been performed by the testing agency. Include the name of the project, names of such persons at that project who supervised the work for the project owner, or who accepted the

report for the project owner, and a written statement that the projects Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

listed required work of similar scope to that set forth in this specification.

- F. Submit the testing agency's detailed procedure which shall be followed in the testing of this project. Include details of the testing sequence, procedures for cross connection tests, outlet function tests, alarm tests, purity tests, etc., as required by this specification. For purity test procedures, include data on test methods, types of equipment to be used, calibration sources and method references.
- G. Certification: Provide COR documentation 10 working days prior to submitting request for final inspection to include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits allowed by this specification.
- H. "Hot taps" are prohibited for operating medical oxygen systems. Methods for connection and extension of active and pressurized medical gas systems without subsequent medical gas testing and verification are prohibited.
- I. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

#### 1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in hard copy and electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and

maintenance manual. The operations and maintenance manual shall include Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

troubleshooting techniques and procedures for emergency situations.

Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.

Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them Adobe PDF and in Auto-CAD version 2019 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

#### PART 2 - PRODUCTS

### 2.1 PIPING AND FITTINGS

- A. Copper Tubing: Type "K", ASTM B819, seamless copper tube, hard drawn temper, with wrought copper fittings conforming to ASME B16.22 or brazing fittings complying with ASME B16.50. Size designated reflecting nominal inside diameter. All tubing and fittings shall be labeled "ACR/OXY", "OXY", "OXY/MED", "ACR/MED", or "MED".
- B. Brazing Alloy: AWS A5.8M/A5.8, Classification BCuP, greater than 538 degrees C (1000 degrees F) melting temperature. Flux is strictly prohibited for copper-to-copper connections.
- C. Threaded Joints: Polytetrafluoroethylene (Teflon) tape.
  - 3. Dielectric fittings where required by the manufacturer of special medical equipment to electrically isolate the equipment from the piping distribution system.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

4. Axially swaged, elastic strain preload fittings providing metal to metal seal having pressure and temperature ratings not less than that of a brazed joint and when complete are permanent and non-separable.

### 2.2 EXPOSED LABORATORY AND HEALTHCARE GASES PIPING (NOT USED)

#### 2.3 VALVES

- A. Ball: In-line, other than zone valves in cabinets:
  - 1. 3 inches and smaller: Bronze/ brass body, MSS SP-72, MSS SP-110, Type II, Class 150, Style 1, with tubing extensions for brazed connections, full port, three-piece or double union end connections, Teflon seat seals, full flow, 4138 kPa (600 psig) WOG minimum working pressure, with locking type handle, cleaned for oxygen use and labeled for intended service.

#### 2.4 STATION OUTLETS MATCH EXISTING CONDITIONS

A. For all services except nitrogen system: For designated service, consisting of a quick coupler and inlet supply tube. Provide coupler that is non-interchangeable with other services, and leak proof under three times the normal working pressure. Equip each station outlet with an automatic valve and a secondary check valve to conform with NFPA 99. Equip each station inlet with an automatic valve to conform with NFPA 99. Place valves in the assembly to provide easy access after installation for servicing and replacement, and to facilitate line blow-out, purging, and testing. Fasten each outlet and inlet securely to rough-in to prevent floating and provide each with a capped stub length of 6 mm (1/4-inch) (10 mm outside diameter) (3/8-inch outside diameter) tubing for connection to supply. Identification of each gas service shall be permanently cast into the back plate and shall be visible through a transparent plastic guard. Label stub tubing for appropriate service.

### 2.5 STATION OUTLETS (NOT USED)

### 2.6 STATION OUTLET ROUGH-IN

- A. Anchor flush mounted rough-in securely to unit or wall construction.
- B. Modular Cover Plate: Die cast back plate, two-piece 0.85 mm (22 gage) stainless steel or 1.6 mm (16 gage) chromium plated metal, with

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- mounting flanges on all four sides, secured to rough-in with stainless steel or chromium plated countersunk screws.
- C. Provide permanent, metal or plastic, identification plates securely fastened at each outlet and inlet opening, with inscription for appropriate service using color coded letters and background. Metal plates shall have letters embossed on baked-on enamel background. Color coding for identification plates is as follows:

| SERVICE LABEL | IDENTIFICATION PLATE COLORS                      |
|---------------|--------------------------------------------------|
| OXYGEN        | White letters on green background and vice versa |
| NITROUS OXIDE | White letters on blue background                 |
| MEDICAL AIR   | Black letters on yellow                          |

- 2.7 CEILING SERVICES (NOT USED)
- 2.8 ALARMS (NOT USED)
- 2.9 PRESSURE SWITCHES (NOT USED)
- 2.10 NITROGEN CONTROL PANEL (NCP) (NOT USED)
- 2.11 CYLINDER GAS SUPPLY MANIFOLDS (NOT USED)
- 2.12 AIR COMPRESSOR SYSTEMS (NOT USED)
- 2.13 PRESSURE REGULATORS (NOT USED)
- 2.14 EMERGENCY LOW PRESSURE OXYGEN INLET (NOT USED)

#### PART 3 - EXECUTION

### 3.1 INSTALLATION

- A. Install cast escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- B. Open ends of tube shall be capped or plugged at all times or otherwise sealed until final assembly to prevent infiltration of any foreign matter.
- C. Cut piping square and accurately with a tube cutter (sawing is prohibited) to measurements determined at place of installation. Ream tube to remove burrs, being careful not to expand tube, and so no chips of copper remain in the tube. Work into place without springing or forcing. Bottom tube in socket so there are no gaps between tube and

fitting. Exercise care in handling equipment and tools used in cutting Contract No. 36C26319D0044

22 63 00 - 7

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

or reaming of tube to prevent oil or grease being introduced into tubing. Where contamination has occurred, material is no longer suitable for oxygen service.

- D. Spacing of hangers: NFPA 99.
- E. Rigidly support valves and other equipment to prevent strain on tube or joints.
- F. While being brazed, joints shall be continuously purged with oil free nitrogen. The flow of purged gas shall be maintained until joint is cool to touch.
- G. Do not bend tubing. Use fittings.
- H. Apply pipe labeling during installation process and not after installation is completed. Size of legend letters shall be in accordance with ASME A13.1.
- I. After initial leakage testing is completed, allow piping to remain pressurized with testing gas until testing agency performs final tests.
- J. Penetrations:
  - 1. Fire Stopping: Where pipes pass through, walls, floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with intumescent materials only. Completely fill and seal clearances between raceways and openings with the fire stopping material.
  - 2. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

#### 3.2 STARTUP AND TESTING

- A. Initial Tests: Blow down and high and low pressure leakage tests as required by NFPA 99 with documentation.
- B. Laboratory and/or healthcare testing agency shall perform the following:
  - Perform and document all cross connection tests, labeling verification, supply system operation, and valve and alarm operation tests as required by, and in accordance with NFPA 99 and the procedures set forth in pre-qualification documentation.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- 2. Verify that the systems, as installed, meet or exceed the requirements of NFPA 99, this specification, and that the systems operate as required.
- 3. Piping purge test: For each positive pressure gas system, verify cleanliness of piping system. Filter a minimum of 1000 liters (35 cubic feet) of gas through a clean white 0.45 micron filter at a minimum velocity of 100 liters per minute (3.5 SCFM). Filter shall show no discoloration, and shall accrue no more than 0.1 mg (0.0000035 ounces) of matter. Test each zone at the outlet most remote from the source. Perform test with the use of an inert gas as described in CGA P-9.
- 4. Piping purity test: For each positive pressure system, verify purity of piping system. Test each zone at the most remote outlet for dew point, carbon monoxide, total hydrocarbons (as methane), and halogenated hydrocarbons, and compare with source gas. The two tests shall in no case exceed variation as specified in paragraph, "Maximum Allowable Variation". Perform test with the use of an inert gas as described in CGA P-9.
- 5. Outlet and inlet flow test:
  - a. Test all outlets for flow. Perform test with the use of an inert gas as described in CGA P-9.
  - b. Oxygen, nitrous oxide and air outlets shall deliver 100 Lpm (3.5 SCFM) with a pressure drop of no more than 34 kPa (5 psig), and static pressure of 345 kPa (50 psig).
  - c. Needle valve air outlets shall deliver 1.5 SCFM with a pressure drop of no more than five psig, and static pressure of 345 kPa (50 psig).
- 6. Source Contamination Test: Analyze each pressure gas source for concentration of contaminants, by volume. Take samples for air system test at the intake and at a point immediately downstream of the final filter outlet. The compared tests shall in no case exceed variation as specified in paragraph "Maximum Allowable Variation". Allowable concentrations are below the following:

Dew point, air 4 degrees C (40 degrees F) pressure

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

|                                      | dew point at 690 kPa (100 psig) |
|--------------------------------------|---------------------------------|
| Carbon monoxide, air                 | 10 mg/L (ppm)                   |
| Carbon dioxide, air                  | 500 mg/L (ppm)                  |
| Gaseous hydrocarbons as methane, air | 25 mg/L (ppm)                   |
| Halogenated hydrocarbons, air        | 2 mg/L (ppm)                    |

### 7. Analysis Test:

- a. Analyze each pressure gas source and outlet for concentration of gas, by volume.
- b. Make analysis with instruments designed to measure the specific gas dispensed.
- c. Allowable concentrations are within the following:
  - 1) Laboratory air 19.5 percent to 23.5 percent oxygen.

| Oxygen        | >=97% plus oxygen        |
|---------------|--------------------------|
| Nitrous oxide | >=99% plus nitrous oxide |
| Medical air   | 19.5% to 23.5% oxygen    |

8. Maximum Allowable Variation: Between comparative test results required are as follows:

| Dew point                     | 2 degrees C (35 degrees F) |
|-------------------------------|----------------------------|
| Carbon monoxide               | 2 mg/L (ppm)               |
| Total hydrocarbons as methane | 1 mg/L (ppm)               |
| Halogenated hydrocarbons      | 2 mg/L (ppm)               |

## 3.3 CONNECTION TO EXISTING LABORATORY GAS SYSTEM:

- A. Contactor shall test the existing system for hydrocarbons, dew point, etc. per NFPA 99. If problems are present, the COR would notify the facility of the results. The facility would then make the necessary repairs and/or maintenance prior to connecting to new system.
- B. Install shut-off valve at the connection of new line to existing line.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-15

- C. Time for shutdown of the existing laboratory and healthcare system shall be coordinated at least 21 work days prior to shutdown with the COR and VA Medical Center.
- D. Shut off all oxygen zone valves and gas riser valves if the section to be connected cannot be totally isolated from the remainder of the system.
- E. Prior to any work being done, check the new pipeline for particulate or other forms of contamination per NFPA 99.
- F. Ensure that the correct type of pipe tubing and fittings are being
- G. Make a spot check of the existing pipelines in the facility to determine the level of cleanness present.
- H. Reduce the pressure to zero and make the tie-in as quickly as possible. A nitrogen purge is not required since this would require another opening in the pipe.
- I. After the tie-in is made and allowed to cool, slowly bleed the source gas back into the pipeline. Test the work area for leaks with soapy water and repair any leaks.
- J. After all leaks, if any, are repaired and the line is fully recharged, perform blow down and testing. Open the zone that is closest to the main to the system, access the closest outlet to the work, and blow the main through the outlet. After the outlet blows clear into a white cloth, make an additional check at a zone most distant from the work. Perform all required NFPA 99 tests after connection.

### 3.4 COMMISSIONING (NOT USED)

3.5 DEMONSTRATION AND TRAINING (NOT USED)

---END---

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B Definitions
  - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
  - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
  - 1. ac: Alternating Current
  - 2. AC: Air Conditioning
  - 3. ACU: Air Conditioning Unit
  - 4. ACR: Air Conditioning and Refrigeration
  - 5. AI: Analog Input
  - 6. AISI: American Iron and Steel Institute
  - 7. AO: Analog Output
  - 8. ASJ: All Service Jacket
  - 9. AWG: American Wire Gauge
  - 10. BACnet: Building Automation and Control Networking Protocol
  - 11. BAg: Silver-Copper-Zinc Brazing Alloy
  - 12. BAS: Building Automation System
  - 13. BCuP: Silver-Copper-Phosphorus Brazing Alloy
  - 14. bhp: Brake Horsepower
  - 15. Btu: British Thermal Unit
  - 16. Btu/h: British Thermal Unit Per Hour
  - 17. CDA: Copper Development Association
  - 18. C: Celsius
  - 19. CD: Compact Disk
  - 20. CFM: Cubic Foot Per Minute
  - 21. CH: Chilled Water Supply
  - 22. CHR: Chilled Water Return
  - 23. CLR: Color
  - 24. CO: Carbon Monoxide

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 25. COR: Contracting Officer's Representative
- 26. CPD: Condensate Pump Discharge
- 27. CPM: Cycles Per Minute
- 28. CPVC: Chlorinated Polyvinyl Chloride
- 29. CRS: Corrosion Resistant Steel
- 30. CTPD: Condensate Transfer Pump Discharge
- 31. CTPS: Condensate Transfer Pump Suction
- 32. CW: Cold Water
- 33. CWP: Cold Working Pressure
- 34. CxA: Commissioning Agent
- 35. dB: Decibels
- 36. dB(A): Decibels (A weighted)
- 37. DDC: Direct Digital Control
- 38. DI: Digital Input
- 39. DO: Digital Output
- 40. DVD: Digital Video Disc
- 41. DN: Diameter Nominal
- 42. DWV: Drainage, Waste and Vent
- 43. EPDM: Ethylene Propylene Diene Monomer
- 44. EPT: Ethylene Propylene Terpolymer
- 45. ETO: Ethylene Oxide
- 46. F: Fahrenheit
- 47. FAR: Federal Acquisition Regulations
- 48. FD: Floor Drain
- 49. FED: Federal
- 50. FG: Fiberglass
- 51. FGR: Flue Gas Recirculation
- 52. FOS: Fuel Oil Supply
- 53. FOR: Fuel Oil Return
- 54. FSK: Foil-Scrim-Kraft facing
- 55. FWPD: Feedwater Pump Discharge
- 56. FWPS: Feedwater Pump Suction
- 57. GC: Chilled Glycol Water Supply
- 58. GCR: Chilled Glycol Water Return
- 59. GH: Hot Glycol Water Heating Supply
- 60. GHR: Hot Glycol Water Heating Return

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 61. gpm: Gallons Per Minute
- 62. HDPE: High Density Polyethylene
- 63. Hq: Mercury
- 64. HOA: Hands-Off-Automatic
- 65. hp: Horsepower
- 66. HPS: High Pressure Steam (60 psig and above)
- 67. HPR: High Pressure Steam Condensate Return
- 68. HW: Hot Water
- 69. HWH: Hot Water Heating Supply
- 70. HWHR: Hot Water Heating Return
- 71. Hz: Hertz
- 72. ID: Inside Diameter
- 73. IPS: Iron Pipe Size
- 74. kg: Kilogram
- 75. klb: 1000 lb
- 76. kPa: Kilopascal
- 77. lb: Pound
- 78. lb/hr: Pounds Per Hour
- 79. L/s: Liters Per Second
- 80. L/min: Liters Per Minute
- 81. LPS: Low Pressure Steam 15 psig
- 82. LPR: Low Pressure Steam Condensate Gravity Return
- 83. MAWP: Maximum Allowable Working Pressure
- 84. MAX: Maximum
- 85. MBtu/h: 1000 Btu/h
- 86. MBtu: 1000 Btu
- 87. MED: Medical
- 88. m: Meter
- 89. MFG: Manufacturer
- 90. mg: Milligram
- 91. mg/L: Milligrams Per Liter
- 92. MIN: Minimum
- 93. MJ: Megajoules
- 94. ml: Milliliter
- 95. mm: Millimeter
- 96. MPS: Medium Pressure Steam 16 psig through 60 psig

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 97. MPR: Medium Pressure Steam Condensate Return
- 98. MW: Megawatt
- 99. NC: Normally Closed
- 100. NF: Oil Free Dry (Nitrogen)
- 101. Nm: Newton Meter
- 102. NO: Normally Open
- 103. NOx: Nitrous Oxide
- 104. NPT: National Pipe Thread
- 105. NPS: Nominal Pipe Size
- 106. OD: Outside Diameter
- 107. OSD: Open Sight Drain
- 108. OS&Y: Outside Stem and Yoke
- 109. PC: Pumped Condensate
- 110. PID: Proportional-Integral-Differential
- 111. PLC: Programmable Logic Controllers
- 112. PP: Polypropylene
- 113. PPE: Personal Protection Equipment
- 114. ppb: Parts Per Billion
- 115. ppm: Parts Per Million
- 116. PRV: Pressure Reducing Valve \
- 117. PSIA: Pounds Per Square Inch Absolute
- 118. psig: Pounds Per Square Inch Gauge
- 119. PTFE: Polytetrafluoroethylene
- 120. PVC: Polyvinyl Chloride
- 121. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White
- 122. PVDF: Polyvinylidene Fluoride
- 123. rad: Radians
- 124. RH: Relative Humidity
- 125. RO: Reverse Osmosis
- 126. rms: Root Mean Square
- 127. RPM: Revolutions Per Minute
- 128. RS: Refrigerant Suction
- 129. RTD: Resistance Temperature Detectors
- 130. RTRF: Reinforced Thermosetting Resin Fittings
- 131. RTRP: Reinforced Thermosetting Resin Pipe
- 132. SCFM: Standard Cubic Feet Per Minute

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 133. SPEC: Specification
- 134. SPS: Sterile Processing Services
- 135. STD: Standard
- 136. SDR: Standard Dimension Ratio
- 137. SUS: Saybolt Universal Second
- 138. SW: Soft water
- 139. SWP: Steam Working Pressure
- 140. TAB: Testing, Adjusting, and Balancing
- 141. TDH: Total Dynamic Head
- 142. TEFC: Totally Enclosed Fan-Cooled
- 143. TFE: Tetrafluoroethylene
- 144. THERM: 100,000 Btu
- 145. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 146. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire
- 147. T/P: Temperature and Pressure
- 148. USDA: U.S. Department of Agriculture
- 149. V: Volt
- 150. VAC: Vacuum
- 151. VA: Veterans Administration
- 152. VAC: Voltage in Alternating Current
- 153. VA CFM: VA Construction & Facilities Management
- 154. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 155. VAMC: Veterans Administration Medical Center
- 156. VHA OCAMES: Veterans Health Administration Office of Capital Asset Management Engineering and Support
- 157. VR: Vacuum condensate return
- 158. WCB: Wrought Carbon Steel, Grade B
- 159. WG: Water Gauge or Water Column
- 160. WOG: Water, Oil, Gas

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. NOT USED.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- F. NOT USED.
- G. Section 05 50 00, METAL FABRICATIONS.
- H. Section 07 84 00, FIRESTOPPING.
- I. Section 07 92 00, JOINT SEALANTS.
- J. Section 09 91 00, PAINTING.
- K. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- L. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EOUIPMENT.
- M. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- N. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- O. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- P. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- Q. Section 23 36 00, AIR TERMINAL UNITS.
- R. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- S. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- T. NOT USED.

### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA):

C. American Society of Mechanical Engineers (ASME):

B31.1-2018......Power Piping

B31.9-2017.....Building Services Piping

ASME Boiler and Pressure Vessel Code:

BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications

D. American Society for Testing and Materials (ASTM):

A36/A36M- 2014......Standard Specification for Carbon Structural Steel

A575-1996(R2018)......Standard Specification for Steel Bars, Carbon,

Merchant Quality, M-Grades

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

|        | 02 01 2                                                                |
|--------|------------------------------------------------------------------------|
| Ε.     | Association for Rubber Products Manufacturers (ARPM):                  |
|        | IP-20-2015Specifications for Drives Using Classical                    |
|        | V-Belts and Sheaves                                                    |
|        | IP-21-2016Specifications for Drives Using Double-V                     |
|        | (Hexagonal) Belts                                                      |
|        | IP-24-2016Specifications for Drives Using Synchronous                  |
|        | Belts                                                                  |
|        | IP-27-2015Specifications for Drives Using Curvilinear                  |
|        | Toothed Synchronous Belts                                              |
| F.     | Manufacturers Standardization Society (MSS) of the Valve and Fittings  |
|        | <pre>Industry, Inc.:</pre>                                             |
|        | SP-58-2018Pipe Hangers and Supports-Materials, Design,                 |
|        | Manufacture, Selection, Application, and                               |
|        | Installation                                                           |
|        | SP-127-2014aBracing for Piping Systems: Seismic-Wind-                  |
|        | Dynamic Design, Selection, and Application                             |
| G.     | Military Specifications (MIL):                                         |
|        | MIL-P-21035B-2013Paint High Zinc Dust Content, Galvanizing             |
|        | Repair (Metric)                                                        |
| Н.     | National Fire Protection Association (NFPA):                           |
|        | 70-2017National Electrical Code (NEC)                                  |
|        | 101-2018Life Safety Code                                               |
| I.     | Department of Veterans Affairs (VA):                                   |
|        | PG-18-10-2016Physical Security and Resiliency Design Manual            |
| 1.4 SU | BMITTALS                                                               |
| A.     | Submittals, including number of required copies, shall be submitted in |
|        | accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND     |
|        | SAMPLES.                                                               |
| В.     | Information and material submitted under this section shall be marked  |

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Coordination/Shop Drawings:
  - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
  - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.

- 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- 4. In addition, for HVAC systems, provide details of the following:
- a. Mechanical equipment rooms.
- b. Hangers, inserts, supports, and bracing.
- c. Pipe sleeves.
- d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- I. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
  - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
  - 2. Submit electric motor data and variable speed drive data with the driven equipment.
  - 3. Equipment and materials identification.
  - 4. Fire-stopping materials.
  - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
  - 6. Wall, floor, and ceiling plates.
- J. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.

- K. HVAC Maintenance Data and Operating Instructions:
  - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
  - 2. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
  - a. Include complete list indicating all components of the systems.
  - b. Include complete diagrams of the internal wiring for each item of equipment.
  - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
  - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- L. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- M. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- N. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

### 1.5 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
  - 1. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
  - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.

#### D. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).

- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
  - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
  - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
  - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
  - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
  - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
  - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
  - 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
  - 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.

- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

#### 1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
  - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
  - 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
  - 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
  - 4. Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
  - 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
  - 6. Protect plastic piping and tanks from ultraviolet light (sunlight).
- B. Cleanliness of Piping and Equipment Systems:
  - 1. Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
- 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
- 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

#### 1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD with hard copies inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- As-built drawings are to be provided, with a copy of them on AutoCAD version 14 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics\_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

#### 1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 21 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.

- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times.

  Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

### PART 2 - PRODUCTS

### 2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
  - 1. All components of an assembled unit need not be products of same manufacturer.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

### 2.2 COMPATIBILITY OF RELATED EQUIPMENT

- A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.
- 2.3 V-BELT DRIVES (NOT USED)
- 2.4 SYNCHRONOUS BELT DRIVES (NOT USED)
- 2.5 DRIVE GUARDS (NOT USED)
- 2.6 LIFTING ATTACHMENTS
  - A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

### 2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. Provide all

electrical wiring, conduit, and devices necessary for the proper Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

#### 2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

## 2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- C. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- D. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 3/16 inch high riveted or bolted to the equipment.
- E. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
  - 1. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.

#### 2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

## 2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

## 2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
  - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 2 by 4 inches treated wood nailer, 18 gauge galvanized steel counter flashing cap with screws, builtin cant strip, (except for gypsum or tectum deck), minimum height 11 inches. For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
  - 2. Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
  - 1. Concrete insert: MSS SP-58, Type 18.
  - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 4 inches thick when approved by the COR for each job condition.
  - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 4 inches thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
  - 1. Welded attachment: MSS SP-58, Type 22.
  - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 7/8 inch outside diameter.
- F. Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 1-1/2 inches minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 1-5/8 inches by 1-5/8 inches, 12 gauge, designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
  - 1. Allowable hanger load: Manufacturers rating less 200 pounds.
  - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 1/4 inch U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 1/2 inch galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

## I. Supports for Piping Systems:

- 1. Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
- a. Standard clevis hanger: Type 1; provide locknut.
- b. Riser clamps: Type 8.
- c. Wall brackets: Types 31, 32 or 33.
- d. Roller supports: Type 41, 43, 44 and 46.
- e. Saddle support: Type 36, 37 or 38.
- f. Turnbuckle: Types 13 or 15. Preinsulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
  - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.

#### 2.13 PIPE PENETRATIONS (NOT USED)

## 2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 18 inches high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

### 2.15 SPECIAL TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 1 quart of oil, and 1 pound of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

## 2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 3/32 inch for floor plates. For wall and ceiling plates, not less than 0.025 inch) for up to 3-inch pipe, 0.035 inch for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

#### 2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

### PART 3 - EXECUTION

## 3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

## 3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
  - Cut holes through concrete and masonry by rotary core drill.
     Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
  - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR..
  - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

determination on what is accessible and what is not. Comply with NFPA 70.

## H. Protection and Cleaning:

- 1. Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 3000 psig minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
  - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
  - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).

#### N. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

### 3.3 TEMPORARY PIPING AND EQUIPMENT (NOT USED)

### 3.4 RIGGING

A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.

- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer.

  All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

## 3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Do not drill or burn holes in structural steel.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 1/2 inch clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
  - 1. Up to 6-inch pipe, 30 feet long, bolt riser clampsto the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
  - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### F. Overhead Supports:

- 1. /The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

### G. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
   Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 2 inch excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 6 inches on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

#### 3.6 MECHANICAL DEMOLITION

A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation.

  Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or Ohandled.
- D. All indicated valves including gate, globe, ball, and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### 3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
  - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
  - 2. The following material and equipment shall not be painted:
  - a. Motors, controllers, control switches, and safety switches.
  - b. Control and interlock devices.
  - c. Regulators.
  - d. Pressure reducing valves.
  - e. Control valves and thermostatic elements.
  - f. Lubrication devices and grease fittings.
  - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
  - h. Valve stems and rotating shafts.
  - i. Pressure gauges and thermometers.
  - j. Glass.
  - k. Nameplates.
  - 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
  - 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
  - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
  - 6. Paint shall withstand the following temperatures without peeling or discoloration:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- a. Condensate and Feedwater: 100 degrees F on insulation jacket surface and 250 degrees F on metal pipe surface.
- b. Steam: 125 degrees F on insulation jacket surface and 374 degrees F on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

#### 3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 3/16 inch high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

#### 3.9 MOTOR AND DRIVES

- A. Use only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use on all other applications.
- B. Alignment of: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

### 3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. //The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.//
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

### 3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

#### 3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

#### 3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### SECTION 23 05 12

## GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):
  9-2015......Load Ratings and Fatigue Life for Ball Bearings
  11-2014....Load Ratings and Fatigue Life for Roller
  Bearings
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
  - 90.1-2013......Energy Efficient Design of New Buildings Except
    Low-Rise Residential Buildings
- D. Institute of Electrical and Electronics Engineers (IEEE):
  - 112-2017......Standard Test Procedure for Polyphase Induction

    Motors and Generators
  - 841-2009...... IEEE Standard for Petroleum and Chemical
    Industry-Premium-Efficiency, Severe-Duty,
    Totally Enclosed Fan-Cooled (TEFC) Squirrel

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

Cage Induction Motors--Up to and Including 370 kW (500 hp)

| E. National Electrical Manufacturers Association (NEMA): |
|----------------------------------------------------------|
| MG 1-2019Motors and Generators                           |
| MG 2-2014Safety Standard for Construction and Guide for  |
| Selection, Installation and Use of Electric              |
| Motors and Generators                                    |
| 250-2014Enclosures for Electrical Equipment (1000 Volts  |
| Maximum)                                                 |
| F. National Fire Protection Association (NFPA):          |

#### 1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

70-2014.....National Electrical Code (NEC)

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
  - 1. Provide documentation to demonstrate compliance with contract
  - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 1. Include complete list indicating all components of the systems.
- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

### 1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD and 3 hard copies inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- 1. As-built drawings are to be provided, with a copy of them in Adobe PDF and on AutoCAD version 14 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

## PART 2 - PRODUCTS

### 2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

Unless otherwise specified for a particular application, use electric motors with the following requirements.

- D. Voltage ratings shall be as follows:
  - 1. Single phase:
    - a. Motors connected to 120-volt systems: 115 volts.
    - b. Motors connected to 208-volt systems: 200 volts.
    - c. Motors connected to 240-volt or systems: 230volts, dual connection.
  - 2. Three phase:
    - a. Motors connected to 208-volt systems: 200 volts.
    - b. Motors, less than 100 hp, connected to 240-volt systems: 208-230 volts, dual connection.
- E. Number of phases shall be as follows:
  - 1. Motors, 1/2 hp and larger: 3 phase.
- F. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- G. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- H. Motor Enclosures:
  - 1. Shall be the NEMA types as specified and/or shown in the Contract Documents.
  - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
    - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
    - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- I. Electrical Design Requirements:
  - 1. Motors shall be continuous duty.
  - 2. The insulation system shall be rated minimum of Class B, 266 degrees  ${\sf F}.$
  - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 176 degrees F.
  - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
  - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
  - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.
- J. Mechanical Design Requirements:
  - 1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
  - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
  - 3. Grease lubricated bearings shall be designed for electric motor use.

    Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
  - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
  - 5.0il lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
  - 6. Vibration shall not exceed 0.15 inch per second, unfiltered peak.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Condensation heaters, when specified, shall keep motor windings at least 9 degrees F above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.

### K. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
- 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
  - a. Wiring material located where temperatures can exceed 160 degrees F shall be stranded copper with Teflon FEP insulation with jacket.
  - b. Other wiring at to control panels shall be NFPA 70 designation  $_{\mbox{\scriptsize THWN}}.$
  - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- L. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- M. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 1 hp or more shall meet the minimum full-load efficiencies as indicated in the following table.

  Motors of 1 hp or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

|                   | Premium Drip- |             | ies         | Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC) |             |             |             |  |  |  |
|-------------------|---------------|-------------|-------------|-----------------------------------------------------------------|-------------|-------------|-------------|--|--|--|
| Rating<br>kW (hp) | 1200<br>RPM   | 1800<br>RPM | 3600<br>RPM | Rating<br>kW (hp)                                               | 1200<br>RPM | 1800<br>RPM | 3600<br>RPM |  |  |  |
| 1                 | 82.5%         | 85.5%       | 77.0%       | 1                                                               | 82.5%       | 85.5%       | 77.0%       |  |  |  |
| 1.5               | 86.5%         | 86.5%       | 84.0%       | 1.5                                                             | 87.5%       | 86.5%       | 84.0%       |  |  |  |
| 2                 | 87.5%         | 86.5%       | 85.5%       | 2                                                               | 88.5%       | 86.5%       | 85.5%       |  |  |  |
| 3                 | 88.5%         | 89.5%       | 85.5%       | 3                                                               | 89.5%       | 89.5%       | 86.5%       |  |  |  |
| 5                 | 89.5%         | 89.5%       | 86.5%       | 5                                                               | 89.5%       | 89.5%       | 88.5%       |  |  |  |
| 7.5               | 90.2%         | 91.0%       | 88.5%       | 7.5                                                             | 91.0%       | 91.7%       | 89.5%       |  |  |  |
| 10                | 91.7%         | 91.7%       | 89.5%       | 10                                                              | 91.0%       | 91.7%       | 90.2%       |  |  |  |
| 15                | 91.7%         | 93.0%       | 90.2%       | 15                                                              | 91.7%       | 92.4%       | 91.0%       |  |  |  |
| 20                | 92.4%         | 93.0%       | 91.0%       | 20                                                              | 91.7%       | 93.0%       | 91.0%       |  |  |  |

- N. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- O. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 1 hp shall meet the requirements of the DOE Small Motor Regulation.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

| Polyph<br>Average f | nase Oper<br>ull load |            | ncy        | Capacitor-start capacitor-run and capacitor-start induction run open motors  Average full load efficiency |            |            |            |  |  |  |
|---------------------|-----------------------|------------|------------|-----------------------------------------------------------------------------------------------------------|------------|------------|------------|--|--|--|
| Rating<br>kW (hp)   | 6<br>poles            | 4<br>poles | 2<br>poles | Rating<br>kW (hp)                                                                                         | 6<br>poles | 4<br>poles | 2<br>poles |  |  |  |
| 0.25                | 67.5                  | 69.5       | 65.6       | 0.25                                                                                                      | 62.2       | 68.5       | 66.6       |  |  |  |
| 0.33                | 71.4                  | 73.4       | 69.5       | 0.33                                                                                                      | 66.6       | 72.4       | 70.5       |  |  |  |
| 0.5                 | 75.3                  | 78.2       | 73.4       | 0.5                                                                                                       | 76.2       | 76.2       | 72.4       |  |  |  |
| 0.75                | 81.7                  | 81.1       | 76.8       | 0.75                                                                                                      | 80.2       | 81.8       | 76.2       |  |  |  |

### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

## 3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

### 3.3 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

#### 3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

### 3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hour to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

# SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the application of noise control measures, and vibration control techniques to boiler plant rotating equipment and parts including fans and motors.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

## 1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

#### 1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
  - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

| TYPE OF ROOM               | NC LEVEL |  |  |  |
|----------------------------|----------|--|--|--|
| Bathrooms and Toilet Rooms | 40       |  |  |  |
| Examination Rooms          | 35       |  |  |  |
| Patient Rooms              | 35       |  |  |  |
| Treatment Rooms            | 35       |  |  |  |

2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.

- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- 5. Piping: Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 6. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

## 1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Vibration isolators:
    - a. Floor mountings
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

## 1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):

- Handbook 2017......Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM):
  - A123/A123M-2017......Standard Specification for Zinc (Hot-Dip

    Galvanized) Coatings on Iron and Steel Products

    A307-2016......Standard Specification for Carbon Steel Bolts

    and Studs, 60,000 PSI Tensile Strength

    D2240-05(2010).....Standard Test Method for Rubber Property -
    - Durometer Hardness
- D. Manufacturers Standardization (MSS):
  - SP-58-2018......Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA):

  29 CFR 1960.95......Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE):
  - ASCE 7-2017......Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):

IBC 2018.....International Building Code.

I. Department of Veterans Affairs (VA):

H-18-8 2016......Seismic Design Requirements.

#### PART 2 - PRODUCTS

## 2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind

- velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

## 2.2 SEISMIC RESTRAINT REQUIREMENTS FOR EQUIPMENTS (NOT USED)

#### 2.3 VIBRATION ISOLATORS

- A. Floor Mountings:
  - 1. Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
  - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
  - 3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
  - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
  - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.

- 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 2 inches and larger shall have a pointer and scale deflection indicator.
- 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel.

#### 2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 4 inches. Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than four inches.

### 2.5 SOUND ATTENUATING UNITS (NOT USED)

### 2.6 ACOUSTICAL ENCLOSURES IN MECHANICAL ROOMS (NOT USED)

### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Vibration Isolation:
  - No metal-to-metal contact will be permitted between fixed and floating parts.
  - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps,

- compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- 4. Provide heat shields where elastomers are subject to temperatures over 100 degrees.
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

#### 3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

## 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.

B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

## SELECTION GUIDE FOR VIBRATION ISOLATORS

| EQUIPMENT             | ON GRADE     |              | 20FT FLOOR SPAN |              | 30FT FLOOR SPAN |             | 40FT FLOOR SPAN |              |             | 50FT FLOOR SPAN |              |             |              |              |             |
|-----------------------|--------------|--------------|-----------------|--------------|-----------------|-------------|-----------------|--------------|-------------|-----------------|--------------|-------------|--------------|--------------|-------------|
|                       | BASE<br>TYPE | ISOL<br>TYPE | MIN<br>DEFL     | BASE<br>TYPE | ISOL<br>TYPE    | MIN<br>DEFL | BASE<br>TYPE    | ISOL<br>TYPE | MIN<br>DEFL | BASE<br>TYPE    | ISOL<br>TYPE | MIN<br>DEFL | BASE<br>TYPE | ISOL<br>TYPE | MIN<br>DEFL |
| ROOF FANS             |              |              |                 |              |                 |             |                 |              |             |                 |              |             |              |              |             |
| ABOVE OCCUPIED AREAS: |              |              |                 |              |                 |             |                 |              |             |                 |              |             |              |              |             |
| 5 HP & OVER           |              |              |                 | СВ           | S               | 1.0         | СВ              | S            | 1.0         | СВ              | S            | 1.0         | СВ           | S            | 1.0         |
| CENTRIFUGAL FANS      |              |              |                 |              |                 |             |                 |              |             |                 |              |             |              |              |             |
| UP TO 50 HP:          |              |              |                 |              |                 |             |                 |              |             |                 |              |             |              |              |             |
| 501 RPM & OVER        | В            | S            | 1.0             | I            | S               | 2.0         | I               | S            | 2.0         | I               | S            | 2.5         | I            | S            | 2.5         |
|                       |              |              |                 |              |                 |             |                 |              |             |                 |              |             |              |              |             |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

# SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
  - 1. Planning systematic TAB procedures.
  - 2. Systems Inspection report.
  - 3. Duct Air Leakage test report.
  - 4. Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
  - 5. Vibration and sound measurements.
  - 6. Recording and reporting results.

#### B. Definitions:

- 1. Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
- 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
- 3. AABC: Associated Air Balance Council.
- 4. NEBB: National Environmental Balancing Bureau.
- 5. TABB: Testing Adjusting and Balancing Bureau
- 6. SMACNA: Sheet Metal Contractors National Association
- 7. Hydronic Systems: Includes heating hot water
- 8. Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
- 9. Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

#### 1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

Contract No. 36C26319D0044

Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 31 00, HVAC DUCTS AND CASINGS.
- I. Section 23 36 00, AIR TERMINAL UNITS.

## 1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
  - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
  - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
  - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COR. The responsibilities would specifically include:
  - a. Shall directly supervise all TAB work.
  - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
  - c. Would follow all TAB work through its satisfactory completion.
  - d. Shall provide final markings of settings of all HVAC adjustment devices.
  - e. Permanently mark location of duct test ports.
  - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. TAB Criteria:
  - 1. One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.
- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
  - a. Air terminal units (maximum values): Minus 2 percent to plus 10
     percent.
  - c. Exhaust fans: 0 percent to plus 10 percent.
  - e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
  - f. Heating hot water coils: Minus 5 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the COR for one air distribution system
  - a. When field TAB work begins.
  - b. During each partial final inspection and the final inspection for the project if requested by VA.

### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the COR staff, submit one complete set of applicable AABC,NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
  - 1. Systems inspection report on equipment and installation for conformance with design.
  - 2. Duct Air Leakage Test Report.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 3. Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
- 4. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- 5. Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

### 1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):
  - Handbook 2019......HVAC Applications ASHRAE Handbook, Chapter 39,
    Testing, Adjusting, and Balancing and Chapter
    49, Sound and Vibration Control
- C. Associated Air Balance Council (AABC):
  - $7^{\text{th}}$  Edition 2016 ......AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB):
  - 9<sup>th</sup> Edition 2019 ......Procedural Standards for Testing, Adjusting,
    Balancing of Environmental Systems
  - 3rd Edition 2015 ......Procedural Standards for the Measurement of Sound and Vibration
  - 2<sup>rd</sup> Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
  - 3<sup>rd</sup> Edition 2005 ......HVAC SYSTEMS Testing, Adjusting and Balancing TABB- TAB Procedural Guide //Current Edition//

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### PART 2 - PRODUCTS

#### 2.1 PLUGS

A. Provide plastic plugs to seal holes drilled in ductwork for test purposes.

#### 2.2 INSULATION REPAIR MATERIAL

A. See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

#### PART 3 - EXECUTION

### 3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

### 3.2 DESIGN REVIEW REPORT (NOT USED)

#### 3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

### 3.4 DUCT AIR LEAKAGE TEST REPORT

A. TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

## 3.5 SYSTEM READINESS REPORT (NOT USED)

### 3.6 TAB REPORTS

A. The TAB contractor shall provide raw data immediately in writing to the COR if there is a problem in achieving intended results before submitting a formal report.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- B. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- C. Do not proceed with the remaining systems until intermediate report is approved by the COR.

### 3.7 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
  - 1. At least one trunk damper shall be 100% open.
  - 2. At least one branch damper shall be 100% open per trunk.
  - 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 30 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units air flow control valves and room diffusers/outlets/inlets.
  - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
  - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
  - 4. Variable air volume (VAV) systems:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under all operating conditions).
- c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.

## F. Include coils:

- 2. Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
- 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
- 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and coils

### 3.8 VIBRATION TESTING

A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

HVAC equipment of 1/2 horsepower and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.

B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COR.

### 3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC, TABB or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2019 ASHRAE Handbook, "HVAC Applications", Chapter 49, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
  - 1. When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
    - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
    - b. Measure octave band sound pressure levels with specified equipment "off."
    - c. Measure octave band sound pressure levels with specified equipment "on."
    - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

| DIFFERENCE: | 0  | 1 | 2 | 3 | 4 | 5 to 9 | 10 or More |
|-------------|----|---|---|---|---|--------|------------|
| FACTOR:     | 10 | 7 | 4 | 3 | 2 | 1      | 0          |

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
  - a. Perform steps 1.a. thru 1.d., as above.
  - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
  - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 30 feet for sound level location.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the COR and the necessary sound tests shall be repeated. This is at no additional cost to the government.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the COR based on the recorded sound data.

## 3.10 MARKING OF SETTINGS

A. Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COR.

### 3.11 IDENTIFICATION OF TEST PORTS

A. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

### 3.12 PHASING

A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

the project all areas shall have been tested and balanced per the contract documents.

B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

#### 3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

## 3.14 CRITICAL FLOW PATH (NOT USED)

- - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

# SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
  - 1. HVAC piping, ductwork and equipment.
- B. Definitions
  - 1. ASJ: All service jacket, white finish facing or jacket.
  - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
  - 3. Concealed: Ductwork and piping above ceilings and in chases .
  - 4. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
  - 5. FSK: Foil-scrim-kraft facing.
  - 6. Hot: HVAC Ductwork handling air at design temperature above 60 degrees F; HVAC equipment or piping handling media above 105 degrees F.
  - 7. Density:  $kg/m^3$  kilograms per cubic meter (Pcf pounds per cubic foot).
  - 8. Runouts: Branch pipe connections up to one-inch nominal size to fan coil units or reheat coils for terminal units.
  - 9. Thermal conductance: Heat flow rate through materials.
    - a. Flat surface: Watt per square meter (BTU per hour per square foot).
    - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
  - 10. Thermal Conductivity (k): BTU per inch thickness, per hour, per square foot, per degree F temperature difference.
  - 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 12. HWH: Hot water heating supply.
- 13. HWHR: Hot water heating return.

#### 1.2 RELATED WORK

- A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- D. Section 23 21 13, HYDRONIC PIPING.

### 1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
  - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:
    - **4.3.3.1** Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with NFPA 255, Standard Method of Test of Surface Burning Characteristics of Building Materials.
    - **4.3.3.1.1** Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)
    - **4.3.3.1.2** The flame spread and smoke developed index requirements of  $\frac{4.3.3.1.1}{4.3.3.1.1}$  shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.
    - 4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- (1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors
- (2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors
- 4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.
- 4.3.3.3.1 In no case shall the test temperature be below 250°F.
- 4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.
- 4.3.3.5\* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.
- 4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.
- 4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.
- 4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 ft or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.
- 4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 ft or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.
- 4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.
- 5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:
- (1) Not exceeding a 1 in. average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in NFPA 251,

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 75 degrees F mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
  - 1. All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
    - a. Insulation materials: Specify each type used and state surface burning characteristics.
    - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
    - c. Insulation accessory materials: Each type used.
    - d. Manufacturer's installation and fitting fabrication insOtructions for flexible unicellular insulation.
    - e. Make reference to applicable specification paragraph numbers for coordination.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

#### 1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):
   L-P-535E (2) 1999.....Plastic Sheet (Sheeting): Plastic Strip; Poly

(Vinyl Chloride) and Poly (Vinyl Chloride -

Vinyl Acetate), Rigid.

C. Military Specifications (Mil. Spec.):

 ${\tt MIL-A-3316C}$  -1987 Adhesives, Fire-Resistant, Thermal Insulation

 ${\tt MIL-A-24179A}$  (1)-2016 Adhesive, Flexible Unicellular-Plastic

Thermal Insulation

MIL-C-19565C (1) - 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread,
Glass and Wire-Reinforced Glass

D. American Society for Testing and Materials (ASTM):

A167-99 2014......Standard Specification for Stainless and
Heat-Resisting Chromium-Nickel Steel Plate,
Sheet, and Strip

B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-2019.....Standard test method for Hot-Surface

Performance of High-Temperature Thermal

Insulation

C449-2019......Standard Specification for Mineral Fiber
Hydraulic-Setting Thermal Insulating and
Finishing Cement

 ${\tt C533-2017......Standard\ Specification\ for\ Calcium\ Silicate}$ 

Block and Pipe Thermal Insulation

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | C534-2017               | 02-01-20 .Standard Specification for Preformed Flexible |
|----|-------------------------|---------------------------------------------------------|
|    |                         | Elastomeric Cellular Thermal Insulation in              |
|    |                         | Sheet and Tubular Form                                  |
|    | C547-2017               | .Standard Specification for Mineral Fiber pipe          |
|    |                         | Insulation                                              |
|    | C552-07                 | .Standard Specification for Cellular Glass              |
|    |                         | Thermal Insulation                                      |
|    | C553-2015               | .Standard Specification for Mineral Fiber               |
|    |                         | Blanket Thermal Insulation for Commercial and           |
|    |                         | Industrial Applications                                 |
|    | C585-2016               | .Standard Practice for Inner and Outer Diameters        |
|    |                         | of Rigid Thermal Insulation for Nominal Sizes           |
|    |                         | of Pipe and Tubing (NPS System) R (1998)                |
|    | C612-2014               | .Standard Specification for Mineral Fiber Block         |
|    |                         | and Board Thermal Insulation                            |
|    | C1126- 2019             | .Standard Specification for Faced or Unfaced            |
|    |                         | Rigid Cellular Phenolic Thermal Insulation              |
|    | C1136- 2017             | .Standard Specification for Flexible, Low               |
|    |                         | Permeance Vapor Retarders for Thermal                   |
|    |                         | Insulation                                              |
|    | D1668-97a 2017          | .Standard Specification for Glass Fabrics (Woven        |
|    |                         | and Treated) for Roofing and Waterproofing              |
|    | E84-2014                | .Standard Test Method for Surface Burning               |
|    |                         | Characteristics of Building                             |
|    |                         | Materials                                               |
|    | E119-2007               | .Standard Test Method for Fire Tests of Building        |
|    |                         | Construction and Materials                              |
|    | E136-2019               | .Standard Test Methods for Behavior of Materials        |
|    |                         | in a Vertical Tube Furnace at 1380 F                    |
| Ε. | National Fire Protectio |                                                         |
|    | 90A-2018                | .Standard for the Installation of Air                   |
|    |                         | Conditioning and Ventilating Systems                    |
|    | 96-2018                 | .Standards for Ventilation Control and Fire             |
|    |                         | Protection of Commercial Cooking Operations             |
|    | 101-2018                | .Life Safety Code                                       |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| 02-01-20 251-2014Standard methods of Tests of Fire Endurance of    |
|--------------------------------------------------------------------|
| Building Construction Materials                                    |
| 255-2006Standard Method of tests of Surface Burning                |
| Characteristics of Building Materials                              |
| F. Underwriters Laboratories, Inc (UL):                            |
| 723-2018UL Standard for Safety Test for Surface Burning            |
| Characteristics of Building Materials with                         |
| Revision of 09/08                                                  |
| G. Manufacturer's Standardization Society of the Valve and Fitting |
| Industry (MSS):                                                    |
| SP58-2018Pipe Hangers and Supports Materials, Design,              |
| and Manufacture                                                    |

## PART 2 - PRODUCTS

#### 2.1 MINERAL FIBER

- A. ASTM C612 (Board, Block), Class 1 or 2, density 3 pcf, k = 0.26 at 75 degrees F, external insulation for temperatures up to 400 degrees F with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 1 pcf, k=0.31 Class B-5, Density 2 pcf, k=0.27 at 75 degrees F, for use at temperatures up to 400 degrees F with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k=0.26 at 75 degrees F, for use at temperatures up to 450 degrees F with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

## 2.2 MINERAL WOOL OR REFRACTORY FIBER (NOT USED)

### 2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k=0.15 at 50 degrees F, for use at temperatures up to 250 degrees F with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k=0.15 at 50 degrees F, for use at temperatures up to 250 degrees F with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2.4 CELLULAR GLASS CLOSED-CELL (NOT USED)
- 2.5 POLYISOCYANURATE CLOSED-CELL RIGID (NOT USED)
- 2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL (NOT USED)
- 2.7 DUCT WRAP FOR KITCHEN HOOD GREASE DUCTS (NOT USED)
- 2.8 CALCIUM SILICATE (NOT USED)
- 2.9 INSULATION FACINGS AND JACKETS
  - A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets.

    Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
  - B. ASJ jacket shall be white kraft bonded to 1 mil thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 1-1/2 inch lap on longitudinal joints and minimum 3 inch butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
  - C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

### 2.10 REMOVABLE INSULATION JACKETS (NOT USED)

### 2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3.0 pcf.

| Nominal Pipe Size and Accessor | ries Material (Insert Blocks) |
|--------------------------------|-------------------------------|
| Nominal Pipe Size mm (inches)  | Insert Blocks mm (inches)     |
| Up through 125 (5)             | 150 (6) long                  |

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 300 degrees F.

Contract No. 36C26319D0044 Station Project No. 437-21-170

Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3.0 pcf.

### 2.12 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

#### 2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Bands: 0.5 inch nominal width stainless steel.

### 2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: one inch mesh, 22 gage galvanized steel.
- E. Corner beads: 2 inch by 2 inch, 26 gage galvanized steel; or, 1 inch by 1 inch, 28 gage aluminum angle adhered to 2 inch by 2 inch Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 40 degrees F to 250 degrees F. Below 40 degrees F) and above 250 degrees F. Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 2.15 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

#### 2.16 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

#### PART 3 - EXECUTION

### 3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the COR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems.

  Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 60 degrees F and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 6 inches.
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 20 gage galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- I. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights.
- J. Firestop Pipe and Duct insulation:
  - Provide firestopping insulation at wall and floor penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
- K. Provide vapor barrier jackets over insulation as follows:
  - 1. All piping and ductwork exposed to outdoor weather.

#### 3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
  - 1. Faced board: Apply board on pins spaced not more than 12 inches on center each way, and not less than 3 inches from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
  - 2. Plain board:
    - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 9 inches on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
    - b. For hot equipment: Stretch 1 inch mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 1/4 inch thick, trowel led to a smooth finish.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- c. For cold equipment: Apply meshed glass fabric in a tack coat 60 to 70 square feet per gallon of vapor mastic and finish with mastic at 12 to 15 square feet per gallon over the entire fabric surface.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics and duct work exposed to outdoor weather:
- B. Flexible Mineral Fiber Blanket:
  - 1. Adhere insulation to metal with 3 inch wide strips of insulation bonding adhesive at 8 inches on center all around duct. Additionally secure insulation to bottom of ducts exceeding 24 inches in width with pins welded or adhered on 18 inch centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
  - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
  - 3. Concealed supply air ductwork.
    - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 2 inch thick insulation faced with FSK.
    - b. Above ceilings for other than roof level: 1 ½ inch thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
  - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- 3.3 APPLICATION -BOILER PLANT, PIPE, VALVES, STRAINERS AND FITTINGS: (NOT USED)
- 3.4 APPLICATION-BOILER FLUE GAS SYSTEMS (NOT USED)
- 3.5 APPLICATION-BOILER DEAERATING FEEDWATER HEATER, TANKS (NOT USED)
- 3.6 APPLICATION ON HEATED OR TRACED OIL FACILITIES OUTSIDE OF BUILDING (NOT USED)

### 3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

#### 3.8 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

| Insulation Wall Thickness Millimeters (Inches) |                                                |                        |                                                 |                         |                      |  |
|------------------------------------------------|------------------------------------------------|------------------------|-------------------------------------------------|-------------------------|----------------------|--|
|                                                |                                                | Nominal                | Pipe Size                                       | Millimeters             | (Inches)             |  |
| Operating<br>Temperature<br>Range/Service      | Insulation Material                            | Less<br>than<br>25 (1) | 25 - 32<br>(1 - 1 <sup>1</sup> / <sub>4</sub> ) | 38 - 75<br>(1½ - 3)     | 100 (4)<br>and Above |  |
| 122-177 degrees C (251-350 degrees F)          | Mineral Fiber (Above ground piping only)       | 75 (3)                 | 100 (4)                                         | imeters (Inc. 113 (4.5) | 113 (4.5)            |  |
| 100-121 degrees C<br>(212-250 degrees F)       | Mineral Fiber<br>(Above ground<br>piping only) | 62 (2.5)               | 62 (2.5)                                        | 75 (3.0)                | 75 (3.0)             |  |
| 100-121 degrees C<br>(212-250 degrees F)       | Rigid Cellular<br>Phenolic Foam                | 50 (2.0)               | 50 (2.0)                                        | 75 (3.0)                | 75 (3.0)             |  |
| 38-94 degrees C<br>(100-200 degrees F)         | Mineral Fiber (Above ground piping only)       | 38<br>(1.5)            | 38 (1.5)                                        | 50 (2.0)                | 50 (2.0)             |  |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|                                  |  |  | 02-01-20 |
|----------------------------------|--|--|----------|
| (LPR, PC, HWH, HWHR, GH and GHR) |  |  |          |

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) will manage the commissioning process.

#### 1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 00 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

#### 1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems of the related subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

#### 1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

### 1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

GENERAL COMMISSIONING REQUIREMENTS and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility HVAC systems commissioning will include the systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

#### 1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

#### 1.7 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. Department of Veterans Affairs (VA):

PG 18-10 2007......Mission Critical Facilities - DRAFT
PG 18-10 2007......Life-Safety Protected Facilities - DRAFT

C. American Society of Heating, Refrigerating and Air Conditioning
 Engineers, Inc. (ASHRAE):

HANDBOOK 2019.......HVAC Applications ASHRAE Handbook, Chapter 39,
Testing, Adjusting, and Balancing, Chapter 44,
HVAC Commissioning and Chapter 49, Sound and
Vibration Control

HANDBOOK 2017......HVAC Fundamentals ASHRAE Handbook, Chapter 8, Sound and Vibration

D. Associated Air Balance Council (AABC):

7th Edition 2016......AABC National Standards for Total System
Balance

E. National Environmental Balancing Bureau (NEBB):

9th Edition 2019......Procedural Standards for Testing, Adjusting,
Balancing of Environmental Systems

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

3rd Edition 2015 ......Procedural Standards for the Measurement of Sound and Vibration

2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

2006......HVAC Duct Construction Standard - Metal and Flexible Duct

3rd Edition 2005 ... HVAC Systems Testing, Adjusting and Balancing

### PART 2 - PRODUCTS (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

## 3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. Refer to Sections 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT, Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC and Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC requirements. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

### 3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

### 3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Resident Engineer. The Contractor shall review and comment on the
tests prior to approval. The Contractor shall provide the required
labor, materials, and test equipment identified in the test procedure
to perform the tests. The Commissioning Agent will witness and
document the testing. The Contractor shall sign the test reports to
verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional requirements.

### 3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent.

Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

---- END ----

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

# SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. General Contractor shall provide direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system for all new and existing negative rooms utilizing the existing front end JCI BAS. Include all engineering, programming, configuration/setup hardware and software, controls, installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty to include the additional and existing negative rooms amd related spaces within this project scope of work.
  - 1. The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, all configuration and setup software and hardware devices, and an Engineering Control Center. Provide a remote user using a standard HTML 5 web browser JCI Building Controllers to access the control system graphics and change adjustable setpoints with the proper password.
  - 2. All new building controllers shall be native BACnet. All new BACNet workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new BACNet workstations, controllers, devices and components shall be accessible using a HTML5 Web browser interface. Browsers shall not require the use of an extension or add on software in order to access aforementioned workstations, controllers, devices, and components.
    - a. If used, gateways shall be BTL listed.
    - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
  - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries,

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and any other items required for a complete and fully functional Controls System.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The A/E shall designate what each "mechanical systems" is composed of. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include but are not limited to the following:
  - 1. Control valves.
  - 2. Flow switches.
  - 3. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include but are not limited to the following:
  - 2. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

the technical specifications. These products include but are not limited to the following:

- Terminal units' velocity sensors
- 7. Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- 8. The following systems have limited control (as individually noted below) from the ECC:
  - a. Constant temperature rooms: temperature out of acceptable range and status alarms.
  - b. Isolation rooms: pressure outside of acceptable limit alarms.
- E. Responsibility Table:

| Work/Item/System                                                      | Furnish  | Install  | Low<br>Voltage<br>Wiring | Line<br>Power |
|-----------------------------------------------------------------------|----------|----------|--------------------------|---------------|
| Control system low voltage and communication wiring                   | 23 09 23 | 23 09 23 | 23 09 23                 | N/A           |
| Terminal units                                                        | 23       | 23       | N/A                      | 26            |
| Controllers for terminal units                                        | 23 09 23 | 23       | 23 09 23                 | 16            |
| Automatic dampers (not furnished with equipment)                      | 23 09 23 | 23       | N/A                      | N/A           |
| Automatic damper actuators                                            | 23 09 23 | 23 09 23 | 23 09 23                 | 23 09 23      |
| Thermowells                                                           | 23 09 23 | 23       | N/A                      | N/A           |
| Current Switches                                                      | 23 09 23 | 23 09 23 | 23 09 23                 | N/A           |
| Control Relays                                                        | 23 09 23 | 23 09 23 | 23 09 23                 | N/A           |
| All control system nodes, equipment, housings, enclosures and panels. | 23 09 23 | 23 09 23 | 23 09 23                 | 26            |
| Fire Dampers                                                          | 23       | 23       | N/A                      | N/A           |
| VFDs                                                                  | 23       | 26       | 23 09 23                 | 26            |
| Laboratory Air Valves                                                 | 23       | 23       | 23 09 23                 | N/A           |

F. This facility's existing direct-digital control (DDC) system is manufactured by Johnson Control Inc, and its ECC is located at BD-62. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network,

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

services, spare capacity of the existing control system and its ECC prior to beginning work.

- 1. Upgrade the existing direct-digital control system's ECC to include all properties and services required by an ASHRAE Standard 135 BACnet B-AWS Profile. The upgraded ECC shall continue to communicate with the existing direct-digital control system's devices. The upgraded ECC shall communicate directly with the new native-BACnet devices over the existing control system's communications network without the use of a gateway. Provide programming converting the existing non-BACnet devices, objects and services to ASHRAE Standard 135 BACnet-complaint BIBBs. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and site-specific programming to execute the interoperability schedules.
  - a. The performance requirement for the combined system: the combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.
  - b. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have limited operations and control capability over the legacy systems as described in the VA-approved interoperability schedule.
  - c. Leave existing direct-digital control system intact and in place. Provide a new ASHRAE Standard 135 BACnet-compliant ECC in the same room as the existing system's ECC, and provide a new standalone BACnet-compliant control system serving the work in this project. No interoperability is required.
- 2. Responsibility Table:

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

| Item/Task                            | Section   | Control    | VA |
|--------------------------------------|-----------|------------|----|
|                                      | 23 09 23  | system     |    |
|                                      | contactor | integrator |    |
| ECC expansion                        |           | X          |    |
| ECC programming                      |           | X          |    |
| Devices, controllers, control panels | X         |            |    |
| and equipment                        |           |            |    |
| Point addressing: all hardware and   | X         |            |    |
| software points including setpoint,  |           |            |    |
| calculated point, data point(analog/ |           |            |    |
| binary), and reset schedule point    |           |            |    |
| Point mapping                        |           | X          |    |
| Network Programming                  | X         |            |    |
| ECC Graphics                         |           | X          |    |
| Controller programming and sequences | X         |            |    |
| Integrity of LAN communications      |           | X          |    |
| Electrical wiring                    | X         |            |    |
| Operator system training             |           | X          |    |
| LAN connections to devices           |           | X          |    |
| LAN connections to ECC               |           | X          |    |
| IP addresses                         |           | X          |    |
| Overall system verification (Cx)     |           | X          |    |
| Controller and system verification   | X         |            |    |

A. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted in writing by the VA.

### 1.2 RELATED WORK

- A. Section 23 31 00, HVAC Ducts and Casings.
- B. Section 23 36 00, Air Terminal Units.
- C. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- D. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- E. Section 26 09 23, Lighting Controls.
- F. Section 26 27 26, Wiring Devices.

## 1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks -as defined by ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may use different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 72-78 degrees F, as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device.

  Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It uses twisted-pair wiring for relatively low speed and low cost communication.
- NN. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- OO. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- PP. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- QQ. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- RR. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- SS. Operating system (OS): Software, which controls the execution of computer application programs.
- TT. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- UU. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- VV. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- WW. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- XX. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- YY. Repeater: A network component that connects two or more physical segments at the physical layer.
- ZZ. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- AAA. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- BBB. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

### 1.4 QUALITY ASSURANCE

A. Criteria:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- Single Source Responsibility of subcontractor: The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative could observe the control systems in full operation.
- 4. The controls subcontractor shall have an in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years of experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- 1. All work shall conform to the applicable Codes and Standards.
- 2. Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

#### 1.5 PERFORMANCE

- A. The system shall conform to the following:
  - 1. Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
  - 2. Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
  - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
  - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
  - 5. Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
  - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
  - 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
  - 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

| Measured Variable       | Reported Accuracy     |
|-------------------------|-----------------------|
| Space temperature       | ±0.5°C (±1°F)         |
| Ducted air temperature  | ±0.5°C [±1°F]         |
| Outdoor air temperature | ±1.0°C [±2°F]         |
| Dew Point               | ±1.5°C [±3°F]         |
| Air flow (terminal)     | ±10% of reading       |
| Air pressure (ducts)    | ±25 Pa [±0.1"w.c.]    |
| Air pressure (space)    | ±0.3 Pa [±0.001"w.c.] |

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

| Controlled Variable | Control Accuracy        | Range of Medium                               |
|---------------------|-------------------------|-----------------------------------------------|
| Air Pressure        | ±50 Pa (±0.2 in. w.g.)  | 0-1.5 kPa (0-6 in. w.g.)                      |
| Air Pressure        | ±3 Pa (±0.01 in. w.g.)  | -25 to 25 Pa<br>(-0.1 to 0.1 in. w.g.)        |
| Airflow             | ±10% of full scale      |                                               |
| Space Temperature   | ±1.0°C (±2.0°F)         |                                               |
| Duct Temperature    | ±1.5°C (±3°F)           |                                               |
| Humidity            | ±5% RH                  | MRI, SPS, PHARMACY                            |
| Fluid Pressure      | ±10 kPa (±1.5 psi)      | 0-1 MPa (1-150 psi)                           |
| Fluid Pressure      | ±250 Pa (±1.0 in. w.g.) | 0-12.5 kPa<br>(0-50 in. w.g.)<br>differential |

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

### 1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

The system includes all computer equipment, transmission equipment, and all sensors and control devices.

C. Controls subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

### 1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including but not limited to the following:
  - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
  - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
  - 3. Control dampers and control valves schedule, including the size and pressure drop.
  - 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 5. Sequence of operations for each system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 6. Color prints of proposed graphics with a list of points for display.
- 7. Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 8. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- 10. Riser diagrams of wiring between central control unit ( $\underline{\text{CCU}}$ ) and all control panels.
- 11. Plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 13. Quantities of submitted items may be reviewed but it is the responsibility of the contractor administered by this Section of the technical specifications to provide sufficient quantities for a complete and working system.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems, ECC, and portable OWS and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
  - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 2. Furnish one (1) set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
  - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
  - 2. Include the following documentation:
    - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
    - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
    - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
    - d. Complete troubleshooting procedures and guidelines for all systems.
    - e. Complete operating instructions for all systems.
    - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
    - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
    - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

#### 1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
  - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
  - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
  - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
  - 4. Training shall be given by direct employees of the controls system subcontractor.

#### 1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 65 to 90°F at a relative humidity of 20 to 80% non-condensing.
- B. The Controllers used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to  $150^{\circ}F$ .
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

#### 1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

135-2017......BACNET Building Automation and Control Networks

C. American Society of Mechanical Engineers (ASME):

B16.182018......Cast Copper Alloy Solder Joint Pressure Fittings.

B16.22-2018......Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-2014......Standard Specification for Solder Metal
B88-2016.....Standard Specifications for Seamless Copper
Water Tube

B88M-2018......Standard Specification for Seamless Copper Water Tube (Metric)

Plastic Tubing

B280-201......Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field

Service D2737-2018......Standard Specification for Polyethylene (PE)

E. Federal Communication Commission (FCC):

Rules and Regulations Title 47 Chapter 1-2014 Part 15: Radio Frequency Devices.

F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-2018...........Information Technology-Telecommunications and
Information Exchange between Systems-Local and
Metropolitan Area Networks- Specific
Requirements-Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD)
Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-2017......National Electric Code
90A-2018.....Standard for Installation of Air-Conditioning
and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

94-2013......Tests for Flammability of Plastic Materials for Parts and Devices and Appliances
294-2013......Access Control System Units
486A/486B-2018......Wire Connectors

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

| 555S-2014(R2016)Standard for Smoke Dampers           |
|------------------------------------------------------|
| 916-2015Energy Management Equipment                  |
| 1076-2018Proprietary Burglar Alarm Units and Systems |

#### PART 2 - PRODUCTS

#### 2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least **five** years after completion of this contract.

#### 2.2 CONTROLS SYSTEM ARCHITECTURE

#### A. General

- The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- 2. The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
  - a. A fixed ECC and a portable operator's terminal.
  - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
  - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
  - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
  - e. Addressable elements, sensors, transducers and end devices.
  - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
  - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

the Contractor to achieve both compliance with all applicable codes, standards, and to meet all requirements of the Contract Documents.

#### C. Network Architecture

- 1. The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
- The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.

#### D. Third Party Interfaces:

- 1. The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
- 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Contractor to utilize Johnson Control Server.

### 2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135,
  - 1. The Data link / physical layer protocol between the ECC and all B-BC's (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
  - 2. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
  - 1. An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internet controller.
  - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- D. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- E. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.
- 2.4 ENGINEERING CONTROL CENTER (ECC) (NOT USED)
- 2.5 PORTABLE OPERATOR'S TERMINAL (POT) (NOT USED)
- 2.6 BACNET PROTOCOL ANALYZER (NOT USED)
- 2.7 NETWORK AND DEVICE NAMING CONVENTION
  - A. Network Numbers
    - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
    - 2. The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
      - a. FFF = Facility code (see below)

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

b. NN = 00-99 This allows up to 100 networks per facility or building

### B. Device Instances

- 1. BACnet allows 4194305 unique device instances per BACnet internet
   work. Using Agency's unique device instances are formed as follows:
   "Dev #" = "FFFNNDD" where
  - a. FFF and N are as above and
  - b. DD = 00-99, this allows up to 100 devices per network.
- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.

#### C. Device Names

1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room Room 0001 and one in a penthouse mechanical room Room PH01, the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

#### 2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators,
  Operator Displays, and sensors shall conform to BACnet Device Profiles
  and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to
  those Device Profiles. Protocol Implementation Conformance Statements
  (PICSs), describing the BACnet capabilities of the Devices shall be
  published and available for the Devices through links in the BTL
  website.
  - BACnet Building Controllers, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
  - 2. BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
  - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
  - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
  - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile and shall be BTL-Listed as conforming to the B-SS Device Profile.

    The Device's PICS shall be submitted.
  - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

#### 2.9 CONTROLLERS

- A. General. Provide an adequate number of BTL listed B-BC building controllers, BTL listed B-AAC, BTL listed B-ASC, BTL listed B-SA, and BTL listed B-SS's to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
  - 1. Communication.
    - a. Each B-BC controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- b. Each B-BC controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. If this port is not available built into the controller, contractor is to install a 4 port unmanaged switch inside the B-BC control cabinet.
- 2. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 4. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 5. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 3 ft.
- 6. Transformer. Power supply for the ASC must be rated at a minimum of 125% of B-ASC power consumption and shall be of the fused or current limiting type.
- A. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
  - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
  - 2. Each B-ASC will contain sufficient I/O capacity to control the target system.
  - 3. Communication.
    - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- BACnet routing if connected to a network of custom application and application specific controllers.
- b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- 4.Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 3 ft.
- C. Direct Digital Controller Software
  - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
  - 2. All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
  - 3. All control functions shall execute within the stand-alone control units. All new controllers installed will also include all software and/or hardware required to program, commission, or alter the sequence of operation of said controller(s). Controllers requiring software or hardware that is not commercially available will not be allowed. Installation of software and/or hardware for controller configuration will be the responsibility of the DDC contractor. COR will direct to install said hardware and/or software on either the B-AWS or portable operator terminal. The VA shall be able to customize control strategies and sequences of operations defining

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

the appropriate control loop algorithms and choosing the optimum loop parameters without requiring the services of a DDC contractor.

- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
- 5. All DDC control loops shall be able to utilize any of the following control modes:
  - a. Two position (on-off, slow-fast) control.
  - b. Proportional control.
  - c. Proportional plus integral (PI) control.
  - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
  - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of three (3)or a maximum of six (6) levels of security for operator access shall be provided.

#### 2.10 SPECIAL CONTROLLERS

A. Room Differential Pressure Controller: The differential pressure in negative rooms and isolation rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space and display the value on its monitor. The sensor-controller shall meet the following as a minimum:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- 1. Operating range: -0.25 to +0.25 inches of water column
- 2. Resolution: 5 percent of reading
- 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
- 4. Analog output: 4-20 ma
- 5. Operating temperature range: 32°F-120°F

#### 2.11 SENSORS (AIR AND WATER)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
  - 1. Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral 4-20 mA transmitter type for all other sensors.
    - a. Duct sensors shall be rigid or averaging type. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling/heating coil face area.
    - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. Temperature well shall be filled with a thermal compound compatible with installed sensor.
    - c. All space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and BACNet communication port. Match room thermostats. Provide a tooled-access cover.
      - 1) Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
  - 1. 4-20 mA output signal.
  - 2. 0 to 5 inches wg for duct static pressure range.
  - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Flow switches:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- 1. Shall be either paddle or differential pressure type.
  - a. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- E. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

#### 2.12 CONTROL CABLES

#### A. General:

- 1. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
- 2. Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing.

  Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- B. Analogue control cabling shall be not less than No. 18 AWG solid or stranded, with thermoplastic insulated conductors as specified.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket.
  - 1. Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10 Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. All MS/TP communications cables for devices utilizing the EIA-485 standard must be listed for use on EIA-485 networks by the manufacturer of the cable. This requirement overrides any cable recommendation by the controller manufacturer. The use of EIA-485 communication cables shall not affect the warranty from the installing DDC contractor. Cables shall have the following characteristic:
  - 1. Nominal Impedance: 100-130 Ohms
  - 2. Twisted/shielded construction of 1, 1.5, or 2 pairs depending on controller requirements.
  - 3. Be plenum rated when required
  - 4. Cables designated for use by the cable manufacturer for use in PA or Speaker systems shall not be allowed, regardless of recommendations by the controller manufacturer.

### 2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating null or dead band cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum finish, setpoint range and temperature display and external adjustment:
  - 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
    - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- adjustment. Adjustment shall be via the digital controller to which it is connected.
- b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
- c. Battery replacement without program loss.

#### 2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Control Valves:
  - 1. Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 125 psig.
  - 2. Valves 2 inches and smaller shall be bronze body with threaded or flare connections.
  - 3. Valves 2 1/2 inches and larger shall be bronze or iron body with flanged connections.
  - 4. Brass or bronze seats except for valves controlling media above 210 degrees F, which shall have stainless steel seats.
  - 5. Flow characteristics:
    - a. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
    - c. Two-way 2-position valves shall be ball, gate or butterfly type.
  - 6. Maximum pressure drop:
    - a. Two position steam control: 20 percent of inlet gauge pressure.
    - b. Modulating Steam Control: 80 percent of inlet gauge pressure (acoustic velocity limitation).
    - c. Modulating water flow control, greater of 10 feet of water or the pressure drop through the apparatus.
  - 7. Two position water valves shall be line size.
- D. Damper and Valve Operators and Relays:
  - 1. Electric operator shall provide full modulating control of dampers and valves. For dampers a linkage and pushrod shall be furnished for

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

mounting the actuator on the damper frame internally in the duct, externally in the duct, externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motor(s) shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

- a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
- 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
  - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
- 4. See and coordinate drawings for required control operation.

## 2.15 AIR FLOW CONTROL (NOT USED)

#### 2.16 SAFETY

A. Provide hard-wired interlocked connections for such all safety devices, such as freeze stats. All safety devises shall be provided with additional dry contacts and shall be connected to the DDC system for monitoring and sequencing.

### PART 3 - EXECUTION

#### 3.1 INSTALLATION

### A. General:

1. Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- 2. Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- 4. Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plumb.
- B. Electrical Wiring Installation:
  - 1. All wiring and cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
  - 2. Install analog signal and communication cables in conduit and in accordance with Specification Division 27 - COMMUNICATIONS. Install digital communication cables in conduit in accordance with contract requirements.
  - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
  - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
  - 5. Install all system components in accordance with local Building Code and National Electric Code.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
- b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- 6. Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.

### C. Install Sensors and Controls:

- 1. Temperature Sensors:
  - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
  - b. Calibrate sensors to accuracy specified, if not factory calibrated.
  - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
  - d. Install room sensors permanently supported on wall frame. They shall be mounted at 5.0 feet above the finished floor unless otherwise noted on the plans or drawings.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. All pipe mounted temperature sensors shall be installed in wells.
- g. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- h. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.

### 2. Pressure Sensors:

- a. Install duct static pressure sensor tips facing directly downstream of airflow.
- b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
- c. Install snubbers and isolation valves on steam pressure sensing devices.

#### 3. Actuators:

- a. Mount and link damper and valve actuators according to manufacturer's written instructions.
- b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
- c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.

#### D. Installation of network:

#### 1. Ethernet:

- a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

100 Base TX (Category 6a cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.

- 2. Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
  - 1. Provide a separate digital control panel for each major piece of equipment, such exhaust fan.
  - 2. Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
  - 3. System point names shall be human readable, permitting easy operator interface without the use of a written point index.
  - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
  - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

#### 3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.

#### B. Validation

1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

#### C. Demonstration

- 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect, Cx Agent or COR on random samples of equipment as dictated by the COR. Should random sampling indicate improper work, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. PG-18-10 Safety DM
- 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
  - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
  - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
  - c. Demonstrate the software ability to edit the control program offline.
  - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
  - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute(s). Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
  - a. Running each specified report.
  - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
  - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
  - d. Execute digital and analog commands in graphic mode.
  - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
  - f. Demonstrate Energy Management System (EMS) performance via trend logs and command trace.
  - g. Demonstrate scan, update, and alarm responsiveness.
  - h. Demonstrate spreadsheet/curve plot software, and its integration with database.
  - Demonstrate on-line user guide, and help function and mail facility.
  - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
  - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

08-01-20

1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

#### 3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

#### 3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

#### 3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in the operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

#### 3.6 CONSTRUCTION WASTE MANAGEMENT (NOT USED)

---- END ----

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

## SECTION 23 21 13 HYDRONIC PIPING

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
  - 1. Heating hot water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

#### 1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

| B1.20.1-2013Pipe | Threads, | General | Purpose | (Inch) |
|------------------|----------|---------|---------|--------|
|                  |          |         |         |        |

- B16.3-2016......Malleable Iron Threaded Fittings: Classes 150 and 300
- B16.4-2016......Gray Iron Threaded Fittings: (Classes 125 and 250)
- B16.5-2017......Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard
- B16.9-2018.....Factory Made Wrought Buttwelding Fittings
- B16.11-2016.....Forged Fittings, Socket-Welding and Threaded

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    |                          | 02-01-20                                             |
|----|--------------------------|------------------------------------------------------|
|    | B16.18-2018              | .Cast Copper Alloy Solder Joint Pressure             |
|    |                          | Fittings                                             |
|    | B16.22-2018              | .Wrought Copper and Copper Alloy Solder-Joint        |
|    |                          | Pressure Fittings                                    |
|    | B16.24-2016              | .Cast Copper Alloy Pipe Flanges and Flanged          |
|    |                          | Fittings: Classes 150, 300, 600, 900, 1500, and 2500 |
|    | D16 20-2014              | .Malleable Iron Threaded Pipe Unions: Classes        |
|    | B10.39-2014              | 150, 250, and 300                                    |
|    | B16.42-2016              | .Ductile Iron Pipe Flanges and Flanged Fittings      |
|    | B31.9-2014               | .Building Services Piping                            |
|    | B40.100-2013             | .Pressure Gauges and Gauge Attachments               |
|    | ASME Boiler and Pressure | e Vessel Code:                                       |
|    | BPVC Section VIII-2015.  | .Rules for Construction of Pressure Vessels          |
| С. | American Society for Te  | sting and Materials (ASTM):                          |
|    | A47/A47M-2018            | .Standard Specification for Ferritic Malleable       |
|    |                          | Iron Castings                                        |
|    | A53/A53M-2018            | .Standard Specification for Pipe, Steel, Black       |
|    |                          | and Hot-Dipped, Zinc-Coated, Welded and              |
|    |                          | Seamless                                             |
|    | A106/A106M-2019          | .Standard Specification for Seamless Carbon          |
|    |                          | Steel Pipe for High-Temperature Service              |
|    | A126-2004 (R2019)        | .Standard Specification for Gray Iron Castings       |
|    |                          | for Valves, Flanges, and Pipe Fittings               |
|    | A183-2014                | .Standard Specification for Carbon Steel Track       |
|    |                          | Bolts and Nuts                                       |
|    | A216/A216M-2018          | .Standard Specification for Steel Castings,          |
|    |                          | Carbon, Suitable for Fusion Welding, for High-       |
|    |                          | Temperature Service                                  |
|    | A307-2016                | .Standard Specification for Carbon Steel Bolts,      |
|    |                          | Studs, and Threaded Rod 60,000 PSI Tensile           |
|    |                          | Strength                                             |
|    | A536-1984 (R2019)        | .Standard Specification for Ductile Iron             |
|    |                          | Castings                                             |
|    | B62-2017                 | .Standard Specification for Composition Bronze       |
|    |                          | or Ounce Metal Castings                              |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    |                                      |                                 | 02-01-20 |
|----|--------------------------------------|---------------------------------|----------|
|    | B88-2016Standard                     | Specification for Seamless Copy |          |
|    | Water Tub                            | е                               |          |
|    | F439-2019Standard                    | Specification for Chlorinated 1 | Poly     |
|    | (Vinyl Ch                            | loride) (CPVC) Plastic Pipe Fit | ttings,  |
|    | Schedule                             | 80                              |          |
|    | F441/F441M-2015Standard              | Specification for Chlorinated 1 | Poly     |
|    | (Vinyl Ch                            | loride) (CPVC) Plastic Pipe, So | chedules |
|    | 40 and 80                            |                                 |          |
| D. | D. American Welding Society (AWS):   |                                 |          |
|    | B2.1/B2.1M-2014Standard              | for Welding Procedure and Perfo | ormance  |
|    | Specifica                            | tion                            |          |
| Ε. | E. Expansion Joint Manufacturer's As | sociation, Inc. (EJMA):         |          |
|    | EJMA 2017Expansion                   | Joint Manufacturer's Associat:  | ion      |
|    | Standards                            | , Tenth Edition                 |          |
| F. | F. Manufacturers Standardization Soc | iety (MSS) of the Valve and Fit | tting    |
|    | <pre>Industry, Inc.:</pre>           |                                 |          |
|    | SP-67-2017Butterfly                  | Valves                          |          |
|    | SP-70-2014Gray Iron                  | Gate Valves, Flanged and Threa  | aded     |
|    | Ends                                 |                                 |          |
|    | SP-71-2014Gray Iron                  | Swing Check Valves, Flanged ar  | nd       |
|    | Threaded                             | Ends                            |          |
|    | SP-80-2014Bronze Ga                  | te, Globe, Angle, and Check Val | lves     |
|    | SP-85-2014Gray Iron                  | Globe and Angle Valves, Flange  | ed and   |
|    | Threaded                             | Ends                            |          |
|    | SP-110-2014Ball Valv                 | es Threaded, Socket-Welding, So | older    |
|    | Joint, Gr                            | ooved and Flared Ends           |          |
|    | SP-125-2018                          | and Ductile Iron In-line, Spr:  | ing-     |
|    |                                      | enter-Guided Check Valves       |          |
| G. | G. Tubular Exchanger Manufacturers A | ssociation (TEMA):              |          |
|    | TEMA Standards20159th Editi          | on                              |          |
| _  |                                      |                                 |          |

#### 1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
  - 1. Pipe and tubing, with specification, class or type, and schedule.
  - 2. Pipe fittings, including miscellaneous adapters and special fittings.
  - 3. Couplings and fittings.
  - 4. Valves of all types.
  - 5. All specified hydronic system components.
  - 6. Gauges.
  - 7. Thermometers and test wells.
- D. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
  - 1. One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
  - 2. One complete set of reproducible drawings.
  - 3. One complete set of drawings in electronic AutoCAD and pdf format.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
  - 1. Include complete list indicating all components of the systems.
  - 2. Include complete diagrams of the internal wiring for each item of equipment.
  - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

#### 1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one-year old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
  - 1. All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

#### 1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in hard copy and in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- As-built drawings are to be provided, with a copy of them on AutoCAD version 2019provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

#### 1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

### PART 2 - PRODUCTS

#### 2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

#### 2.2 PIPE AND TUBING

A. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 2.3 FITTINGS FOR STEEL PIPE (NOT USED)

#### 2.4 FITTINGS FOR COPPER TUBING

#### A. Joints:

- 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

### 2.5 FITTINGS FOR PLASTIC PIPING (NOT USED)

### 2.6 DIELECTRIC FITTINGS (NOT USED)

#### 2.7 SCREWED JOINTS (NOT USED)

#### 2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Shut-Off Valves:
  - 1. Ball Valves (Pipe sizes 2 inch and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 400 psig working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
- D. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of 4 to 57 psig. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
  - 1. Gray iron ASTM A126 or brass body rated 175 psig at 200 degrees F, with stainless steel piston and spring.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Brass or ferrous body designed for 300 psig service at 250 degrees F, with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
- 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
- 2.9 WATER FLOW MEASURING DEVICES (NOT USED)
- 2.10 STRAINERS (NOT USED)
- 2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE (NOT USED)
- 2.12 EXPANSION JOINTS (NOT USED)
- 2.13 HYDRONIC SYSTEM COMPONENTS (NOT USED)
- 2.14 WATER FILTERS AND POT CHEMICAL FEEDERS (NOT USED)
- 2.15 GAUGES, PRESSURE AND COMPOUND (NOT USED)
- 2.16 PRESSURE/TEMPERATURE TEST PROVISIONS
  - A. Pete's Plug: 1/4 inch MPT by 3 inches long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.
- 2.17 THERMOMETERS (NOT USED)
- 2.18 FIRESTOPPING MATERIAL
  - A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 2.19 ELECTRICAL HEAT TRACING SYSTEMS (NOT USED)

### PART 3 - EXECUTION

#### 3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 1 inch minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 1 inch in 40 feet. Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
  - 1. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 3.2 PIPE JOINTS (NOT USED)
- 3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE) (NOT USED)
- 3.4 SEISMIC BRACING ABOVEGROUND PIPING (NOT USED)
- 3.5 LEAK TESTING ABOVEGROUND PIPING
  - A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
  - B. An operating test at design pressure, and for hot systems, design maximum temperature.
  - C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

#### 3.6 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 5.9 f/s, if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.
- B. Cleaning: Circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 5.9 f/s. Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.

C. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

#### 3.7 WATER TREATMENT (NOT USED)

### 3.8 ELECTRIC HEAT TRACING (NOT USED)

#### 3.9 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

#### 3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

### 3.11 DEMONSTRATION AND TRAINING (NOT USED)

- - - E N D - - -

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

# SECTION 23 31 00 HVAC DUCTS AND CASINGS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
  - 1. Supply air, return air, outside air, exhaust, make-up air, and relief systems.
  - 2. Exhaust duct with HEPA filters for Negative Pressure Isolation Rooms.

#### B. Definitions:

- 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
- Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
- 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
- 4. Exposed Duct: Exposed to weather.

### 1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise Level Requirements.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- F. Section 23 07 11, HVAC, and BOILER PLANT INSULATION: Duct Insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- H. Section 23 34 00, HVAC FANS: Return Air and Exhaust Air Fans.
- I. Section 23 36 00, AIR TERMINAL UNITS: Air Flow Control Valves and Terminal Units.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- J. Section 23 40 00, HVAC AIR CLEANING DEVICES: Air Filters and Filters' Efficiencies.
- K. NOT USED.

#### 1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Rectangular ducts:
    - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
    - b. Sealants and gaskets.
    - c. Access doors.
  - 2. Round and flat oval duct construction details:
    - a. Manufacturer's details for duct fittings.
    - b. Duct liner.
    - c. Sealants and gaskets.
    - d. Access sections.
    - e. Installation instructions.
  - 3. Volume dampers, back draft dampers.
  - 4. Upper hanger attachments.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 5. Flexible ducts and clamps, with manufacturer's installation instructions.
- 6. Flexible connections.
- 7. Instrument test fittings.
- 8. Details and design analysis of alternate or optional duct systems.
- 9. COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

#### 1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE):

  ASCE7-2017......Minimum Design Loads for Buildings and Other

  Structures
- C. American Society for Testing and Materials (ASTM): A167-2009......Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
  - A653-2019......Standard Specification for Steel Sheet,

    Zinc-Coated (Galvanized) or Zinc-Iron Alloy
    coated (Galvannealed) by the Hot-Dip process
  - A1011-2018......Standard Specification for Steel, Sheet and
    Strip, Hot rolled, Carbon, structural, HighStrength Low-Alloy, High Strength Low-Alloy
    with Improved Formability, and Ultra-High
    Strength
  - B209-2014......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
  - C1071-2019......Standard Specification for Fibrous Glass Duct

    Lining Insulation (Thermal and Sound Absorbing

    Material)
  - E84-2014.....Standard Test Method for Surface Burning

    Characteristics of Building Materials

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

| D. | National Fire Protection Association (NFPA):                         |  |  |  |  |  |
|----|----------------------------------------------------------------------|--|--|--|--|--|
|    | 90A-2018Standard for the Installation of Air                         |  |  |  |  |  |
|    | Conditioning and Ventilating Systems                                 |  |  |  |  |  |
|    | 96-2018Standard for Ventilation Control and Fire                     |  |  |  |  |  |
|    | Protection of Commercial Cooking Operations                          |  |  |  |  |  |
| Ε. | E. Sheet Metal and Air Conditioning Contractors National Association |  |  |  |  |  |
|    | (SMACNA):                                                            |  |  |  |  |  |
|    | 3rd Edition -2006HVAC Duct Construction Standards, Metal and         |  |  |  |  |  |
|    | Flexible                                                             |  |  |  |  |  |
|    | 2nd Edition -2012HVAC Air Duct Leakage Test Manual                   |  |  |  |  |  |
|    | 6th Edition -2016Fibrous Glass Duct Construction Standards           |  |  |  |  |  |
| F. | Underwriters Laboratories, Inc. (UL):                                |  |  |  |  |  |
|    | 181-2013Factory-Made Air Ducts and Air Connectors                    |  |  |  |  |  |
|    | 555-2006Standard for Fire Dampers                                    |  |  |  |  |  |
|    | 555S-2014Standard for Smoke Dampers                                  |  |  |  |  |  |

# PART 2 - PRODUCTS

#### 2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
  - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
  - 2. Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
  - 3. Gaskets in Flanged Joints: Soft neoprene.
- C. Approved factory-made joints may be used.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
  - 0 to 2 inch
  - > 2 inch to 3 inch
  - > 3 inch to 4 inch

Show pressure classifications on the floor plans.

- C. Seal Class: All ductwork shall receive Class A Seal
- D. Duct for Negative Pressure Up to 4-inch W.G.: Provide for exhaust duct between room to HEPA filters and to exhaust fan inlet.
  - 1. Round and Rectangular Duct: 18 Ga. Stainless steel, construction with acontinuous welded joints.
- E. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
  - 1. Elbows: Diameters 3 through 8 inches shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
  - Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
    - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
    - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 3. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.

  Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- F. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 20 inches wide by 48 54 inches high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- G. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- H. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

#### 2.3 DUCT LINER (WHERE INDICATED ON DRAWINGS) (NOT USED)

#### 2.4 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
  - 1. Each fire damper, smoke damper and automatic control damper.
  - 2. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
  - 1. For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
  - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

### 2.5 FIRE DAMPERS

A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2-1 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

free opening with no part of the blade stack or damper frame in the air stream.

- B. Fire dampers shall be galvanized steel.
- C. Minimum requirements for fire dampers:
  - 1. The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
  - 2. Submit manufacturer's installation instructions conforming to UL rating test.

### 2.6 SMOKE DAMPERS (NOT USED)

#### 2.7 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

#### 2.8 FIRE DOORS (NOT USED)

### 2.9 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### D. Application Criteria:

- 1. Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
- 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
- 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

#### 2.10 FLEXIBLE DUCT CONNECTIONS

A. Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

#### 2.11 SOUND ATTENUATING UNITS (NOT USED)

#### 2.12 PREFABRICATED ROOF CURBS

A. Galvanized steel or extruded aluminum 18 inch curb minimum above finish roof service, continuous welded corner seams, treated wood nailer, 1-1/2 inch thick, 3 pound/cubic feet density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

#### 2.13 FIRESTOPPING MATERIAL

A. Refer to Section 07 84 00, FIRESTOPPING.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2.14 SEISMIC RESTRAINT FOR DUCTWORK (NOT USED)
- 2.15 DUCT MOUNTED THERMOMETER (AIR) (NOT USED)
- 2.16 DUCT MOUNTEDTEMPERATURE SENSOR (AIR)
  - A. Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

#### 2.17 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum two inch length for insulated duct, and a minimum one inch length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

### 2.18 AIR FLOW CONTROL VALVES (AFCV)

- A. Refer to Section 23 36 00, AIR TERMINAL UNITS.
- 2.19 LEAD COVERED DUCT (NOT USED)
- 2.20 ELECTROSTATIC SHIELDING (NOT USED)

#### PART 3 - EXECUTION

### 3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
  - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the COR. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the COR.
- E. Seal openings around duct penetrations of floors and fire rated walls with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 5 feet long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition including corridor partitions. Support ducts SMACNA Standards.
- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 1. Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
- 2. Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
- 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
- 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by COR. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

### 3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the COR on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the COR and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the COR.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

#### 3.3 DUCTWORK EXPOSED TO WIND VELOCITY

A. Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 90 mph.

### 3.4 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

### 3.5 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

### SECTION 23 34 00 HVAC FANS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EOUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

#### 1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
  - 1. Testing and Rating: AMCA 210.
  - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
  - 1. The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
  - 2. Select the fan operating point as follows:
    - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
    - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
  - 1. All steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
  - 1. Fan sections, motors and drives.
  - 2. Centrifugal fans, motors, drives, accessories and coatings.
    - a. Industrial fans.
    - b. Utility fans
    - c. Fume Upblast
  - 3. Prefabricated roof curbs.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

#### 1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-2016......Standards Handbook

210-2016.....Laboratory Methods of Testing Fans for

Aerodynamic Performance Rating

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| 02-01-20 261-2017Directory of Products Licensed to bear the AMCA |  |  |  |  |  |  |  |
|------------------------------------------------------------------|--|--|--|--|--|--|--|
| Certified Ratings Seal - Published Annually                      |  |  |  |  |  |  |  |
| 300-2014Reverberant Room Method for Sound Testing of             |  |  |  |  |  |  |  |
| Fans                                                             |  |  |  |  |  |  |  |
| C. American Society for Testing and Materials (ASTM):            |  |  |  |  |  |  |  |
| B117-2018Standard Practice for Operating Salt Spray              |  |  |  |  |  |  |  |
| (Fog) Apparatus                                                  |  |  |  |  |  |  |  |
| D1735-2008Standard Practice for Testing Water Resistance         |  |  |  |  |  |  |  |
| of Coatings Using Water Fog Apparatus                            |  |  |  |  |  |  |  |
| D3359-2017Standard Test Methods for Measuring Adhesion by        |  |  |  |  |  |  |  |
| Tape Test                                                        |  |  |  |  |  |  |  |
| G152-2013Standard Practice for Operating Open Flame              |  |  |  |  |  |  |  |
| Carbon Arc Light Apparatus for Exposure of Non-                  |  |  |  |  |  |  |  |
| Metallic Materials                                               |  |  |  |  |  |  |  |
| G153-2013Standard Practice for Operating Enclosed Carbon         |  |  |  |  |  |  |  |
| Arc Light Apparatus for Exposure of Non-                         |  |  |  |  |  |  |  |
| Metallic Materials                                               |  |  |  |  |  |  |  |
| D. National Fire Protection Association (NFPA):                  |  |  |  |  |  |  |  |
| NFPA 96-2018Standard for Ventilation Control and Fire            |  |  |  |  |  |  |  |
| Protection of Commercial Cooking Operations                      |  |  |  |  |  |  |  |
| E. National Sanitation Foundation (NSF):                         |  |  |  |  |  |  |  |
| 37-2017Air Curtains for Entrance Ways in Food and Food           |  |  |  |  |  |  |  |
| Service Establishments                                           |  |  |  |  |  |  |  |
| F. Underwriters Laboratories, Inc. (UL):                         |  |  |  |  |  |  |  |
| 181-2013Factory Made Air Ducts and Air Connectors                |  |  |  |  |  |  |  |
| 1.6 EXTRA MATERIALS (NOT USED)                                   |  |  |  |  |  |  |  |
| PART 2 - PRODUCTS                                                |  |  |  |  |  |  |  |
| 2.1 FAN SECTION (CABINET FAN) (NOT USED)                         |  |  |  |  |  |  |  |

# 2.1 FAN SECTION (CABINET FAN) (NOT USED)

### 2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
  - 1. DWDl fans: Arrangement 3.
  - 2. SWSl fans: Arrangement 1, 3, 9 or 10,

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
  - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 1/2 inches wire mesh screens for fan inlets without duct connections.
  - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
  - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
  - 4. Bearings: Heavy duty ball or roller type sized to produce a BlO life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
  - 5. Belts: Oil resistant, non-sparking and non-static.
  - 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
  - 7. Motor, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
  - 8. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- 2.3 POWER ROOF VENTILATOR (NOT USED)
- 2.4 POWER WALL VENTILATOR (NOT USED)
- 2.5 PACKAGED HOOD MAKE-UP AIR UNITS (NOT USED)
- 2.6 CENTRIFUGAL CEILING FANS (SMALL CABINET FAN) (NOT USED)
- 2.7 PROPELLER FANS (NOT USED)
- 2.8 VANE AXIAL FANS (not used)
- 2.9 AIR CURTAIN UNITS (NOT USED)

### PART 3 - EXECUTION

#### 3.1 INSTALLATION

A. Install fan, motor and drive in accordance with manufacturer's instructions.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

#### 3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

### 3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

# SECTION 23 36 00 AIR TERMINAL UNITS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. Air terminal units, air flow control valves.

#### 1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.

#### 1.3 QUALITY ASSURANCE

A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Air Terminal Units: Submit test data.
  - 2. Air flow control valves.
- D. Certificates:
  - 1. Compliance with Article, QUALITY ASSURANCE.
  - 2. Compliance with specified standards.
- E. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

#### 1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-2017......Performance Rating of Air Terminals
- C. National Fire Protection Association (NFPA):

90A-2018......Standard for the Installation of Air

Conditioning and Ventilating Systems

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

D. Underwriters Laboratories, Inc. (UL):

181-2013......Standard for Factory-Made Air Ducts and Air Connectors

E. American Society for Testing and Materials (ASTM):

C 665-2006......Standard Specification for Mineral-Fiber

Blanket Thermal Insulation for Light Frame

Construction and Manufactured Housing

#### 1.6 GUARANTY

A. In accordance with the GENERAL CONDITIONS

#### PART 2 - PRODUCTS

#### 2.1 GENERAL

- A. Coils:
  - 1. Water Heating Coils:
    - a. ARI certified, continuous plate or spiral fin type, leak tested at 300 PSI.
    - b. Capacity: As indicated, based on scheduled entering water temperature.
    - c. Headers: Copper or Brass.
    - d. Fins: Aluminum, maximum 8 fins per inch.
    - e. Tubes: Copper, arrange for counter-flow of heating water.
    - f. Water Flow Rate: Minimum 0.5 GPM.
    - g. Provide vent and drain connection at high and low point, respectively of each coil.
    - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.
- E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

#### 2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 1,200 CFM.
- C. Sound Power Levels:
  - Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.
- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 22 Gauge. Provide hanger brackets for attachment of supports.
  - 1. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
  - 2. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 3 inch WG, with all outlets sealed shut and inlets fully open.
  - 3. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
  - 1. Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 4 inch WG.
- F. Provide multi-point velocity pressure sensors with external pressure taps.
  - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

### 2.3 AIR FLOW CONTROL VALVE (AFCV)

- A. Airflow control device shall be a venturi valve type air flow control valve.
- B. Pressure independent over a 150 Pa-750 Pa (0.6 inch WG 3.0 inch WG) drop across valve.
- C. Volume control accurate to plus or minus 5% of airflow over an airflow turndown range of 16 to 1. No minimum entrance or exit duct diameters shall be required to ensure accuracy or pressure independence.
- D. Response time to change in command signal and duct static pressure within three seconds.
- E. 316 stainless steel continuous welded seam valve body, control device, shaft, shaft support bracket, pivot arm and internal mounting link. The control device shall have a baked on corrosion resistant phenolic coating. The shaft shall have a Teflon coating and all shaft bearing surfaces shall be made of Teflon. The pressure independent springs shall be made of stainless steel.
- F. The airflow device shall have no exposed aluminum or stainless steel components. The shaft support brackets, pivot arm, internal mounting link, and pressure independent springs shall have a baked-on corrosion resistant phenolic coating. Internal nuts, bolts, and rivets shall be titanium or phenolic coated stainless steel.
- G. Constant volume units:
  - 1. Actuator to be factory mounted to the valve.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
- 3. Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
- 4. The maximum and minimum airflows shall be as scheduled.

#### H. Variable volume units:

- 1. Actuator to be factory mounted to the valve.
- 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
- 3. Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.

#### I. Certification:

- 1. Control device: factory calibrated to airflows detailed on plans using NIST traceable air stations and instrumentation having a combined accuracy of plus or minus 1% of signal over the entire range of measurement.
- 2. Electronic airflow control devices: further calibrated and their accuracy verified to plus or minus 5% of signal at a minimum of eight different airflows across the full operating range of the device.
- 3. All airflow control devices: individually marked with device specific, factory calibration data to include: tag number, serial number, model number, eight point characterization information (for electronic devices), and quality control inspection numbers.
- J. Airflow measuring devices and airflow control devices that are not venturi valves (e.g., Pitot tube, flow cross, air bar, orifice ring, vortex shedder, etc.) are acceptable, provided the following conditions are met:
  - 1. They meet the performance and construction characteristics stated throughout this section of the specification.
  - 2. Suppliers of airflow control devices or airflow measuring devices requiring minimum duct diameters: provide revised duct layouts showing the required straight duct runs upstream and downstream of these devices.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

3. Supplier of the airflow control system: submit coordination drawings reflecting these changes and include static pressure loss calculations as part of submittal.

### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

#### 3.2 OPERATIONAL TEST

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

# SECTION 23 37 00 AIR OUTLETS AND INLETS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

#### 1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

#### 1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Air intake/exhaust hoods.
  - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

#### 1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code:

1062 GRD-2015......Certification, Rating, and Test Manual  $4^{\rm th}$  Edition

- C. American Society of Civil Engineers (ASCE):
  - ASCE7-2017......Minimum Design Loads for Buildings and Other
    Structures
- D. American Society for Testing and Materials (ASTM):

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

A167-99 2009......Standard Specification for Stainless and
Heat-Resisting Chromium-Nickel Steel Plate,
Sheet and Strip
B209- 2014.....Standard Specification for Aluminum and
Aluminum-Alloy Sheet and Plate
E. National Fire Protection Association (NFPA):
90A-2018.....Standard for the Installation of Air
Conditioning and Ventilating Systems
F. Underwriters Laboratories, Inc. (UL):
181-2013.....UL Standard for Safety Factory-Made Air Ducts
and Connectors

#### PART 2 - PRODUCTS

#### 2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED) (NOT USED)

#### 2.2 EOUIPMENT SUPPORTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

#### 2.3 AIR OUTLETS AND INLETS

- A. Materials:
  - 1. Aluminum for supply and stainless steel to be used for all exhaust grilles in negative or isolation room applications.
  - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
  - 3. Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and gypsum board trim for the specific locations (provide with extended panels for lay-in applications for all 2'x2' grids).
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
  - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide gypsum board frame for units in plaster ceilings.
    - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

02-01-20

- b. Louver face type: Square or rectangular, removable core for 1,2, 3, or 4 way directional pattern.
- 2. Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 1-1/4 inch margin.

#### 2.4 WIRE MESH GRILLE (NOT USED)

### 2.5 FILTER RETURN/EXHAUST GRILLE (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.
- 3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY NOT USED)
- 3.3 TESTING, ADJUSTING AND BALANCING (TAB)
  - A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- 3.4 OPERATING AND PERFORMANCE TESTS
  - A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

#### **SECTION 23 40 00**

#### HVAC AIR CLEANING DEVICES

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media used filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

#### 1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- E. Section 23 37 00 AIR OUTLETS AND INLETS.

# 1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
  - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, .

#### 1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
  - 1. Extended surface filters.
  - 2. Holding frames. Identify locations.
  - 3. Side access housings. Identify locations, verify insulated doors.
  - 4. HEPA filters.
  - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

#### 1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):
  - 52.2-2017......Method of Testing General Ventilation Air-Cleaning

    Devices for Removal Efficiency by Particle

    Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME):
   NQA-1-2017.....Quality Assurance Requirements for Nuclear
   Facilities Applications

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

#### PART 2 - PRODUCTS

#### 2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED (NOT USED)

#### 2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

| HVAC Filter Types<br>Table 2.2C |                                              |              |                 |                                                           |  |  |  |  |
|---------------------------------|----------------------------------------------|--------------|-----------------|-----------------------------------------------------------|--|--|--|--|
| MERV Value<br>ASHRAE<br>52.2    | MERV-A<br>Value<br>ASHRAE 62.2<br>Appendix J | Application  | Particle Size   | Thickness /Type                                           |  |  |  |  |
| 8                               | 8-A                                          | Pre-Filter   | 3 to 10 Microns | 50 mm (2-inch)<br>Throwaway                               |  |  |  |  |
| 11                              | 11-A                                         | After-Filter | 1 to 3 Microns  | 150 mm (6-inch) or 300<br>mm (12-inch) Rigid<br>Cartridge |  |  |  |  |

### D. HEPA Filters

| HEPA Filters<br>Table 2.2D     |              |                                      |           |                             |  |  |
|--------------------------------|--------------|--------------------------------------|-----------|-----------------------------|--|--|
| Efficiency<br>at 0.3<br>Micron | Application  | Initial<br>Resistance<br>inches w.g. | Rated CFM | Construction                |  |  |
| 99.97                          | Final Filter | 1.35                                 | 1100      | Galvanized Frame X-<br>Body |  |  |

### 2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.

B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24" x 24" face dimension.

| Minimum Efficiency Reporting (MERV)                    | 8       |
|--------------------------------------------------------|---------|
| Dust Holding Capacity (Grams)                          | 105     |
| Nominal Size (Width x Height x Depth)                  | 24x24x2 |
| Rated Air Flow Capacity (Cubic Feet per<br>Minute)     | 2,000   |
| Rated Air Flow Rate (Feet per Minute)                  | 500     |
| Final Resistance (Inches w.g.                          | 1.0     |
| Maximum Recommended Change-Out Resistance (Inches w.g. | 0.66    |
| Rated Initial Resistance (Inches w.g.                  | 0.33    |

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

# 2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 176 degrees F. The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

| Minimum Efficiency Reporting Value (MERV)               | 14       | 13       | 11       |
|---------------------------------------------------------|----------|----------|----------|
| Gross Media Area (Sq. Ft.)                              | 197      | 197      | 197      |
| Dust Holding Capacity (Grams)                           | 486      | 430      | 465      |
| Nominal Size (Width x Height x Depth)                   | 24x24x12 | 24x24x12 | 24x24x12 |
| Rated Air Flow Capacity (cubic feet per minute)         | 2,000    | 2,000    | 2,000    |
| Rated Air Flow Rate (feet per minute)                   | 500      | 500      | 500      |
| Final Resistance (inches w.g.)                          | 2.0      | 2.0      | 2.0      |
| Maximum Recommended Change-Out Resistance (Inches w.g.) | 0.74     | 0.68     | 0.54     |
| Rated Initial Resistance (inches w.g.)                  | 0.37     | 0.34     | 0.27     |

# 2.5 HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTERS STANDARD CAPACITY (FINAL FILTER APPLICATION)

- A. Air filters shall be HEPA grade standard capacity air filters with waterproof micro glass fiber media, corrugated aluminum separators, urethane sealant, 16-gauge steel enclosing frame and fluid sealing gasket. Sizes shall be as noted on drawings or other supporting materials.
- B. Construction: Filter media shall be one continuous pleating of microfine glass fiber media. Pleats shall be uniformly separated by corrugated aluminum separators incorporating a hemmed edge to prevent Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

damage to the media. The media pack shall be potted into the enclosing frame with a fire-retardant urethane sealant. The enclosing frame shall be of 16-gauge steel, with a zinc aluminum alloy finish, and shall be bonded to the media pack to form a rugged and durable enclosure. The filter shall be assembled without the use of fasteners to ensure no frame penetrations. Overall dimensional tolerance shall be correct within -1/8", +0", and square within 1/8". A poured-in-place seamless sealing gasket shall be included on the downstream side of the enclosing frame to form a positive seal upon installation.

C. Performance: The filter shall have a tested efficiency of 99.97%when evaluated according to IEST Recommended Practice. Initial resistance to airflow shall not exceed 1.0" w.g. at rated capacity. Filter shall be listed by Underwriters Laboratories as UL 900. The filter shall be capable of withstanding 10" w.g. without failure of the media pack. Manufacturer shall provide evidence of facility certification to ISO 9001:2015.

| HEPA Performance (Standard Capacity)                |  |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|--|
| Table 2.5A                                          |  |  |  |  |  |
| Nominal Size Airflow Capacity Media Area            |  |  |  |  |  |
| (inches) (cfm) (Square Feet)                        |  |  |  |  |  |
| 24H by 24W by 12D   1080 at 1.0" w.g.   153         |  |  |  |  |  |
| 24H by 12W by 12D 500 at 1.0" w.g. 33               |  |  |  |  |  |
| Follow manufacturers' recommendation for change out |  |  |  |  |  |
| resistance, typically double the initial.           |  |  |  |  |  |

D. Supporting Data: The filter shall be labeled as to tested efficiency, rated/tested cfm, pressure drop and shall be serialized for identification. The manufacturer shall supply a Certificate of Conformance for each HEPA filter supplied to the facility.

# 2.6 HEPA FILTERS HIGH CAPACITY V-BANK HIGH CAPACITY FILTERS (FINAL FILTER APPLICATION)

- A. Air filters shall be absolute grade HEPA filters consisting of pleated media packs assembled in a V-bank configuration, polyurethane sealant, anodized aluminum enclosure and seamless fluid sealing gasket. Sizes shall be as noted on enclosed drawings or other supporting materials.
- B. Construction: Filter media shall be micro fiber glass formed into minipleat pleat-in-pleat V-bank design. The media packs shall be potted into the enclosing frame with fire retardant polyurethane sealant. An enclosing frame of anodized extruded aluminum shall form a rugged and durable enclosure. A seamless sealing gasket shall be included on the

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

downstream side of the filter to form a positive seal upon installation.

C. Performance: Filter efficiency at 0.3 micron shall be 99.99% when evaluated according to the IEST Recommended Practice for applicable type. Each filter shall be labeled as to tested performance. Initial resistance target shall not exceed 1.0" w.g. at rated airflow.

| HEPA Performance V-Bank Style (High Capacity)       |  |  |  |  |
|-----------------------------------------------------|--|--|--|--|
| Table 2.5B                                          |  |  |  |  |
| Nominal Size Airflow Capacity Media Area            |  |  |  |  |
| (inches) (cfm) (Square Feet)                        |  |  |  |  |
| 24H by 24W by 12D 2000 at 1.0" w.g. 390             |  |  |  |  |
| 24H by 12W by 12D 900 at 1.0" w.g. 174              |  |  |  |  |
| Follow manufacturers' recommendation for change out |  |  |  |  |
| resistance, typically double the initial.           |  |  |  |  |

- D. Supporting Data: The filter shall be labeled as to tested efficiency, rated/tested cfm, pressure drop and shall be serialized for identification. The manufacturer shall supply a Certificate of Conformance for each HEPA filter supplied to the facility.
- E. Filter must be listed as UL 586 and UL 900 per Underwriters Laboratories. Manufacturer shall provide evidence of facility certification to ISO 9001:2015.

# 2.7 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
  - 1. Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track.
- B. Bag-in/Bag-out HEPA Air Filter Housing
  - 1. Housing shall be side-access bag-in/bag-out, fluid seal housing. The housing shall be adequately reinforced to withstand a negative or positive pressure of 15" water gage. Housing design and filter arrangement shall allow air to enter and exit housing without changing direction. The housing shall accommodate standard size filters that do not require any special attachments or devices to function properly in the housing. The housing shall accommodate fluid seal filters which require a penetrating knife edge installed on all filter sealing surfaces. The knife edge shall insert into the fluid filled perimeter channel located on the face of the filter. By engaging the filter seal/release mechanism the filter shall move

(push) the fluid filled channel to the sealed position. For removal

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

of the air filters the filter seal/release mechanism shall remove (pull) the filter free of the blade type knife edge. This entire process is performed from inside the filter change out bag.

#### 2. Construction:

- a. Housing shall be constructed of 14 gauge and 11 gauge T-304 stainless steel metal. All pressure retaining joints and seams shall be continuously welded with no porosities. Joints and seams requiring intermittent welds, such as reinforcement members, shall be intermittently welded. Housing shall be free of burrs and sharp edges. All weld joints and seams that are a portion of any gasket setting surface, and duct connection flanges, shall be ground smooth and flush with adjacent base metals. All welded joints and seams shall be wire brushed to remove heat discoloration. The housing shall be reinforced to withstand a positive or negative pressure of 15" w.g. The upstream and downstream ductwork connections shall have 1 1/2" outward-turned flanges.
- b. The housing shall have a bagging ring around each filter access port that is sealed by a gasketed filter access door. The filter access door gasket shall be silicone and shall be replaceable, if necessary. The bagging ring shall have two (2) continuous formed raised ridges to secure the PVC change-out bag. The bagging ring shall be hemmed on the outer edge to prevent the change-out bag from tearing.
- c. Ancillary hardware including filter seal/release mechanism, door handles, door studs and labels shall be 300 series stainless steel. Filter access door knobs shall be cast aluminum and designed to prevent galling of threads.
- d. One (1) PVC change-out bag shall be furnished with each filter access port. Change-out bags shall be 8-mil. thick with a yellow translucent, non-sticking, matte finish. It shall include a 1/4" diameter elastic shock cord hemmed into the opening of the bag so when stretched around the housing bagging ring flange, a secure fit is created. The bag shall include three (3) integral glove ports to assist in filter change-out. One (1) nylon security strap shall be included per filter access port to prevent the bag

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

from sliding off the bagging flange during the change-out process. Design of components shall be such that all change-out operations shall be within the bag so there is a barrier between the worker and the filter at all times.

- 3. Performance: All welding procedures, welders, and welder operators shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX. All production welds shall be visually inspected by qualified personnel, incorporating the workmanship acceptance criteria described in Section 5 & 6 of AWS D9.1-2018, Specification for Welding of Sheet Metal.
- 4. The filter housing shall be factory tested for filter fit, alignment of filter sealing knife edge and operation of filter clamping mechanism. The filter sealing surface and the complete assembly pressure boundary shall be leak tested by the pressure decay method as defined in ASME N510-2007 Reaffirmed., Testing of Nuclear Air Cleaning Systems, paragraphs 6 and 7. The filter sealing surface shall be tested at +10" water gage and have a maximum leak rate of 0.0005 cfm per cubic foot of housing volume. The overall system pressure boundary shall be leak tested at +15" water gage and have a maximum leak rate of 0.0005 cfm per cubic foot of housing volume.
- 5. Filter bags shall be capable of continuous operating to temperature extremes of -24.9°F to 150°F.
- 6. Multi-wide housing shall be equipped with a filter removal rod to pull the filters to the change-out position. The removal rod shall operate from the inside of the filter change out bag.
- 7. Manufacturer shall provide evidence of facility certification to ISO 9001:2015.
- C. Equipment Identification: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATON.

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

# 2.8 ACTIVATED CARBON PLEATED PANEL FILTERS (NOT USED)

# 2.9 ACTIVATED CARBON EXTENDED SURFACE, HIGH EFFICIENCY GAS PHASE FILTERS (NOT USED)

# 2.10 CHEMICAL MEDIA GAS-PHASE AIR CLEANING CASSETTES - HEAVY DUTY (HD) CASSETTE, MEDIUM DUTY (MD) CASSETTE, CLEANROOM GRADE (CG) CASSETTE (NOT USED)

#### 2.11 INSTRUMENTATION

- A. Magnehelic Differential Pressure Filter Gages: Nominal four inch diameter, zero to zero to two inch water gage), three inch for HEPA) range, except for MERV 17 HEPA Final Filters, where the range shall be zero to 750 Pa (zero to three inch water gage) Gauges shall be flush-mounted in stainless steel panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.
- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

# 2.12 HVAC EQUIPMENT FACTORY FILTERS (NOT USED)

# 2.13 FILTER RETURN GRILLES (NOT USED)

# PART 3 - EXECUTION

# 3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

#### 3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the Resident Engineer.

# 3.3 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection,

# CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

03-01-20

- start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

Bancroft Architects + Engineers

01-01-16

# SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

# PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.
  Conductors, cables, conduit, disconnect switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

# 1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
  Laboratories, Inc. (UL), Institute of Electrical and Electronics
  Engineers (IEEE), and National Fire Protection Association (NFPA) codes
  and standards are the minimum requirements for materials and
  installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

# 1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

### Bancroft Architects + Engineers

01-01-16

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
  - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
  - b. Are periodically inspected by a NRTL.
  - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

# 1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
  - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
  - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.

### Bancroft Architects + Engineers

01-01-16

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

# 1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

#### 1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
  - Components of an assembled unit need not be products of the same manufacturer.
  - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
  - 3. Components shall be compatible with each other and with the total assembly for the intended service.
  - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:

# Bancroft Architects + Engineers

01-01-16

- 1. The Government shall have the option of witnessing factory tests.

  The Contractor shall notify the Government through the COR a minimum of forty-five(45) days prior to the manufacturer's performing of the factory tests.
- 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

# 1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

# 1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
  - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
  - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
  - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
  - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.

### Bancroft Architects + Engineers

01-01-16

5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

# 1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized.
  - 1. Energized electrical work shall not be performed in this project.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

# 1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
  - 1. Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
  - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use

# Bancroft Architects + Engineers

01-01-16

of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

# 1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, fused and non-fused safety switches, individual breakers, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, panel feeding from, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
  - 1. Nominal system voltage.
  - 2. Equipment/bus name, date prepared, and manufacturer name and address.
  - 3. Arc flash boundary.
  - 4. Available arc flash incident energy and the corresponding working distance.
  - 5. Minimum arc rating of clothing.
  - 6. Site-specific level of PPE.

# 1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or

### Bancroft Architects + Engineers

01-01-16

installation of materials and equipment which has not had prior approval will not be permitted.

- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
  - 1. Mark the submittals, "SUBMITTED UNDER SECTION".
  - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
  - 3. Submit each section separately.
- E. The submittals shall include the following:
  - 1. Information that confirms compliance with contract requirements.

    Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
  - 2. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
  - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
  - Submit copies of approved submittals as required for systems and equipment specified in the technical sections. Hard copies in hardcover binders and electronic PDF on a disc, or an approved equivalent.
  - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names,

### Bancroft Architects + Engineers

01-01-16

- addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
  - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
  - b. A control sequence describing start-up, operation, and shutdown.
  - c. Description of the function of each principal item of equipment.
  - d. Installation instructions.
  - e. Safety precautions for operation and maintenance.
  - f. Diagrams and illustrations.
  - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
  - h. Performance data.
  - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
  - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

# 1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

# Bancroft Architects + Engineers

01-01-16

#### 1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

# 1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

# 1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

# Bancroft Architects + Engineers

01-01-17

# SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

# PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

#### 1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

#### 1.3 OUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
    - b. Submit the following data for approval:
      - 1) Electrical ratings and insulation type for each conductor and cable.
      - 2) Splicing materials and pulling lubricant.

# Bancroft Architects + Engineers

01-01-17

- 2. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
  - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM):

| D2301-10 | .Standard | Specification   | for | Vinyl  | Chloride |
|----------|-----------|-----------------|-----|--------|----------|
|          | Plastic 1 | Pressure-Sensit | ive | Electi | rical    |
|          | Insulati  | ng Tape         |     |        |          |

| D2304-10 | .Test | Method   | for   | Thermal  | Endurance | of | Rigid |
|----------|-------|----------|-------|----------|-----------|----|-------|
|          | Elect | trical : | Insul | lating M | Materials |    |       |

- D3005-10.....Low-Temperature Resistant Vinyl Chloride

  Plastic Pressure-Sensitive Electrical

  Insulating Tape
- C. National Electrical Manufacturers Association (NEMA):
  - WC 70-09......Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy
- D. National Fire Protection Association (NFPA):
  - 70-17......National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):
  - 44-14.....Thermoset-Insulated Wires and Cables
  - 83-14......Thermoplastic-Insulated Wires and Cables
  - 467-13.....Grounding and Bonding Equipment
  - 486A-486B-13.....Wire Connectors
  - 486C-13.....Splicing Wire Connectors
  - 486D-15.....Sealed Wire Connector Systems
  - 486E-15......Equipment Wiring Terminals for Use with Copper

Conductors

493-07......Thermoplastic-Insulated Underground Feeder and

Branch Circuit Cables

### Bancroft Architects + Engineers

01-01-17

514B-12.....Conduit, Tubing, and Cable Fittings

#### PART 2 - PRODUCTS

# 2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
  - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
  - 2. No. 8 AWG and larger: Stranded.
  - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
  - 4. Insulation: THHN-THWN.
- D. Color Code:
  - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
  - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
    - a. Solid color insulation or solid color coating.
    - b. Stripes, bands, or hash marks of color specified.
    - c. Color using 19 mm (0.75 inches) wide tape.
  - 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
  - 4. Conductors shall be color-coded as follows:

| 208/120 V       | Phase          | 480/277 V           |
|-----------------|----------------|---------------------|
| Black           | A              | Brown               |
| Red             | В              | Orange              |
| Blue            | С              | Yellow              |
| White           | Neutral        | Gray *              |
| * or white with | colored (other | than green) tracer. |

5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated

# Bancroft Architects + Engineers

01 - 01 - 17

- above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 6. Color code for isolated power system wiring shall be in accordance with the NEC.

#### 2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
  - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper conductors.
  - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
  - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

### 2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

# 2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

# 2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

### Bancroft Architects + Engineers

01-01-17

#### PART 3 - EXECUTION

#### 3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, and/or pullboxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Conductor and Cable Pulling:
  - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
  - 2. Use nonmetallic pull ropes.
  - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
  - 4. All conductors in a single conduit shall be pulled simultaneously.
  - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- I. No more than three branch circuits shall be installed in any one conduit.
- J. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

# Bancroft Architects + Engineers

01-01-17

# 3.2 INSTALLATION IN MANHOLES (NOT USED)

# 3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

#### 3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, and pullboxes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

### 3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

### 3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

# 3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

# 3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

# Bancroft Architects + Engineers

01-01-17

# 3.9 DIRECT BURIAL CABLE INSTALLATION (NOT USED)

# 3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
  - 1. Visual Inspection and Tests: Inspect physical condition.
  - 2. Electrical tests:
    - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
    - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
    - c. Perform phase rotation test on all three-phase circuits.

---END---

# Bancroft Architects + Engineers

01-01-17

# SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

# PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

#### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

#### 1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
    - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
  - 2. Test Reports:

### Bancroft Architects + Engineers

01-01-17

a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.

# 3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

| B1-13Standard | Specification | for | Hard-Drawn | Copper |
|---------------|---------------|-----|------------|--------|
| Wire          |               |     |            |        |

- B3-13.....Standard Specification for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
  - 81-12..... IEEE Guide for Measuring Earth Resistivity,

    Ground Impedance, and Earth Surface Potentials

    of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):

| 70-17Nat | ional Electrical Code (NEC) |
|----------|-----------------------------|
|----------|-----------------------------|

70E-15......National Electrical Safety Code

99-15.....Health Care Facilities

- E. Underwriters Laboratories, Inc. (UL):

  - 467-13 ......Grounding and Bonding Equipment

#### PART 2 - PRODUCTS

# 2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

Insulation color shall be continuous green for all equipment grounding

### Bancroft Architects + Engineers

01-01-17

- conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and THWN-2.

#### 2.2 GROUND RODS - NOT USED.

# 2.3 CONCRETE ENCASED ELECTRODE (NOT USED)

#### 2.4 GROUND CONNECTIONS

- A. Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
  - 1. Bonding Jumpers: Listed for use with copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
  - 2. Connection to Building Steel: Exothermic-welded type connectors.
  - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
  - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

# 2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

# Bancroft Architects + Engineers

01-01-17

#### 2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

#### 2.7 GROUNDING BUS BAR (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- C. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

#### 3.2 INACCESSIBLE GROUNDING CONNECTIONS (NOT USED)

# 3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS (NOT USED)

# 3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
  - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes.
     Provide jumpers across insulating joints in the metallic piping.
- C. Switchgear, Switchboards, Panelboards, and other electrical equipment:
  - 1. Connect the equipment grounding conductors to the ground bus.
  - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

# 3.5 RACEWAY

- A. Conduit Systems:
  - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.

### Bancroft Architects + Engineers

01-01-17

- 2. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
  - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes through the dental, ICU, MNU, ED and roof areas with the associated rooms(except for special grounding systems for intensive care units and other critical units shown).
  - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

#### D. Wireway Systems:

- 1. Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a

### Bancroft Architects + Engineers

01 - 01 - 17

- green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

# 3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT (NOT USED)

#### 3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

# 3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- 3.9 LIGHTNING PROTECTION SYSTEM (NOT USED)
- 3.10 MAIN ELECTRICAL ROOM GROUNDING (NOT USED)
- 3.11 EXTERIOR LIGHT POLES (NOT USED)

#### 3.12 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

#### 3.13 GROUND ROD INSTALLATION (NOT USED)

# 3.14 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required

# Bancroft Architects + Engineers

01-01-17

resistance, but the specified number of electrodes must still be provided.

---END---

# Bancroft Architects + Engineers

01-01-18

# SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

# PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

#### 1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- B. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- C. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

#### 1.3 OUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Size and location of main feeders.
    - b. Size and location of panels and pull-boxes.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

### Bancroft Architects + Engineers

01-01-18

- c. Layout of required conduit penetrations through structural elements.
- d. Submit the following data for approval:
  - 1) Raceway types and sizes.
  - 2) Conduit bodies, connectors and fittings.
  - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
  - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
  - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

# 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- C. National Electrical Manufacturers Association (NEMA):

| C80.1-15Electrical Rigid Steel Conduit              |
|-----------------------------------------------------|
| C80.3-15Steel Electrical Metal Tubing               |
| C80.6-05Electrical Intermediate Metal Conduit       |
| FB1-14Fittings, Cast Metal Boxes and Conduit Bodies |
| for Conduit, Electrical Metallic Tubing and         |
| Cable                                               |

FB2.10-13.....Selection and Installation Guidelines for
Fittings for use with Non-Flexible Conduit or
Tubing (Rigid Metal Conduit, Intermediate
Metallic Conduit, and Electrical Metallic
Tubing)

# Bancroft Architects + Engineers

|     | Bancr                    | oft Architects + Engineers                          |
|-----|--------------------------|-----------------------------------------------------|
|     | FB2.20-14                | 01-01-18 .Selection and Installation Guidelines for |
|     |                          | Fittings for use with Flexible Electrical           |
|     |                          | Conduit and Cable                                   |
|     | TC-2-13                  | .Electrical Polyvinyl Chloride (PVC) Tubing and     |
|     |                          | Conduit                                             |
|     | TC-3-13                  | .PVC Fittings for Use with Rigid PVC Conduit and    |
|     |                          | Tubing                                              |
| D.  | National Fire Protection | on Association (NFPA):                              |
|     | 70-17                    | .National Electrical Code (NEC)                     |
| Ε.  | Underwriters Laboratori  | es, Inc. (UL):                                      |
|     | 1-05                     | .Flexible Metal Conduit                             |
|     | 5-16                     | .Surface Metal Raceway and Fittings                 |
|     | 6-07                     | .Electrical Rigid Metal Conduit - Steel             |
|     | 50-15                    | .Enclosures for Electrical Equipment                |
|     | 360-13                   | .Liquid-Tight Flexible Steel Conduit                |
|     | 467-13                   | .Grounding and Bonding Equipment                    |
|     | 514A-13                  | .Metallic Outlet Boxes                              |
|     | 514B-12                  | .Conduit, Tubing, and Cable Fittings                |
|     | 514C-14                  | .Nonmetallic Outlet Boxes, Flush-Device Boxes       |
|     |                          | and Covers                                          |
|     | 651-11                   | .Schedule 40 and 80 Rigid PVC Conduit and           |
|     |                          | Fittings                                            |
|     | 651A-11                  | .Type EB and A Rigid PVC Conduit and HDPE           |
|     |                          | Conduit                                             |
|     | 797-07                   | .Electrical Metallic Tubing                         |
|     | 1242-14                  | .Electrical Intermediate Metal Conduit - Steel      |
| ART | 2 - PRODUCTS             |                                                     |

### PAR

# 2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 3/4-inch unless otherwise shown. Where permitted by the NEC, 3/4-inch flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
  - 1. Size: In accordance with the NEC, but not less than 3/4-inch.
  - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.

### Bancroft Architects + Engineers

01-01-18

- 3. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 4. Flexible Metal Conduit: Shall conform to UL 1.
- 5. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.

### C. Conduit Fittings:

- 1. Rigid Steel Conduit Fittings:
  - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
  - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
  - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
  - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
  - e. Erickson (Union-Type) and Set Screw Type Couplings: Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
  - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Electrical Metallic Tubing Fittings:
  - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
  - b. Only steel or malleable iron materials are acceptable.
  - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
  - d. Indent-type connectors or couplings are prohibited.

# Bancroft Architects + Engineers

01-01-18

- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings ONLY ALLOWED WHERE PERMITTD BY COR:
  - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
  - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
  - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
  - b. Only steel or malleable iron materials are acceptable.
  - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.

# D. Conduit Supports:

- 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection. Caddy supports are not allowed.
- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm  $\times$  38 mm (1.5  $\times$  1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
  - 1. Comply with UL-50 and UL-514A.
  - 2. Rustproof cast metal where required by the NEC or shown on drawings.
  - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.

# PART 3 - EXECUTION

# 3.1 PENETRATIONS

- A. Cutting or Holes:
  - 1. Cut holes in advance where they should be placed, do not cut or drill holes in the structural elements, such as ribs or beams.
  - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic

## Bancroft Architects + Engineers

01-01-18

hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.

- B. Firestop: Where conduits, wireways, and other electrical raceways pass through walls, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

## 3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
  - 1. In complete mechanically and electrically continuous runs before pulling in cables or wires.
  - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
  - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
  - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
  - 5. Cut conduits square, ream, remove burrs, and draw up tight.
  - 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
  - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
  - 8. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
  - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited. Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 8/9/2021

## Bancroft Architects + Engineers

01-01-18

- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. NOT USED.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.

#### D. Conduit Bends:

- 1. Make bends with standard conduit bending machines.
- 2. Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.

## E. Layout and Homeruns:

- 1. Install conduit with wiring, including homeruns OR TAGS.
- 2. Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

#### 3.3 CONCEALED WORK INSTALLATION

- A. Above Furred or Suspended Ceilings and in Walls:
  - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
  - 2. Conduit for Conductors 600 V and Below: Rigid steel, or EMT.

    Mixing different types of conduits in the same system is prohibited.
  - Align and run conduit parallel or perpendicular to the building lines.
  - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
  - 5. Tightening set screws with pliers is prohibited.
  - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

## Bancroft Architects + Engineers

01-01-18

## 3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- C. Conduit for Conductors 600 V and Below: Rigid steel, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Painting:
  - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
  - 2. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating.
    Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

## 3.5 DIRECT BURIAL INSTALLATION (NOT USED)

#### 3.6 HAZARDOUS LOCATIONS (NOT USED)

## 3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

## 3.8 MOTORS AND VIBRATING EQUIPMENT

A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.

#### Bancroft Architects + Engineers

01-01-18

- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

#### 3.9 EXPANSION JOINTS (NOT USED)

#### 3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices. Caddy supports shall not be allowed.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
  - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
  - 2. caddie' style straps/supports not allowed.
  - 3. Existing Construction:
    - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm  $(1.125\ inch)$  in embedment.
    - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
    - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.

## Bancroft Architects + Engineers

01-01-18

- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

#### 3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
  - 1. Flush-mounted.
  - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish. Where applicable boxes shall be placed on both ends of junction box. Secure boxes so it doesn't move after gypsum board is installed.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surface-style flat or raised covers.

## Bancroft Architects + Engineers

01-01-18

- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

## Bancroft Architects + Engineers

01-01-18

## SECTION 26 09 23 LIGHTING CONTROLS

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

#### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path
  to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. NOT USED.

## 1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit the following information for each type of lighting controls.
    - b. Material and construction details.
    - c. Physical dimensions and description.
    - d. Wiring schematic and connection diagram.
    - e. Installation details.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

## Bancroft Architects + Engineers

01-01-18

#### 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA):

  C136.10-10.........American National Standard for Roadway and Area

  Lighting Equipment—Locking—Type Photocontrol

  Devices and Mating Receptacles—Physical and

  Electrical Interchangeability and Testing

  ICS-1-15.......Standard for Industrial Control and Systems

  General Requirements

  ICS-2-05......Standard for Industrial Control and Systems:

  Controllers, Contractors, and Overload Relays

  Rated Not More than 2000 Volts AC or 750 Volts

  DC: Part 8 Disconnect Devices for Use in

  Industrial Control Equipment

  ICS-6-16......Standard for Industrial Controls and Systems

  Enclosures
- C. National Fire Protection Association (NFPA):
   70-17......National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

20-10......Standard for General-Use Snap Switches

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

8/9/2021

## Bancroft Architects + Engineers

| 01-01-18                                              |
|-------------------------------------------------------|
| 98-16Enclosed and Dead-Front Switches                 |
| 773-16Standard for Plug-In Locking Type Photocontrols |
| for Use with Area Lighting                            |
| 773A-16Nonindustrial Photoelectric Switches for       |
| Lighting Control                                      |
| 916-15Standard for Energy Management Equipment        |
| Systems                                               |
| 917-06Clock Operated Switches                         |
| 924-16Emergency Lighting and Power Equipment (for use |
| when controlling emergency circuits).                 |

#### PART 2 - PRODUCTS

- 2.1 ELECTRONIC TIME SWITCHES (NOT USED)
- 2.2 ELECTROMECHANICAL-DIAL TIME SWITCHES (NOT USED)
- 2.3 OUTDOOR PHOTOELECTRIC SWITCHES (NOT USED)
- 2.4 TIMER SWITCHES (NOT USED)
- 2.5 CEILING-MOUNTED PHOTOELECTRIC SWITCHES (NOT USED)
- 2.6 SKYLIGHT PHOTOELECTRIC SENSORS (NOT USED)
- 2.7 INDOOR OCCUPANCY SENSORS NOT USED.
- 2.8 INDOOR VACANCY SENSOR SWITCH (NOT USED)
- 2.9 OUTDOOR MOTION SENSOR (PIR) (NOT USED)

## PART 3 - EXECUTION

## 3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- C. Set occupancy sensor "on" duration to 10 minutes.
- D. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- E. Label time switches and contactors with a unique designation.

## 3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.

## Bancroft Architects + Engineers

01-01-18

- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

## 3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

- - - E N D - - -

## Bancroft Architects + Engineers

01-01-18

## SECTION 26 24 16 PANELBOARDS

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

#### 1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

  Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

#### 1.3 OUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
    - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.

## 2. Manuals:

#### Bancroft Architects + Engineers

01-01-18

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
  - 1) Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
  - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
  - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

## 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

Contract No. 36C26319D0044 Station Project No. 437-21-17 Bancroft-AE Project No. 18-121

67-09.....Panelboards

8/9/2021

489-16......Molded Case Circuit Breakers and Circuit

Breaker Enclosures

## Bancroft Architects + Engineers

01-01-18

#### PART 2 - PRODUCTS

- 2.1 GENERAL REQUIREMENTS (NOT USED)
- 2.2 ENCLOSURES AND TRIMS (NOT USED)

## 2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
  - 1. 120/208 V Panelboard: 10,000 A symmetrical.
  - 2. 120/240 V Panelboard: 10,000 A symmetrical.
  - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breaker features shall be as follows:
  - 1. A rugged, integral housing of molded insulating material.
  - 2. Silver alloy contacts.
  - 3. Arc quenchers and phase barriers for each pole.
  - 4. Quick-make, quick-break, operating mechanisms.
  - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
  - 6. Electrically and mechanically trip free.
  - 7. An operating handle which indicates closed, tripped, and open positions.
  - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
  - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
  - 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly. Panelboard directory shall not be handwritten.

## Bancroft Architects + Engineers

01-01-18

## 2.4 SURGE PROTECTIVE DEVICES (NOT USED)

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- F. Provide blank cover for each unused circuit breaker mounting space.
- I. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

## 3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
  - 1. Visual Inspection and Tests:
    - a. Compare equipment nameplate data with specifications and approved shop drawings.
    - b. Inspect physical, electrical, and mechanical condition.
    - c. Verify appropriate anchorage and required area clearances.
    - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
    - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
    - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

## 3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

Bancroft Architects + Engineers

01-01-18

---END---

## Bancroft Architects + Engineers

01-01-18

## SECTION 26 27 26 WIRING DEVICES

## PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

#### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.

## 1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
    - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

#### 2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

## Bancroft Architects + Engineers

01-01-18

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
  - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):WD 1-99(R2015)......General Color Requirements for Wiring DevicesWD 6-16......Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA):
  - 70-17......National Electrical Code (NEC)
  - 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
  - 5-16......Surface Metal Raceways and Fittings
  - 20-10......General-Use Snap Switches
  - 231-16.....Power Outlets
  - 467-13.....Grounding and Bonding Equipment
  - 498-17.....Attachment Plugs and Receptacles
  - 943-16.....Ground-Fault Circuit-Interrupters
  - 1449-14.....Surge Protective Devices
  - 1472-15.....Solid State Dimming Controls

## PART 2 - PRODUCTS

#### 2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
  - 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall

## Bancroft Architects + Engineers

01-01-18

- include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
  - 1. Bodies shall be ivory in color.
  - 2. Duplex Receptacles on Emergency Circuit Shall Have Red Plantes and Faceplates:
    - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
  - 3. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
    - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
    - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
    - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- C. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to Contract No. 36C26319D0044

Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

## Bancroft Architects + Engineers

01-01-18

the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

#### 2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
  - 1. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
  - 2. Switches shall be rated 20 amperes at 120-277 Volts AC.

## 2.3 MANUAL DIMMING CONTROL (NOT USED)

#### 2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

## 2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES (NOT USED)

## PART 3 - EXECUTION

## 3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.

## Bancroft Architects + Engineers

01-01-18

- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- ${\tt H.}$  Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

#### 3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
  - 1. Visual Inspection and Tests:
    - a. Inspect physical and electrical conditions.
    - b. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
    - c. Test GFCI receptacles.

## Bancroft Architects + Engineers

01-01-18

2. Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

Bancroft Architects + Engineers

01-01-17

## SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

#### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

## 1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

## 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
    - b. Submit the following data for approval:
      - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.

## 2. Manuals:

## Bancroft Architects + Engineers

01-01-17

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
  - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
  - 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
  - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

## 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

#### Bancroft Architects + Engineers

01-01-17

489-13..... Molded Case Circuit Breakers and Circuit

Breaker Enclosures

#### PART 2 - PRODUCTS

## 2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
  - 1. Switch mechanism shall be the quick-make, quick-break type.
  - 2. Copper blades, visible in the open position.
  - 3. An arc chute for each pole.
  - 4. External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
  - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
  - 6. Fuse holders for the sizes and types of fuses specified.
  - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
  - 8. Ground lugs for each ground conductor.
  - 9. Enclosures:
    - a. Shall be the NEMA types shown on the drawings.
    - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
    - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

#### 2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

## 2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES (NOT USED)

## 2.4 MOTOR RATED TOGGLE SWITCHES

A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.

#### Bancroft Architects + Engineers

01 - 01 - 17

B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

## 2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- C. Feeders: Class RK1, time delay
- D. Motor Branch Circuits: Class RK1, time delay.
- E. Other Branch Circuits: Class J, fast acting.
- F. Control Circuits: Class CC, fast acting.

#### 2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

#### PART 3 - EXECUTION

## 3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

#### 3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
  - 1. Visual Inspection and Tests:
    - a. Compare equipment nameplate data with specifications and approved shop drawings.
    - b. Inspect physical, electrical, and mechanical condition.
    - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
    - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

## 3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

Bancroft Architects + Engineers

01-01-17

---END---

Bancroft Architects + Engineers

01-01-17

## SECTION 26 43 13 SURGE PROTECTIVE DEVICES

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

#### 1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

## 1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

#### 1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
  - 1. Shop Drawings:
    - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
    - b. Include electrical ratings and device nameplate data.

#### 2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
  - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.

## Bancroft Architects + Engineers

01 - 01 - 17

b. Certification by the Contractor that the SPD has been properly installed.

#### 1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE):

IEEE C62.41.2-02......Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits

IEEE C62.45-08......Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits

C. National Fire Protection Association (NFPA):

70-17......National Electrical Code (NEC)

D. Underwriters Laboratories, Inc. (UL):

UL 1283-15......Electromagnetic Interference Filters

UL 1449-14.....Surge Protective Devices

## PART 2 - PRODUCTS

## 2.1 SWITCHGEAR/SWITCHBOARD SPD (NOT USED)

## 2.2 PANELBOARD SPD

- A. General Requirements:
  - 1. Comply with UL 1449 and IEEE C62.41.2.
  - 2. Modular design with field-replaceable modules, or non-modular design.
  - 3. Fuses, rated at 200 kA interrupting capacity.
  - 4. Bolted compression lugs for internal wiring.
  - 5. Integral disconnect switch.
  - 6. Redundant suppression circuits.
  - 7. LED indicator lights for power and protection status.
  - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
  - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status.
    Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.

## Bancroft Architects + Engineers

01-01-17

- 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

#### 2.3 ENCLOSURES

A. Enclosures: NEMA 1.

#### PART 3 - EXECUTION

#### 3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Panelboard manufacturer shall install SPD at the factory.
- C. Field-installed SPD: Contractor shall install SPD with conductors or buses between SPD and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
  - 1. Provide a circuit breaker as a dedicated disconnecting means for TVSS as shown on drawings.
- D. Do not perform insulation resistance tests on panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

#### 3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
  - 1. Visual Inspection and Tests:
    - a. Compare equipment nameplate data with specifications and approved shop drawings.
    - b. Inspect physical, electrical, and mechanical condition.
    - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
    - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
    - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
    - f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

## Bancroft Architects + Engineers

01-01-17

#### 3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

## 3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the COR.

`---END---

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

## SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

## PART 1 - GENERAL

## 1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

## 1.2 REFERENCES

- A. Abbreviations and Acronyms
  - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
  - 2. Additional Abbreviations and Acronyms:

| А     | Ampere                                             |
|-------|----------------------------------------------------|
| AC    | Alternating Current                                |
| AE    | Architect and Engineer                             |
| AFF   | Above Finished Floor                               |
| AHJ   | Authority Having Jurisdiction                      |
| ANSI  | American National Standards Institute              |
| AWG   | American Wire Gauge (refer to STP and UTP)         |
| AWS   | Advanced Wireless Services                         |
| ВСТ   | Bonding Conductor for Telecommunications (also     |
|       | Telecommunications Bonding Conductor (TBC))        |
| BDA   | Bi-Directional Amplifier                           |
| BICSI | Building Industry Consulting Service International |
| BIM   | Building Information Modeling                      |
| BOM   | Bill of Materials                                  |
| BTU   | British Thermal Units                              |
| BUCR  | Back-up Computer Room                              |
| BTS   | Base Transceiver Station                           |
| CAD   | AutoCAD                                            |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| CBOPC | Community Based Out Patient Clinic                             |
|-------|----------------------------------------------------------------|
| CBC   | Coupled Bonding Conductor                                      |
| СВОС  | Community Based Out Patient Clinic (refer to CBOPC, OPC, VAMC) |
| CCS   | TIP's Cross Connection System (refer to VCCS and HCCS)         |
| CFE   | Contractor Furnished Equipment                                 |
| CFM   | US Department of Veterans Affairs Office of                    |
|       | Construction and Facilities Management                         |
| CFR   | Consolidated Federal Regulations                               |
| CIO   | Communication Information Officer (Facility, VISN or           |
|       | Region)                                                        |
| cm    | Centimeters                                                    |
| CO    | Central Office                                                 |
| COR   | Contracting Officer Representative                             |
| CPU   | Central Processing Unit                                        |
| CSU   | Customer Service Unit                                          |
| CUP   | Conditional Use Permit(s) - Federal/GSA for VA                 |
| dB    | Decibel                                                        |
| dBm   | Decibel Measured                                               |
| dBmV  | Decibel per milli-Volt                                         |
| DC    | Direct Current                                                 |
| DEA   | United States Drug Enforcement Administration                  |
| DSU   | Data Service Unit                                              |
| EBC   | Equipment Bonding Conductor                                    |
| ECC   | Engineering Control Center (refer to DCR, EMCR)                |
| EDGE  | Enhanced Data (Rates) for GSM Evolution                        |
| EDM   | Electrical Design Manual                                       |
| EMCR  | Emergency Management Control Room (refer to DCR, ECC)          |
| EMI   | Electromagnetic Interference (refer to RFI)                    |
| EMS   | Emergency Medical Service                                      |
| EMT   | Electrical Metallic Tubing or thin wall conduit                |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| ENTR | Utilities Entrance Location (refer to DEMARC, POTS,   |
|------|-------------------------------------------------------|
|      | LEC)                                                  |
| EPBX | Electronic Digital Private Branch Exchange            |
| ESR  | Vendor's Engineering Service Report                   |
| FA   | Fire Alarm                                            |
| FAR  | Federal Acquisition Regulations in Chapter 1 of Title |
|      | 48 of Code of Federal Regulations                     |
| FMS  | VA's Headquarters or Medical Center Facility's        |
|      | Management Service                                    |
| FR   | Frequency (refer to RF)                               |
| FTS  | Federal Telephone Service                             |
| GFE  | Government Furnished Equipment                        |
| GPS  | Global Positioning System                             |
| GRC  | Galvanized Rigid Metal Conduit                        |
| GSM  | Global System (Station) for Mobile                    |
| HCCS | TIP's Horizontal Cross Connection System (refer to    |
|      | CCS & VCCS)                                           |
| HDPE | High Density Polyethylene Conduit                     |
| HDTV | Advanced Television Standards Committee High-         |
|      | Definition Digital Television                         |
| HEC  | Head End Cabinets(refer to HEIC, PA)                  |
| HEIC | Head End Interface Cabinets (refer to HEC, PA)        |
| HF   | High Frequency (Radio Band; Re FR, RF, VHF & UHF)     |
| HSPA | High Speed Packet Access                              |
| HZ   | Hertz                                                 |
| IBT  | Intersystem Bonding Termination (NEC 250.94)          |
| IC   | Intercom                                              |
| ICRA | Infectious Control Risk Assessment                    |
| IDEN | Integrated Digital Enhanced Network                   |
| IDC  | Insulation Displacement Contact                       |
| IDF  | Intermediate Distribution Frame                       |
| ILSM | Interim Life Safety Measures                          |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| 09-01-                                                |
|-------------------------------------------------------|
| Rigid Intermediate Steel Conduit                      |
| Department of Veterans Affairs Office of Information  |
| Resources Management                                  |
| Integrated Services Digital Network                   |
| Industrial, Scientific, Medical                       |
| Intra-Building Wireless System                        |
| Local Area Network                                    |
| Location Based Services, Leased Based Systems         |
| Local Exchange Carrier (refer to DEMARC, PBX & POTS)  |
| Light Emitting Diode                                  |
| Land Mobile Radio                                     |
| Long Term Evolution, or 4G Standard for Wireless Data |
| Communications Technology                             |
| Meter                                                 |
| Medical Administration Service                        |
| Master Antenna Television                             |
| Main Computer Room                                    |
| Main Computer Operators Room                          |
| Main Distribution Frame                               |
| Manholes or Maintenance Holes                         |
| Megaherts (10 <sup>6</sup> Hz)                        |
| Millimeter                                            |
| Memorandum of Understanding                           |
| Microwave (RF Band, Equipment or Services)            |
| Network Interface Device (refer to DEMARC)            |
| National Electric Code                                |
| Network Operations Room                               |
| OSHA Nationally Recognized Testing Laboratory         |
| Nurse Stations                                        |
| U.S. Department of Commerce National                  |
| Telecommunications and Information Administration     |
| Original Equipment Manufacturer                       |
|                                                       |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| OI&T  | Office of Information and Technology                                            |
|-------|---------------------------------------------------------------------------------|
| OPC   | VA's Outpatient Clinic (refer to CBOC, VAMC)                                    |
| OSH   | Department of Veterans Affairs Office of Occupational Safety and Health         |
| OSHA  | United States Department of Labor Occupational Safety and Health Administration |
| OTDR  | Optical Time-Domain Reflectometer                                               |
| PA    | Public Address System (refer to HE, HEIC, RPEC)                                 |
| PBX   | Private Branch Exchange (refer to DEMARC, LEC, POTS)                            |
| PCR   | Police Control Room (refer to SPCC, could be designated SCC)                    |
| PCS   | Personal Communications Service (refer to UPCS)                                 |
| PE    | Professional Engineer                                                           |
| PM    | Project Manager                                                                 |
| PoE   | Power over Ethernet                                                             |
| POTS  | Plain Old Telephone Service (refer to DEMARC, LEC, PBX)                         |
| PSTN  | Public Switched Telephone Network                                               |
| PSRAS | Public Safety Radio Amplification Systems                                       |
| PTS   | Pay Telephone Station                                                           |
| PVC   | Poly-Vinyl Chloride                                                             |
| PWR   | Power (in Watts)                                                                |
| RAN   | Radio Access Network                                                            |
| RBB   | Rack Bonding Busbar                                                             |
| RE    | Resident Engineer or Senior Resident Engineer                                   |
| RF    | Radio Frequency (refer to FR)                                                   |
| RFI   | Radio Frequency Interference (refer to EMI)                                     |
| RFID  | RF Identification (Equipment, System or Personnel)                              |
| RMC   | Rigid Metal Conduit                                                             |
| RMU   | Rack Mounting Unit                                                              |
| RPEC  | Radio Paging Equipment Cabinets(refer to HEC, HEIC, PA)                         |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| RTLS | Real Time Location Service or System                 |
|------|------------------------------------------------------|
| RUS  | Rural Utilities Service                              |
| SCC  | Security Control Console (refer to PCR, SPCC)        |
| SMCS | Spectrum Management and Communications Security      |
|      | (COMSEC)                                             |
| SFO  | Solicitation for Offers                              |
| SME  | Subject Matter Experts (refer to AHJ)                |
| SMR  | Specialized Mobile Radio                             |
| SMS  | Security Management System                           |
| SNMP | Simple Network Management Protocol                   |
| SPCC | Security Police Control Center (refer to PCR, SMS)   |
| STP  | Shielded Balanced Twisted Pair (refer to UTP)        |
| STR  | Stacked Telecommunications Room                      |
| TAC  | VA's Technology Acquisition Center, Austin, Texas    |
| TCO  | Telecommunications Outlet                            |
| TER  | Telephone Equipment Room                             |
| TGB  | Telecommunications Grounding Busbar (also Secondary  |
|      | Bonding Busbar (SBB))                                |
| TIP  | Telecommunications Infrastructure Plant              |
| TMGB | Telecommunications Main Grounding Busbar (also       |
|      | Primary Bonding Busbar (PBB))                        |
| TMS  | Traffic Management System                            |
| TOR  | Telephone Operators Room                             |
| TP   | Balanced Twisted Pair (refer to STP and UTP)         |
| TR   | Telecommunications Room (refer to STR)               |
| TWP  | Twisted Pair                                         |
| UHF  | Ultra High Frequency (Radio)                         |
| UMTS | Universal Mobile Telecommunications System           |
| UPCS | Unlicensed Personal Communications Service (refer to |
|      | PCS)                                                 |
|      |                                                      |
|      | Uninterruptible Power Supply                         |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

| UTP   | Unshielded Balanced Twisted Pair (refer to TP and    |
|-------|------------------------------------------------------|
|       | STP)                                                 |
| UV    | Ultraviolet                                          |
| V     | Volts                                                |
| VAAR  | Veterans Affairs Acquisition Regulation              |
| VACO  | Veterans Affairs Central Office                      |
| VAMC  | VA Medical Center (refer to CBOC, OPC, VACO)         |
| VCCS  | TIP's Vertical Cross Connection System (refer to CCS |
|       | and HCCS)                                            |
| VHF   | Very High Frequency (Radio)                          |
| VISN  | Veterans Integrated Services Network (refers to      |
|       | geographical region)                                 |
| VSWR  | Voltage Standing Wave Radio                          |
| M     | Watts                                                |
| WEB   | World Electronic Broadcast                           |
| WiMAX | Worldwide Interoperability (for MW Access)           |
| WI-FI | Wireless Fidelity                                    |
| WMTS  | Wireless Medical Telemetry Service                   |
| WSP   | Wireless Service Providers                           |

### B. Definitions:

- 1. Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

- 7. NOT USED.
- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

#### 1.3 APPLICABLE PUBLICATIONS

09-01-19

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
  - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
  - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
  - 1. Federal Communications Commission, (FCC) CFR, Title 47: Restrictions of use for Part 15 listed RF Part 15 Equipment in Safety of Life Emergency Functions and Equipment Locations Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration National Telecommunications and Information Chapter XXIII Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book' - Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
  - 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants

RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations

RUS Bull 1751F-643 Underground Plant Design Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | Bancro               | oft Architects + Engineers                        |
|----|----------------------|---------------------------------------------------|
|    | RUS Bull 1751F-815   | 09-01-19 Electrical Protection of Outside Plants, |
|    | RUS Bull 1753F-201   | Acceptance Tests of Telecommunications Plants     |
|    |                      | (PC-4)                                            |
|    | RUS Bull 1753F-401   | Splicing Copper and Fiber Optic Cables (PC-2)     |
|    | RUS Bull 345-50      | Trunk Carrier Systems (PE-60)                     |
|    | RUS Bull 345-65      | Shield Bonding Connectors (PE-65)                 |
|    | RUS Bull 345-72      | Filled Splice Closures (PE-74)                    |
|    | RUS Bull 345-83      | Gas Tube Surge Arrestors (PE-80)                  |
| 3. | US Department of Com | merce/National Institute of Standards             |
|    | Technology, (NIST):  |                                                   |
|    | FIPS PUB 1-1         | Telecommunications Information Exchange           |
|    | FIPS PUB 100/1       | Interface between Data Terminal Equipment (DTE)   |
|    |                      | Circuit Terminating Equipment for operation       |
|    |                      | with Packet Switched Networks, or Between Two     |
|    |                      | DTEs, by Dedicated Circuit                        |
|    | FIPS PUB 140/2       | Telecommunications Information Security           |
|    |                      | Algorithms                                        |
|    | FIPS PUB 143         | General Purpose 37 Position Interface between     |
|    |                      | DTE and Data Circuit Terminating Equipment        |
|    | FIPS 160/2           | Electronic Data Interchange (EDI),                |
|    | FIPS 175             | Federal Building Standard for                     |
|    |                      | Telecommunications Pathway and Spaces             |
|    | FIPS 191             | Guideline for the Analysis of Local Area          |
|    |                      | Network Security                                  |
|    | FIPS 197             | Advanced Encryption Standard (AES)                |
|    | FIPS 199             | Standards for Security Categorization of          |
|    |                      | Federal Information and Information Systems       |
| 4. | US Department of Def | ense, (DoD):                                      |
|    | MIL-STD-188-110      | Interoperability and Performance Standards for    |
|    |                      | Data Modems                                       |
|    | MIL-STD-188-114      | Electrical Characteristics of Digital Interface   |
|    |                      | Circuits                                          |
|    | MIL-STD-188-115      | Communications Timing and Synchronizations        |
|    |                      | Subsystems                                        |
|    | MIL-C-28883          | Advanced Narrowband Digital Voice Terminals       |
|    |                      |                                                   |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

MIL-C-39012/21 Connectors, Receptacle, Electrical, Coaxial,
Radio Frequency, (Series BNC (Uncabled), Socket
Contact, Jam Nut Mounted, Class 2)

- 5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules
- 6. US Department of Justice: 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).
- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at https://www.osha.gov/dts/otpca/nrtl/nrtllist.ht mlSubpart 35 Compliance with NFPA 101, Life Safety Code Subpart 36 Design and Construction Requirements for Exit Routes Subpart 268 Telecommunications Subpart 305 Wiring Methods, Components, and Equipment for General Use Subpart 508 Americans with Disabilities Act Accessibility Guidelines; technical requirement for accessibility to buildings and facilities by
- 8. US Department of Transportation, (DoT):
  - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 Antenna Construction Registration Forms.

individuals with disabilities

- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
  - a. CoG, "Continuance of Government" communications guidelines and compliance.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- b. COMSEC, "VA wide coordination and control of security classified communication assets."
- c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/laws-regs/regulations/standardnumber/1926
  - 1. Canadian Standards Association (CSA); same tests as presented by UL

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
- 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
- 4. Underwriters Laboratory (UL):

|                    | <u> </u>                                        |
|--------------------|-------------------------------------------------|
| 1-2005             | Flexible Metal Conduit                          |
| 5-2011             | Surface Metal Raceway and Fittings              |
| 6-2007             | Rigid Metal Conduit                             |
| 44-010             | Thermoset-Insulated Wires and Cables            |
| 50-1995            | Enclosures for Electrical Equipment             |
| 65-2010            | Wired Cabinets                                  |
| 83-2008            | Thermoplastic-Insulated Wires and Cables        |
| 96-2005            | Lightning Protection Components                 |
| 96A-2007           | Installation Requirements for Lightning         |
|                    | Protection Systems                              |
| 360-2013           | Liquid-Tight Flexible Steel Conduit             |
| 444-2008           | Communications Cables                           |
| 467-2013           | Grounding and Bonding Equipment                 |
| 486A-486B-2013     | Wire Connectors                                 |
| 486C-2013          | Splicing Wire Connectors                        |
| 486D-2005          | Sealed Wire Connector Systems                   |
| 486E-2009          | Standard for Equipment Wiring Terminals for Use |
|                    | with Aluminum and/or Copper Conductors          |
| 493-2007           | Thermoplastic-Insulated Underground Feeder and  |
|                    | Branch Circuit Cable                            |
| 497/497A/497B/497C |                                                 |
| 497D/497E          | Protectors for Paired Conductors/Communications |
|                    | Circuits/Data Communications and Fire Alarm     |
|                    | Circuits/coaxial circuits/voltage               |
|                    | protections/Antenna Lead In                     |
| 510-2005           | Polyvinyl Chloride, Polyethylene and Rubber     |
|                    | Insulating Tape                                 |
| 514A-2013          | Metallic Outlet Boxes                           |
| 514B-2012          | Fittings for Cable and Conduit                  |
| 514C-1996          | Nonmetallic Outlet Boxes, Flush-Device Boxes    |
|                    | and Covers                                      |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| .1Ω | Bancroft Architects + Engineers<br>09-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19  | 651-2011 Schedule 40 and 80 Rigid PVC Conduit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 651A-2011 Type EB and A Rigid PVC Conduit and HDPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Conduit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 797-2007 Electrical Metallic Tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 884-2011 Underfloor Raceways and Fittings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 1069-2007 Hospital Signaling and Nurse Call Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 1242-2006 Intermediate Metal Conduit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 1449-2006 Standard for Transient Voltage Surge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | Suppressors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 1479-2003 Fire Tests of Through-Penetration Fire Stops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 1480-2003 Speaker Standards for Fire Alarm, Emergency,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Commercial and Professional use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 1666-2007 Standard for Wire/Cable Vertical (Riser) Tray                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Flame Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| е   | 1685-2007 Vertical Tray Fire Protection and Smoke Relea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Test for Electrical and Fiber Optic Cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 1861-2012 Communication Circuit Accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 1863-2013 Standard for Safety, communications Circuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Accessories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 1865-2007 Standard for Safety for Vertical-Tray Fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | Protection and Smoke-Release Test for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | Electrical and Optical-Fiber Cables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 2024-2011 Standard for Optical Fiber Raceways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | 2024-2014 Standard for Cable Routing Assemblies and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | Communications Raceways                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 2196-2001 Standard for Test of Fire Resistive Cable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | 60950-1 ed. 2-2014 Information Technology Equipment Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | . Industry Standards:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 1. Advanced Television Systems Committee (ATSC):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | A/53 Part 1: 2013 ATSC Digital Television Standard, Part 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Digital Television System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | A/53 Part 2: 2011 ATSC Digital Television Standard, Part 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | RF/Transmission System Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | A/53 Part 3: 2013 ATSC Digital Television Standard, Part 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | Service Multiplex and Transport System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | Commercial and Professional use  1666-2007 Standard for Wire/Cable Vertical (Riser) Tray Flame Tests  1685-2007 Vertical Tray Fire Protection and Smoke Relea Test for Electrical and Fiber Optic Cables  1861-2012 Communication Circuit Accessories  1863-2013 Standard for Safety, communications Circuits Accessories  1865-2007 Standard for Safety for Vertical-Tray Fire Protection and Smoke-Release Test for Electrical and Optical-Fiber Cables  2024-2011 Standard for Optical Fiber Raceways  2024-2014 Standard for Cable Routing Assemblies and Communications Raceways  2196-2001 Standard for Test of Fire Resistive Cable 60950-1 ed. 2-2014 Information Technology Equipment Safety  D. Industry Standards:  1. Advanced Television Systems Committee (ATSC):  A/53 Part 1: 2013 ATSC Digital Television Standard, Part 1, Digital Television System  A/53 Part 2: 2011 ATSC Digital Television Standard, Part 2, RF/Transmission System Characteristics  A/53 Part 3: 2013 ATSC Digital Television Standard, Part 3, Service Multiplex and Transport System |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|    | Daner                 | 09-01-19                                         |
|----|-----------------------|--------------------------------------------------|
|    | A/53 Part 4: 2009     | ATSC Digital Television Standard, Part 4, MPEG-  |
|    |                       | 2 Video System Characteristics                   |
|    | A/53 Part 5: 2014     | ATSC Digital Television Standard, Part 5, AC-3   |
|    |                       | Audio System Characteristics                     |
|    | A/53 Part 6: 2014     | ATSC digital Television Standard, Part 6,        |
|    |                       | Enhanced AC-3 Audio System Characteristics       |
| 2. | American Institute o  | f Architects (AIA): 2006 Guidelines for Design & |
|    | Construction of Heal  | th Care Facilities.                              |
| 3. | American Society of 1 | Mechanical Engineers (ASME):                     |
|    | A17.1 (2013)          | Safety Code for Elevators and Escalators         |
|    |                       | Includes Requirements for Elevators,             |
|    |                       | Escalators, Dumbwaiters, Moving Walks, Material  |
|    |                       | Lifts, and Dumbwaiters with Automatic Transfer   |
|    |                       | Devices                                          |
|    | 17.3 (2011)           | Safety Code for Existing Elevators and           |
|    |                       | Escalators                                       |
|    | 17.4 (2009)           | Guide for Emergency Personnel                    |
|    | 17.5 (2011)           | Elevator and Escalator Electrical Equipment      |
| 4. | American Society for  | Testing and Materials (ASTM):                    |
|    | B1 (2001)             | Standard Specification for Hard-Drawn Copper     |
|    |                       | Wire                                             |
|    | B8 (2004)             | Standard Specification for Concentric-Lay-       |
|    |                       | Stranded Copper Conductors, Hard, Medium-Hard,   |
|    |                       | or Soft                                          |
|    | D1557 (2012)          | Standard Test Methods for Laboratory Compaction  |
|    |                       | Characteristics of Soil Using Modified Effort    |
|    |                       | 56,000 ft-lbf/ft3 (2,700 kN-m/m3)                |
|    | D2301 (2004)          | Standard Specification for Vinyl Chloride        |
|    |                       | Plastic Pressure Sensitive Electrical            |
|    |                       | Insulating Tape                                  |
|    | B258-02 (2008)        | Standard Specification for Standard Nominal      |
|    |                       | Diameters and Cross-Sectional Areas of AWG       |
|    |                       | Sizes of Solid Round Wires Used as Electrical    |
|    |                       | Conductors                                       |
|    | D709-01(2007)         | Standard Specification for Laminated             |
|    |                       | Thermosetting Materials                          |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19 D4566 (2008) Standard Test Methods for Electrical Performance Properties of Insulations and Jackets for Telecommunications Wire and Cable 5. American Telephone and Telegraph Corporation (AT&T) - Obtain following AT&T Publications at https://ebiznet.sbc.com/sbcnebs/ ATT-TP-76200 (2013) Network Equipment and Power Grounding, Environmental, and Physical Design Requirements ATT-TP-76300(2012) Merged AT&T Affiliate Companies Installation Requirements ATT-TP-76305 (2013) Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways ATT-TP-76306 (2009) Electrostatic Discharge Control ATT-TP-76400 (2012) Detail Engineering Requirements ATT-TP-76402 (2013) AT&T Raised Access Floor Engineering and Installation Requirements ATT-TP-76405 (2011) Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments ATT-TP-76416 (2011) Grounding and Bonding Requirements for Network Facilities ATT-TP-76440 (2005) Ethernet Specification ATT-TP-76450 (2013) Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces ATT-TP-76461 (2008) Fiber Optic Cleaning ATT-TP-76900 (2010) AT&T Installation Testing Requirement ATT-TP-76911 (1999) AT&T LEC Technical Publication Notice 6. British Standards Institution (BSI): BS EN 50109-2 Hand Crimping Tools - Tools for The Crimp Termination of Electric Cables and Wires for Low Frequency and Radio Frequency Applications - All Parts & Sections. October 1997 7. Building Industry Consulting Service International (BICSI):

ANSI/BICSI 004-2012 Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities

ANSI/BICSI 002-2011 Data Center Design and Implementation Best

Practices

### CORRECT ISOLATION ROOM ISSUES

L 9

|     | Bancro               | oft Architects + Engineers                      |
|-----|----------------------|-------------------------------------------------|
|     | ANSI/NECA/BICSI      | 09-01-19                                        |
|     | 568-2006             | Standard for Installing Commercial Building     |
|     |                      | Telecommunications Cabling                      |
|     | NECA/BICSI 607-2011  | Standard for Telecommunications Bonding and     |
|     |                      | Grounding Planning and Installation Methods for |
|     |                      | Commercial Buildings                            |
|     | ANSI/BICSI 005-2013  | Electronic Safety and Security (ESS) System     |
|     |                      | Design and Implementation Best Practices        |
| 8.  | Electronic Component | s Assemblies and Materials Association, (ECA).  |
|     | ECA EIA/RS-270 (1973 | )Tools, Crimping, Solderless Wiring Devices -   |
|     |                      | Recommended Procedures for User Certification   |
|     | EIA/ECA 310-E (2005) | Cabinets, and Associated Equipment              |
| 9.  | Facility Guidelines  | Institute: 2010 Guidelines for Design and       |
|     | Construction of Heal | th Care Facilities.                             |
| 10. | Insulated Cable Engi | neers Association (ICEA):                       |
|     | ANSI/ICEA            |                                                 |
|     | S-80-576-2002        | Category 1 & 2 Individually Unshielded Twisted- |
|     |                      | Pair Indoor Cables for Use in Communications    |
|     |                      | Wiring Systems                                  |
|     | ANSI/ICEA            |                                                 |
|     | S-84-608-2010        | Telecommunications Cable, Filled Polyolefin     |
|     |                      | Insulated Copper Conductor, S-87-640(2011)      |
|     |                      | Optical Fiber Outside Plant Communications      |
|     |                      | Cable                                           |
|     | ANSI/ICEA            |                                                 |
|     | S-90-661-2012        | Category 3, 5, & 5e Individually Unshielded     |
|     |                      | Twisted-Pair Indoor Cable for Use in General    |
|     |                      | Purpose and LAN Communication Wiring Systems    |
|     | S-98-688 (2012)      | Broadband Twisted Pair Cable Aircore,           |
|     |                      | Polyolefin Insulated, Copper Conductors         |
|     | S-99-689 (2012)      | Broadband Twisted Pair Cable Filled, Polyolefin |
|     |                      |                                                 |

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

ICEA S-102-700

(2004)

Insulated, Copper Conductors

Category 6 Individually Unshielded Twisted Pair

Indoor Cables (With or Without an Overall

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

Shield) for use in Communications Wiring Systems Technical Requirements

| 11. | Institute | of | Electrical | and | Electronics | Engineers | (IEEE): |
|-----|-----------|----|------------|-----|-------------|-----------|---------|
|-----|-----------|----|------------|-----|-------------|-----------|---------|

| ISSN 0739-5175  | March-April 2008 Engineering in Medicine and   |
|-----------------|------------------------------------------------|
|                 | Biology Magazine, IEEE (Volume: 27, Issue:2)   |
|                 | Medical Grade-Mission Critical-Wireless        |
|                 | Networks                                       |
| IEEE C2-2012    | National Electrical Safety Code (NESC)         |
| C62.41.2-2002/  |                                                |
| Cor 1-2012 IEEE | Recommended Practice on Characterization of    |
|                 | Surges in Low-Voltage (1000 V and Less) AC     |
|                 | Power Circuits 4)                              |
| C62.45-2002     | IEEE Recommended Practice on Surge Testing for |
|                 | Equipment Connected to Low-Voltage (1000 V and |
|                 | Less) AC Power Circuits                        |
| 81-2012 IEEE    | Guide for Measuring Earth Resistivity, Ground  |
|                 | Impedance, and Earth Surface Potentials of a   |
|                 | Grounding System                               |
| 100-1992        | IEEE the New IEEE Standards Dictionary of      |
|                 | Electrical and Electronics Terms               |
| 602-2007        | IEEE Recommended Practice for Electric Systems |
|                 | in Health Care Facilities                      |
| 1100-2005       | IEEE Recommended Practice for Powering and     |
|                 |                                                |

12. International Code Council:

AC193 (2014) Mechanical Anchors in Concrete Elements

13. International Organization for Standardization (ISO):

ISO/TR 21730 (2007) Use of Mobile Wireless Communication and
Computing Technology in Healthcare Facilities Recommendations for Electromagnetic
Compatibility (Management of Unintentional
Electromagnetic Interference) with Medical
Devices

Grounding Electronic Equipment

14. National Electrical Manufacturers Association (NEMA):

NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum)

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

|     | Bancic               | OLU ALCHILECUS   ENGINEELS                            | ^  |
|-----|----------------------|-------------------------------------------------------|----|
|     | ANSI C62.61 (1993)   | 09-01-1 American National Standard for Gas Tube Surge | 9  |
|     |                      | Arresters on Wire Line Telephone Circuits             |    |
|     | ANSI/NEMA FB 1 (2012 | )Fittings, Cast Metal Boxes and Conduit Bodies        |    |
|     |                      | for Conduit, Electrical Metallic Tubing EMT)          |    |
|     |                      | and Cable                                             |    |
|     | ANSI/NEMA OS 1 (2009 | )Sheet-Steel Outlet Boxes, Device Boxes, Covers,      |    |
|     |                      | and Box Supports                                      |    |
|     | NEMA SB 19 (R2007)   | NEMA Installation Guide for Nurse Call Systems        |    |
|     | TC 3 (2004)          | Polyvinyl Chloride (PVC) Fittings for Use with        |    |
|     |                      | Rigid PVC Conduit and Tubing                          |    |
|     | NEMA VE 2 (2006)     | Cable Tray Installation Guidelines                    |    |
| 15. | National Fire Protec | tion Association (NFPA):                              |    |
|     | 70E-2015             | Standard for Electrical Safety in the Workplace       | :  |
|     | 70-2014              | National Electrical Code (NEC)                        |    |
|     | 72-2013              | National Fire Alarm Code                              |    |
|     | 75-2013              | Standard for the Fire Protection of Information       |    |
|     |                      | Technological Equipment                               |    |
|     | 76-2012              | Recommended Practice for the Fire Protection of       |    |
|     |                      | Telecommunications Facilities                         |    |
|     | 77-2014              | Recommended Practice on Static Electricity            |    |
|     | 90A-2015             | Standard for the Installation of Air                  |    |
|     |                      | Conditioning and Ventilating Systems                  |    |
|     | 99-2015              | Health Care Facilities Code                           |    |
|     | 101-2015             | Life Safety Code                                      |    |
|     | 241                  | Safeguarding construction, alternation and            |    |
|     |                      | Demolition Operations                                 |    |
|     | 255-2006             | Standard Method of Test of Surface Burning            |    |
|     |                      | Characteristics of Building Materials                 |    |
|     | 262 - 2011           | Standard Method of Test for Flame Travel and          |    |
|     |                      | Smoke of Wires and Cables for Use in Air-             |    |
|     |                      | Handling Spaces                                       |    |
|     | 780-2014             | Standard for the Installation of Lightning            |    |
|     |                      | Protection Systems                                    |    |
|     | 1221-2013            | Standard for the Installation, Maintenance, and       | ļ. |
|     |                      | Use of Emergency Services Communications              |    |
|     |                      | Systems                                               |    |
|     |                      |                                                       |    |

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

|     |                      | 09-01-19                                        |
|-----|----------------------|-------------------------------------------------|
|     | 5000-2015            | Building Construction and Safety Code           |
| 16. | Society for Protecti | ve Coatings (SSPC):                             |
|     | SSPC SP 6/NACE No.3  | (2007) Commercial Blast Cleaning                |
| 17. | Society of Cable Tel | ecommunications Engineers (SCTE):               |
|     | ANSI/SCTE 15 2006    | Specification for Trunk, Feeder and             |
|     |                      | Distribution Coaxial Cable                      |
| 18. | Telecommunications I | ndustry Association (TIA):                      |
|     | TIA-120 Series       | Telecommunications Land Mobile communications   |
|     |                      | (APCO/Project 25) (January 2014)                |
|     | TIA TSB-140          | Additional Guidelines for Field-Testing Length, |
|     |                      | Loss and Polarity of Optical Fiber Cabling      |
|     |                      | Systems (2004)                                  |
|     | TIA-155              | Guidelines for the Assessment and Mitigation of |
|     |                      | Installed Category 6 Cabling to Support         |
|     |                      | 10GBASE-T (2010)                                |
|     | TIA TSB-162-A        | Telecommunications Cabling Guidelines for       |
|     |                      | Wireless Access Points (2013)                   |
|     | TIA-222-G            | Structural Standard for Antenna Supporting      |
|     |                      | Structures and Antennas (2014)                  |
|     | TIA/EIA-423-B        | Electrical Characteristics of Unbalanced        |
|     |                      | Voltage Digital Interface Circuits (2012)       |
|     | TIA-455-C            | General Requirements for Standard Test          |
|     |                      | Procedures for Optical Fibers, Cables,          |
|     |                      | Transducers, Sensors, Connecting and            |
|     |                      | Terminating Devices, and other Fiber Optic      |
|     |                      | Components (August 2014)                        |
|     | TIA-455-53-A         | FOTP-53 Attenuation by Substitution             |
|     |                      | Measurements for Multimode Graded-Index Optical |
|     |                      | Fibers in Fiber Assemblies (Long Length)        |
|     |                      | (September 2001)                                |
|     | TIA-455-61-A         | FOTP-61 Measurement of Fiber of Cable           |
|     |                      | Attenuation Using an OTDR (July 2003)           |
|     | TIA-472D000-B        | Fiber Optic Communications Cable for Outside    |
|     |                      |                                                 |

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121

Plant Use (July 2007)

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| Bancr              | oit Architects + Engineers                                     |
|--------------------|----------------------------------------------------------------|
| ANSI/TIA-492-B     | 09-01-19<br>62.5-μ Core Diameter/125-um Cladding Diameter      |
|                    | Class 1a Graded-Index Multimode Optical Fibers (November 2009) |
| ANSI/TIA-492AAAB-A | 50-um Core Diameter/125-um Cladding Diameter                   |
|                    | Class IA Graded-Index Multimode Optically                      |
|                    | Optimized American Standard Fibers (November                   |
|                    | 2009                                                           |
| TIA-492CAAA        | Detail Specification for Class IVa Dispersion-                 |
|                    | Unshifted Single-Mode Optical Fibers (September                |
|                    | 2002)                                                          |
| TIA-492E000        | Sectional Specification for Class IVd Nonzero-                 |
|                    | Dispersion Single-Mode Optical Fibers for the                  |
|                    | 1,550 nm Window (September 2002)                               |
| TIA-526-7-B        | Measurement of Optical Power Loss of Installed                 |
|                    | Single-Mode Fiber Cable Plant - OFSTP-7                        |
|                    | (December 2008)                                                |
| TIA-526.14-A       | Optical Power Loss Measurements of Installed                   |
|                    | Multimode Fiber Cable Plant - SFSTP-14 (August                 |
|                    | 1998)                                                          |
| TIA-568            | Revision/Edition: C Commercial Building                        |
|                    | Telecommunications Cabling Standard Set: (TIA-                 |
|                    | 568-C.0-2 Generic Telecommunications Cabling                   |
|                    | for Customer Premises (2012), TIA-568-C.1-1                    |
|                    | Commercial Building Telecommunications Cabling                 |
|                    | Standard Part 1: General Requirements (2012),                  |
|                    | TIA-568-C.2 Commercial Building                                |
|                    | Telecommunications Cabling Standard-Part 2:                    |
|                    | Balanced Twisted Pair Cabling Components                       |
|                    | (2009), TIA-568-C.3-1 Optical Fiber Cabling                    |
|                    | Components Standard, (2011) AND TIA-568-C.4                    |
|                    | Broadband Coaxial Cabling and Components                       |
|                    | Standard (2011) with addendums and erratas                     |
| TIA-569            | Revision/Edition C Telecommunications Pathways                 |
|                    | and Spaces (March 2013)                                        |
| TIA-574            | Position Non-Synchronous Interface between Data                |
|                    | Terminal equipment and Data Circuit Terminating                |

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

| ballCI         | on of the                                              |
|----------------|--------------------------------------------------------|
|                | 09-01-19 Equipment Employing Serial Binary Interchange |
|                | (May 2003)                                             |
| TIA/EIA-590-A  | Standard for Physical Location and Protection          |
|                | of Below Ground Fiber Optic Cable Plant (July          |
|                | 2001)                                                  |
| TIA-598-D      | Optical Fiber Cable Color Coding (January 2005)        |
| TIA-604-10-B   | Fiber Optic Connector Intermateablility                |
|                | Standard (August 2008)                                 |
| ANSI/TIA-606-B | Administration Standard for Telecommunications         |
|                | Infrastructure (2012)                                  |
| TIA-607-B      | Generic Telecommunications Bonding and                 |
|                | Grounding (Earthing) For Customer Premises             |
|                | (January 2013)                                         |
| TIA-613        | High Speed Serial Interface for Data Terminal          |
|                | Equipment and Data Circuit Terminal Equipment          |
|                | (September 2005)                                       |
| ANSI/TIA-758-B | Customer-owned Outside Plant Telecommunications        |
|                | Infrastructure Standard (April 2012)                   |
| ANSI/TIA-854   | A Full Duplex Ethernet Specification for 1000          |
|                | Mb/s (1000BASE-TX) Operating over Category 6           |
|                | Balanced Twisted-Pair Cabling (2001)                   |
| ANSI/TIA-862-A | Building Automation Systems Cabling Standard           |
|                | (April 2011)                                           |
| TIA-942-A      | Telecommunications Infrastructure Standard for         |
|                | Data Centers (March 2014)                              |
| TIA-1152       | Requirements for Field Testing Instruments and         |
|                | Measurements for Balanced Twisted Pair Cabling         |
|                | (September 2009)                                       |
| TIA-1179       | Healthcare Facility Telecommunications                 |
|                | T. C                                                   |

#### 1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as "rack"), reference applies to as many such devices as are required to complete installation.

Infrastructure Standard (July 2010)

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

#### 1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
  - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
  - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
  - 3. NOT USED.
  - 4. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
  - 5. NOT USED.
  - 6. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
  - 7. Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
  - 8. General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
  - 9. NOT USED.
  - 10. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
  - 11. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
  - 12. Wiring devices: Section 26 27 26, WIRING DEVICES.

### 1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
  - 1. Use of premises is restricted at times directed by COR.
  - 2. Movement of materials: Unload materials and equipment delivered to
  - 3. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
  - 4. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
  - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
  - 2. Coordinate with related work indicated on drawings or specified.
  - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

#### 1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
  - 1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
  - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
  - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
  - 1. Installation location and name.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- Owner's name and contact information including, address, telephone and email.
- 3. Date of project start and date of final acceptance.
- 4. System project number.
- 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.

### H. Test Equipment List:

- Supply test equipment of accuracy better than parameters to be tested.
- 2. Submit test equipment list including make and model number:
  - a. ANSI/TIA-1152 Level IV twisted pair cabling test instrument.
  - b. Optical time domain reflectometer (OTDR).
  - c. Volt-Ohm meter.
  - d. Digital camera.
- 3. Supply only test equipment with a calibration tag from Government-accepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.

### I. Submittal Drawings:

- 1. Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
  - a. Telecommunications rooms.
  - b. Building Entrance Facility/Demarcation rooms.
  - c. Server rooms/Data Center.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- d. Equipment rooms.
- e. Antenna Head End rooms.
- 2. Logical Drawings: Provide logical riser or schematic drawings for all systems.
  - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

#### 1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
  - 1. Warranty certificate.
  - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
  - 3. Project record documents.
  - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
  - 1. Prepare a manual for each system and equipment specified.
  - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
  - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
  - 4. Furnish remaining manuals prior to final completion.
  - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
  - 6. Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
  - 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
  - 8. Operation and Maintenance Data includes:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- a. Approved shop drawing for each item of equipment.
- b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
- c. A control sequence describing start-up, operation, and shutdown.
- d. Description of function of each principal item of equipment.
- e. Installation and maintenance instructions.
- f. Safety precautions.
- g. Diagrams and illustrations.
- h. Test Results and testing methods.
- i. Performance data.
- j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
- k. Warranty documentation indicating end date and equipment protected under warranty.
- 1. Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.

### C. Record Wiring Diagrams:

- 1. Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
- 2. General Drawing Specifications: Detail and elevation drawings to be
  D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale
  of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other
  enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm
  (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch =
  12 inches). Building composite floor plan drawings to be D size 61
  cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175
  mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

### 4. Floor plans to include:

- a. Final room numbers and actual backbone cabling and pathway locations and labeling.
- b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
- c. Device locations with labels.
- d. Conduit.
- e. Head-end equipment.
- f. Wiring diagram.
- g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- 6. Deliver Record Wiring Diagrams as CAD files in .dwg or .rvt formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within eight hours of receipt of notification service is needed.

### 1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
  - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
  - 2. One coupling, bushing and termination fitting for each type of conduit.
  - 3. Samples of each hanger, clamp and supports for conduit and pathways.
  - 4. Duct sealing compound.

### 1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
  - 1. OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- 2. Government reserves the right to require a list of installations where products have been in operation before approval.
- 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
  - 1. Comply with FAR clause 52.236-5 for material and workmanship.
  - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
  - 3. Equipment Assemblies and Components:
    - a. Components of an assembled unit need not be products of same manufacturer.
    - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
    - c. Provide compatible components for assembly and intended service.
    - d. Constituent parts which are similar must be product of a single manufacturer.
  - 4. Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
  - 1. When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

### 1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
  - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
  - 2. Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
  - 1. Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
    - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
    - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
    - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

#### 1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

#### 1.13 WARRANTY

- A. Comply with FAR clause 52.246-21.
  - Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.
- 2. Government maintenance personnel must have ability to contact OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time; contractor and OEM must provide this capability.

#### PART 2 - PRODUCTS

#### 2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.
- C. Modification to administrative issues requires written approvals from COR with concurrence from SMCS 005OP2H3, OEM, contractor, and local authorities.

### 2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

### 2.3 UNDERGROUND WARNING TAPE (NOT USED)

### 2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

#### 2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.
- 2.6 UNDERGROUND CABLES (NOT USED)
- 2.7 AERIAL (ABOVEGROUND) ENCLOSURES (NOT USED)
- 2.8 TEMPORARY TIP PATHS (OVERHEAD TRACKS, ROAD/PATH BRIDGES, ETC.) (NOT USED)

#### 2.9 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

### PART 3 - EXECUTION

#### 3.1 PREPARATION

- A. Penetrations and Sleeves:
  - 1. Lay out penetration and sleeve openings in advance, to permit provision in work.
  - 2. Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
  - 3. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
  - 4. Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
  - 5. Fill slots, sleeves and other openings in floors or walls if not used.
    - a. Fill spaces in openings after installation of conduit or cable.
    - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
    - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- 6. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
- 7. Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 8. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- 9. Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 10. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 11. Do not support piping risers or conduit on sleeves.
- 12. Identify unused sleeves and slots for future installation.
- 13. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.

#### B. Core Drilling:

- 1. Avoid core drilling whenever possible.
- 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
- 3. Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
- 4. Protect areas from damage.

## C. Verification of In-Place Conditions:

- Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
  - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
  - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

conditions and then only after arranging to provide temporary utility services, according to requirements indicated:

- a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
- b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

### 3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

### 3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
  - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.

#### 3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

#### 3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
  - 1. Remove samples of installed work as specified for testing.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- 2. Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
- 3. Remove and replace defective work.
- 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

### 3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
  - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
  - 1. Project has been inspected for compliance with documents.
  - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.

- COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
- 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.

#### G. Tests:

- 1. Interim inspection is required at approximately 50 percent of installation.
- 2. Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
- 3. Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
- 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
- 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.
- 6. Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
- 7. Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
- b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
- c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
  - a. Additional inspections are scheduled at direction of COR.
  - b. Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
  - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
  - 1. Pretesting Procedure:
    - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
    - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical,

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.

- 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
  - a. TR interconnections.
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.

#### I. Acceptance Test:

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- 2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
  - a. COR.
  - b. OEM representatives.
  - c. VACO:
    - 1) CFM representative.
    - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
  - d. VISN-CIO, Network Officer and VISN representatives.
  - e. Facility:
    - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
    - 2) OI&T Service Chief and OI&T representatives.
    - 3) Safety Officer, Police Chief and facility safety representatives.
  - f. Local Community Safety Personnel:
    - 1) Fire Marshal representative.
    - 2) Disaster Coordinator representative.
    - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
- 4. Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
  - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
  - 2) Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
  - 3) Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
  - 4) If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.

### J. Acceptance Test Procedure:

- Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
- 2. A system inventory including available spare parts must be taken at this time.
- 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
- 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
- 5. Inventory system diagrams, record drawings, equipment manuals, pretest results.
- 6. Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.

#### K. Operational Test:

- 1. Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
- 2. Government's Condition of Acceptance of System Language:

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
- b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
  - 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
  - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
  - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

### 3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

09-01-19

- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

#### 3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

### 3.9 PROTECTION

- A. Protection of Fireproofing:
  - 1. Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
  - 2. Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
  - 3. Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

# SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27.

### 1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

#### 1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
  - 1. Certified test reports of ground resistance.
  - 2. Certifications: Two weeks prior to final inspection, submit following to COR:
    - a. Certification materials and installation is in accordance with construction documents.
    - b. Certification complete installation has been installed and tested.

### PART 2 - PRODUCTS

### 2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
  - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
  - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm $^2$  (10 AWG) and smaller.

#### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

#### B. Ground Rods:

- 1. Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- 2. Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
  - 1. Telecommunications Main Grounding Busbar (TMGB):
    - a. 6.4 mm (1/4 inch) thick solid copper bar.
    - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
    - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
      - 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
      - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
    - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
    - e. Listed as grounding and bonding equipment.
  - 2. Telecommunications Grounding Busbar (TGB):
    - a. 6.4 mm (1/4 inch) thick solid copper bar.
    - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
    - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
      - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
      - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
    - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
    - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
  - 1. Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
- b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
- c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each  $12-24 \times 19.1 \text{ mm}$  (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- 2. Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
  - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
  - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
  - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
  - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
  - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
  - 1. Electroplated tin aluminum extrusion.
  - 2. Accept conductors ranging from #14 AWG through 2/0.
  - 3. Hold conductors in place by two stainless steel set screws.
  - 4. Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
  - 5. Listed as a wire connector.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm<sup>2</sup> (6 AWG) insulated ground wire with shield bonding connectors.
- H. Irreversible Compression Lugs:
  - 1. Electroplated tinned copper.
  - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
  - 3. Sized to fit the specific size conductor.
  - 4. Listed as wire connectors.
- I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copper-to-copper, aluminum-to-aluminum or aluminum-to-copper connections.

#### PART 3 - EXECUTION

### 3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Conduit Systems:
  - 1. Bond ferrous metallic conduit to ground.
  - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- C. Boxes, Cabinets, and Enclosures:
  - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- D. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- E. Telecommunications Grounding System:
  - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
- 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
- 4. Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.

### 5. Bonding Jumpers:

- a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of  $16~\text{mm}^2$  (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
- b. Use connector manufacturer's compression tool.

### 6. Bonding Jumper Fasteners:

- a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
- b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
- c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.

## F. Telecommunications Room Bonding:

- 1. Telecommunications Grounding Busbars:
  - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
  - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
  - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
- 2. Telephone-Type Cable Rack Systems:
  - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
  - b. Make ground connections by installing bonding jumpers:
    - 1) Install minimum 16 mm<sup>2</sup> (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
    - 2) Install 16 mm $^{2}$  (6 AWG) bonding jumpers across aluminum pan junctions.
- G. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
  - 1. Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
  - 2. At each rack or cabinet containing active equipment or shielded cable terminations:
    - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
    - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
    - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm<sup>2</sup> (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
    - d. Provide 16  $\,\mathrm{mm^2}$  (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- H. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- I. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated  $16~\mathrm{mm}^2$  (6 AWG) ground wire bonding jumpers.

### J. Communications Cable Grounding:

- Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
- Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
- 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.

### K. Communications Raceway Grounding:

- 1. Conduit: Use insulated  $16~\text{mm}^2$  (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
- 2. Cable Tray Systems: Use insulated 16 mm<sup>2</sup> (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.

#### L. Ground Resistance:

- 1. Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
- 2. Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.

### 3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

# SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

#### PART 1 - GENERAL

#### 1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

### 1.2 RELATED WORK

- A. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

### 1.3 SUBMITTALS

- A. Submit the following:
  - 1. Size and location of cabinets, splice boxes and pull boxes.
  - 2. Layout of required conduit penetrations through structural elements.
  - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

### PART 2 - PRODUCTS

### 2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
  - 1. Electrical Metallic Tubing (EMT):
    - a. Maximum Size: 105 mm (4 inches).
    - b. Install only for cable rated 600 volts or less.
    - c. Conform to UL 797, ANSI C80.3.
  - 2. Surface Metal Raceway: Conform to UL 5.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

3. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.

### C. Conduit Fittings:

- 1. Electrical Metallic Tubing Fittings:
  - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
  - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
    - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
    - 2) Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
    - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
  - c. Indent type connectors or couplings are not permitted.
  - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of
     "pot metal" are not permitted.
  - e. Provide OEM approved fittings.
- 2. Flexible Steel Conduit Fittings:
  - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
  - b. Provide clamp type, with insulated throat.
  - c. Provide OEM approved fittings.
- 3. Liquid-tight Flexible Metal Conduit Fittings:
  - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
  - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
  - c. Provide connectors with insulated throats to prevent damage to cable jacket.
  - d. Provide OEM approved fittings.
- 4. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

to prevent wires and cables from changing from one partitioned pathway to another.

- 5. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 6. Expansion and Deflection Couplings:
  - a. Conform to UL 467 and UL 514B.
  - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
  - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
  - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 7. Wireway Fittings: As recommended by wireway OEM.

### D. Conduit Supports:

- 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
- Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
  - 1. Conform to UL-50 and UL-514A.
  - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
  - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
  - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
  - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
  - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
  - 2. Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
  - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
  - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
  - 5. Size: Metric Designator 53 (trade size 2) or smaller.
  - 6. Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
  - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
  - 8. Plenum: Non-metallic communications raceway.
    - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
    - b. UL 94 V-O rating for flame spreading limitation.
  - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
  - 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.

## H. Outlet Boxes:

1. Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

- 2. 2-Gang Tile Box:
  - a. Flush backbox type for installation in block walls.
  - b. Minimum 92 mm (3-5/8 inches) deep.
- I. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- J. Cable Duct Fittings: As recommended by cable duct OEM.

#### PART 3 - EXECUTION

### 3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

| System                                   | Specification Section | Installed Method                                                              |
|------------------------------------------|-----------------------|-------------------------------------------------------------------------------|
| Grounding                                | 27 05 26              | Conduit Not Required                                                          |
| Control, Communication and Signal Wiring | 27 10 00              | Complete Conduit Allowed<br>in Non-Partitioned Cable<br>Tray or Cable Ladders |

#### B. Penetrations:

- 1. Cutting or Holes:
  - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
  - b. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
    - 1) Fill and seal clearances between raceways and openings with fire stop material.
    - 2) Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
  - c. Waterproofing at Floor, Exterior Wall, and Roof Conduit Penetrations:
    - 1) Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS
- C. Conduit Installation:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

- 1. Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
- 2. Install insulated bushings on all conduit ends.
- 3. Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- 4. Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.
- 8. Minimum radius of communication conduit bends:

| Sizes of Conduit Trade Size | Radius of Conduit Bends<br>mm, Inches |
|-----------------------------|---------------------------------------|
| 3/4                         | 150 (6)                               |
| 1                           | 230 (9)                               |
| 1-1/4                       | 350 (14)                              |
| 1-1/2                       | 430 (17)                              |
| 2                           | 525 (21)                              |
| 2-1/2                       | 635 (25)                              |
| 3                           | 775 (31)                              |
| 3-1/2                       | 900 (36)                              |
| 4                           | 1125 (45)                             |

9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

- 10. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- 13. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations or anywhere in this project.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
  - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
  - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
  - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

- 1. In Concrete: (not used)
- E. Furred or Suspended Ceilings and in Walls:
  - 1. Rigid steel. Different type conduits mixed indiscriminately in same system is not permitted.
  - 2. Align and run conduit parallel or perpendicular to building lines.
  - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
  - 1. Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
    - a. Provide rigid steel.
    - b. Different type of conduits mixed indiscriminately in system is not permitted.
  - 2. Align and run conduit parallel or perpendicular to building lines.
  - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
  - 4. Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
  - 5. Surface Metal Raceways: Use only where shown on drawings.
  - 6. Painting:
    - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
    - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
    - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

### G. Expansion Joints:

- 1. Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
- 2. Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
  - 1. Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

- Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
- 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
  - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
  - b. Existing Construction:
    - 1) Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
    - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
    - 3) Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- 8. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- 9. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
  - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

10-01-18

b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

### I. Box Installation:

- 1. Boxes for Concealed Conduits:
  - a. Flush mounted.
  - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- 3. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
  - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
  - 2. Install supports from building structure for vertical runs at intervals not to exceed  $1.2\ \mathrm{m}$  (4 feet) and at each side of joints.
  - Install only in accessible spaces not subject to physical damage or corrosive influences.
  - 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
  - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

## 3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

# SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

### PART 1 - GENERAL

#### 1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27.

### 1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

### 1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
  - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
  - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
  - 3. Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
  - 1. Minimum floor space and ceiling heights.
  - 2. Minimum size of doors for cable reel passage.
- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- E. Provide conduit size requirements.
- F. Closeout Submittals:
  - Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
  - 2. Provide certified OEM sweep test tags from each cable reel to COR.
  - 3. Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
  - 4. Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
  - 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

### PART 2 - PRODUCTS

#### 2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
  - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
  - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
  - 3. Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- 4. Technical Characteristics:
  - a. Length: As required, in 1K (3,000 ft.) reels minimum.
  - b. Connectors: As required by system design.
  - c. Size:
    - 1) 18 AWG, minimum, Outside.
    - 2) 20 AWG, minimum, Inside.
  - d. Color Coding: Required, EIA industry standard.
  - e. Bend Radius: 10 times cable outside diameter.
  - f. Impedance: As required.
  - q. Shield Coverage: As required by OEM specification.
  - h. Attenuation:

| Frequency in MHz | dB per 305 Meter (1,000 feet), maximum |  |
|------------------|----------------------------------------|--|
| 0.7              | 5.2                                    |  |
| 1.0              | 6.5                                    |  |
| 4.0              | 14.0                                   |  |
| 8.0              | 19.0                                   |  |
| 16.0             | 26.0                                   |  |
| 20.0             | 29.0                                   |  |
| 25.0             | 33.0                                   |  |
| 31.0             | 36.0                                   |  |
| 50.0             | 52.0                                   |  |

- E. Distribution System Signal Wires and Cables:
  - Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
  - 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
  - 3. Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
  - 4. Terminate on an item of equipment by direct connection.

### 2.2 COMMUNICATION AND SIGNAL WIRING

A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems; provide not less than TIA Performance Category 5e.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:
  - 1. Provide connectors for transmission lines, and signal extensions to maintain uninterrupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
    - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
    - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
  - 2. Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
    - a. Audio spade lug.
    - b. Punch block.
    - c. Wirewrap.

### 2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
  - 1. System Grounding:
    - a. Provide required cable and installation hardware for effective ground path, including the following:
      - 1) Control Cable Shields.
      - 2) Data Cable Shields.
      - 3) Equipment Racks.
      - 4) Equipment Cabinets.
      - 5) Conduits.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

- 6) Ducts.
- 7) Cable Trays.
- 8) Power Panels.
- 9) Connector Panels.
- 10) Grounding Blocks.
- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- 2. Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- 4. Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
  - 1. Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
    - a. Voice (or Telephone):
      - 1) Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 5e.
      - 2) IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 5e, and the size and type of cable used.

Contract No. 36C26319D0044 Station Project No. 437-21-170 Bancroft-AE Project No. 18-121 06-01-15

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
- 4) Technical Characteristics:
  - a) Number of Horizontal Rows: Minimum 100.
  - b) Number of Terminals per Row: Minimum 4.
  - c) Terminal Protector: Required for each used or unused terminal
  - d) Insulation Splicing: Required between each row of terminals.

### b. Digital or High Speed Data:

- 1) Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
- 2) Technical Characteristics:
  - a) Number of Horizontal Rows: Minimum 2.
  - b) Number of Jacks Per Row: Minimum 24.
  - c) Type of Jacks: RJ45.
  - d) Terminal Protector: Required for each used or unused jack.
  - e) Insulation: Required between each row of jacks.

### 2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

### PART 3 - EXECUTION

## 3.1 INSTALLATION

A. General:

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- 1. Install wiring in cable tray or raceway.
- Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.

### 3. Wire Pulling:

- a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
- b. Use ropes made of nonmetallic material for pulling feeders.
- c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
- d. Pull multiple cables into a single conduit together.

#### B. Installation in Maintenance:

- 1. Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
- 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
- C. Control, Communication and Signal Wiring Installation:
  - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
  - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
  - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
  - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
  - 5. Concealed splices are not allowed.
  - 6. Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
- 8. Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
- 9. Install wires or cables outside of buildings in conduit, secured to solid building structures.
- 10. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).
- 11. Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 12. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
  - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
  - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
  - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
  - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
  - e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
  - f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.

#### D. AC Power:

 Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to

## CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.

- 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
- 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
- 4. Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

### 3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
  - 1. Install a permanent wire marker on each wire at each termination.
  - 2. Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
  - 3. Install labels retaining their markings after cleaning.

#### B. Labeling:

- 1. Industry Standard: ANSI/TIA-606-B.
- 2. Print lettering for voice and data circuits using laser printers; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- 4. Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.

### CORRECT ISOLATION ROOM ISSUES

Bancroft Architects + Engineers

06-01-15

- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- 6. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

### 3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.
- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

- - - E N D - - -