PROJECT SPECIFICATIONS

Department of Veterans Affairs Sioux Falls VA Medical Center Redesign Upgrade Station Generator System – PSDM Redesign VA Project No. 438-18-100

> 100% Construction Documents July 30, 2021

> > Prepared by:

APOGEE CEMS Joint Venture An Alliance for Success

APOGEE**CEMS**

Joint Venture An Alliance for Success

Sioux Falls VA Medical Center Redesign Upgrade Station Generator System-PSDM Project: 438-18-100

Joshua A. VandenEnde, PE Electrical Engineer

Dorell J. Royster, PE Mechanical Engineer

Date: July 30, 2021

DocuSign Envelope ID: 45A84FF9-A781-453E-98AE-91B6FC84109F

APOGEE**CEMS**

Joint Venture An Alliance for Success

Sioux Falls VA Medical Center Redesign Upgrade Station Generator System-PSDM Project: 438-18-100

Scott E. Simmons, PLA Landscape Architect

Riyad S Bannourah, RCDD Sr. Electrical Designer

Date: July 30, 2021

DocuSign Envelope ID: 2E43ADD0-4504-4F88-A839-AC26DB2E3FD9

APOGEE**CEMS**

Joint Venture An Alliance for Success

Sioux Fall VA Medical Center Redesign Upgrade Station Generator System-PSDM Project: 438-18-100

Christopher A. Mooring, PE Civil Engineer

Eric C. Wieters, PE Structural Engineer

Date: July 30, 2021

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTSSection 00 01 10

	DIVISION 01 - GENERAL REQUIREMENTS	DATE
01 00 00	General Requirements	10-17
01 32 16.15	Project Schedules (Small Projects - Design/Bid/Build	04-13
01 33 23	Shop Drawings, Product Data, and Samples	05-17
01 35 26	Safety Requirements	02-17
01 42 19	Reference Standards	05-16
01 45 00	Quality Control	01-18
01 57 19	Temporary Environmental Controls	01-11
01 74 19	Construction Waste Management	09-13
01 81 13	Sustainable Construction Requirements	10-17
01 91 00	General Commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	0.0 1.7
02 41 00	Underground Cherrore Hank Demouse	08-17
02 65 00	Underground Storage Tank Removal	00-10
	DIVISION 03 - CONCRETE	
03 30 53	(Short-Form) Cast-in-Place Concrete	02-16
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 34 19	Metal Building Systems	01-21
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	08-17
23 05 12	General Motor Requirements for HVAC and Steam	08-17
	Generation Equipment	
23 05 13	Common Work Results for Facility Fuel Systems	
23 05 41	Noise and Vibration Control for HVAC Piping and	02-15
	Equipment	
23 07 11	HVAC and Boiler Plant Insulation	02-15
23 08 00	Commissioning of HVAC Systems	11-16
23 09 23	Direct-Digital Control System for HVAC	09-11
23 10 00	Facility Fuel Systems	08-17
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 13	Medium-Voltage Cables	01-17

26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 05 33	Raceway and Boxes for Electrical Systems	01-18
26 05 41	Underground Electrical Construction	01-17
26 05 73	Overcurrent Protective Device Coordination Study	01-18
26 08 00	Commissioning of Electrical Systems	11-16
26 09 23	Lighting Controls	01-18
26 12 19	Pad-Mounted, Liquid-Filled, Medium-Voltage Transformers	01-18
26 13 13	Medium-Voltage Circuit Breaker Switchgear	01-17
26 23 13	Generator Paralleling Controls	01-17
26 24 16	Panelboards	01-18
26 27 26	Wiring Devices	01-18
26 29 21	Enclosed Switches and Circuit Breakers	01-17
26 32 13	Engine Generators	01-18
26 43 13	Surge Protective Devices	01-17
26 51 00	Interior Lighting	01-18
26 56 00	Exterior Lighting	01-18
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	06-15
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	10-18
27 11 00	Communications Equipment Room Fittings	06-15
27 15 00	Communications Structured Cabling	01-16
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	04-18
28 05 13	Conductors and Cables for Electronic Safety and	10-18
	Security	
28 05 28.33	Conduits and Backboxes for Electronic Safety and	09-11
	Security	00.11
28 23 00	Video Surveillance	09-11
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK	
21 20 11	DIVISION 31 - EARTHWORK	10.10
31 20 11	DIVISION 31 - EARTHWORK Earthwork (Short Form)	10-12
31 20 11	DIVISION 31 - EARTHWORK	10-12
31 20 11	DIVISION 31 - EARTHWORK Earthwork (Short Form) DIVISION 32 - EXTERIOR IMPROVEMENTS	10-12
31 20 11	DIVISION 31 - EARTHWORK Earthwork (Short Form) DIVISION 32 - EXTERIOR IMPROVEMENTS Planting	10-12
31 20 11 32 90 00	DIVISION 31 - EARTHWORK Earthwork (Short Form) DIVISION 32 - EXTERIOR IMPROVEMENTS Planting	10-12

SECTION 01 00 00

GENERAL REQUIREMENTS

1.1 SAFETY REQUIREMENTS

A. Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing equipment, and furnish labor and materials and perform work for modifications to Building 1AB air distribution equipment as required by drawings and specifications.
- B. An organized site visit will be held in accordance with FAR 52.236-27 ALT I. Accordingly, offerors or quoters are urged and expected to inspect the site where the work will be performed.
 - (b) Site visits may be arranged during normal duty hours by contacting COR.
- C. Offices of Apogee Consulting Group, P.A. as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his/her duly authorized representative.
- D. All employees of general contractor and subcontractors shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.

1.3 STATEMENT OF BID ITEM(S)

A. **BID ITEM I (BASE BID):**

- Install two 2-megawatt generators per drawings and specifications in pre-fabricated enclosures.
- 2. Install underground fuel storage and piping distribution.
- Install new electrical switchgear distribution in new pre-fab metal enclosed building.
- 4. Provide structural pads per plans and specifications.
- 5. Install new generators with fuel tanks, fuel, fuel piping and distribution per plans and specifications.
- 6. Provide landscaping per plans and specifications.
- 7. Complete project in 365 days from award of contract.

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the Contracting officers representative (COR) for the purpose of security inspections of every area of project including tool boxes and parked machines and take any emergency action.
- B. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
- C. Motor Vehicle Restrictions
 - Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
 - Parking spaces allotted o contractor shall be limited to 5 spaces. A limited number of (2 to 5) permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The

temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.

C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.

(FAR 52.236-10)

- D. Working space and space available for storing materials shall be as indicated on site plans or as determined by COR
- E. Workers are subject to rules of Medical Center.
- F. Phasing:
 - 1. The Medical Center must maintain its operation 24 hours a day 7 days a week. Therefore, any interruption in service must be scheduled and coordinated with the COR to ensure that no lapses in operation occur. It is the CONTRACTOR'S responsibility to develop a work plan and schedule detailing, at a minimum, the procedures to be employed, the equipment and materials to be used, the interim life safety measure to be used during the work, and a schedule defining the duration of the work with milestone subtasks. The work to be outlined shall include, but not be limited to:
 - 2. To insure such executions, Contractor shall furnish the COR with a schedule of approximate dates on which the Contractor intends to accomplish work in each specific area of site, building or portion thereof. In addition, Contractor shall notify the COR two weeks in advance of the proposed date of starting work in each specific area of site, building or portion thereof. Arrange such dates to insure

> accomplishment of this work in successive phases mutually agreeable to COR and Contractor referred to in:

- 1) EP 101
- 2) EP 102
- 3) EP 103
- 4) EP 104
- 5) EP 105
- G. Construction Fence: Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area indicated on the drawings. Provide gates as required for access with necessary hardware, including hasps and padlocks. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade. Remove the fence when directed by COR.
- H. Utilities Services: Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services. Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 1. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - Contractor shall submit a request to interrupt any such services to COR, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.

- 3. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
- 5. In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 6. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- I. Abandoned Lines: All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged at the main, branch or panel they originate from. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- J. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles.
 - 2. Method and scheduling of required cutting, altering and removal of existing roads, walks and entrances must be approved by the COR.
- K. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.

1.7 ALTERATIONS

A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service,

of areas of buildings in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:

- Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas of building.
- Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds, shades, etc., required by drawings to be either reused or relocated, or both.
- Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR and/or Supply Representative, to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:

- Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
- Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
- 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

- A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of as follows:
 - Reserved items which are to remain property of the Government are identified by attached tags or noted on drawings or in specifications as items to be stored. Items that remain property of the Government shall be removed or dislodged from present locations in such a manner as to prevent damage which would be detrimental to re-installation and reuse. Store such items where directed by COR.
 - 2. Items not reserved shall become property of the Contractor and be removed by Contractor from Medical Center Cemetery.
 - 3. Items of portable equipment and furnishings located in rooms and spaces in which work is to be done under this contract shall remain the property of the Government. When rooms and spaces are vacated by the Department of Veterans Affairs during the alteration period, such items which are NOT required by drawings and specifications to be either relocated or reused will be removed by the Government in advance of work to avoid interfering with Contractor's operation.

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work, shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.

- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To insure compliance, as-built drawings shall be made available for the COR review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15 calendar days after each completed phase and after the acceptance of the project by the COR.
- D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.12 USE OF ROADWAYS

A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.

1.13 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject to written approval and compliance with the following provisions:
 - Permission to use each unit or system must be given by COR in writing. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.

- 2. Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e. transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2014 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including vacuum cleaning and wiping clean interior and exterior surfaces.
- Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.
- **1.14** TEMPORARY TOILETS
 - A. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center.

Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.15 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and as satisfactory to the Contracting Officer, shall provide, install, and maintain all necessary temporary utilities connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials.

1.16 TESTS

- A. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- B. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- C. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire system which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply

air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.

- D. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- E. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.17 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals and one compact disc (four hard copies and one electronic copy each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to the job site. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system

being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system, shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.18 HISTORIC PRESERVATION

A. Where the Contractor or any of the Contractor's employees, prior to, or during the construction work, are advised of or discover any possible archeological, historical and/or cultural resources, the Contractor shall immediately notify the COR verbally, and then with a written follow up.

---END---

--- INTENTIONALLY BLANK ---

SECTION 01 32 16.15 PROJECT SCHEDULES (SMALL PROJECTS - DESIGN/BID/BUILD)

PART 1- GENERAL

1.1 DESCRIPTION:

A. The Contractor shall develop a Critical Path Method (CPM) plan and schedule demonstrating fulfillment of the contract requirements (Project Schedule), and shall keep the Project Schedule up-to-date in accordance with the requirements of this section and shall utilize the plan for scheduling, coordinating and monitoring work under this contract (including all activities of subcontractors, equipment vendors and suppliers). Conventional Critical Path Method (CPM) technique shall be utilized to satisfy both time and cost applications.

1.2 CONTRACTOR'S REPRESENTATIVE:

- A. The Contractor shall designate an authorized representative responsible for the Project Schedule including preparation, review and progress reporting with and to the Contracting Officer's Representative (COR).
- B. The Contractor's representative shall have direct project control and complete authority to act on behalf of the Contractor in fulfilling the requirements of this specification section.
- C. The Contractor's representative shall have the option of developing the project schedule within their organization or to engage the services of an outside consultant. If an outside scheduling consultant is utilized, Section 1.3 of this specification will apply.

1.3 CONTRACTOR'S CONSULTANT:

- A. The Contractor shall submit a qualification proposal to the COR, within 10 days of bid acceptance. The qualification proposal shall include:
 - 1. The name and address of the proposed consultant.
 - Information to show that the proposed consultant has the qualifications to meet the requirements specified in the preceding paragraph.
 - 3. A representative sample of prior construction projects, which the proposed consultant has performed complete project scheduling services. These representative samples shall be of similar size and scope.
- B. The Contracting Officer has the right to approve or disapprove the proposed consultant, and will notify the Contractor of the VA decision within seven calendar days from receipt of the qualification proposal.

In case of disapproval, the Contractor shall resubmit another consultant within 10 calendar days for renewed consideration. The Contractor shall have their scheduling consultant approved prior to submitting any schedule for approval.

1.4 COMPUTER PRODUCED SCHEDULES

- A. The contractor shall provide monthly, to the Department of Veterans Affairs (VA), all computer-produced time/cost schedules and reports generated from monthly project updates. This monthly computer service will include: three copies of up to five different reports (inclusive of all pages) available within the user defined reports of the scheduling software approved by the Contracting Officer; a hard copy listing of all project schedule changes, and associated data, made at the update and an electronic file of this data; and the resulting monthly updated schedule in PDM format. These must be submitted with and substantively support the contractor's monthly payment request and the signed look ahead report. The COR shall identify the five different report formats that the contractor shall provide.
- B. The contractor shall be responsible for the correctness and timeliness of the computer-produced reports. The Contractor shall also responsible for the accurate and timely submittal of the updated project schedule and all CPM data necessary to produce the computer reports and payment request that is specified.
- C. The VA will report errors in computer-produced reports to the Contractor's representative within ten calendar days from receipt of reports. The Contractor shall reprocess the computer-produced reports and associated diskette(s), when requested by the Contracting Officer's representative, to correct errors which affect the payment and schedule for the project.

1.5 THE COMPLETE PROJECT SCHEDULE SUBMITTAL

A. Within 45 calendar days after receipt of Notice to Proceed, the Contractor shall submit for the Contracting Officer's review; three blue line copies of the interim schedule on sheets of paper 765 x 1070 mm (30 x 42 inches) and an electronic file in the previously approved CPM schedule program. The submittal shall also include three copies of a computer-produced activity/event ID schedule showing project duration; phase completion dates; and other data, including event cost. Each activity/event on the computer-produced schedule shall contain as

a minimum, but not limited to, activity/event ID, activity/event description, duration, budget amount, early start date, early finish date, late start date, late finish date and total float. Work activity/event relationships shall be restricted to finish-to-start or start-to-start without lead or lag constraints. Activity/event date constraints, not required by the contract, will not be accepted unless submitted to and approved by the Contracting Officer. The contractor shall make a separate written detailed request to the Contracting Officer identifying these date constraints and secure the Contracting Officer's written approval before incorporating them into the network diagram. The Contracting Officer's separate approval of the Project Schedule shall not excuse the contractor of this requirement. Logic events (non-work) will be permitted where necessary to reflect proper logic among work events, but must have zero duration. The complete working schedule shall reflect the Contractor's approach to scheduling the complete project. The final Project Schedule in its original form shall contain no contract changes or delays which may have been incurred during the final network diagram development period and shall reflect the entire contract duration as defined in the bid documents. These changes/delays shall be entered at the first update after the final Project Schedule has been approved. The Contractor should provide their requests for time and supporting time extension analysis for contract time as a result of contract changes/delays, after this update, and in accordance with Article, ADJUSTMENT OF CONTRACT COMPLETION.

- B. Within 30 calendar days after receipt of the complete project interim Project Schedule and the complete final Project Schedule, the Contracting Officer or his representative, will do one or both of the following:
 - Notify the Contractor concerning his actions, opinions, and objections.
 - 2. A meeting with the Contractor at or near the job site for joint review, correction or adjustment of the proposed plan will be scheduled if required. Within 14 calendar days after the joint review, the Contractor shall revise and shall submit three blue line copies of the revised Project Schedule, three copies of the revised computer-produced activity/event ID schedule and a revised

electronic file as specified by the Contracting Officer. The revised submission will be reviewed by the Contracting Officer and, if found to be as previously agreed upon, will be approved.

- C. The approved baseline schedule and the computer-produced schedule(s) generated there from shall constitute the approved baseline schedule until subsequently revised in accordance with the requirements of this section.
- D. The Complete Project Schedule shall contain approximately 150 work activities/events.

1.6 WORK ACTIVITY/EVENT COST DATA

- A. The Contractor shall cost load all work activities/events except procurement activities. The cumulative amount of all cost loaded work activities/events (including alternates) shall equal the total contract price. Prorate overhead, profit and general conditions on all work activities/events for the entire project length. The contractor shall generate from this information cash flow curves indicating graphically the total percentage of work activity/event dollar value scheduled to be in place on early finish, late finish. These cash flow curves will be used by the Contracting Officer to assist him in determining approval or disapproval of the cost loading. Negative work activity/event cost data will not be acceptable, except on VA issued contract changes.
- B. The Contractor shall cost load work activities, test, balance and adjust various systems in accordance with the provisions in Article, FAR 52.232 - 5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 - 83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS).
- C. In accordance with FAR 52.236 1 (PERFORMANCE OF WORK BY THE CONTRACTOR) and VAAR 852.236 - 72 (PERFORMANCE OF WORK BY THE CONTRACTOR), the Contractor shall submit, simultaneously with the cost per work activity/event of the construction schedule required by this Section, a responsibility code for all activities/events of the project for which the Contractor's forces will perform the work.
- D. The Contractor shall cost load work activities/events for all BID ITEMS including ASBESTOS ABATEMENT. The sum of each BID ITEM work shall equal the value of the bid item in the Contractors' bid.

1.7 PROJECT SCHEDULE REQUIREMENTS

- A. Show on the project schedule the sequence of work activities/events required for complete performance of all items of work. The Contractor Shall:
 - 1. Show activities/events as:
 - a. Contractor's time required for submittal of shop drawings, templates, fabrication, delivery and similar pre-construction work.
 - b. Contracting Officer's and Architect-Engineer's review and approval of shop drawings, equipment schedules, samples, template, or similar items.
 - c. Interruption of VA Facilities utilities, delivery of Government furnished equipment, and rough-in drawings, project phasing and any other specification requirements.
 - d. Test, balance and adjust various systems and pieces of equipment, maintenance and operation manuals, instructions and preventive maintenance tasks.
 - e. VA inspection and acceptance activity/event with a minimum duration of five work days at the end of each phase and immediately preceding any VA move activity/event required by the contract phasing for that phase.
 - 2. Show not only the activities/events for actual construction work for each trade category of the project, but also trade relationships to indicate the movement of trades from one area, floor, or building, to another area, floor, or building, for at least five trades who are performing major work under this contract.
 - 3. Break up the work into activities/events of a duration no longer than 20 work days each or one reporting period, except as to non-construction activities/events (i.e., procurement of materials, delivery of equipment, concrete and asphalt curing) and any other activities/events for which the COR may approve the showing of a longer duration. The duration for VA approval of any required submittal, shop drawing, or other submittals will not be less than 20 work days.
 - 4. Describe work activities/events clearly, so the work is readily identifiable for assessment of completion. Activities/events labeled

> "start," "continue," or "completion," are not specific and will not be allowed. Lead and lag time activities will not be acceptable.

- 5. The schedule shall be generally numbered in such a way to reflect either discipline, phase or location of the work.
- B. The Contractor shall submit the following supporting data in addition to the project schedule:
 - The appropriate project calendar including working days and holidays.
 - 2. The planned number of shifts per day.
 - 3. The number of hours per shift.

Failure of the Contractor to include this data shall delay the review of the submittal until the Contracting Officer is in receipt of the missing data.

- C. To the extent that the Project Schedule or any revised Project Schedule shows anything not jointly agreed upon, it shall not be deemed to have been approved by the COR. Failure to include any element of work required for the performance of this contract shall not excuse the Contractor from completing all work required within any applicable completion date of each phase regardless of the COR's approval of the Project Schedule.
- D. Compact Disk Requirements and CPM Activity/Event Record Specifications: Submit to the VA an electronic file(s) containing one file of the data required to produce a schedule, reflecting all the activities/events of the complete project schedule being submitted.

1.8 PAYMENT TO THE CONTRACTOR:

A. Monthly, the contractor shall submit an application and certificate for payment using VA Form 10-6001a or the AIA application and certificate for payment documents G702 & G703 reflecting updated schedule activities and cost data in accordance with the provisions of the following Article, PAYMENT AND PROGRESS REPORTING, as the basis upon which progress payments will be made pursuant to Article, FAR 52.232 -5 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS) and VAAR 852.236 -83 (PAYMENT UNDER FIXED-PRICE CONSTRUCTION CONTRACTS). The Contractor shall be entitled to a monthly progress payment upon approval of estimates as determined from the currently approved updated project schedule. Monthly payment requests shall include: a listing of all

agreed upon project schedule changes and associated data; and an electronic file (s) of the resulting monthly updated schedule.

B. Approval of the Contractor's monthly Application for Payment shall be contingent, among other factors, on the submittal of a satisfactory monthly update of the project schedule.

1.9 PAYMENT AND PROGRESS REPORTING

- A. Monthly schedule update meetings will be held on dates mutually agreed to by the COR and the Contractor. Contractor and their CPM consultant (if applicable) shall attend all monthly schedule update meetings. The Contractor shall accurately update the Project Schedule and all other data required and provide this information to the COR three work days in advance of the schedule update meeting. Job progress will be reviewed to verify:
 - Actual start and/or finish dates for updated/completed activities/events.
 - Remaining duration for each activity/event started, or scheduled to start, but not completed.
 - Logic, time and cost data for change orders, and supplemental agreements that are to be incorporated into the Project Schedule.
 - Changes in activity/event sequence and/or duration which have been made, pursuant to the provisions of following Article, ADJUSTMENT OF CONTRACT COMPLETION.
 - 5. Completion percentage for all completed and partially completed activities/events.
 - Logic and duration revisions required by this section of the specifications.
 - 7. Activity/event duration and percent complete shall be updated independently.
- B. After completion of the joint review, the contractor shall generate an updated computer-produced calendar-dated schedule and supply the Contracting Officer's representative with reports in accordance with the Article, COMPUTER PRODUCED SCHEDULES, specified.
- C. After completing the monthly schedule update, the contractor's representative or scheduling consultant shall rerun all current period contract change(s) against the prior approved monthly project schedule. The analysis shall only include original workday durations and schedule logic agreed upon by the contractor and COR for the contract change(s).

When there is a disagreement on logic and/or durations, the Contractor shall use the schedule logic and/or durations provided and approved by the COR. After each rerun update, the resulting electronic project schedule data file shall be appropriately identified and submitted to the VA in accordance to the requirements listed in articles 1.4 and 1.7. This electronic submission is separate from the regular monthly project schedule update requirements and shall be submitted to the COR within fourteen (14) calendar days of completing the regular schedule update. Before inserting the contract changes durations, care must be taken to ensure that only the original durations will be used for the analysis, not the reported durations after progress. In addition, once the final network diagram is approved, the contractor must recreate all manual progress payment updates on this approved network diagram and associated reruns for contract changes in each of these update periods as outlined above for regular update periods. This will require detailed record keeping for each of the manual progress payment updates.

D. Following approval of the CPM schedule, the VA, the General Contractor, its approved CPM Consultant, RE office representatives, and all subcontractors needed, as determined by the SRE, shall meet to discuss the monthly updated schedule. The main emphasis shall be to address work activities to avoid slippage of project schedule and to identify any necessary actions required to maintain project schedule during the reporting period. The Government representatives and the Contractor should conclude the meeting with a clear understanding of those work and administrative actions necessary to maintain project schedule status during the reporting period. This schedule coordination meeting will occur after each monthly project schedule update meeting utilizing the resulting schedule reports from that schedule update. If the project is behind schedule, discussions should include ways to prevent further slippage as well as ways to improve the project schedule status, when appropriate.

1.10 RESPONSIBILITY FOR COMPLETION

A. If it becomes apparent from the current revised monthly progress schedule that phasing or contract completion dates will not be met, the Contractor shall execute some or all of the following remedial actions:

- Increase construction manpower in such quantities and crafts as necessary to eliminate the backlog of work.
- Increase the number of working hours per shift, shifts per working day, working days per week, the amount of construction equipment, or any combination of the foregoing to eliminate the backlog of work.
- 3. Reschedule the work in conformance with the specification requirements.
- B. Prior to proceeding with any of the above actions, the Contractor shall notify and obtain approval from the COR for the proposed schedule changes. If such actions are approved, the representative schedule revisions shall be incorporated by the Contractor into the Project Schedule before the next update, at no additional cost to the Government.

1.11 CHANGES TO THE SCHEDULE

- A. Within 30 calendar days after VA acceptance and approval of any updated project schedule, the Contractor shall submit a revised electronic file (s) and a list of any activity/event changes including predecessors and successors for any of the following reasons:
 - Delay in completion of any activity/event or group of activities/events, which may be involved with contract changes, strikes, unusual weather, and other delays will not relieve the Contractor from the requirements specified unless the conditions are shown on the CPM as the direct cause for delaying the project beyond the acceptable limits.
 - Delays in submittals, or deliveries, or work stoppage are encountered which make rescheduling of the work necessary.
 - 3. The schedule does not represent the actual prosecution and progress of the project.
 - When there is, or has been, a substantial revision to the activity/event costs regardless of the cause for these revisions.
- B. CPM revisions made under this paragraph which affect the previously approved computer-produced schedules for Government furnished equipment, vacating of areas by the VA Facility, contract phase(s) and sub phase(s), utilities furnished by the Government to the Contractor, or any other previously contracted item, shall be furnished in writing to the Contracting Officer for approval.

- C. Contracting Officer's approval for the revised project schedule and all relevant data is contingent upon compliance with all other paragraphs of this section and any other previous agreements by the Contracting Officer or the VA representative.
- D. The cost of revisions to the project schedule resulting from contract changes will be included in the proposal for changes in work as specified in FAR 52.243 - 4 (Changes) and VAAR 852.236 - 88 (Changes -Supplemental), and will be based on the complexity of the revision or contract change, man hours expended in analyzing the change, and the total cost of the change.
- E. The cost of revisions to the Project Schedule not resulting from contract changes is the responsibility of the Contractor.

1.12 ADJUSTMENT OF CONTRACT COMPLETION

- A. The contract completion time will be adjusted only for causes specified in this contract. Request for an extension of the contract completion date by the Contractor shall be supported with a justification, CPM data and supporting evidence as the COR may deem necessary for determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract. Submission of proof based on revised activity/event logic, durations (in work days) and costs is obligatory to any approvals. The schedule must clearly display that the Contractor has used, in full, all the float time available for the work involved in this request. The Contracting Officer's determination as to the total number of days of contract extension will be based upon the current computer-produced calendar-dated schedule for the time period in question and all other relevant information.
- B. Actual delays in activities/events which, according to the computer- produced calendar-dated schedule, do not affect the extended and predicted contract completion dates shown by the critical path in the network, will not be the basis for a change to the contract completion date. The Contracting Officer will within a reasonable time after receipt of such justification and supporting evidence, review the facts and advise the Contractor in writing of the Contracting Officer's decision.
- C. The Contractor shall submit each request for a change in the contract completion date to the Contracting Officer in accordance with the

provisions specified under FAR 52.243 - 4 (Changes) and VAAR 852.236 -88 (Changes - Supplemental). The Contractor shall include, as a part of each change order proposal, a sketch showing all CPM logic revisions, duration (in work days) changes, and cost changes, for work in question and its relationship to other activities on the approved network diagram.

D. All delays due to non-work activities/events such as RFI's, WEATHER, STRIKES, and similar non-work activities/events shall be analyzed on a month by month basis.

---END---

---INTENTIONALLY BLANK---
SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The COR may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work shall be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work shall be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.
- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or

product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.

- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation shall indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

A. The submittal register shall list items of equipment and materials for which submittals are required by the specifications. This list may not be all inclusive and additional submittals shall be required by the specifications. The Contractor is not relieved from supplying submittals

required by the contract documents but which have been omitted from the submittal register.

- B. The submittal register shall serve as a scheduling document for submittals and shall be used to control submittal actions throughout the contract period.
- C. The VA shall provide the initial submittal register in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.
 - (1) Contractor responsible for presenting document showing how subcontractor will package, schedule submittals, sequence submittals, and prepare submittals. Submittals shall include, but are not limited to underground fuel storage tank, prefabricated switchgear building, blast resistance analysis report for prefabricated switchgear enclosure (and associated foundation), new generators, and underground electrical construction products. This document shall be provided no later than 21 calendar days after award of contract. These submittals shall take precedence and shall be submitted to A/E, approved by A/E, and accepted by VA prior to mobilizing on site and starting prep work unless otherwise authorized by VA.
- (2) The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by COR.
- (3) The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals shall be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work shall not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions shall be allowed for time lost in late submittals or resubmittals.

D. All submittals are required to be approved prior to the start of the specified work activity unless otherwise authorized by VA.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals shall not be accepted for expedition of construction effort. Submittal shall be returned without review if incomplete.
 - For switchgear submittal, contractor shall coordinate with switchgear vendor to ensure prefabricated enclosure and associated foundation design is in accordance with of this bast resistance criteria per VA Physical Security Design Manual (October 2020).
 - General contractor is required to obtain a Blast Analysis Report prior to factory building of enclosure. Blast report must be furnished by structural blast specialist.
 - Switchgear submittal Short circuit and coordination study shall be submitted for approval.
 - 2. At a minimum, the structural blast specialist must be a registered Professional Engineer having a bachelor's degree in structural engineering or a related field and have formal training in structural dynamics and demonstrated experience with the accepted design practices for blast resistant design.
 - 3. The contractor's vendor shall submit a Blast analysis report that complies with all performance specifications outlined in the drawings needed to generate fully designed switchgear enclosure and foundation.
 - Switchgear one-line shall be submitted and incorporated as asbuilts at end of project.
 - 5. Wiring diagram for all controls associated with the switchgear equipment.
 - - Layout of generator and enclosure, how generator will be placed on the site with new sizing of concrete pads.

01 33 23 - 4

- Sound attenuated generator enclosure shall include the following: Day tank, lighting, receptacles & heating system.
- General layout of conduits and how and where the conduits will enter the bottom or top of the gear and how they will coordinate with related adjacent site equipment.
- 3. Wiring diagram for all controls associated with the generator equipment.
- 4. Specify the exact controls module.
- 5. Wind and snow loads and temperature design parameters used in the design of the pre-fab switchgear building.
- Verification that conduit stub up locations match with equipment provided by other vendors and with planned routings. Stub up locations shall be indicated with associated fuel tank.
- 7. Fire alarm details.
- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data shall be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title, location and number.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before

submitting for VA review. Proposed deviations from the contract requirements shall be clearly identified. All deviations submitted shall include a side by side comparison of item being proposed against item specified. Failure to point out deviations shall result in the VA requiring removal and replacement of such work at the Contractor's expense.

- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

CONTRACTOR
(Firm Name)
Approved
Approved with corrections as noted on submittal data and/or
attached sheets(s)
SIGNATURE:
TITLE:
DATE:
I I II

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the COR.
- B. Compile the electronic submittal file as a single, complete document. Name the electronic submittal file specifically according to its contents.
- C. Electronic files shall be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.
- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the COR.
- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the COR. Up to 3 additional hard copies of any submittal shall be requested at the discretion of the COR, at no additional cost to the VA.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment shall be available in quantities required in the project. No change or substitution shall be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.

F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

- A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.
- B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the COR may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA shall review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project shall assist the VA in reviewing all submittals and determining contractual compliance. Review shall be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA shall return submittals to the Contractor with the following notations:
 - "Approved": authorizes the Contractor to proceed with the work covered.
 - "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.

4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" shall be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work shall be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment shall be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work shall not be made if required approvals have not been obtained.

---END---

--- INTENTIONALLY BLANK ---

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning A10.34-2012....Protection of the Public on or Adjacent to Construction Sites A10.38-2013.....Basic Elements of an Employer's Program to

Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations

C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

- 241-2013.....Standard for Safeguarding Construction,
 - Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification Manual

G. U.S. Nuclear Regulatory Commission 10 CFR 20Standards for Protection against Radiation

01 35 26 -1

H. U.S. Occupational Safety and Health Administration (OSHA): 29 CFR 1904Reporting and Recording Injuries & Illnesses 29 CFR 1910Safety and Health Regulations for General Industry 29 CFR 1926Safety and Health Regulations for Construction Industry

CPL 2-0.124.....Multi-Employer Citation Policy

I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.
- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:
 - No impact near miss incidents that should be investigated but are not required to be reported to the VA;
 - 2. Minor incident/impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;
 - 3. Moderate incident/impact Any work-related injury or illness that results in:

- a. Days away from work (any time lost after day of injury/illness onset);
- b. Restricted work;
- c. Transfer to another job;
- d. Medical treatment beyond first aid;
- e. Loss of consciousness;
- f. A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
- g. Any incident that leads to major equipment damage (greater than \$5000).
- These incidents must be investigated and are required to be reported to the VA;
- 5. Major incident/impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.
- F. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. SIGNATURE SHEET. Title, signature, and phone number of the
 following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide concurrence of other applicable corporate and project personnel (Contractor).
 - b. BACKGROUND INFORMATION. List the following:

- 1) Contractor;
- 2) Contract number;
- 3) Project name;
- Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. STATEMENT OF SAFETY AND HEALTH POLICY. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
 - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.
 - Requirements that no work shall be performed unless a designated competent person is present on the job site;
 - 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
 - 6) Lines of authority;
 - Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.
- f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)
- g. SAFETY AND HEALTH INSPECTIONS.
 - Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
 - Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)
- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the COR.
 - 1) Exposure data (man-hours worked);
 - 2) Accident investigation reports;
 - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall

include but are not be limited to procedures for addressing the risks associates with the following:

- 1) Emergency response;
- 2) Contingency for severe weather;
- 3) Fire Prevention;
- 4) Medical Support;
- 5) Posting of emergency telephone numbers;
- 6) Prevention of alcohol and drug abuse;
- 7) Site sanitation (housekeeping, drinking water, toilets);
- 8) Night operations and lighting;
- 9) Hazard communication program;
- 10) Welding/Cutting "Hot" work;
- 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
- 12) General Electrical Safety;
- 13) Hazardous energy control (Machine LOTO);
- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) Precast Concrete;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.

- D. Once accepted by the Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, Accident Prevention, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Project Manager project superintendent, project overall designated OSHA Competent Person, and facility Safety Officer Contracting Officer Representative Government Designated Authority. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.

- 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, and fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
- The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).
 - a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
 - b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Project

> Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.

1.6 PRECONSTRUCTION CONFERENCE:

- A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b) (1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.
- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b) (2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in

accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.

E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.
- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Project Manager and Facility Safety Manager Officer or

Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.

- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the COR that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their certificate number on the required report for verification as necessary.
 - Results of the inspection will be documented with tracking of the identified hazards to abatement.
 - The Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated

Authority will be notified immediately prior to start of the inspection and invited to accompany the inspection.

- 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
- 4. A report of the inspection findings with status of abatement will be provided to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority within 5 calendar days of the accident. The Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority will provide copies of any required or special forms.

- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - 1. Hard Hats unless written authorization is given by the Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - 2. Safety glasses unless written authorization is given by the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority in circumstances of no foot hazards.

 Hearing protection - Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.

1.13 TUBERCULOSIS SCREENING

- A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.
 - Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
 - 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
 - 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Project Manager and Facility Safety Manager Officer or Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.

- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:
 - Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fire-retardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
 - Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.

- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.
- K. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.
- L. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Office. Obtain permits from facility Safety Manager at least 24 hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.
- M. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority.
- N. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- O. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.

1.15 ELECTRICAL

- A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J General Environmental Controls, 29 CFR Part 1910 Subpart S Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.
- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards, or is infeasible due to equipment design or operational limitations is energized work permitted. The Chief of Facilities Management Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.
 - Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
 - 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters

Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.

- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the COR.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Project Manager and Facility Safety Manager or Contracting Officer Representative or Government Designated Authority and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30- ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2).

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does

not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.

4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft. (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or stooping within the excavation is required.

- B. All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE - some States and other local jurisdictions require separate state/jurisdictionissued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Project Manager and/or Facility Safety Manager Officer and/or other Government Designated Authority prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the Project Manager and/or Facility Safety Manager and/or other Government Designated Authority. The permit shall be maintained onsite and the first section of the permit shall include the following:
 - 1. Estimated start time & stop time
 - 2. Specific location and nature of the work.
 - Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - Indication of whether soil or concrete removal to an offsite location is necessary.
 - 5. Indication of whether soil samples are required to determined soil contamination.
 - Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment.
 - Indication of review of site drawings for proximity of utilities to digging/drilling.

The second section of the permit for excavations greater than five feet in depth shall include the following:

 Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetrometer will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5

Tons/FT2 - Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 - Type B, greater than 1.5 Tons/FT2 - Type A without condition to reduce to Type B).

- 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
- Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
- 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.
- C. As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - The planned dig site will be outlined/marked in white prior to locating the utilities.
 - Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
 - 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
 - 4. Digging will not commence until all known utilities are marked.
 - 5. Utility markings will be maintained
- D. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within3 to 5 feet of identified underground utilities. Exploratory bar or other detection

equipment will be utilized as necessary to further identify the location of underground utilities.

E. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

- A. All crane work shall comply with 29 CFR 1926 Subpart CC.
- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Project Manager and/or Facility Safety Manager and/or other Government Designated Authority 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.
- D. Crane operators shall not carry loads
 - 1. Over the general public or VAMC personnel
 - 2. Over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

- A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].
- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Project Manager and/or Facility Safety Manager and/or other Government Designated Authority.

1.22 WELDING AND CUTTING

A. As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Project Manager and/or Facility Safety Manager and/or other Government Designated Authority. Obtain permits from Project Manager and/or Facility Safety Manager and/or other Government Designated Authority at least 24hours in advance. Designate contractor's responsible projectsite fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.

- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. See 21.F for covering and labeling requirements. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

---END---

--- INTENTIONALLY BLANK ---
SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchq.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AAN American Nursery and Landscape Association http://www.anla.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America

01 42 19 - 2

- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org
- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AIA American Institute of Architects

http://www.aia.org

- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction http://www.aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANLA American Nursery & Landscape Association http://www.anla.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org
- ASAE American Society of Agricultural Engineers http://www.asae.org
- ASCE American Society of Civil Engineers http://www.asce.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org

- ASME American Society of Mechanical Engineers
 <u>http://www.asme.org</u>
- ASSE American Society of Sanitary Engineering http://www.asse-plumbing.org
- ASTM American Society for Testing and Materials http://www.astm.org
- AWI Architectural Woodwork Institute http://www.awinet.org
- AWS American Welding Society http://www.aws.org
- AWWA American Water Works Association http://www.awwa.org
- BHMA Builders Hardware Manufacturers Association http://www.buildershardware.com
- BIA Brick Institute of America http://www.bia.org
- CAGI Compressed Air and Gas Institute http://www.cagi.org
- CGA Compressed Gas Association, Inc. http://www.cganet.com
- CI The Chlorine Institute, Inc. http://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association http://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute http://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute http://www.chainlinkinfo.org
- CPMB Concrete Plant Manufacturers Bureau http://www.cpmb.org

- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute http://www.crsi.org
- CTI Cooling Technology Institute http://www.cti.org
- DHI Door and Hardware Institute http://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- EEI Edison Electric Institute http://www.eei.org
- EPA Environmental Protection Agency http://www.epa.gov
- ETL ETL Testing Laboratories, Inc. http://www.etl.com
- FAA Federal Aviation Administration http://www.faa.gov
- FCC Federal Communications Commission http://www.fcc.gov
- FPS The Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.cssinfo.com/info/gana.html/
- FM Factory Mutual Insurance http://www.fmglobal.com
- GA Gypsum Association http://www.gypsum.org
- GSA General Services Administration http://www.gsa.gov

ΗI Hydraulic Institute http://www.pumps.org HPVA Hardwood Plywood & Veneer Association http://www.hpva.org ICBO International Conference of Building Officials http://www.icbo.org Insulated Cable Engineers Association Inc. ICEA http://www.icea.net \ICAC Institute of Clean Air Companies http://www.icac.com IEEE Institute of Electrical and Electronics Engineers http://www.ieee.org\ IMSA International Municipal Signal Association http://www.imsasafety.org IPCEA Insulated Power Cable Engineers Association Metal Buildings Manufacturers Association NBMA http://www.mbma.com MSS Manufacturers Standardization Society of the Valve and Fittings Industry Inc. http://www.mss-hq.com NAAMM National Association of Architectural Metal Manufacturers http://www.naamm.org NAPHCC Plumbing-Heating-Cooling Contractors Association http://www.phccweb.org.org National Bureau of Standards NBS See - NIST NBBPVI National Board of Boiler and Pressure Vessel Inspectors http://www.nationboard.org NEC National Electric Code See - NFPA National Fire Protection Association

NEMA	National Electrical Manufacturers Association
	http://www.nema.org
NFPA	National Fire Protection Association
	http://www.nfpa.org
NHLA	National Hardwood Lumber Association
	http://www.natlhardwood.org
NIH	National Institute of Health
	http://www.nih.gov
NIST	National Institute of Standards and Technology
	http://www.nist.gov
NLMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NPA	National Particleboard Association
	18928 Premiere Court
	Gaithersburg, MD 20879
	(301) 670-0604
NSF	National Sanitation Foundation
	http://www.nsf.org
NWWDA	Window and Door Manufacturers Association
	http://www.nwwda.org
OSHA	Occupational Safety and Health Administration
	Department of Labor
	http://www.osha.gov
PCA	Portland Cement Association
	http://www.portcement.org
PCI	Precast Prestressed Concrete Institute
	http://www.pci.org
PPI	The Plastic Pipe Institute
	http://www.plasticpipe.org
PEI	Porcelain Enamel Institute, Inc.
	http://www.porcelainenamel.com

01 42 19 - 7

PTI	Post-Tensioning Institute http://www.post-tensioning.org
RFCI	The Resilient Floor Covering Institute http://www.rfci.com
RIS	Redwood Inspection Service See - CRA
RMA	Rubber Manufacturers Association, Inc. <pre>http://www.rma.org</pre>
SCMA	Southern Cypress Manufacturers Association http://www.cypressinfo.org
SDI	Steel Door Institute http://www.steeldoor.org
SOI	Secretary of the Interior
IGMA	Insulating Glass Manufacturers Alliance http://www.igmaonline.org
SJI	Steel Joist Institute http://www.steeljoist.org
SMACNA	Sheet Metal and Air-Conditioning Contractors National Association, Inc. http://www.smacna.org
SSPC	The Society for Protective Coatings <pre>http://www.sspc.org</pre>
STI	Steel Tank Institute http://www.steeltank.com
SWI	Steel Window Institute http://www.steelwindows.com
TCA	Tile Council of America, Inc.

http://www.tileusa.com

TEMA Tubular Exchange Manufacturers Association http://www.tema.org TPI Truss Plate Institute, Inc. 583 D'Onofrio Drive; Suite 200 Madison, WI 53719 (608) 833-5900 The Uniform Building Code UBC See ICBO UL Underwriters' Laboratories Incorporated http://www.ul.com ULC Underwriters' Laboratories of Canada http://www.ulc.ca West Coast Lumber Inspection Bureau WCLIB 6980 SW Varns Road, P.O. Box 23145 Portland, OR 97223 (503) 639-0651 WRCLA Western Red Cedar Lumber Association P.O. Box 120786 New Brighton, MN 55112

WWPA Western Wood Products Association http://www.wwpa.org

(612) 633-4334

---END---

---INTENTIONALLY BLANK---

SECTION 01 45 00 QUALITY CONTROL

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies requirements for Contractor Quality Control (CQC) for Design-Bid-Build (DBB) or Design-Build (DB) construction projects. This section can be used for both project types.

1.2 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.
- B. ASTM International (ASTM)
 - ASTM D3740 (2012a) Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
 - 2. ASTM E29 (2014a) Standard Specification for Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction

1.3 SUBMITTALS

Government approval is required for all submittals. CQC inspection reports shall be submitted under this Specification section and follow the [Applicable CQC Control Phase (Preparatory, Initial, or Follow-

- Up)]: [Applicable Specification section] naming convention.
- 1. Preconstruction Submittals
 - a. Interim CQC Plan
 - b. CQC Plan
 - c. Additional Requirements for Design Quality Control (DQC) Plan
- 2. Design Data
 - a. Discipline-Specific Checklists
 - b. Design Quality Control
- 3. Test Reports
 - a. Verification Statement

PART 2 PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

Establish and maintain an effective quality control (QC) system that complies with the FAR Clause 52.246.12 titled "Inspection of Construction". QC consists of plans, procedures, and organization

 $01 \ 45 \ 00 \ - \ 1$

necessary to produce an end product which complies with the Contract requirements. The QC system covers all design and construction operations, both onsite and offsite, and be keyed to the proposed design and construction sequence. The project superintendent shall be held responsible for the quality of work and is subject to removal by the Contracting Office or Authorized designee for non-compliance with the quality requirements specified in the Contract. In this context the highest-level manager responsible for the overall construction activities at the site, including quality and production is the project superintendent. The project superintendent maintains a physical presence at the site at all times and is responsible for all construction and related activities at the site, except as otherwise acceptable to the Contracting Officer.

3.2 CQC PLAN:

- A. Submit no later than CO or Designee to determine during Constructability review - 30 days after receipt of Notice to Proceed (NTP) the CQC Plan proposed to implement the requirements of the FAR Clause 52.246.12 titled "Inspection of Construction". The Government will consider an Interim CQC Plan for the first to match timeline established immediately for the above days of operation, which must be accepted within 10, or 20 business days of NTP. Design and/or construction shall be permitted to begin only after acceptance of the CQC Plan or acceptance of an Interim plan applicable to the particular feature of work to be started. Work outside of the accepted Interim CQC Plan will not be permitted to begin until acceptance of a CQC Plan or another Interim CQC Plan containing the additional work scope is accepted.
- B. Content of the CQC Plan: Include, as a minimum, the following to cover all design and construction operations, both onsite and offsite, including work by subcontractors, designers of record consultants, architects/engineers (A/E), fabricators, suppliers, and purchasing agents:
 - A description of the QC organization, including a chart showing lines of authority and acknowledgement that the CQC staff will implement the three-phase control system for all aspects of the work specified. Include a CQC System Manager that reports to the project superintendent.

- The name, qualifications (in resume format) duties, responsibilities, and authorities of each person assigned a CQC function.
- 3. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the Contract. Letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities will to the Contracting Officer or Authorized designee. be issued by the CQC System Manager. Furnish copies of these letters
- 4. Procedures for scheduling, reviewing, certifying, and managing submittals including those of subcontractors, designers of record, consultants, A/E's offsite fabricators, suppliers and purchasing agents. These procedures must be in accordance with Section 01 33 23 Shop Drawings, Product Data, and Samples.
- 5. Control, verification, and acceptance of testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. (Laboratory facilities approved by the Contracting Officer or Authorized designee are required to be used)
- Procedures for tracking Preparatory, Initial, and Follow-Up control phases and control, verification, and acceptance tests including documentation.
- Procedures for tracking design and construction deficiencies from identification through acceptable corrective action. Establish verification procedures that identified deficiencies have been corrected.
- 8. Reporting procedures, including proposed reporting formats.
- 9. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks has separate control requirements, and is identified by different trades or disciplines, or it is work by the same trade in a different environment. Although each section of specifications can generally be considered as a definable feature of work, there are frequently

more than one definable feature under a particular section. This list shall be agreed upon during the Coordination meeting.

- 10. Coordinate schedule work with Special Inspections, the Statement of Special Inspections and Schedule of Special Inspections. Where the applicable Code issue by the International Code Council (ICC) calls for inspections by the Building Official, the Contractor must include the inspections in the CQC Plan and must perform the inspections required by the applicable ICC. The Contractor must perform these inspections using independent qualified inspectors. Include the Special Inspection Plan requirements in the CQC Plan.
- C. Additional Requirements for Design Quality Control (DQC) Plan: The following additional requirements apply to the DQC Plan for DB projects only and not DBB projects:
 - 1. Submit and maintain a DQC Plan as an effective QC program which assures that all services required by this contract are performed and provided in a manner that meets professional architectural and engineering quality standards. As a minimum, all documents must be technically reviewed by competent, independent reviewers identified in the DQC Plan. The same element that produced the product may not perform the independent technical review (ITR). Correct errors and deficiencies in the design documents prior to submitting them to the Government.
 - 2. Include the design schedule in the master project schedule, showing the sequence of events involved in carrying out the project design tasks within the specific Contract period. This should be at a detailed level of scheduling sufficient to identify all major design tasks, including those that control the flow of work. Include review and correction periods associated with each item. This should be a forward planning as well as a project monitoring tool. The schedule reflects calendar days and not dates for each activity. If the schedule is changed, submit a revised schedule reflecting the change within 7 calendar days. Include in the DQC Plan the disciplinespecific checklists to be used during the design and quality control of each submittal. Submit at each design phase as part of the project documentation these completed discipline-specific checklists.

- 3. Implement the DQC Plan by a DQC Manager who has the responsibility of being cognizant of and assuring that all documents on the project have been coordinated. This individual must be a person who has verifiable engineering or architectural design experience and is a Professional Engineer or Registered Architect within the state of Construction location. Notify the Contracting Officer or Authorized designee, in writing, of the name of the individual, and the name of an alternate person assigned to the position.
- D. Acceptance of Plan: Acceptance of the Contractor's plan is required prior to the start of design and construction. Acceptance is conditional and shall be predicated on satisfactory performance during the design and construction. The Government reserves the right to require the Contractor to make changes in the CQC Plan and operations including removal of personnel as necessary, to obtain the quality specified.
- E. Notification of Changes: After acceptance of the CQC Plan, notify the Contracting Officer or Authorized designee in writing of any proposed change. Proposed changes are subject to acceptance by the Government prior to implementation by the Contractor.

3.3 COORDINATION MEETING:

After the Preconstruction Conference Post-Award Conference before start of design or construction, and prior to acceptance by the Government of the CQC Plan, meet with the Contracting Officer or Authorized designee to discuss the Contractor's quality control system. Submit the CQC Plan a minimum of 5 business days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details must be developed, including the forms for recording the CC operations, design activities (if applicable), control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting shall be prepared by the Government, signed by both the Contractor and Contracting Officer or Authorized designee and will become a part of the contract file. There can be occasions when subsequent conferences shall be called by either party to reconfirm mutual understandings or address deficiencies in the CQC system or procedures which can require corrective action by the Contractor.

3.4 QUALITY CONTROL ORGANIZATION:

- A. Personnel Requirements: The requirements for the CQC organization are a Safety and Health Manager, CQC System Manager, a Design Quality Manager (if applicable), and sufficient number of additional qualified personnel to ensure safety and Contract compliance. The Safety and Health Manager shall satisfy the requirements of Specification 01 35 26 Safety Requirements and reports directly to a senior project (or corporate) official independent from the CQC System Manager. The Safety and Health Manager will also serve as a member of the CQC Staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff maintains a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure Contract compliance. The CQC staff will be subject to acceptance by the Contracting Officer or Authorized designee. Provide adequate office space, filing systems, and other resources as necessary to maintain an effective and fully functional CQC organization. Promptly complete and furnish all letters, material submittals, shop drawings submittals, schedules and all other project documentation to the CQC organization. The CQC organization is responsible to maintain these documents and records at the site at all times, except as otherwise acceptable to the Government.
- B. CQC System Manager: Identify as CQC System Manager an individual within the onsite work organization that is responsible for overall management of CQC and has the authority to act in all CQC matters for the Contractor. The CQC system Manager is required to be a graduate engineer, graduate architect, or a graduate of construction management, with a minimum of PM or SRE to determine qualifications based on project complexity at construction review Identify in the plan an alternate to serve in the event of the CDQC System Manager's absence. The requirements for the alternate are the same as the CQC System Manager.
- C. CQC Personnel: In addition to CQC personnel specified elsewhere in the contract, provide as part of the CQC organization specialized personnel to assist in the CQC System Manager for the following areas, as

applicable: electrical, mechanical, civil, structural, environmental, architectural, materials technician submittals clerk, Commissioning Agent/LEED specialist, and low voltage systems. These individuals or specified technical companies are directly employed by the General Contractor and cannot be employed by a supplier or subcontractor on this project are employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on the specialized personnel's areas of responsibility; have the necessary education or experience in accordance with the Experience Matrix listed herein. These individuals can perform other duties but need to be allowed sufficient time to perform the specialized personnel's assigned quality controls duties as described in the CQC Plan.

Area	Qualifications
Civil	Graduate Civil Engineer or Construction Manager with 2 years experience in the type of work being performed on this project or technician with 5 years related experience.
Mechanical	Graduate Mechanical Engineer with 2 years experience or construction professional with 5 years of experience supervising mechanical features of work in the field with a construction company.
Electrical	Graduate Electrical Engineer with 2 years related experience or construction professional with 5 years of experience supervising electrical features of work in the field with a construction company.
Structural	Graduate Civil Engineer (with Structural Track or Focus), Structural Engineer, or Construction Manager with 2 years experience or construction professional with 5 years experience supervising structural features of work in the field with a construction company.
Architectural	Graduate Architect with 2 years experience or construction professional with 5 years of related experience.

EXPERIENCE MATRIX

Sioux Falls	VA Medical C	enter				Jul	у 30,	2021
Redesign Upg	rade Station	Generator	System -	PSDM	100%	Construction	Docum	lents
Sioux Falls,	SD					Project No.	438-18	3-100

Area	Qualifications
Environmental	Graduate Environmental Engineer with 3 years experience.
Submittals	Submittal Clerk with 1 year experience.
Concrete, Pavement, and Soils	Materials Technician with 2 years experience for the appropriate area.
Testing, Adjusting, and Balancing (TAB)	Specialist must be a member of AABC or an experienced technician of the firm certified by the NEBB.
Design Quality Control Manager	Registered Architect or Professional Engineer

- D. Additional Requirements: In addition to the above experience and education requirements, the CQC System Manager and Alternate CQC System Manager are required to have completed the Construction Quality Management (CQM) for Construction course. If the CQC System Manager does not have a current specification, obtain the CQM for Contractors course identification within 90 days of award. This course is periodically offered by the Naval Facilities Engineering Command and the Army Corps of Engineers. Contact the Contracting Officer or Authorized designee for information on the next scheduled class.
- E. Organizational Changes: Maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer or Authorized designee for acceptance.
- 3.5 SUBMITTALS AND DELIVERABLES: Submittals have to comply with the requirements in Section 01 33 23 Shop Drawings, Product Data, and Samples. The CQC organization is responsible for certifying that all submittals and deliverables are in compliance with the contract requirements. When Section 01 91 00 General Commissioning Requirements is included in the contract, the submittals required by the section have to be coordinated with the Section 01 33 23 Shop Drawings, Product Data, and Samples to ensure adequate time is allowed for each type of submittal required.

3.6 CONTROL:

A. CQC is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control are

required to be conducted by the CQC System Manager for each definable feature of the construction work as follows:

- Preparatory Phase: This phase is performed prior to beginning work on each definable feature of work after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase includes:
 - a. A review of each paragraph of applicable specifications, references codes, and standards. Make available during the preparatory inspection a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field. Maintain and make available in the field for use by Government personnel until final acceptance of the work.
 - b. Review of the Contract drawings.
 - c. Check to assure that all materials and equipment have been tested, submitted, and approved.
 - d. Review of provisions that have been made to provide required control inspection and testing.
 - e. Review Special Inspections, Statement of Special Inspections and the Schedule of Specials Inspections.
 - f. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the Contract.
 - g. Examination of required materials, equipment, and sample work to assure that they are on hand conform to approved shop drawings or submitted data, and are properly stored.
 - h. Review of the appropriate Activity Hazard Analysis (AHA) to assure safety requirements are met.
 - i. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards - contract defined or industry standard if not contract defined - for that feature of work.
 - j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer.
 - k. Discussion of the initial control phase.

- 1. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the Preparatory control phase. Include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. Document the results of the Preparatory phase actions by separate minutes prepared by the CQC System Manager and attach to the daily CQC report. Instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications.
- B. Initial Phase: This phase is accomplished at the beginning of a definable feature of work. Accomplish the following:
 - Check work to ensure that it is in full compliance with contract requirements. Review minutes of the Preparatory meeting.
 - Verify adequacy of controls to ensure full contract compliance. Verify the required control inspection and testing is in compliance with the contract.
 - Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.
 - 4. Resolve all differences.
 - 5. Check safety to include compliance with an upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker.
 - 6. The Government needs to be notified at least 48 hours or 2 business days in advance of beginning the initial phase for definable features of work. Prepare separate minutes of this phase by the CQC System Manager and attach to the daily CQC report. Indicate the exact location of initial phase for definable feature of work for future reference and comparison with Follow-Up phases.
 - 7. The initial phase for each definable feature of work is repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met.
 - Coordinate scheduled work with Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections.
- C. Follow-Up Phase: Perform daily checks to assure control activities,

including control testing, are providing continued compliance with contract requirements until the completion of the particular feature of work. Record the checks in the CQC documentation. Conduct final Follow-Up checks and correct all deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work. Coordinate scheduled work with Special Inspections, the Statement of Special Inspections, and the Schedule of Special Inspections

D. Additional Preparatory and Initial Phases on the same definable features of work if: the quality ongoing work is unacceptable; if there are changes in the applicable CQC staff, onsite production supervision or work crew; if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop.

3.7 TESTS

- A. Testing Procedure: Perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and acceptance test when specified. Procure the services of a Department of Veteran Affairs approved testing laboratory or establish an approved testing laboratory at the project site. Perform the following activities and record and provide the following data:
 - 1. Verify that testing procedures comply with contract requirements.
 - Verify that facilities and testing equipment are available and comply with testing standards.
 - 3. Check test instrument calibration data against certified standards.
 - Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared.
 - 5. Record results of all tests taken, both passing and failing on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the unique sequential control number identifying the test. If approved by the Contracting Officer or Authorized designee, actual test reports are submitted later with a reference to the test number and date taken. Provide an information copy of tests performed by an offsite or commercial test

facility directly to the Contracting Officer or Authorized designee. Failure to submit timely test reports as stated results in nonpayment for related work performed and disapproval of the test facility for this Contract.

- B. Testing Laboratories: All testing laboratories must be validated.
 - Capability Check: The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt and steel is required to meet criteria detailed in ASTM D3740 and ASTM E329.
 - 2. Capability Recheck: If the selected laboratory fails the capability check, the Contractor shall be assessed a charge equal to value of recheck to reimburse the Government for each succeeding recheck of the laboratory or the checking of a subsequently selected laboratory. Such costs shall be deducted from the Contract amount due the Contractor.
- C. Onsite Laboratory: The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government.

3.8 COMPLETION INSPECTION

A. Punch-Out Inspection: Conduct an inspection of the work by the CQC system Manager near the end of the work, or any increment of the work established by a time stated FAR 52.211-10 - Commencement, Prosecution, and Completion of Work, or by the specifications. Prepare and include in the CQC documentation a punch list of items which do not conform to the approved drawings and specifications. Include within the list of deficiencies the estimated date by which the deficiencies shall be corrected. Make a second inspection the CQC System Manager or staff to ascertain that all deficiencies have been corrected. Once this is accomplished, notify the Government that the facility is ready for the Government Pre-Final Inspection.

52.211-10 -- Commencement, Prosecution, and Completion of Work.

As prescribed in <u>11.404(b)</u>, insert the following clause in solicitations and contracts when a fixed-price construction contract is contemplated. The clause may be changed to accommodate the issuance of orders under indefinite-delivery contracts for construction.

Commencement, Prosecution, and Completion of Work (Apr 1984)

The Contractor shall be required to: (a) commence work under this contract within _____ // *Contracting Officer insert number*// calendar days after the date the Contractor receives the notice to proceed, (b) prosecute the work diligently, and (c) complete the entire work ready for use not later than _____. * The time stated for completion shall include final cleanup of the premises.

(End of Clause)

* The Contracting Officer shall specify either a number of days after the date the contractor receives the notice to proceed, or a calendar date.

Alternate I (Apr 1984). If the completion date is expressed as a specific calendar date, computed on the basis of the contractor receiving the notice to proceed by a certain day, add the following paragraph to the basic clause:

The completion date is based on the assumption that the successful offeror will receive the notice to proceed by ______ // Contracting Officer insert date //. The completion date will be extended by the number of calendar days after the above date that the Contractor receives the notice to proceed, except to the extent that the delay in issuance of the notice to proceed results from the failure of the Contractor to execute the contract and give the required performance and payment bonds within the time specified in the offer.

B. Pre-Final Inspection: The Government will perform the Pre-Final Inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. Ensure that all items on this list have been corrected before notifying the Government, so that a Final Acceptance Inspection with the customer can be scheduled. Correct any items noted on the Pre-Final Inspection in a timely manner. These inspections and any deficiency corrections required by this paragraph need to be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate construction completion dates.

C. Final Acceptance Inspection: The Contractor's QC Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Authorized designee is required to be in attendance at the Final Acceptance Inspection. Additional Government personnel can also be in attendance. The Final Acceptance Inspection shall be formally scheduled by the Contracting Officer's or Authorized designee based upon results of the Pre-Final Inspection. Notify the Contracting Officer through the Contracting Officer of Record (COR) office at least 14 days prior to the Final Acceptance Inspection and include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, shall be complete and acceptable by the date schedule for the Final Acceptance Inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection shall be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with FAR Clause 52.246-12 titled "Inspection of Construction".

3.9 DOCUMENTATION

- A. Quality Control Activities: Maintain current records providing factual evidence that required QC activities and tests have been performed. Include in these records the work of subcontractors and suppliers on an acceptable form that includes, as a minimum, the following information:
 - 1. The name and area of responsibility of the Contractor/Subcontractor
 - Operating plant/equipment with hours worked, idle, or down for repair.
 - 3. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number.
 - Test and control activities performed with results and references to specification/drawing requirements. Identify the Control Phase

(Preparatory, Initial, and/or Follow-Up). List deficiencies noted, along with corrective action.

- Quantity of materials received at the site with statement as to acceptability, storage, and reference to specification/drawing requirements.
- Submittals and deliverables reviewed, with Contract reference, by whom, and action taken.
- 7. Offsite surveillance activities, including actions taken.
- Job safety evaluations stating what was checked, results, and instructions or corrective actions.
- Instructions given/received and conflicts in plans and specifications.
- 10. Provide documentation of design quality control activities. For independent design reviews, provide, as a minimum, identification of the Independent Technical Reviewer (ITR) team, the ITR review comments, responses, and the record of resolution of the comments.
- B. Verification Statement: Indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. Cover both conforming and deficient features and include a statement that equipment and materials incorporated in the work and workmanship comply with the Contract. Furnish the original and one copy of these records in report form to the Government daily with 1 week after the date covered by the report, except that reports need not be submitted for day son which no work is performed. As a minimum, prepare and submit on report for every 7 days of no work and on the last day of a no work period. All calendar days need to be accounted for throughout the life of the contract. The first report following a day of no work shall be for that day only. Reports need to be signed and dated by the CQC System Manager. Include copies of test reports and copies of reports prepared by all subordinate QC personnel within the CQC System Manager Report.
- 3.10 NOTIFICATION OF NONCOMPLIANCE: The Contracting Officer or Authorized designee will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor should take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site shall be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to

comply promptly, the Contracting Officer can issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders shall be made the subject of claim for extension of time or for excess costs or damages by the Contractor.

---END---

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage are defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - Degrade the utility of the environment for aesthetic, cultural, and historical purposes.
- C. Definitions of Pollutants:
 - Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
 - Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
 - 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
 - Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
 - 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Environmental Protection Plan: After the contract is awarded and prior to the commencement of the work, the Contractor shall meet with the COR to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the COR for approval, a written and/or graphic Environmental Protection Plan including, but not limited to, the following:
 - Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.

01 57 19- 2

- e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
- f. Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses, ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.
- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, stream crossings, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.

- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, topsoil, and land forms without permission from the COR. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.
 - Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
 - Protection of Landscape: Protect trees, shrubs, vines, grasses, landforms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
 - 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
 - Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the

Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features as required.

- Manage and control spoil areas on Government property to limit and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- Protect adjacent areas from despoilment by temporary excavations and embankments.
- 8. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- Handle discarded materials other than those included in the solid waste category as directed by the COR.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.
 - Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
 - 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.

- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of Wyoming and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as directed by the COR. Maintain noise-produced work at or below the decibel levels and within the time periods specified.
 - Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 6:00 p.m unless otherwise permitted by local ordinance or the COR. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80

01 57 19- 6

Less than 12 minutes of any hour 75

 Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:

a. Maintain maximum permissible construction equipment noise levels at 15 m (50 feet) (dBA):

MADDITATO HANDITNO

EARIHMOVING		MAIERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.
- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB (A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is

greater. Measure the sound levels on the <u>A</u> weighing network of a General-Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the COR noting any problems and the alternatives for mitigating actions.

- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the COR. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

---END---

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

A. Section 02 41 00, DEMOLITION.

B. Section 01 00 00, GENERAL REQUIREMENTS.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.
- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.

- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.
- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:

- B. Prepare and submit to the COR a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:
 - a. List of each material and quantity to be salvaged, reused, recycled.
 - b. List of each material and quantity proposed to be taken to a landfill.
 - Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.

01 74 19 - 5

B. U.S. Green Building Council (USGBC):

LEED Green Building Rating System for New Construction

1.7 RECORDS

A. Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices. Include the net total costs for each disposal.

---END---

---INTENTIONALLY BLANK---

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

- A. Section 01 74 19 CONSTRUCTION WASTE MANANGEMENT.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.
- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased

products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.

- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U.S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.
- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include all materials on Project in categories described under Low Pollutant-Emitting Materials in Section 01 81 13.

- D. Product Submittals:
 - Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
 - 2. Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's product categories. Data to include percentage of biobased content and source of biobased material.
 - 3. Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project in categories described under Low Pollutant-Emitting Materials in Section 01 81 13.
 - For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.
- E. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 2. Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.

1.6 QUALITY ASSURANCE

A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with COR and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, , and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer.

B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.
- G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.
- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, Emission Testing method for California Specification 01350 (CDPH Standard Method V1.1-2010).
- Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

2.1 PERFORMANCE CRITERIA

- A. Low Pollutant-Emitting Materials:
 - Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Indoor carpet adhesives: 50 g/L.

July 30, 2021 Sioux Falls VA Medical Center Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Project No. 438-18-100 Sioux Falls, SD 2) Wood Flooring Adhesive: 100 g/L. 3) Rubber Floor Adhesives: 60 g/L. 4) Subfloor Adhesives: 50 g/L. 5) Ceramic Tile Adhesives and Grout: 65 g/L. 6) Cove Base Adhesives: 50 g/L. 7) Multipurpose Construction Adhesives: 70 g/L. 8) Porous Material (Except Wood) Substrate: 50 g/L. 9) Wood Substrate: 30 g/L. 10) Architectural Non-Porous Sealant Primer: 250 g/L. 11) Architectural Porous Sealant Primer: 775 g/L. 12) Other Sealant Primer: 750 g/L. 13) Structural Wood Member Adhesive: 140 g/L. 14) Sheet-Applied Rubber Lining Operations: 850 g/L. 15) Top and Trim Adhesive: 250 g/L. 16) Architectural Sealant: 250 g/L. 17) Other Sealant: 420 g/L. b. Non-Flooring Adhesives and Sealants: 1) Drywall and Panel Adhesives: 50 g/L. 2) Multipurpose Construction Adhesives: 70 g/L. 3) Structural Glazing Adhesives: 100 g/L. 4) Metal-to-Metal Substrate Adhesives: 30 g/L. 5) Plastic Foam Substrate Adhesive: 50 g/L. 6) Porous Material (Except Wood) Substrate Adhesive: 50 g/L. 7) Wood Substrate Adhesive: 30 g/L. 8) Fiberglass Substrate Adhesive: 80 g/L. 9) Architectural Non-Porous Sealant Primer: 250 g/L. 10) Architectural Porous Sealant Primer: 775 g/L. 11) Other Sealant Primer: 750 g/L. 12) PVC Welding Adhesives: 510 g/L. 13) CPVC Welding Adhesives: 490 g/L. 14) ABS Welding Adhesives: 325 g/L. 15) Plastic Cement Welding Adhesives: 250 g/L. 16) Adhesive Primer for Plastic: 550 g/L. 17) Contact Adhesive: 80 g/L. 18) Special Purpose Contact Adhesive: 250 g/L. 19) Structural Wood Member Adhesive: 140 g/L. 20) Sheet Applied Rubber Lining Operations: 850 g/L.

- 21) Top and Trim Adhesive: 250 g/L.
- 22) Architectural Sealants: 250 g/L.
- 23) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.
- Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.
 - b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
 - c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAQMD Rule 1113.
 - d. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Clear Wood Finish, Lacquer: 550 g/L.
 - 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
 - 4) Clear Wood Finish, Varnish: 350 g/L.
 - 5) Floor Coating: 100 g/L.
 - 6) Interior Flat Paint, Coating or Primer: 50 g/L.
 - 7) Interior Non-Flat Paint, Coating or Primer: 150 g/L.
 - 8) Sealers and Undercoaters: 200 g/L.
 - 9) Shellac, Clear: 730 g/L.
 - 10) Shellac, Pigmented: 550 g/L.
 - 11) Stain: 250 g/L.
 - 12) Clear Brushing Lacquer: 680 g/L.
 - 13) Concrete Curing Compounds: 350 g/L.
 - 14) Japans/Faux Finishing Coatings: 350 g/L.
 - 15) Magnesite Cement Coatings: 450 g/L.

- 16) Pigmented Lacquer: 550 g/L.
- 17) Waterproofing Sealers: 250 g/L.
- 18) Wood Preservatives: 350 g/L.
- 19) Low-Solids Coatings: 120 g/L.
- 4. Each non-carpet flooring element installed in building interior which is not inherently non-emitting (stone, ceramic, powder-coated metals, plated or anodized metal, glass, concrete, clay brick, and unfinished or untreated solid wood flooring) must comply with one of the following:
 - a. Meet requirements of the FloorScore standard as shown with testing by an independent third-party.
 - b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at 14 day time point.
- Composite wood and agrifiber products used within the weatherproofing membrane must contain no added urea-formaldehyde resins.
- Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies must not contain added ureaformaldehyde.

B. Recycled Content:

- Any products being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Building insulation.
 - b. Cement and concrete.
 - c. Consolidated and reprocessed latex paint.
 - d. Floor tiles.
 - e. Flowable fill.
 - f. Laminated paperboard.
 - g. Modular threshold ramps.
 - h. Nonpressure pipe.
 - i. Patio blocks.
 - j. Railroad grade crossing surfaces.
 - k. Roofing materials.
 - 1. Shower and restroom dividers/partitions.
 - m. Structural fiberboard.

- n. Nylon carpet and nylon carpet backing.
- o. Compost and fertilizer made from recovered organic materials.
- p. Hydraulic mulch.
- q. Lawn and garden edging.
- r. Plastic lumber landscaping timbers and posts.
- s. Park benches and picnic tables.
- t. Plastic fencing.
- u. Playground equipment.
- v. Playground surfaces.
- w. Bike racks.
- C. Biobased Content:
 - Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to individual specification sections for detailed requirements applicable to that section.
 - a. USDA BioPreferred program categories include:
 - 1) Adhesive and Mastic Removers.
 - 2) Carpets.
 - 3) Cleaners.
 - 4) Composite Panels.
 - 5) Corrosion Preventatives.
 - 6) Erosion Control Materials.
 - 7) Dust Suppressants.
 - 8) Fertilizers.
 - 9) Floor Cleaners and Protectors.
 - 10) Floor Coverings (Non-Carpet).
 - 11) Glass Cleaners.
 - 12) Hydraulic Fluids.
 - 13) Industrial Cleaners.
 - 14) Interior Paints and Coatings.
 - 15) Mulch and Compost Materials.
 - 16) Multipurpose Cleaners.
 - 17) Multipurpose Lubricants.
 - 18) Packaging Films.
 - 19) Paint Removers.
 - 20) Plastic Insulating Foam.

- 21) Pneumatic Equipment Lubricants.
- 22) Roof Coatings.
- 23) Wastewater Systems Coatings.
- 24) Water Tank Coatings.
- 25) Wood and Concrete Sealers.
- 26) Wood and Concrete Stains.
- D. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - 1. Applicable Energy Star product categories as of 09/14/2017 include:
 - a. Electronics and Information Technology:
 - 1) Audio/Video Equipment.
 - 2) Computers.
 - 3) Digital Media Player.
 - 4) Imaging Equipment.
 - 5) Monitors.
 - 6) Professional Displays.
 - 7) Set-Top and Cable Boxes.
 - 8) Televisions.
 - 9) Uninterruptible Power Supplies.
 - b. Heating and Cooling Equipment:
 - 1) Light Commercial Heating and Cooling Equipment.
 - c. Other:
 - 1) Light Bulbs.
 - 2) Light Fixtures.
 - 3) Water Coolers.
 - 4) Windows, Doors, and Skylights.
- E. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Light Emitting Diode (LED) Luminaires.
- F. Electronic products and equipment being installed which fall into any of the following categories shall be EPEAT registered. Electronic products and equipment covered by EPEAT program as of 09/14/2017 include:
 - 1. Computers.
 - 2. Displays.
 - 3. Imaging Equipment.

4. Televisions.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Construction Indoor Air Quality Management:
 - During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
 - Protect stored on-site and installed absorptive materials from moisture damage.
 - 3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.
 - 4. Provide construction dust control to comply with SCAQMD Rule 403.

----END---

SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS shall form the basis of the construction phase commissioning process and procedures. The Commissioning Agent shall add, modify, and refine the commissioning procedures, as approved by the Department of Veterans Affairs (VA), to suit field conditions and actual manufacturer's equipment, incorporate test data and procedure results, and provide detailed scheduling for all commissioning tasks.
- B. Various sections of the project specifications require equipment startup, testing, and adjusting services. Requirements for startup, testing, and adjusting services are intended to be provided in coordination with the commissioning services and are not intended to duplicate services. The Contractor shall coordinate the work required by individual specification sections with the commissioning services requirements specified herein.
- C. Where individual testing, adjusting, or related services are required in the project specifications and not specifically required by this commissioning requirements specification, the specified services shall be provided and copies of documentation, as required by those specifications shall be submitted to the VA and the Commissioning Agent to be indexed for future reference.
- D. Where training or educational services for VA are required and specified in other sections of the specifications, these services are intended to be provided in addition to the training and educational services specified herein.
- E. Commissioning is a systematic process of verifying that the building systems perform interactively according to the construction documents and the VA's operational needs. The commissioning process shall encompass and coordinate the system documentation, equipment startup, control system calibration, performance testing and training. Commissioning during the construction, and post-occupancy phases is intended to achieve the following specific objectives according to the contract documents:

- Verify that the applicable equipment and systems are installed in accordance with the contact documents and according to the manufacturer's recommendations.
- Verify and document proper integrated performance of equipment and systems.
- 3. Verify that Operations & Maintenance documentation is complete.
- Verify that all components requiring servicing can be accessed, serviced and removed without disturbing nearby components including ducts, piping, cabling or wiring.
- 5. Verify that the VA's operating personnel are adequately trained to enable them to operate, monitor, adjust, maintain, and repair building systems in an effective and energy-efficient manner.
- Document the successful achievement of the commissioning objectives listed above.
- F. The commissioning process does not take away from or reduce the responsibility of the Contractor to provide a finished and fully functioning product.

1.2 CONTRACTUAL RELATIONSHIPS

- A. For this construction project, the Department of Veterans Affairs contracts with a Contractor to provide construction services. The contracts are administered by the VA Contracting Officer and the Contracting Officer's Representative (COR) as the designated representative of the Contracting Officer. On this project, the authority to modify the contract in any way is strictly limited to the authority of the Contracting Officer and the COR.
- B. In this structure, only two contract parties are recognized and communications on contractual issues are strictly limited to VA COR and the Contractor. It is the practice of the VA to require that communications between other parties to the contracts (Subcontractors and Vendors) be conducted through the COR and Contractor. It is also the practice of the VA that communications between other parties of the project (Commissioning Agent and Architect/Engineer) be conducted through the COR.
- C. Whole Building Commissioning is a process that relies upon frequent and direct communications, as well as collaboration between all parties to the construction process. By its nature, a high level of communication and cooperation between the Commissioning Agent and all other parties

(Architects, Engineers, Subcontractors, Vendors, third party testing agencies, etc) is essential to the success of the Commissioning effort.

- D. With these fundamental practices in mind, the commissioning process described herein has been developed to recognize that, in the execution of the Commissioning Process, the Commissioning Agent must develop effective methods to communicate with every member of the construction team involved in delivering commissioned systems while simultaneously respecting the exclusive contract authority of the Contracting Officer and COR. Thus, the procedures outlined in this specification must be executed within the following limitations:
 - No communications (verbal or written) from the Commissioning Agent shall be deemed to constitute direction that modifies the terms of any contract between the Department of Veterans Affairs and the Contractor.
 - 2. Commissioning Issues identified by the Commissioning Agent will be delivered to the COR and copied to the designated Commissioning Representatives for the Contractor and subcontractors on the Commissioning Team for information only in order to expedite the communication process. These issues must be understood as the professional opinion of the Commissioning Agent and as suggestions for resolution.
 - 3. In the event that any Commissioning Issues and suggested resolutions are deemed by the COR to require either an official interpretation of the construction documents or require a modification of the contract documents, the Contracting Officer or COR will issue an official directive to this effect.
 - 4. All parties to the Commissioning Process shall be individually responsible for alerting the COR of any issues that they deem to constitute a potential contract change prior to acting on these issues.
 - 5. Authority for resolution or modification of design and construction issues rests solely with the Contracting Officer or COR, with appropriate technical guidance from the Architect/Engineer and/or Commissioning Agent.

1.3 RELATED WORK

A. Section 01 00 00 GENERAL REQUIREMENTS.

1.4 SUMMARY

A. This Section includes general requirements that apply to implementation of commissioning without regard to systems, subsystems, and equipment being commissioned.

1.5 DEFINITIONS

- A. <u>Architect</u>: Includes Architect identified in the Contract for Construction between the Department of Veterans Affairs and Contractor, plus consultant/design professionals responsible for design electrical, communications, as well as other related systems.
- B. CxA: Commissioning Agent.
- C. <u>Commissioning Plan:</u> a document that is an overall plan that outlines the commissioning process, commissioning team responsibilities, schedule for commissioning activities, and commissioning documents.
- D. <u>Commissioning Issue</u>: a condition in the installation or function of a component, piece of equipment or system that affects the system operations, maintenance, and/or repair.
- E. <u>Commissioning Observation</u>: a condition in the installation or function of a component, piece of equipment or system that may not be in compliance with the Contract Documents, or may not be in compliance with the manufacturer's installation instruction, or may not be in compliance with generally accepted industry standards.
- F. Systems Functional Performance Test: a test, or tests, of the dynamic function and operation of equipment and systems using manual (direct observation) or monitoring methods. Systems Functional Performance Testing is the dynamic testing of systems (rather than just components) under full operation (e.g., the chiller pump is tested interactively with the chiller functions to see if the pump ramps up and down to maintain the differential pressure setpoint). Systems are tested under various modes, such as during low cooling or heating loads, high loads, component failures, unoccupied, varying outside air temperatures, fire alarm, power failure, etc. The systems are run through all the control system's sequences of operation and components are verified to be responding as the sequences state. The Commissioning Agent develops the Systems Functional Performance Test Procedures in a sequential written form, coordinates, witnesses, and documents the actual testing. Systems Functional Performance Testing is performed by the Contractor.

Systems Functional Performance Tests are performed after startups, control systems are complete and operational.

- G. <u>System</u>: A system is defined as the entire set of components, equipment, and subsystems which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one component of an entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam supply, chilled water supply, refrigerant supply, hot water supply, controls and electrical service, etc. Another example of a system which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of the fuel supply, combustion air, controls, steam, feedwater supply, condensate return and other related components.
- H. <u>Pre-Functional Checklist</u>: a list of items provided by the Commissioning Agent to the Contractor that require inspection and elementary component tests conducted to verify proper installation of equipment. Pre-Functional Checklists are primarily static inspections and procedures to prepare the equipment or system for initial operation (e.g., belt tension, oil levels OK, labels affixed, gages in place, sensors calibrated, etc.). However, some Pre-Functional Checklist items entail simple testing of the function of a component, a piece of equipment or system (such as measuring the voltage imbalance on a three-phase pump motor of a chiller system). The term "Pre-Functional" refers to before Systems Functional Performance Testing. Pre-Functional Checklists augment and are combined with the manufacturer's startup checklist and the Contractor's Quality Control checklists.
- I. <u>Seasonal Functional Performance Testing</u>: a test or tests that are deferred until the system will experience conditions closer to their design conditions.
- J. <u>VA</u>: Includes the Contracting Officer, COR, or other authorized representative of the Department of Veterans Affairs.

1.6 SYSTEMS TO BE COMMISSIONED

A. Commissioning of a system or systems specified for this project is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel, is required in cooperation with the VA and the Commissioning

Agent. The following systems are to be commissioned as part of this project:

New Switchgear

- 1. Medium Voltage Switchgear 5kV to 25kV
- 2. Medium Voltage Cables 5kV to 25kV
- 3. Low Voltage Switchgear
- 4. Transformer Turns Ratio and Isolation Testing
- 5. Primary injection testing of protection relays, breakers and circuit protection
- Secondary injection testing of protection relays, breakers and circuit protection
- 7. Circuit breaker current testing
- 8. Mechanical Operations

Existing/ New Generator

- Check that the fuel tank is full and the oil level is correct. The installation guide given to you by your distributor should inform you of your generator's specific fuel consumption.
- Batteries must be installed, filled and connected. Secondly, the hydraulic valves should be positioned correctly, with the compressor operational. Once the hydraulic pressures are audited, the condensate can be drained.
- 3. Generators require an extensive area of space for proper airflow. The area specifications are indicated in the installation manual. The air filter should also be cleaned and inspected before the start-up.
- 4. The generator's output voltage should match the facility it is supplying. It's also important that the proper wiring accessories are used for communications and power wiring. Armoured cables should be used for connecting the generator.

1.7 COMMISSIONING TEAM

- A. Members Appointed by Contractor:
 - Contractor: The designated person, company, or entity that plans, schedules and coordinates the commissioning activities for the construction team.
 - Contractor's Commissioning Representative(s): Individual(s), each having authority to act on behalf of the entity he or she represents, explicitly organized to implement the commissioning

> process through coordinated actions. The commissioning team shall consist of, but not be limited to, representatives of Contractor, including Project Superintendent and subcontractors, installers, suppliers, and specialists deemed appropriate by the Department of Veterans Affairs (VA) and Commissioning Agent.

- B. Members Appointed by VA:
 - Commissioning Agent: The designated person, company, or entity that plans, schedules, and coordinates the commissioning team to implement the commissioning process. The VA will engage the CxA under a separate contract.
 - Representatives of the facility user and operation and maintenance personnel.
 - 3. Architect and engineering design professionals.

1.8 VA'S COMMISSIONING RESPONSIBILITIES

- A. Appoint an individual, company or firm to act as the Commissioning Agent.
- B. Assign operation and maintenance personnel and schedule them to participate in commissioning team activities including, but not limited to, the following:
 - 1. Coordination meetings.
 - Training in operation and maintenance of systems, subsystems, and equipment.
 - 3. Testing meetings.
 - 4. Witness and assist in Systems Functional Performance Testing.
 - 5. Demonstration of operation of systems, subsystems, and equipment.
- C. Provide the Construction Documents, prepared by Architect and approved by VA, to the Commissioning Agent and for use in managing the commissioning process, developing the commissioning plan, systems manuals, and reviewing the operation and maintenance training plan.

1.9 CONTRACTOR'S COMMISSIONING RESPONSIBILITIES

- A. The Contractor shall assign a Commissioning Manager to manage commissioning activities of the Contractor, and subcontractors.
- B. The Contractor shall ensure that the commissioning responsibilities outlined in these specifications are included in all subcontracts and that subcontractors and suppliers comply with the requirements of these specifications.

- C. The Contractor shall ensure that each installing subcontractor shall assign representatives with expertise and authority to act on behalf of the subcontractor and schedule them to participate in and perform commissioning team activities including, but not limited to, the following:
 - 1. Participate in commissioning coordination meetings.
 - Conduct operation and maintenance training sessions in accordance with approved training plans.
 - Verify that Work is complete and systems are operational according to the Contract Documents, including calibration of instrumentation and controls.
 - 4. Evaluate commissioning issues and commissioning observations identified in the Commissioning Issues Log, field reports, test reports or other commissioning documents. In collaboration with entity responsible for system and equipment installation, recommend corrective action.
 - 5. Review and comment on commissioning documentation.
 - Participate in meetings to coordinate Systems Functional Performance Testing.
 - Provide schedule for operation and maintenance data submittals, equipment startup, and testing to Commissioning Agent for incorporation into the commissioning plan.
 - 8. Provide information to the Commissioning Agent for developing commissioning plan.
 - 9. Participate in training sessions for VA's operation and maintenance personnel.
 - 10. Provide technicians who are familiar with the construction and operation of installed systems and who shall develop specific test procedures to conduct Systems Functional Performance Testing of installed systems.
 - 11. Provide all necessary equipment and qualified operators for start-up and functional testing.

1.10 COMMISSIONING AGENT'S RESPONSIBILITIES

- A. Organize and lead the commissioning team.
- B. Prepare the commissioning plan. See Paragraph 1.11-A of this specification Section for further information.

- C. Review and comment on selected submittals from the Contractor for general conformance with the Construction Documents. Review and comment on the ability to test and operate the system and/or equipment, including providing gages, controls and other components required to operate, maintain, and test the system. Review and comment on performance expectations of systems and equipment and interfaces between systems relating to the Construction Documents.
- D. At the beginning of the construction phase, conduct an initial construction phase coordination meeting for the purpose of reviewing the commissioning activities and establishing tentative schedules for operation and maintenance submittals; operation and maintenance training sessions; Pre-Functional Checklists, Systems Functional Performance Testing; and project completion.
- E. Convene commissioning team meetings for the purpose of coordination, communication, and conflict resolution; discuss status of the commissioning processes. Responsibilities include arranging for facilities, preparing agenda and attendance lists, and notifying participants. The Commissioning Agent shall prepare and distribute minutes to commissioning team members and attendees within five workdays of the commissioning meeting.
- F. Observe construction and report progress, observations and issues. Observe systems and equipment installation for adequate accessibility for maintenance and component replacement or repair, and for general conformance with the Construction Documents.
- G. Prepare Project specific Pre-Functional Checklists and Systems Functional Performance Test procedures.
- H. Coordinate Systems Functional Performance Testing schedule with the Contractor.
- I. Witness selected systems startups.
- J. Verify selected Pre-Functional Checklists completed and submitted by the Contractor.
- K. Witness and document Systems Functional Performance Testing.
- L. Compile test data, inspection reports, and certificates and include them in the systems manual and commissioning report.
- M. Review and comment on operation and maintenance (O&M) documentation and systems manual outline for compliance with the Contract Documents.

Operation and maintenance documentation requirements are specified in Paragraph 1.25, Section 01 00 00 GENERAL REQUIREMENTS.

- N. Review operation and maintenance training program developed by the Contractor. Verify training plans provide qualified instructors to conduct operation and maintenance training.
- O. Prepare commissioning Field Observation Reports.
- P. Prepare the Final Commissioning Report.
- Q. Return to the site at 10 months into the 12-month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal Systems Functional Performance Testing. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.
- R. Assemble the final commissioning documentation, including the Final Commissioning Report and Addendum to the Final Commissioning Report.

1.11 COMMISSIONING DOCUMENTATION

- A. <u>Commissioning Plan</u>: A document, prepared by Commissioning Agent, that outlines the schedule, allocation of resources, and documentation requirements of the commissioning process, and shall include, but is not limited, to the following:
 - Plan for delivery and review of submittals, systems manuals, and other documents and reports. Identification of the relationship of these documents to other functions and a detailed description of submittals that are required to support the commissioning processes. Submittal dates shall include the latest date approved submittals must be received without adversely affecting commissioning plan.
 - Description of the organization, layout, and content of commissioning documentation (including systems manual) and a detailed description of documents to be provided along with identification of responsible parties.
 - 3. Identification of systems and equipment to be commissioned.
 - 4. Schedule of Commissioning Coordination meetings.

- 5. Identification of items that must be completed before the next operation can proceed.
- 6. Description of responsibilities of commissioning team members.
- 7. Description of observations to be made.
- 8. Description of requirements for operation and maintenance training.
- 9. Schedule for commissioning activities with dates coordinated with overall construction schedule.
- Process and schedule for documenting changes on a continuous basis to appear in Project Record Documents.
- 11. Process and schedule for completing prestart and startup checklists for systems, subsystems, and equipment to be verified and tested.
- 12. Preliminary Systems Functional Performance Test procedures.
- B. <u>Systems Functional Performance Test Procedures</u>: The Commissioning Agent will develop Systems Functional Performance Test Procedures for each system to be commissioned, including subsystems, or equipment and interfaces or interlocks with other systems. Systems Functional Performance Test Procedures will include a separate entry, with space for comments, for each item to be tested. Preliminary Systems Functional Performance Test Procedures will be provided to the VA, Architect/Engineer, and Contractor for review and comment. The Systems Performance Test Procedure will include test procedures for each mode of operation and provide space to indicate whether the mode under test responded as required. Each System, or equipment being tested, shall include, but not be limited to, the following:
 - 1. Name and identification code of tested system.
 - 2. Test number.
 - 3. Time and date of test.
 - Indication of whether the record is for a first test or retest following correction of a problem or issue.
 - 5. Dated signatures of the person performing test and of the witness, if applicable.
 - 6. Individuals present for test.
 - 7. Observations and Issues.
 - 8. Issue number, if any, generated as the result of test.
- C. <u>Pre-Functional Checklists</u>: The Commissioning Agent will prepare Pre-Functional Checklists. Pre-Functional Checklists shall be completed and

signed by the Contractor, verifying that systems, subsystems, equipment, and associated controls are ready for testing. The COR shall review and sign the pre-functional checklists prior to submission to the commissioning agent. The Commissioning Agent will spot check Pre-Functional Checklists to verify accuracy and readiness for testing. Inaccurate or incomplete Pre-Functional Checklists shall be returned to the Contractor for correction and resubmission.

- D. <u>Test and Inspection Reports</u>: The Commissioning Agent will record test data, observations, and measurements on Systems Functional Performance Test Procedure. The report will also include recommendation for system acceptance or non-acceptance. Photographs, forms, and other means appropriate for the application shall be included with data. Commissioning Agent Will compile test and inspection reports and test and inspection certificates and include them in systems manual and commissioning report.
- E. <u>Corrective Action Documents</u>: The Commissioning Agent will document corrective action taken for systems and equipment that fail tests. The documentation will include any required modifications to systems and equipment and/or revisions to test procedures, if any. The Commissioning Agent will witness and document any retesting of systems and/or equipment requiring corrective action and document retest results. Cost associated with re-testing incurred by the commissioning agent shall be at the cost of the contractor.
- F. <u>Commissioning Issues Log</u>: The Commissioning Agent will prepare and maintain Commissioning Issues Log that describes Commissioning Issues and Commissioning Observations that are identified during the Commissioning process. These observations and issues include, but are not limited to, those that are at variance with the Contract Documents. The Commissioning Issues Log will identify and track issues as they are encountered, the party responsible for resolution, progress toward resolution, and document how the issue was resolved. The Master Commissioning Issues Log will also track the status of unresolved issues.
 - 1. Creating a Commissioning Issues Log Entry:
 - a. Identify the issue with unique numeric or alphanumeric identifier by which the issue may be tracked.
 - b. Assign a descriptive title for the issue.

- c. Identify date and time of the issue.
- d. Identify test number of test being performed at the time of the observation, if applicable, for cross reference.
- e. Identify system, subsystem, and equipment to which the issue applies.
- f. Identify location of system, subsystem, and equipment.
- g. Include information that may be helpful in diagnosing or evaluating the issue.
- h. Note recommended corrective action.
- i. Identify commissioning team member responsible for corrective action.
- j. Identify expected date of correction.
- k. Identify person that identified the issue.
- 2. Documenting Issue Resolution:
 - a. Log date correction is completed or the issue is resolved.
 - b. Describe corrective action or resolution taken. Include description of diagnostic steps taken to determine root cause of the issue, if any.
 - c. Identify changes to the Contract Documents that may require action.
 - d. State that correction was completed and system, subsystem, and equipment are ready for retest, if applicable.
 - e. Identify person(s) who corrected or resolved the issue.
 - f. Identify person(s) verifying the issue resolution.
- G. <u>Final Commissioning Report:</u> The Commissioning Agent will document results of the commissioning process, including unresolved issues, and performance of systems, subsystems, and equipment. The Commissioning Report will indicate whether systems, subsystems, and equipment have been properly installed and are performing according to the Contract Documents. This report will be used by the Department of Veterans Affairs when determining that systems will be accepted. This report will be used to evaluate systems, subsystems, and equipment and will serve as a future reference document during VA occupancy and operation. It shall describe components and performance that exceed requirements of the Contract Documents. The commissioning report will include, but is not limited to, the following:

- Lists and explanations of substitutions; compromises; variances with the Contract Documents; record of conditions; and, if appropriate, recommendations for resolution. Design Narrative documentation maintained by the Commissioning Agent.
- 2. Commissioning plan.
- 3. Pre-Functional Checklists completed by the Contractor, with annotation of the Commissioning Agent review and spot check.
- 4. Systems Functional Performance Test Procedures, with annotation of test results and test completion.
- 5. Commissioning Issues Log.
- Listing of deferred and off-season test(s) not performed, including the schedule for their completion.
- H. <u>Addendum to Final Commissioning Report</u>: The Commissioning Agent will prepare an Addendum to the Final Commissioning Report near the end of the Warranty Period. The Addendum will indicate whether systems, subsystems, and equipment are complete and continue to perform according to the Contract Documents. The Addendum to the Final Commissioning Report shall include, but is not limited to, the following:
 - 1. Documentation of deferred and off-season test(s) results.
 - Completed Systems Functional Performance Test Procedures for off season test(s).
 - 3. Documentation that unresolved system performance issues have been resolved.
 - 4. Updated Commissioning Issues Log, including status of unresolved issues.
 - 5. Identification of potential Warranty Claims to be corrected by the Contractor.
- I. <u>Systems Manual</u>: The Commissioning Agent will gather required information and compile the Systems Manual. The Systems Manual will include, but is not limited to, the following:
 - Design Narrative, including system narratives, schematics, singleline diagrams, flow diagrams, equipment schedules, and changes made throughout the Project.
 - 2. Reference to Final Commissioning Plan.
 - 3. Reference to Final Commissioning Report.

4. Approved Operation and Maintenance Data as submitted by the Contractor.

1.12 SUBMITTALS

- A. <u>Preliminary Commissioning Plan Submittal</u>: The Commissioning Agent has prepared a Preliminary Commissioning Plan based on the final Construction Documents. The Preliminary Commissioning Plan is included as an Appendix to this specification section. The Preliminary Commissioning Plan is provided for information only. It contains preliminary information about the following commissioning activities:
 - 1. The Commissioning Team: A list of commissioning team members by organization.
 - 2. Systems to be commissioned. A detailed list of systems to be commissioned for the project. This list also provides preliminary information on systems/equipment submittals to be reviewed by the Commissioning Agent; preliminary information on Pre-Functional Checklists that are to be completed; preliminary information on Systems Performance Testing, including information on testing sample size (where authorized by the VA).
 - 3. Commissioning Team Roles and Responsibilities: Preliminary roles and responsibilities for each Commissioning Team member.
 - 4. Commissioning Documents: A preliminary list of commissioning-related documents, include identification of the parties responsible for preparation, review, approval, and action on each document.
 - 5. Commissioning Activities Schedule: Identification of Commissioning Activities, including Systems Functional Testing, the expected duration and predecessors for the activity.
 - 6. Pre-Functional Checklists: Preliminary Pre-Functional Checklists for equipment, components, subsystems, and systems to be commissioned. These Preliminary Pre-Functional Checklists provide guidance on the level of detailed information the Contractor shall include on the final submission.
 - 7. Systems Functional Performance Test Procedures: Preliminary step-bystep System Functional Performance Test Procedures to be used during Systems Functional Performance Testing. These Preliminary Systems Functional Performance procedures provide information on the level of testing rigor, and the level of Contractor support required during performance of system's testing.

- B. <u>Final Commissioning Plan Submittal</u>: Based on the Final Construction Documents and the Contractor's project team, the Commissioning Agent will prepare the Final Commissioning Plan as described in this section. The Commissioning Agent will submit three hard copies and three sets of electronic files of Final Commissioning Plan. The Contractor shall review the Commissioning Plan and provide any comments to the VA. The Commissioning Agent will incorporate review comments into the Final Commissioning Plan as directed by the VA.
- C. <u>Systems Functional Performance Test Procedure</u>: The Commissioning Agent will submit preliminary Systems Functional Performance Test Procedures to the Contractor, and the VA for review and comment. The Contractor shall return review comments to the VA and the Commissioning Agent. The VA will also return review comments to the Commissioning Agent. The Commissioning Agent will incorporate review comments into the Final Systems Functional Test Procedures to be used in Systems Functional Performance Testing.
- D. <u>Pre-Functional Checklists</u>: The Commissioning Agent will submit Pre-Functional Checklists to be completed by the Contractor.
- E. <u>Test and Inspection Reports</u>: The Commissioning Agent will submit test and inspection reports to the VA with copies to the Contractor and the Architect/Engineer.
- F. <u>Corrective Action Documents</u>: The Commissioning Agent will submit corrective action documents to the VA COR with copies to the Contractor and Architect.
- G. <u>Preliminary Commissioning Report Submittal</u>: The Commissioning Agent will submit three electronic copies of the preliminary commissioning report. One electronic copy, with review comments, will be returned to the Commissioning Agent for preparation of the final submittal.
- H. <u>Final Commissioning Report Submittal</u>: The Commissioning Agent will submit four sets of electronically formatted information of the final commissioning report to the VA. The final submittal will incorporate comments as directed by the VA.
- I. Data for Commissioning:
 - The Commissioning Agent will request in writing from the Contractor specific information needed about each piece of commissioned equipment or system to fulfill requirements of the Commissioning Plan.

 The Commissioning Agent may request further documentation as is necessary for the commissioning process or to support other VA data collection requirements, including Construction Operations Building Information Exchange (COBIE), Building Information Modeling (BIM), etc.

1.13 COMMISSIONING PROCESS

- A. The Commissioning Agent will be responsible for the overall management of the commissioning process as well as coordinating scheduling of commissioning tasks with the VA and the Contractor. As directed by the VA, the Contractor shall incorporate Commissioning tasks, including, but not limited to, Systems Functional Performance Testing (including predecessors) with the Master Construction Schedule.
- B. Within 30 days of contract award, the Contractor shall designate a specific individual as the Commissioning Manager (CM) to manage and lead the commissioning effort on behalf of the Contractor. The Commissioning Manager shall be the single point of contact and communications for all commissioning related services by the Contractor.
- C. Within 60 days of contract award, the Contractor shall ensure that each subcontractor designates specific individuals as Commissioning Representatives (CR) to be responsible for commissioning related tasks. The Contractor shall ensure the designated Commissioning Representatives participate in the commissioning process as team members providing commissioning testing services, equipment operation, adjustments, and corrections if necessary. The Contractor shall ensure that all Commissioning Representatives shall have sufficient authority to direct their respective staff to provide the services required, and to speak on behalf of their organizations in all commissioning related contractual matters.

1.14 QUALITY ASSURANCE

- A. <u>Instructor Qualifications</u>: Factory authorized service representatives shall be experienced in training, operation, and maintenance procedures for installed systems, subsystems, and equipment.
- B. <u>Test Equipment Calibration</u>: The Contractor shall comply with test equipment manufacturer's calibration procedures and intervals. Recalibrate test instruments immediately whenever instruments have been repaired following damage or dropping. Affix calibration tags to test

instruments. Instruments shall have been calibrated within six months prior to use.

1.15 COORDINATION

- A. <u>Management</u>: The Commissioning Agent will coordinate the commissioning activities with the VA and Contractor. The Commissioning Agent will submit commissioning documents and information to the VA. All commissioning team members shall work together to fulfill their contracted responsibilities and meet the objectives of the contract documents.
- B. <u>Scheduling</u>: The Contractor will work with the Commissioning Agent and the VA to incorporate the commissioning activities into the construction schedule. The Commissioning Agent will provide sufficient information on commissioning activities to allow the Contractor and the VA to schedule commissioning activities. All parties shall address scheduling issues and make necessary notifications in a timely manner in order to expedite the project and the commissioning process. The Contractor shall update the Master Construction as directed by the VA.
- C. <u>Initial Schedule of Commissioning Events</u>: The Commissioning Agent will provide the initial schedule of primary commissioning events in the Commissioning Plan and at the commissioning coordination meetings. The Commissioning Plan will provide a format for this schedule. As construction progresses, more detailed schedules will be developed by the Contractor with information from the Commissioning Agent.
- D. <u>Commissioning Coordinating Meetings</u>: The Commissioning Agent will conduct periodic Commissioning Coordination Meetings of the commissioning team to review status of commissioning activities, to discuss scheduling conflicts, and to discuss upcoming commissioning process activities.
- E. Pretesting Meetings: The Commissioning Agent will conduct pretest meetings of the commissioning team to review startup reports, Pre-Functional Checklist results, Systems Functional Performance Testing procedures, testing personnel and instrumentation requirements.
- F. <u>Systems Functional Performance Testing Coordination</u>: The Contractor shall coordinate testing activities to accommodate required quality assurance and control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing

and inspecting. The Contractor shall coordinate the schedule times for tests, inspections, obtaining samples, and similar activities.

PART 2 - PRODUCTS

2.1 TEST EQUIPMENT

- A. The Contractor shall provide all standard and specialized testing equipment required to perform Systems Functional Performance Testing. Test equipment required for Systems Functional Performance Testing will be identified in the detailed System Functional Performance Test Procedure prepared by the Commissioning Agent.
- B. Data logging equipment and software required to test equipment shall be provided by the Contractor.
- C. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to an accuracy of 0.5 °C (1.0 °F) and a resolution of + or 0.1 °C (0.2 °F). Pressure sensors shall have an accuracy of + or 2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer's recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.

PART 3 - EXECUTION

3.1 STARTUP, INITIAL CHECKOUT, AND PRE-FUNCTIONAL CHECKLISTS

- A. The following procedures shall apply to all equipment and systems to be commissioned, according to Part 1, Systems to Be Commissioned.
 - Pre-Functional Checklists are important to ensure that the equipment and systems are hooked up and operational. These ensure that Systems Functional Performance Testing may proceed without unnecessary delays. Each system to be commissioned shall have a full Pre-Functional Checklist completed by the Contractor prior to Systems Functional Performance Testing. No sampling strategies are used.
 - a. The Pre-Functional Checklist will identify the trades responsible for completing the checklist. The Contractor shall ensure the appropriate trades complete the checklists.

- b. The Commissioning Agent will review completed Pre-Functional Checklists and field-verify the accuracy of the completed checklist using sampling techniques.
- 2. Startup and Initial Checkout Plan: The Contractor shall develop detailed startup plans for all equipment. The primary role of the Contractor in this process is to ensure that there is written documentation that each of the manufacturer recommended procedures have been completed. Parties responsible for startup shall be identified in the Startup Plan and in the checklist forms.
 - a. The Contractor shall develop the full startup plan by combining (or adding to) the checklists with the manufacturer's detailed startup and checkout procedures from the O&M manual data and the field checkout sheets normally used by the Contractor. The plan shall include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan.
 - b. The full startup plan shall at a minimum consist of the following items:
 - 1) The Pre-Functional Checklists.
 - 2) The manufacturer's standard written startup procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
 - 3) The manufacturer's normally used field checkout sheets.
 - a) The Commissioning Agent will submit the full startup plan to the VA and Contractor for review. Final approval will be by the VA.
 - b) The Contractor shall review and evaluate the procedures and the format for documenting them, noting any procedures that need to be revised or added.
- 3. Sensor and Actuator Calibration
 - a. All field installed temperature, relative humidity, CO₂ and pressure sensors and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described in Division 22 specifications.
 - b. All procedures used shall be fully documented on the Pre-Functional Checklists or other suitable forms, clearly
referencing the procedures followed and written documentation of initial, intermediate and final results.

- 4. Execution of Equipment Startup
 - a. Four weeks prior to equipment startup, the Contractor shall schedule startup and checkout with the VA and Commissioning Agent. The performance of the startup and checkout shall be directed and executed by the Contractor.
 - b. The Commissioning Agent will observe the startup procedures for selected pieces of primary equipment.
 - c. The Contractor shall execute startup and provide the VA and Commissioning Agent with a signed and dated copy of the completed startup checklists, and contractor tests.
 - d. Only individuals that have direct knowledge and witnessed that a line item task on the Startup Checklist was actually performed shall initial or check that item off. It is not acceptable for witnessing supervisors to fill out these forms.

3.2 DEFICIENCIES, NONCONFORMANCE, AND APPROVAL IN CHECKLISTS AND STARTUP

- A. The Contractor shall clearly list any outstanding items of the initial startup and Pre-Functional Checklist procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies shall be provided to the VA and the Commissioning Agent within two days of completion.
- B. The Commissioning Agent will review the report and submit comments to the VA. The Commissioning Agent will work with the Contractor to correct and verify deficiencies or uncompleted items. The Commissioning Agent will involve the VA and others as necessary. The Contractor shall correct all areas that are noncompliant or incomplete in the checklists in a timely manner, and shall notify the VA and Commissioning Agent as soon as outstanding items have been corrected. The Contractor shall submit an updated startup report and a Statement of Correction on the original noncompliance report. When satisfactorily completed, the Commissioning Agent will recommend approval of the checklists and startup of each system to the VA.
- C. The Contractor shall be responsible for resolution of deficiencies as directed the VA.

3.3 PHASED COMMISSIONING

A. The project may require startup and initial checkout to be executed in phases. This phasing shall be planned and scheduled in a coordination meeting of the VA, Commissioning Agent, and the Contractor. Results will be added to the master construction schedule and the commissioning schedule.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

- A. This paragraph applies to Systems Functional Performance Testing of systems for all referenced specification Divisions.
- B. Objectives and Scope: The objective of Systems Functional Performance Testing is to demonstrate that each system is operating according to the Contract Documents. Systems Functional Performance Testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of noncompliant performance are identified and corrected, thereby improving the operation and functioning of the systems. In general, each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load, fire alarm and emergency power) where there is a specified system response. The Contractor shall verify each sequence in the sequences of operation. Proper responses to such modes and conditions as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc. shall also be tested.
- C. <u>Development of Systems Functional Performance Test Procedures</u>: Before Systems Functional Performance Test procedures are written, the Contractor shall submit all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. Using the testing parameters and requirements found in the Contract Documents and approved submittals and shop drawings, the Commissioning Agent will develop specific Systems Functional Test Procedures to verify and document proper operation of each piece of equipment and system to be commissioned. The Contractor shall assist the Commissioning Agent in developing the Systems Functional Performance Test procedures as requested by the Commissioning Agent i.e. by answering questions about equipment, operation, sequences, etc. Prior to execution, the Commissioning Agent will provide a copy of the Systems Functional

Performance Test procedures to the VA, the Architect/Engineer, and the Contractor, who shall review the tests for feasibility, safety, equipment and warranty protection.

- D. <u>Purpose of Test Procedures</u>: The purpose of each specific Systems Functional Performance Test is to verify and document compliance with the stated criteria of acceptance given on the test form. Representative test formats and examples are found in the Commissioning Plan for this project. (The Commissioning Plan is issued as a separate document and is available for review.) The test procedure forms developed by the Commissioning Agent will include, but not be limited to, the following information:
 - 1. System and equipment or component name(s)
 - 2. Equipment location and ID number
 - Unique test ID number, and reference to unique Pre-Functional Checklists and startup documentation, and ID numbers for the piece of equipment.
 - 4. Date
 - 5. Project name
 - 6. Participating parties
 - 7. A copy of the specification section describing the test requirements
 - A copy of the specific sequence of operations or other specified parameters being verified
 - 9. Formulas used in any calculations
 - 10. Required pretest field measurements
 - 11. Instructions for setting up the test.
 - 12. Special cautions, alarm limits, etc.
 - 13. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
 - 14. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
 - 15. A section for comments.
 - 16. Signatures and date block for the Commissioning Agent. A place for the Contractor to initial to signify attendance at the test.
- E. <u>Test Methods</u>: Systems Functional Performance Testing shall be achieved by manual testing (i.e. persons manipulate the equipment and observe performance) and/or by monitoring the performance and analyzing the

results using the control system's trend log capabilities or by standalone data loggers. The Contractor and Commissioning Agent shall determine which method is most appropriate for tests that do not have a method specified.

- <u>Simulated Conditions</u>: Simulating conditions (not by an overwritten value) shall be allowed, although timing the testing to experience actual conditions is encouraged wherever practical.
- 2. Overwritten Values: Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated.
- 3. <u>Simulated Signals</u>: Using a signal generator which creates a simulated signal to test and calibrate transducers is generally recommended overusing the sensor to act as the signal generator via simulated conditions or overwritten values.
- 4. <u>Altering Setpoints</u>: Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the Air Conditioning compressor lockout initiate at an outside air temperature below 12 C (54 F), when the outside air temperature is above 12 C (54 F), temporarily change the lockout setpoint to be 2 C (4 F) above the current outside air temperature.
- 5. <u>Indirect Indicators</u>: Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification shall be completed during systems startup and initial checkout.

- F. <u>Setup</u>: Each function and test shall be performed under conditions that simulate actual conditions as closely as is practically possible. The Contractor shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Contractor shall return all affected building equipment and systems, due to these temporary modifications, to their pretest condition.
- G. <u>Sampling</u>: No sampling is allowed in completing Pre-Functional Checklists. Sampling is allowed for Systems Functional Performance Test Procedures execution. The Commissioning Agent will determine the sampling rate. If at any point, frequent failures are occurring and testing is becoming more troubleshooting than verification, the Commissioning Agent may stop the testing and require the Contractor to perform and document a checkout of the remaining units, prior to continuing with Systems Functional Performance Testing of the remaining units.
- H. <u>Cost of Retesting</u>: The cost associated with expanded sample System Functional Performance Tests shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- I. <u>Coordination and Scheduling</u>: The Contractor shall provide a minimum of 7 days notice to the Commissioning Agent and the VA regarding the completion schedule for the Pre-Functional Checklists and startup of all equipment and systems. The Commissioning Agent will schedule Systems Functional Performance Tests with the Contractor and VA. The Commissioning Agent will witness and document the Systems Functional Performance Testing of systems. The Contractor shall execute the tests in accordance with the Systems Functional Performance Test Procedure.
- J. <u>Testing Prerequisites</u>: In general, Systems Functional Performance Testing will be conducted only after Pre-Functional Checklists have been satisfactorily completed. The control system shall be sufficiently tested and approved by the Commissioning Agent and the VA before it is used to verify performance of other components or systems. The air balancing and water balancing shall be completed before Systems Functional Performance Testing of air-related or water-related

equipment or systems are scheduled. Systems Functional Performance Testing will proceed from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems will be checked.

K. <u>Problem Solving</u>: The Commissioning Agent will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems is with the Contractor.

3.5 DOCUMENTATION, NONCONFORMANCE AND APPROVAL OF TESTS

- A. <u>Documentation</u>: The Commissioning Agent will witness, and document the results of all Systems Functional Performance Tests using the specific procedural forms developed by the Commissioning Agent for that purpose. Prior to testing, the Commissioning Agent will provide these forms to the VA and the Contractor for review and approval. The Contractor shall include the filled-out forms with the O&M manual data.
- B. <u>Nonconformance</u>: The Commissioning Agent will record the results of the Systems Functional Performance Tests on the procedure or test form. All items of nonconformance issues will be noted and reported to the VA on Commissioning Field Reports and/or the Commissioning Master Issues Log.
 - Corrections of minor items of noncompliance identified may be made during the tests. In such cases, the item of noncompliance and resolution shall be documented on the Systems Functional Test Procedure.
 - 2. Every effort shall be made to expedite the systems functional Performance Testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the Commissioning Agent shall not be pressured into overlooking noncompliant work or loosening acceptance criteria to satisfy scheduling or cost issues, unless there is an overriding reason to do so by direction from the VA.
 - 3. As the Systems Functional Performance Tests progresses and an item of noncompliance is identified, the Commissioning Agent shall discuss the issue with the Contractor and the VA.
 - When there is no dispute on an item of noncompliance, and the Contractor accepts responsibility to correct it:
 - a. The Commissioning Agent will document the item of noncompliance and the Contractor's response and/or intentions. The Systems

> Functional Performance Test then continues or proceeds to another test or sequence. After the day's work is complete, the Commissioning Agent will submit a Commissioning Field Report to the VA. The Commissioning Agent will also note items of noncompliance and the Contractor's response in the Master Commissioning Issues Log. The Contractor shall correct the item of noncompliance and report completion to the VA and the Commissioning Agent.

- b. The need for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test and the test shall be repeated.
- 5. If there is a dispute about item of noncompliance, regarding whether it is an item of noncompliance, or who is responsible:
 - a. The item of noncompliance shall be documented on the test form with the Contractor's response. The item of noncompliance with the Contractor's response shall also be reported on a Commissioning Field Report and on the Master Commissioning Issues Log.
 - b. Resolutions shall be made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive and acceptance authority is with the Department of Veterans Affairs.
 - c. The Commissioning Agent will document the resolution process.
 - d. Once the interpretation and resolution have been decided, the Contractor shall correct the item of noncompliance, report it to the Commissioning Agent. The requirement for retesting will be determined by the Commissioning Agent. If retesting is required, the Commissioning Agent and the Contractor shall reschedule the test. Retesting shall be repeated until satisfactory performance is achieved.
- C. <u>Cost of Retesting</u>: The cost to retest a System Functional Performance Test shall be solely the responsibility of the Contractor. Any required retesting by the Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.
- D. <u>Failure Due to Manufacturer Defect</u>: If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a

difference) of equipment fail to perform in compliance with the Contract Documents (mechanically or substantively) due to manufacturing defect, not allowing it to meet its submitted performance specifications, all identical units may be considered unacceptable by the VA. In such case, the Contractor shall provide the VA with the following:

- Within one week of notification from the VA, the Contractor shall examine all other identical units making a record of the findings. The findings shall be provided to the VA within two weeks of the original notice.
- 2. Within two weeks of the original notification, the Contractor shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment submittals. The proposed solutions shall not significantly exceed the specification requirements of the original installation.
- 3. The VA shall determine whether a replacement of all identical units or a repair is acceptable.
- 4. Two examples of the proposed solution shall be installed by the Contractor and the VA shall be allowed to test the installations for up to one week, upon which the VA will decide whether to accept the solution.
- 5. Upon acceptance, the Contractor shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.
- E. <u>Approval</u>: The Commissioning Agent will note each satisfactorily demonstrated function on the test form. Formal approval of the Systems Functional Performance Test shall be made later after review by the Commissioning Agent and by the VA. The Commissioning Agent will evaluate each test and report to the VA using a standard form. The VA will give final approval on each test using the same form, and provide signed copies to the Commissioning Agent and the Contractor.

3.6 DEFERRED TESTING

A. <u>Unforeseen Deferred Systems Functional Performance Tests</u>: If any Systems Functional Performance Test cannot be completed due to the

building structure, required occupancy condition or other conditions, execution of the Systems Functional Performance Testing may be delayed upon approval of the VA. These Systems Functional Performance Tests shall be conducted in the same manner as the seasonal tests as soon as possible. Services of the Contractor to conduct these unforeseen Deferred Systems Functional Performance Tests shall be negotiated between the VA and the Contractor.

B. <u>Deferred Seasonal Testing</u>: Deferred Seasonal Systems Functional Performance Tests are those that must be deferred until weather conditions are closer to the systems design parameters. The Commissioning Agent will review systems parameters and recommend which Systems Functional Performance Tests should be deferred until weather conditions more closely match systems parameters. The Contractor shall review and comment on the proposed schedule for Deferred Seasonal Testing. The VA will review and approve the schedule for Deferred Seasonal Testing. Deferred Seasonal Systems Functional Performances Tests shall be witnessed and documented by the Commissioning Agent. Deferred Seasonal Systems Functional Performance Tests shall be executed by the Contractor in accordance with these specifications.

3.7 OPERATION AND MAINTENANCE TRAINING REQUIREMENTS

- A. <u>Training Preparation Conference</u>: Before operation and maintenance training, the Commissioning Agent will convene a training preparation conference to include VA's COR, VA's Operations and Maintenance personnel, and the Contractor. The purpose of this conference will be to discuss and plan for Training and Demonstration of VA Operations and Maintenance personnel.
- B. The Contractor shall provide training and demonstration. The Training and Demonstration shall include, but is not limited to, the following:
 - 1. Review the Contract Documents.
 - 2. Review installed systems, subsystems, and equipment.
 - 3. Review instructor qualifications.
 - 4. Review instructional methods and procedures.
 - 5. Review training module outlines and contents.
 - Review course materials (including operation and maintenance manuals).
 - Review and discuss locations and other facilities required for instruction.

- Review and finalize training schedule and verify availability of educational materials, instructors, audiovisual equipment, and facilities needed to avoid delays.
- For instruction that must occur outside, review weather and forecasted weather conditions and procedures to follow if conditions are unfavorable.
- C. <u>Training Module Submittals</u>: The Contractor shall submit the following information to the VA and the Commissioning Agent:
 - <u>Instruction Program</u>: Submit two copies of outline of instructional program for demonstration and training, including a schedule of proposed dates, times, length of instruction time, and instructors' names for each training module. Include learning objective and outline for each training module. At completion of training, submit two complete training manuals for VA's use.
 - <u>Qualification Data</u>: Submit qualifications for facilitator and/or instructor.
 - Attendance <u>Record</u>: For each training module, submit list of participants and length of instruction time.
 - 4. <u>Evaluations</u>: For each participant and for each training module, submit results and documentation of performance-based test.
- D. QUALITY ASSURANCE
 - Facilitator Qualifications: A firm or individual experienced in training or educating maintenance personnel in a training program similar in content and extent to that indicated for this Project, and whose work has resulted in training or education with a record of successful learning performance.
 - <u>Instructor Qualifications</u>: A factory authorized service representative, complying with requirements in Division 01 Section "Quality Requirements," experienced in operation and maintenance procedures and training.
- E. COORDINATION
 - 1. Coordinate instruction schedule with VA's operations. Adjust schedule as required to minimize disrupting VA's operations.
 - 2. Coordinate instructors, including providing notification of dates, times, length of instruction time, and course content.
 - 3. Coordinate content of training modules with content of approved emergency, operation, and maintenance manuals. Do not submit

instruction program until operation and maintenance data has been reviewed and approved by the VA.

F. INSTRUCTION PROGRAM

- <u>Program Structure</u>: Develop an instruction program that includes individual training modules for each system and equipment not part of a system, as required by individual Specification Sections, and as follows:
 - a. switchgear, transformers, switchboards, and panelboards.
 - b. Synchronizing switchgear/switchboards, and transfer switches.
 - c. Lighting equipment and controls.
- G. <u>Training Modules</u>: Develop a learning objective and teaching outline for each module. Include a description of specific skills and knowledge that participants are expected to master. For each module, include instruction for the following:
 - Basis of System Design, Operational Requirements, and Criteria: Include the following:
 - a. System, subsystem, and equipment descriptions.
 - b. Performance and design criteria if Contractor are delegated design responsibility.
 - c. Operating standards.
 - d. Regulatory requirements.
 - e. Equipment function.
 - f. Operating characteristics.
 - g. Limiting conditions.
 - h. Performance curves.
 - 2. Documentation: Review the following items in detail:
 - a. Emergency manuals.
 - b. Operations manuals.
 - c. Maintenance manuals.
 - d. Project Record Documents.
 - e. Identification systems.
 - f. Warranties and bonds.
 - g. Maintenance service agreements and similar continuing commitments.
 - 3. Emergencies: Include the following, as applicable:
 - Instructions on meaning of warnings, trouble indications, and error messages.

- b. Instructions on stopping.
- c. Shutdown instructions for each type of emergency.
- d. Operating instructions for conditions outside of normal operating limits.
- e. Sequences for electric or electronic systems.
- f. Special operating instructions and procedures.
- 4. Operations: Include the following, as applicable:
 - a. Startup procedures.
 - b. Equipment or system break-in procedures.
 - c. Routine and normal operating instructions.
 - d. Regulation and control procedures.
 - e. Control sequences.
 - f. Safety procedures.
 - g. Instructions on stopping.
 - h. Normal shutdown instructions.
 - i. Operating procedures for emergencies.
 - j. Operating procedures for system, subsystem, or equipment failure.
 - k. Seasonal and weekend operating instructions.
 - 1. Required sequences for electric or electronic systems.
 - m. Special operating instructions and procedures.
- 5. Adjustments: Include the following:
 - a. Alignments.
 - b. Checking adjustments.
 - c. Noise and vibration adjustments.
 - d. Economy and efficiency adjustments.
- 6. Troubleshooting: Include the following:
 - a. Diagnostic instructions.
 - b. Test and inspection procedures.
- 7. Maintenance: Include the following:
 - a. Inspection procedures.
 - b. Types of cleaning agents to be used and methods of cleaning.
 - c. List of cleaning agents and methods of cleaning detrimental to product.
 - d. Procedures for routine cleaning
 - e. Procedures for preventive maintenance.
 - f. Procedures for routine maintenance.
 - g. Instruction on use of special tools.

- 8. Repairs: Include the following:
 - a. Diagnosis instructions.
 - b. Repair instructions.
 - c. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - d. Instructions for identifying parts and components.
 - e. Review of spare parts needed for operation and maintenance.
- H. Training Execution:
 - <u>Preparation</u>: Assemble educational materials necessary for instruction, including documentation and training module. Assemble training modules into a combined training manual. Set up instructional equipment at instruction location.
 - 2. Instruction:
 - a. <u>Facilitator</u>: Engage a qualified facilitator to prepare instruction program and training modules, to coordinate instructors, and to coordinate between Contractor and Department of Veterans Affairs for number of participants, instruction times, and location.
 - b. <u>Instructor</u>: Engage qualified instructors to instruct VA's personnel to adjust, operate, and maintain systems, subsystems, and equipment not part of a system.
 - The Commissioning Agent will furnish an instructor to describe basis of system design, operational requirements, criteria, and regulatory requirements.
 - The VA will furnish an instructor to describe VA's operational philosophy.
 - The VA will furnish the Contractor with names and positions of participants.
 - 3. <u>Scheduling</u>: Provide instruction at mutually agreed times. For equipment that requires seasonal operation, provide similar instruction at start of each season. Schedule training with the VA and the Commissioning Agent with at least seven days' advance notice.
 - Evaluation: At conclusion of each training module, assess and document each participant's mastery of module by use of an oral, or a written, performance-based test.

5. <u>Cleanup</u>: Collect used and leftover educational materials and remove from Project site. Remove instructional equipment. Restore systems and equipment to condition existing before initial training use.

---END---

---Appendix---

The following preliminary commissioning plan is included for reference purposes. A final commissioning plan will be developed with the participation of the contractor following the award of the project.

---INTENTIONALLY BLANK---

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies demolition and removal of buildings, portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Demolition and removal of roads, walks, curbs, and on-grade slabs outside buildings to be demolished: Section 31 20 11, EARTH MOVING (SHORT FORM).
- B. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- C. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Environmental Protection: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- F. Construction Waste Management: Section 01 74 19 CONSTRUCTION WASTE MANAGEMENT.
- G. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS, Article 1.12, INFECTION CONTROL.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS.

- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.
- D. Provide enclosed dust chutes with control gates from each floor to carry debris to truck beds and govern flow of material into truck. Provide overhead bridges of tight board or prefabricated metal construction at dust chutes to protect persons and property from falling debris.
- E. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- F. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - No wall or part of wall shall be permitted to fall outwardly from structures.
 - Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - 3. Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- G. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Resident Engineer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works.

Repairs, reinforcement, or structural replacement must have Resident Engineer's approval.

- H. The work shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- I. The work shall comply with the requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article 1.7 INFECTION PREVENTION MEASURES.

1.4 UTILITY SERVICES:

- A. Demolish and remove outside utility service lines shown to be removed.
- B. Remove abandoned outside utility lines that would interfere with installation of new utility lines and new construction.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Completely demolish and remove buildings and structures, including all appurtenances related or connected thereto, as noted below:
 - 1. As required for installation of new utility service lines.
 - To full depth within an area defined by hypothetical lines located 1500 mm (5 feet) outside building lines of new structures.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Resident Engineer. Break up concrete slabs below grade that do not require removal from present location into pieces not exceeding 600 mm (24 inches) square to permit drainage. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. In removing buildings and structures of more than two stories, demolish work story by story starting at highest level and progressing down to third floor level. Demolition of first and second stories may proceed simultaneously.
- D. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. All materials in the indicated trash dump areas,

including above surrounding grade and extending to a depth of 1500mm (5feet) below surrounding grade, shall be included as part of the lump sum compensation for the work of this section. Materials that are located beneath the surface of the surrounding ground more than 1500 mm (5 feet), or materials that are discovered to be hazardous, shall be handled as unforeseen. The removal of hazardous material shall be referred to Hazardous Materials specifications.

E. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Resident Engineer. When Utility lines are encountered that are not indicated on the drawings, the Resident Engineer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Resident Engineer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 02 65 00

UNDERGROUND STORAGE TANK REMOVAL

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Removing and disposal of underground storage tank (UST) liquid contents.
 - 2. Removing, cleaning, and disposing UST.
 - 3. Testing and removing contaminated soils.
 - 4. Backfilling and restoring excavation areas.

1.2 RELATED REQUIREMENTS

- A. Laboratory Services: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Demolition Exposing UST: Section 02 41 00, DEMOLITION.
- C. UST Removal Excavation: Section 31 20 11, EARTHWORK (SHORT FORM).
- D. Excavation Backfilling: Section 31 20 11, EARTHWORK (SHORT FORM).
- E. Excavation Surface Restoration: Section 32 90 00, PLANTING.

1.3 PRICE AND PAYMENT PROCEDURES

A. Differing Site Conditions: Extent of excavation and restoration for UST removal indicated on drawings and extent of additional soils sampling and testing specified in this section are estimated. Variations less than 5 percent change are not cause for contract price and time adjustments. Additional work will be paid by unit prices as directed by Contracting Officer's Representative.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Petroleum Institute (API):
 - 1. 1604-96(R2010) Closure of Underground Petroleum Storage Tanks.
 - 2217A-09 Safe Work in Inert Confined Spaces in the Petroleum and Petrochemical Industries.
 - 3. 2015-14 Safe Entry and Cleaning of Petroleum Storage Tanks.
- C. Code of Federal Regulations (CFR):
 - 1. 40 CFR Part 280 Underground Storage Tanks; Technical Requirements.
 - 2. 49 CFR Part 178 Specifications for Packagings.
- D. United States Environmental Protection Agency (EPA):
 - 1. SW-846 Evaluating Solid Waste: Physical/Chemical Methods.

1.5 PRE-REMOVAL MEETINGS

A. Conduct pre-removal meeting at project site minimum 30 days before beginning Work of this section.

- 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Engineer.
 - c. Inspection and Testing Agency.
 - d. Contractor.
 - e. UST removal contractor.
- Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Removal schedule.
 - b. Removal sequence.
 - c. Preparatory work.
 - d. Contaminated material containment and disposal.
 - e. Removal.
 - f. Inspecting and testing.
 - g. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Notice of intent to close UST.
- C. Test Reports: Submit testing laboratory reports.
 - 1. UST liquid contents analysis.
 - 2. UST interior environment analysis.
 - 3. Soil sample analysis.
- D. Qualifications: Substantiate qualifications comply with specifications.
 - 1. UST removal contractor.
 - 2. Testing laboratory.
 - 3. Liquid disposal facility.
 - 4. UST disposal facility.
 - 5. Soils disposal facility.
- E. UST removal plan.
- F. Record Documents:
 - 1. Six copies of Final Closure Report.
 - 2. Record Drawings in electronic CAD file format showing:
 - a. Soil sample locations.
 - b. Detailed plan view.

- c. Piping removal diagrams.
- d. Control removal diagrams.
- e. Component diagrams including tank removal procedure.
- f. Detailed sequence of procedure.
- 3. Photographs of work in progress showing UST removal plan compliance.
- 4. Chain-of-custody documentation.
- 5. Disposal facility receipts and disposition reports.

1.7 QUALITY ASSURANCE

- A. UST Removal Contactor: Experienced contractor, registered or licensed by applicable state agency regulating UST removal.
- B. Testing Laboratory: State certified independent testing laboratory experienced in hazardous waste liquid and soil testing.
- C. Liquid Disposal Facility: State certified disposal facility qualified to receive and dispose UST liquid contents.
- D. UST Disposal Facility: State certified disposal facility qualified to receive and dispose UST.
- E. Soils Disposal Facility: State certified disposal facility qualified to receive and dispose contaminated soils.
- F. UST Removal Plan: Describe detailed procedures for:
 - 1. Removing and disposing UST liquid content.
 - 2. Removing, ventilating, cleaning and disposing UST.
 - 3. Soil sampling and testing.
 - 4. Removing and disposing contaminated soils.
- G. UST Final Closure Report: Assemble work progress documentation showing removal plan compliance, including:
 - 1. Sample test records.
 - 2. Local Fire Marshal requirement.
 - 3. State Agency requirements.
 - 4. Hazardous material plan for local VA management.

1.8 FIELD CONDITIONS

- A. Do not close or obstruct streets, sidewalks or drives without Contracting Officer's Representative's approval.
 - 1. Submit closure request minimum 30 days before starting work.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 ACCESSORIES

A. Waste Collection Drums: 49 CFR Part 178; Type 1A2, steel, removable head, 200 L (55 gal.) capacity, capable of containing waste without loss.

PART 3 - EXECUTION

3.1 PREPARATION

A. Coordinate demolition specified in Section 02 41 00, DEMOLITION required to access UST site.

3.2 UST SEQUENCE

- A. Notify applicable State Agency minimum 30 days before UST closure.
- B. Determine if contamination from UST is present.
- C. When contamination exists, notify Contracting Officer's Representative and cooperate to record site with applicable State Agency and EPA.
- D. Remove UST liquid contents, UST, and associated facilities.
- E. Remove contaminated soil.
- F. Backfill excavated area.
- G. Restore excavation surfaces.

3.3 UST CLOSURE

A. Conform to API 1604, 40 CFR Part 280, 29 CFR Part 1910, and 29 CFR Part 1926.

3.4 UST LIQUID CONTENTS REMOVAL

- A. Collect, test, and analyze UST liquid content samples.
 - 1. Identify individual constituents and concentrations.
 - 2. Identify lower explosive limits for constituents in gaseous form.
 - Identify disposal facilities qualified to receive and process UST liquid contents.
- B. Remove UST liquid contents before removing UST.
 - 1. Record liquid volume removed from UST.
- C. Deliver UST liquid contents to disposal facility.
 - Obtain signed receipt including date, time, total liquid volume, and description of materials received.
 - Obtain final report of UST liquid contents disposition after disposal completion.

3.5 UST REMOVAL

- A. Excavate overburden and soils immediately surrounding UST as specified in Section 31 20 11, EARTHWORK (SHORT FORM).
 - Contain excavated materials to prevent loss and mixing with other materials until completion of initial soils testing.
- B. Remove UST from excavation.
- C. Place UST on ground adjacent to removal location.
- D. Secure UST before cleaning.

3.6 UST CLEANING

- A. Measure combustible gas and oxygen concentrations within UST.
- B. Ventilate UST interior to reduce combustible gas concentrations to maximum 10 percent of lower explosive limit and to provide 19.5 to 23.5 percent oxygen concentration.
 - 1. Test UST interior atmosphere confirming gas concentrations.
 - 2. Complete required ventilation before cleaning.
- C. Cut ports in UST wall facilitating cleaning access. Comply with API Standard 2217A and API Standard 2015 for UST entry.
- D. Clean surface contaminates from UST and access port interior wall surfaces.
 - 1. Contain removed materials without producing further contamination.
 - 2. Collect removed materials in waste collection drums. Seal drums to prevent material loss.
- E. Request UST inspection by local Fire Marshal and State Agency certifying completed UST cleaning.
- F. Dismantle UST as required for transport to disposal facility.
- G. Deliver UST, removed access ports, and waste collection drums to disposal facility.
 - Obtain signed receipt including date, time, quantity, and description of materials received.
 - Obtain final report of materials disposition after disposal completion.

3.7 SOIL TESTING

- A. Collect five initial soil samples from UST excavation area after tank removal.
- B. Take one sample from both UST sidewalls, one sample from both UST endwalls, and one sample from UST base.

- Containerize samples to prevent sample loss and preserve sample condition until tested.
- 2. Test and analyze samples according to EPA SW-846 for total petroleum hydrocarbon (TPH) concentrations.
- C. When soil testing reveals evidence of hydrocarbons at concentrations greater than permitted by applicable State Agency for uncontaminated soil used as fill material, collect six additional soil samples 6 m (20 feet) from UST walls.
 - Take two samples from both UST sidewalls and one sample from both UST endwalls.
 - 2. Test and analyze samples as specified for initial samples.
 - Notify Contracting Officer's Representative when additional samples are contaminated.
 - 4. The base price for volume between the final tank volume of material for the enclosure and the enclosure shall not to exceed 76 cubic meters (100 cubic yards) of soil removed. Any work beyond 76 cubic meters (100 cubic yards) and more than 6 test locations shall be considered extra and shall be based on unit pricing.
- D. Perform additional soil sampling and testing around UST as directed by Contracting Officer's Representative until contamination concentration is less than permitted by applicable State Agency for uncontaminated soil used as fill material.

3.8 CONTAMINATED SOIL REMOVAL

- A. Excavate contaminated materials as specified in Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Remove contaminated soil from site according to applicable State Agency requirements.
- C. Deliver contaminated soils to disposal facility.
 - Obtain signed receipt including date, time, quantity, and description of materials received.
 - Obtain final report of materials disposition after disposal completion.

3.9 UST EXCAVATION BACKFILL AND RESTORATION

A. Backfill excavation with fill materials and compact as specified in Section 31 20 11, EARTHWORK (SHORT FORM).

- B. Restore pavements, sidewalks, and curbs matching adjacent materials as specified in Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.
- C. Restore landscaped areas and grass areas to match adjacent materials as specified in Section 32 90 00, PLANTING.

3.10 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Perform sampling and testing for the following:
 - 1. UST liquid contents.
 - 2. UST interior environment.
 - 3. Soils contamination.
- C. Record chain-of-custody for samples until disposal.

3.11 PROTECTION

- A. Protect restored areas from traffic and construction operations.
- B. Repair damage.

- - - E N D - - -

--- INTENTIONALLY BLANK ---

SECTION 03 30 53

(SHORT-FORM) CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cast-in-place structural concrete.
 - 2. Equipment pads.
 - 3. Preparation of existing surfaces to receive concrete.

1.2 RELATED REQUIREMENTS

A. Materials Testing and Inspection During Construction: Section 01 45 29, TESTING LABORATORY SERVICES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American Concrete Institute (ACI):
 - 117-15 Tolerances for Concrete Construction, Materials and Commentary.
 - 117M-10(R2015) Tolerances for Concrete Construction, Materials and Commentary.
 - 211.1-91(R2009) Proportions for Normal, Heavyweight, and Mass Concrete.
 - 4. 301/310M-10 Structural Concrete.
 - 5. 305.1-14 Hot Weather Concreting.
 - 6. 306.1-90(R2002) Cold Weather Concreting.
 - 318/318M-14 Building Code Requirements for Structural Concrete and SP-66-04-ACI Detailing Manual.
 - 8. 347-04 Guide to Formwork for Concrete.
- C. ASTM International (ASTM):
 - A615/A615M-15ae1 Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement.
 - A1064/A1064M-15 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
 - 3. C33/C33M-13 Concrete Aggregates.
 - C39/C39M-15a Compressive Strength of Cylindrical Concrete Specimens.
 - 5. C94/C94M-15a Ready-Mixed Concrete.
 - 6. C143/C143M-15 Slump of Hydraulic Cement Concrete.
 - 7. C150/C150M-15 Portland Cement.

- 8. C171-07 Sheet Material for Curing Concrete.
- 9. C192/C192M-15 Making and Curing Concrete Test Specimens in the Laboratory.
- 10. C219-14a Terminology Relating to Hydraulic Cement.
- 11. C260/C260M-10a Air-Entraining Admixtures for Concrete.
- 12. C494/C494M-15 Chemical Admixtures for Concrete.
- 13. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 14. D1751-04(2013el) Preformed Expansion Joint Fillers for Concrete Paving and Structural Construction (Non-extruding and Resilient Bituminous Types).
- 15. E1155-14 Determining FF Floor Flatness and FL Floor Levelness Numbers.
- 16. E1745-11 Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs.
- D. International Concrete Repair Institute:
 - 310.2R-2013 Selecting and Specifying Concrete Surface Preparation for Sealers, Coatings, Polymer Overlays, and Concrete Repair.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Large scale drawings of reinforcing steel.
- C. Manufacturer's Literature and Data:
 - 1. Concrete Mix Design.
 - 2. Air-entraining admixture, chemical admixtures, and curing compounds.
 - 3. Indicate manufacturer's recommendation for each application.
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- E. Certificates: Certify products comply with specifications.
 - 1. Each ready-mix concrete batch delivered to site.

1.5 DELIVERY

A. Deliver each ready-mixed concrete batch with mix certification in duplicate according to ASTM C94/C94M.

1.6 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
- C. Coarse Aggregate: ASTM C33/C33M.
 - 1. Size 467 for footings and walls over 300 mm (12 inches) thick.
 - 2. Size 67 for other applications.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: ASTM C494/C494M.
- H. Vapor Barrier: ASTM E1745, Class A with a minimum puncture resistance of 2200 g (3000 lbs.); minimum 0.38 mm (15 mil) thick.
- I. Reinforcing Steel: ASTM A615/ A996M, deformed. See Structural Drawings for grade.
- J. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer, of grade or type suitable to obtain type of finish specified.
 - Plywood: Exterior grade, free of defects and patches on contact surface.
 - 2. Lumber: Sound, grade-marked, S4S stress graded softwood.
 - 3. Form coating: As recommended by Contractor.
- K. Expansion Joint Filler: ASTM D1751.
- L. Sheet Materials for Curing Concrete: ASTM C171.
- M. Liquid Densifier/Sealer: 100 percent active colorless aqueous siliconate solution.
- N. Grout, Non-Shrinking: Premixed ferrous or non-ferrous. Grout to show no settlement or vertical drying shrinkage at 3 days. Compressive strength for grout, at least 18 MPa (2500 psi) at 3 days and 35 MPa (5000 psi) at 28 days.

2.2 ACCESSORIES

- A. Bonding Agent: ASTM C 1059/C 1059M, Type II.
- B. Structural Adhesive: ASTM C881, 2-component material suitable for use on dry or damp surfaces. Provide material Type, Grade, and Class to suit Project requirements.

2.3 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Compressive strength at 28 days: minimum / 31 MPa (4,500 psi).
- C. Submit mix design and results of compression tests to the Contracting Officer for his evaluation. Identify all materials, including admixtures, making-up the concrete.
- D. Maximum Slump for Vibrated Concrete: 125 mm (5 inches) tested according to ASTM C143.
- E. Cement and Water Factor (See Table I):

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE

Concrete: Strength	Non-Air-Entrained		Air-Entrained	
Min. 28 Day Comp.	Min. Cement	Max. Water	Min. Cement	Max. Water
Str.	kg/cu. m	Cement Ratio	kg/cu. m	Cement Ratio
MPa (psi)	(lbs./cu.		(lbs./cu.	
	yd.)		yd.)	
31 (4500)1,3	N/A	N/A	385 (650)	0.45

Footnotes:

If trial mixes are used, achieve a compressive strength 8.3 MPa (1
200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve a compressive strength 9.7 MPa (1,400 psi) in excess of f'c.

2. Lightweight Structural Concrete: Pump mixes may require higher cement values as specified in ACI 318/318M.

3. For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.

* Laboratory Determined according to ACI 211.1 for normal weight concrete or ACI 211.2 for lightweight structural concrete.

F. Air-entrainment as specified, and conform with the following for air content table:

TABLE II - TOTAL AIR CONTENT	
FOR VARIOUS SIZES OF COARSE AGGREGATES	
Nominal Maximum Size of	Total Air Content, percent
Coarse Aggregate	
19 mm (3/4 inches)	6
25 mm (1 inches)	6
40 mm (1 1/2 inches)	5.5

2.4 BATCHING AND MIXING

- A. Store, batch, and mix materials according to ASTM C94/C94M.
 - Ready-Mixed Concrete: Comply with ASTM C94/C94M, except use of non-agitating equipment for transporting concrete to Site is not acceptable.
 - When aggregate producer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

PART 3 - EXECUTION

3.1 FORMWORK

- A. Installation: Conform to ACI 347. Construct forms to obtain concrete of the shapes, dimensions and profiles indicated, with tight joints.
- B. Design and construct forms to prevent bowing-out of forms between supports and to be removable without prying against or otherwise damaging fresh concrete.
- C. When patching formed concrete, seal form edges against existing surface to prevent leakage; set forms so that patch is flush with adjacent surfaces.
- D. Treating and Wetting: Treat or wet concrete contact surfaces:
 - Clean and coat removable metal forms with light form oil before reinforcement is placed.
 - 2. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 3. Prevent water from accumulating and remaining within forms.
- E. Inserts, Sleeves, and Similar Items: Install flashing reglets, masonry ties, anchors, inserts, wires, hangers, sleeves, boxes for floor hinges, and other cast-in items specified in other Sections. Place where indicated, square, flush and secured to formwork.

- F. Construction Tolerances General: Install and maintain concrete formwork to assure completion of work within specified tolerances.
- G. Adjust or replace completed work exceeding specified tolerances before placing concrete.

3.2 REINFORCEMENT

- A. Install concrete reinforcement according to ACI 318 and ACI SP-66.
- B. Support and securely tie reinforcing steel to prevent displacement during placing of concrete.
- C. Drilling for Dowels in Existing Concrete: Use sharp bits, drill hole slightly oversize, fill with epoxy grout, inset the dowel, and remove excess epoxy.

3.3 VAPOR BARRIER

- A. Except where membrane waterproofing is required, place interior concrete slabs on a continuous vapor barrier.
- B. Lap joints 150 mm (6 inches) and seal with a compatible pressure-sensitive tape.
- C. Patch punctures and tears.

3.4 PLACING CONCRETE

- A. Remove water from excavations before concrete is placed. Remove hardened concrete, debris and other foreign materials from interior of forms, and from inside of mixing and conveying equipment. Obtain approval from Contracting Officer's Representative before placing concrete.
- B. Install screeds at required elevations for concrete slabs.
- C. Roughen and clean free from laitance, foreign matter, and loose particles before placing new concrete on existing concrete.
 - Blow-out areas with compressed air and immediately coat contact areas with adhesive in compliance with manufacturer's instructions.
- D. Place structural concrete according to ACI 301 and ACI 318.
- E. Convey concrete from mixer to final place of deposit by method that will prevent segregation or loss of ingredients. Do not deposit, in Work, concrete that has attained its initial set or has contained its water or cement more than 1 1/2 hours. Do not allow concrete to drop freely more than 1500 mm (5 feet) in unexposed work nor more than 900 mm (3 feet) in exposed work.
- F. Place and consolidate concrete in horizontal layers not exceeding 300 mm (12 inches) in thickness. Consolidate concrete by spading,

rodding, and mechanical vibrator. Do not secure vibrator to forms or reinforcement. Continuously vibrate during placement of concrete.

- G. Hot Weather Concrete Placement: As recommended by ACI 305.1 to prevent adversely affecting properties and serviceability of hardened concrete.
- H. Cold Weather Concrete Placement: As recommended by ACI 306.1, to prevent freezing of thin sections less than 300 mm (12 inches) and to permit concrete to gain strength properly.
 - Do not use calcium chloride without written approval from Contracting Officer's Representative.

3.5 TOLERANCES

- A. Slab on Grade Finish Tolerance: Comply with ACI 117, FF-number and FL-number method.
 - 1. Paragraph 4.8.3, Class A 3 mm (1/8 inches) for offset in form-work.
 - 2. Table R4.8.4, "Flat" 6 mm (1/4 inch) in 3 m (10 feet) for slabs.

3.6 PROTECTION AND CURING

- A. Protect exposed surfaces of concrete from premature drying, wash by rain or running water, wind, mechanical damage, and excessive hot or cold temperatures.
- B. Curing Methods: Cure concrete with curing compound using wet method with sheets.
- C. Formed Concrete Curing: Wet the tops and exposed portions of formed concrete and keep moist until forms are removed.
 - If forms are removed before 14 days after concrete is cast, install sheet curing materials as specified above.
- D. Concrete Flatwork Curing:
 - Install sheet materials according to the manufacturer's instructions.
 - a. When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.7 FORM REMOVAL

- A. Maintain forms in place until concrete is self-supporting, with construction operation loads.
- B. Remove fins, laitance and loose material from concrete surfaces when forms are removed. Repair honeycombs, rock pockets, sand runs, spalls, or otherwise damaged surfaces by patching with the same mix as concrete minus the coarse aggregates.

C. Finish to match adjacent surfaces.

3.8 FINISHES

- A. Vertical and Overhead Surface Finishes:
 - Surfaces Concealed in Completed Construction: As-cast; no additional finishing required.
 - Surfaces Exposed in Unfinished Areas: As-cast; no additional finishing required.
 - a. Electrical rooms.
- B. Slab Finishes:
 - Allow bleed water to evaporate before surface is finished. Do not sprinkle dry cement on surface to absorb water.
 - Float Finish: Exterior concrete slabs, except as specified otherwise. Interior and exterior slabs prior to trowel or broom finish.
 - a. Screen and float to smooth dense finish.
 - b. After first floating, while surface is still soft, check surfaces for alignment using straightedge or template. Correct high spots by cutting down with trowel or similar tool. Correct low spots by filling in with material same composition as floor finish. Remove any surface projections on floated finish by rubbing or dry grinding. Refloat slab to uniform sandy texture.
 - 3. Steel Trowel Finish: Interior concrete slabs.
 - a. Delay final steel troweling to secure smooth, dense surface, usually when surface can no longer be dented by fingers. During final troweling, tilt steel trowel at slight angle and exert heavy pressure on trowel to compact cement paste and form dense, smooth surface.
 - b. Finished surface: Free from trowel marks. Uniform in texture and appearance.
 - Broom Finish: Finish exterior slabs with bristle brush moistened with clear water after surfaces have been floated.
 - 5. Finished Slab Flatness (FF) and Levelness (FL):
 - a. Slab on Grade: Specified overall value FF 25/FL 20. Minimum local value FF 17/FL 15.
 - b. Test flatness and levelness according to ASTM E1155.
3.9 SURFACE TREATMENTS

- A. Mix and apply the following surface treatments according to manufacturer's instructions.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Liquid Densifier/Sealer: Use for exposed interior concrete floors except those specified to receive non-slip finish.

- - E N D - -

--- INTENTIONALLY BLANK ---

SECTION 13 34 19 METAL BUILDING SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Pre-engineered metal building.

1.2 RELATED WORK (NOT USED)

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM): A36/A36M-19.....Carbon Structural Steel A242/A242M-13(2018).....High-Strength Low-Alloy Structural Steel. A653/A653M-20.....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron-alloy-Coated (Galvannealed) by the Hot-Dip Process A992/A992M-11(2015)....Structural Steel Shapes A1008/A1008M-18.....Steel, Sheet, Cold Rolled, Carbon, Structural, High-Strength Low-Alloy A1011/A1011M-18a.....Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength B117-19..... Operating Salt Spray (Fog) Apparatus B209-14.....Aluminum and Aluminum-Alloy Sheet and Plate B209M-14.....Aluminum and Aluminum-Alloy Sheet and Plate (Metric) C553-13(2019).....Mineral Fiber Blanket Thermal Insulation for Commercial and Insulation for Commercial and Industrial Applications C1036-16.....Flat glass C1104/C1104M-19.....Determining the Water Vapor Sorption of Unfaced Mineral Fiber Insulation D522/D522M-17.....Mandrel Bend Test of Attached Organic Coatings D2244-16.....Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 D2794-93(2019).....Resistance of Organic Coatings to the Effects of Rapid Deformation (Impact) D3359-17..... Measuring Adhesion by Tape Test D4214-07(2015).....Evaluating the Degree of Chalking of Exterior Paint Films G153-13..... Operating Enclosed Carbon Arc Light Apparatus for Exposure of Nonmetallic Materials C. Metal Building Manufacturers Association (MBMA): Recommended Guide Specifications for Pre-Engineered Metal Buildings Recommended Design Practices Manual D. American Institute of Steel Construction (AISC): 360-16..... Specifications for Structural Steel Buildings E. National Fire Protection Association (NFPA): 220-18.....Standard Types of Building Construction. F. American Welding Society (AWS): D1.1/D1.1M-20.....Structural Welding Code-Steel G. American Iron and Steel Institute (AISI): Cold Formed Steel Design Manual Latest Edition. H. UL LLC (UL): 752-16.....Bullet-Resisting Equipment I. Department of Veterans Affairs VA Physical Security Design Manual for Life Safety Protected Facilities January 2015 VA Physical Security Design Manual for Mission Critical Protected Facilities January 2015 J. Protective Design Center PDC-TR-08.....Single Degree of Freedom Structural Response Limits for Antiterrorism Design 1.4 PREINSTALLATION MEETINGS A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section. 1. Required Participants: a. Contracting Officer's Representative. b. Contractor.

- c. Installer.
- d. Manufacturer's field representative.

- e. Other installers responsible for adjacent and intersecting work, including foundation and switchgear component installers.
- Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Inspecting and testing.
 - i. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - Include erection drawings and erection manuals showing complete erection layouts.
 - 3. Show steel framing location, panel lengths and markings, and other component parts corresponding with erection sequence and procedures.
 - 4. Show connections with adjoining work.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Metal panels.
 - b. Insulation.
 - c. Sealing materials.
 - d. Steel doors, door frames and hardware interlocking thresholds.
 - e. Windows.
 - 2. Installation instructions.
 - 3. Warranty.
- D. Test reports: Certify metal enclosure complies with enclosure specifications indicated on sheet S-001.
 - 1. Test reports confirming meet specified bullet resistive rating.

- Indicating manufacturers and installers meet qualifications specified.
- E. Delegated Shop Drawings and Calculations: A QUALIFIED STRUCTURAL BLAST SPECIALIST SHALL PROVIDE A BUILDING ANALYSIS AND REPORT
- F. THE REQUIRED DESIGN LOAD INFORMATION INCLUDING BLAST REACTION DEMANDS, MOMENT
- G. RESISTANCE, AND STRENGTH DEMAND REQUIREMENTS NEEDED TO VERIFY THE FOUNDATION
- H. DESIGN FOR THE SWITCHGEAR BUILDING.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - Manufactured specified products with satisfactory service on five similar installations for minimum five years.
- B. Installer Qualifications: Manufacturer authorized installer.
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses

1.7 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.8 STORAGE AND PROTECTION

A. Stack materials stored on site before erection, covered with suitable weather tight covering. Store metal panels so that any accumulated water will drain off. Do not store panels in contact with materials that might cause staining. Materials having defects or damages that effect appearance, serviceability or use will be rejected.

1.9 FIELD CONDITIONS

- A. Environment:
- B. Field Measurements: Verify field conditions affecting pre-engineered metal building fabrication and installation. Show field measurements on Submittal Drawings.

 Coordinate field measurement and fabrication schedule to avoid delay.

1.10 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant pre-engineered metal building against material and manufacturing defects and weather intrusion.
 - 1. Warranty Period: Two years.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

A. Building enclosure system consisting of steel framing, metal roof and wall panels, insulation, and other integrated products specified in this section, capable of meeting specified loads and thermal criteria.

2.2 SYSTEM PERFORMANCE

- A. Delegated Design: Prepare submittal documents including design calculations and drawings signed and sealed by registered design professional, licensed in state where work is located.
- B. Design metal buildings complying with specified performance:
 - a. Blast Resistance: Submit calculations for review and approval prepared by qualified metal enclosure manufacturer consultant. The magnitudes of the design threats are defined in the Physical Security Design Standards Data Definitions which is a document separate from the referenced VA Security Design Manual. Any associated delays or increased costs due to failure to obtain this information will be borne by the contractor

2.3 MATERIALS

A. Materials shall be provided as specified on sheet S-001

2.4 FABRICATION

A. General: Coordinate fabrication and erection of work with related work of other trades. Provide cutouts and supplemental reinforcement as required to accommodate materials and work specified in drawings.

2.5 FACTORY FINISH AND PAINTING

- A. Factory finish wall and roof panels, including related components, accessories and fastenings, as follows:
 - Prime coat weather faces of wall and roof panels, and related components with epoxy primer, and a finish coat of Polyvinylidene

Fluoride baked on coating thickness of (0.8-1.3 mils) with the following performance characteristics.

- a. Accelerated Weathering Test: ASTM G 153, Method 2, Type D apparatus minimum 2000 hours or Type EH apparatus minimum 500 hours, no checking, blistering or loss of adhesion; color change less than 5 NBS units by ASTM D 2244 and chalking less than No. 8 rating by ASTM D 4214.
- b. Flexibility: ASTM D 522, Method A, 3 mm 1/8-inch diameter, 180 degree bend, no evidence of fracturing to the naked eye.
- c. Adhesion: ASTM D 3359, Method B, for laboratory test and film thickness less than 0.01 mm 5 mil and Method A for site tests. Impact: ASTM D 2794, no loss of adhesion after direct and reverse impact equal to 1.5 times metal thickness in mm mils, expressed in m-kg inch-pounds.
- 2. Finish on exposed face of liner panel, off white baked enamel suitable as finished surface or as base for field painting.
- B. Steel Framing Members: One coat of shop paint.
- C. Doors, Frames, and Other Similar Components: Bonderized and one prime coat of baked-on shop paint, then factory applied finish coat.
- D. Windows and Louvers: Factory finish to match adjacent wall panels.
- E. Field paint all exterior exposed fastenings to match adjacent panels.
- F. Wire brush abraded surfaces and touch up with same materials as shop prime or finish coat of paint.

PART 3 - EXECUTION

3.1 PREPARATION

A. Apply barrier coating to aluminum surfaces in contact with dissimilar metals to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 ERECTION

A. Bolt settings and other dimensions to be held to a tolerance of plus or minus 3 mm (1/8 inch). Use templates or other gaging devices to assure

accurate spacing of anchor bolts. Bolt field connections unless otherwise shown or specified.

- Accurately set bases and sill members to obtain uniform bearing and maintain established floor line elevation. Anchors and anchor bolts for securing members to concrete curb or structural steel sub-frame to be of black steel, set accurately to templates and of proper size to adequately resist applicable design loads at base.
- B. Wall Panels: Install wall panels with configurations running in vertical position. Supply panels in single lengths from base to eave with no horizontal joints, except at the junction of door units, louver panels, and similar openings. End laps for panels minimum 100 mm (four inches). Close walls at base and eave, and around doors, frames, louvers, and other similar openings by flashings and/or formed closures to assure adequate weather tightness. Flashing or stops will not be required where weather-closed or approved self-flashing panels are used.
- C. Roof Panels: Install roof panels with configurations running in direction of roof slope. Provide panels with no transverse joints except at junctions for roof openings. Lay side laps away from prevailing winds, and seal side laps and end-laps of roof with roof joint sealant. Provide flashing sealant at ridges and at projections through roof, and elsewhere as necessary to make roof weather tight. Accomplish flashing and/ or caulking in a manner that will assure complete weather-tightness and method to be used, subject to approval by Contracting Officer's Representative.
 - Install insulation on interior face of roof sheets or panels as shown on approved shop drawings. Secure materials permanently in place and free of inordinate deflection. Finish work neat, clean, uniform in appearance, and free of noticeable variations in color and texture.
- D. Fasteners for Securing Roof and Wall Panels: Fastening method, size and spacing as recommended by metal building manufacturer and as approved by Contracting Officer's Representative. Provide non-corrosive fasteners of design that will produce a weathertight connection. Clearly show fasteners and fastening method on shop and erection drawings. Field paint exterior exposed fastenings to match adjacent panels.

- E. Door Frame Installation: Set frames plumb and align and brace securely until permanent anchors are set. Where frames require overhead bracing, securely anchor to structure above.
- F. Weatherproofing: Joints between exterior pre-engineered metal building components and other adjacent components and materials, except flashing of metal wall panels designed to receive sealing tapes, gaskets, sealant materials, metal flashing and other methods of sealing as required to provide weathertight joints. Install joint sealing and guarantee as specified. Color of sealing materials to match adjacent metal building components.

3.4 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.
- C. Touchup Painting:
 - 1. Prepare and clean substrates according to SSPC-SP 2 or SSPC-SP 3.
 - 2. Touch up damaged factory finishes.
 - 3. Repair galvanized surfaces with galvanized repair paint.
 - 4. Repair painted surfaces with touch up primer.

3.5 ADJUSTING

A. Adjust doors, windows, and louvers to operate smoothly. Replace those components that do not function as intended.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. ACR: Air Conditioning and Refrigeration
 - 3. AI: Analog Input
 - 4. AISI: American Iron and Steel Institute
 - 5. AO: Analog Output
 - 6. ASJ: All Service Jacket
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Networking Protocol
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. bhp: Brake Horsepower
 - 13. Btu: British Thermal Unit
 - 14. Btu/h: British Thermal Unit Per Hour
 - 15. CDA: Copper Development Association
 - 16. C: Celsius
 - 17. CD: Compact Disk
 - 18. CFM: Cubic Foot Per Minute
 - 19. CH: Chilled Water Supply
 - 20. CHR: Chilled Water Return
 - 21. CLR: Color
 - 22. CO: Carbon Monoxide
 - 23. COR: Contracting Officer's Representative
 - 24. CPD: Condensate Pump Discharge
 - 25. CPM: Cycles Per Minute
 - 26. CPVC: Chlorinated Polyvinyl Chloride
 - 27. CRS: Corrosion Resistant Steel

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 28. CTPD: Condensate Transfer Pump Discharge 29. CTPS: Condensate Transfer Pump Suction 30. CW: Cold Water 31. CWP: Cold Working Pressure 32. CxA: Commissioning Agent 33. dB: Decibels 34. dB(A): Decibels (A weighted) 35. DDC: Direct Digital Control 36. DI: Digital Input 37. DO: Digital Output 38. DTOR: Day Tank Oil Return 39. DTOS: Day Tank Oil Supply 40. DVD: Digital Video Disc 41. DN: Diameter Nominal 42. DWV: Drainage, Waste and Vent 43. EPDM: Ethylene Propylene Diene Monomer 44. EPT: Ethylene Propylene Terpolymer 45. ETO: Ethylene Oxide 46. F: Fahrenheit 47. FAR: Federal Acquisition Regulations 48. FD: Floor Drain 49. FED: Federal 50. FG: Fiberglass 51. FGR: Flue Gas Recirculation 52. FOF: Fuel Oil Fill 53. FOS: Fuel Oil Supply 54. FOR: Fuel Oil Return 55. FOV: Fuel Oil Vent 56. FQMR: Fuel Quality Management Return 57. FQMS: Fuel Quality Management Supply 58. FSK: Foil-Scrim-Kraft facing 59. FWPD: Feedwater Pump Discharge 60. FWPS: Feedwater Pump Suction 61. GC: Chilled Glycol Water Supply 62. GCR: Chilled Glycol Water Return 63. GH: Hot Glycol Water Heating Supply

64. GHR: Hot Glycol Water Heating Return

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 65. gpm: Gallons Per Minute 66. HDPE: High Density Polyethylene 67. Hg: Mercury 68. HOA: Hands-Off-Automatic 69. hp: Horsepower 70. HPS: High Pressure Steam (414 kPa (60 psig) and above) 71. HPR: High Pressure Steam Condensate Return 72. HW: Hot Water 73. HWH: Hot Water Heating Supply 74. HWHR: Hot Water Heating Return 75. Hz: Hertz 76. ID: Inside Diameter 77. IPS: Iron Pipe Size 78. kg: Kilogram 79. klb: 1000 lb 80. kPa: Kilopascal 81. lb: Pound 82. lb/hr: Pounds Per Hour 83. L/s: Liters Per Second 84. L/min: Liters Per Minute 85. LPS: Low Pressure Steam (103 kPa (15 psig) and below) 86. LPR: Low Pressure Steam Condensate Gravity Return 87. MAWP: Maximum Allowable Working Pressure 88. MAX: Maximum 89. MBH: 1000 Btu/h 90. MBtu/h: 1000 Btu/h 91. MBtu: 1000 Btu 92. MED: Medical 93. m: Meter 94. MFG: Manufacturer 95. mg: Milligram 96. mg/L: Milligrams Per Liter 97. MIN: Minimum 98. MJ: Megajoules 99. ml: Milliliter

100.mm: Millimeter

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 101. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig)) 102. MPR: Medium Pressure Steam Condensate Return 103. MW: Megawatt 104. NC: Normally Closed 105. NF: Oil Free Dry (Nitrogen) 106. Nm: Newton Meter 107. NO: Normally Open 108. NOx: Nitrous Oxide 109. NPT: National Pipe Thread 110. NPS: Nominal Pipe Size 111. OD: Outside Diameter 112. OSD: Open Sight Drain 113. OS&Y: Outside Stem and Yoke 114. PC: Pumped Condensate 115. PID: Proportional-Integral-Differential 116. PLC: Programmable Logic Controllers 117. PP: Polypropylene 118. PPE: Personal Protection Equipment 119. ppb: Parts Per Billion 120. ppm: Parts Per Million 121. PRV: Pressure Reducing Valve \ 122. PSIA: Pounds Per Square Inch Absolute 123. psig: Pounds Per Square Inch Gauge 124. PTFE: Polytetrafluoroethylene 125. PVC: Polyvinyl Chloride 126. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 127. PVDF: Polyvinylidene Fluoride 128. rad: Radians 129. RH: Relative Humidity 130. RO: Reverse Osmosis 131. rms: Root Mean Square 132. RPM: Revolutions Per Minute 133. RS: Refrigerant Suction 134. RTD: Resistance Temperature Detectors 135. RTRF: Reinforced Thermosetting Resin Fittings 136. RTRP: Reinforced Thermosetting Resin Pipe

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 137. SCFM: Standard Cubic Feet Per Minute 138. SPEC: Specification 139. SPS: Sterile Processing Services 140. STD: Standard 141. SDR: Standard Dimension Ratio 142. SUS: Saybolt Universal Second 143.SW: Soft water 144. SWP: Steam Working Pressure 145. TAB: Testing, Adjusting, and Balancing 146. TDH: Total Dynamic Head 147. TEFC: Totally Enclosed Fan-Cooled 148. TFE: Tetrafluoroethylene 149. THERM: 100,000 Btu 150. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire 151. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire 152. T/P: Temperature and Pressure 153. USDA: U.S. Department of Agriculture 154.V: Volt 155. VAC: Vacuum 156. VA: Veterans Administration 157. VAC: Voltage in Alternating Current 158. VA CFM: VA Construction & Facilities Management 159. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service 160. VAMC: Veterans Administration Medical Center 161. VHA OCAMES: Veterans Health Administration - Office of Capital Asset Management Engineering and Support 162. VR: Vacuum condensate return 163. WCB: Wrought Carbon Steel, Grade B 164. WG: Water Gauge or Water Column 165. WOG: Water, Oil, Gas 1.2 RELATED WORK A. Section 01 00 00, GENERAL REQUIREMENTS. B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- K. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans
- C. American Society of Mechanical Engineers (ASME): B31.1-2014.....Power Piping B31.9-2014....Building Services Piping ASME Boiler and Pressure Vessel Code: BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications
- D. American Society for Testing and Materials (ASTM):

A36/A36M-2014.....Standard Specification for Carbon Structural Steel

A575-1996(R2013) e1....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E. Association for Rubber Products Manufacturers (ARPM):

IP-20-2015.....Specifications for Drives Using Classical V-Belts and Sheaves

- IP-21-2009.....Specifications for Drives Using Double-V (Hexagonal) Belts
- IP-24-2010.....Specifications for Drives Using Synchronous Belts
- IP-27-2015.....Specifications for Drives Using Curvilinear Toothed Synchronous Belts

F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.:

SP-58-2009.....Pipe Hangers and Supports-Materials, Design,

Manufacture, Selection, Application, and

Installation

G. Military Specifications (MIL):

MIL-P-21035B-2003.....Paint High Zinc Dust Content, Galvanizing

Repair (Metric)

H. National Fire Protection Association (NFPA):

70-2014.....National Electrical Code (NEC)

101-2015....Life Safety Code

I. Department of Veterans Affairs (VA):

PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.

- I. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- J. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- L. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- M. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.

- B. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- C. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer workstation, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
 - 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
 - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 4. The products and execution of work shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
 - 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).

- Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Use of asbestos products or equipment or materials containing asbestos is prohibited.
- D. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- E. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- F. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the

recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.

- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
 - 3. Complete coordination/shop drawings shall be required in accordance with Paragraph, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
 - 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- I. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
 - 2. Large equipment such as fuel tanks, if shipped on open trailer trucks, shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
 - 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
 - Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

6. Protect plastic piping and tanks from ultraviolet light (sunlight).

- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.

- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2016 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results

annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.

F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the

result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
- I. Drive Types, Based on ARI 435:
 - The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustablepitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.

- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet

steel and expanded or perforated metal to permit observation of belts. 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.

- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.

- D. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic-coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.

2.9 FIRESTOPPING

A. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.11 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58.
- C. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.

- 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Attachment to existing structure: Support from existing floor/roof frame.
- F. Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- I. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. Provide Type 40 insulation shield at all types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems:
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.

- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.

- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.13 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.

- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.

- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum.
- J. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- L. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).
- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final
determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service requirements as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 2. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to

match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Foundations shall have horizontal dimensions that exceed equipment base frame dimensions by at least 150 mm (6 inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.

3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All

openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.

D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Nameplates.

- Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 7. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances

when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.

- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. ---END---

---INTENTIONALLY BLANK---

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with drawings and specifications.
 - 2. Include electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete installation, maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the Contracting Officer Representative (COR):
 - Certification that the motors have been applied, installed, adjusted, lubricated, and tested according to manufacturer published recommendations.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-2006 Rev. 1 2009 ..Motors and Generators MG 2-2001 Rev. 1 2007...Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators
- C. National Fire Protection Association (NFPA): 70-2008.....National Electrical Code (NEC)
- D. Institute of Electrical and Electronics Engineers (IEEE):
 112-04.....Standard Test Procedure for Polyphase Induction
 Motors and Generators
- E. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2007.....Energy Standard for Buildings except Low-Rise Residential Buildings

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors as scheduled. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- C. Single-phase Motors: Motors for centrifugal fans and pumps shall be split phase or permanent split capacitor (PSC) type. Provide capacitorstart type for hard starting applications.
- D. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.

- Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- E. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 100 horsepower (74.6 kW), connected to 240 volt or 480-volt systems: 208-230/460 volts, dual connection.
- F. Number of phases shall be as follows:
 - 1. Motors, less than 1/2 horsepower (373 W): Single phase.
 - 2. Motors, 1/2 horsepower (373 W) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 1 horsepower (746 W), shall be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- G. Motors shall be designed for operating the connected loads continuously in a 104 degrees F (40 degrees C) environment, where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation. If the motors exceed 104 degrees F (40 degrees C), the motors shall be rated for the actual ambient temperatures.
- H. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- I. Motor Enclosures:
 - 1. Shall be the NEMA types as specified and/or shown on the drawings.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:

- a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- J. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed
 160 degrees F (71 degrees C) shall be stranded copper with Teflon
 FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- K. Additional requirements for specific motors, as indicated in the other sections listed in Article Related Work, shall also apply.
- L. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 1 horsepower (746 W) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 Watts or more with $open_{\tau}$ drip-proof or totally enclosed fan-cooled

enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. Motors not specified as "premium efficiency" shall comply with the Energy Policy Act of 2005 (EPACT).

Minimum Premium Efficiencies				Minimum Premium Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%

M. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

- A. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before start-up. All shall test free from grounds.
- B. Perform Load test in accordance with ANSI/IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- C. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- D. All test data shall be complied into a report form for each motor and provided to the contracting officer.

3.3 STARTUP AND TESTING

A. The Commissioning Agent shall observe startup and contractor testing of all equipment. Coordinate the startup and contractor testing schedules with Contracting Officer Representative (COR) and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification shall be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.
- 3.5 Demonstration and training
 - A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
 - B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

---END---

SECTION 23 05 13

COMMON WORK RESULTS FOR FACILITY FUEL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23 related to facility fuel systems.
- B. Definitions:
 - 1. Exposed: Piping, ductwork, and equipment exposed to view.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. COR: Contracting Officer Representative

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- D. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 10 00, FACILITY FUEL SYSTEMS.
- H. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. All VA safety device requirements shall be complied with regardless of the size, type, or operating pressure. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional mechanical systems construction, as applicable.
- B. Equipment Vibration Tolerance:
 - 1. Equipment shall be factory-balanced to this tolerance and rebalanced on site, as necessary.
- C. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent than those specified. Refer any conflicts to the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer and of the same model or class.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final design and integration of the different system, and assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- D. Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:

- Qualify welding processes and operators for piping according to the ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
- 2. Comply with provisions of ASME B31.3 Code "Process Piping", latest edition.
- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- E. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, or with the use of portable ladders limited to a height of 6 feet or less. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract drawings to the COR for resolution. Failure of the contractor to resolve, or point out any issues will result in the contractor correcting at no additional cost to the government.
 - 3. Provide complete shop and piping isometric layout drawings required by Paragraph 1.4A, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.
 - 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship. This work shall be removed, corrected, and re-installed at no additional cost to the government.

F. Upon request by the Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements. It is the contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specs unless the contractor has requested a variance in writing and approved by VA/VHA Central Office prior to the submittal. If at any time during the project it is found that any item does not meet the VA specs and there was no variance approval, the contractor will correct at no additional cost to the government even if a submittal was approved.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- F. Submittal "Groups" for boiler plant work are defined in the following checklist:
 - 1. Group I (Fuel Oil Tank Systems):
 - a. Fuel Oil tanks and accessories.

- b. Day Fuel Oil Tank and accessories (if not part of generator enclosure package).
- 2. Group II (Fuel Oil Delivery and Management Systems):
 - Fuel oil delivery system to main fuel tanks. System shall include a by-pass for pumped versus gravity-feed delivery trucks.
 - b. Fuel Quality Maintenance System.
 - c. Fuel transfer system from Main Storage Tanks to Day Tanks.
 - d. Fuel Day Tank Return system transfer of fuel oil from Day Tanks to Main Storage Tanks.
 - e. Fuel Control Panel.
 - f. Pressure control and thermal relief valves.
 - g. Hand-operated and motor-operated valves.
 - h. Tank oil level instrumentation and control system.
 - i. Leak detection system.
- 3. Group III (Oil Detection Systems)
 - a. High-level Oil Alarm Sensor in Coalescing Section of Oil-Water Separator.
 - b. Oil Sheen Detector in Discharge Pipe of Oil-Water Separator.
 - c. Hand-Operated and Motor Operated valves, with controller and alarms for oil detection in discharge of Oil-Water Separator.
- G. Ungrouped submittal items for boiler plants, which may be submitted individually, include, but are not limited to:
 - 1. Pipe, valves and fittings identified as to service application.
 - 2. Strainers.
 - 3. Safety valves and drip pan ells.
 - 4. Temperature control valves, sensors.
 - 5. Sight flow indicators, oil and water.
 - 6. Thermometers and pressure gauges and accessories.
 - 7. Flexible connectors, hose, braided.
 - 8. Dielectric fittings and unions.
 - 9. Quick-couple hose fittings and steam hose.
 - 10. Condensate pump sets.
 - 11. Vibration isolators air, water, oil.
 - 12. Supports and braces for pipe; load, size, movement calculations.
 - 13. Pressure gauge test kit.
 - 14. Insulation, field-applied.

H. Layout Drawings:

- 1. Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas.
- 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:48 (1/4-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping systems.
- 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
- I. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Fuel Delivery and Fuel Quality Maintenance Data and Operating Instructions:
 - 1. Provide four bound copies. Deliver to COR not less than 30 days prior to completion of a phase or final inspection.
 - Include all new and temporary equipment and all elements of each assembly.

- 3. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, pump impeller size, other data.
- Manufacturer's installation, maintenance, repair, and operation instructions for each device. Include assembly drawings and parts lists. Include operating precautions and reasons for precautions.
- 5. Lubrication instructions including type and quantity of lubricant.
- Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications.
- Description of boiler firing and operating sequence including description of relay and interlock positions at each part of the sequence.
- 8. Set points of all interlock devices.
- 9. Trouble-shooting guide for control systems.
- 10. Operation of the control system.
- 11. Emergency procedures.
- 12. Control system programming information for parameters, such as set points, that do not require services of an experienced technician.
- 13. Step-by-Step written instructions that are specific for the system installed on testing all safety devices. The instructions should reference the most recent edition of the VHA BOILER PLANT SAFETY DEVICE TESTING MANUAL for each test. All safety devices listed in the manual shall be tested as a minimum.
- L. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 430-2009.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.3-2016.....Process Piping
- D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007.....Specifications for Drives Using Classical V-Belts and Sheaves IP-21-2009....Specifications for Drives Using Double-V (Hexagonal) Belts

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Project No. 438-18-100 Sioux Falls, SD IP-22-2007.....Specifications for Drives Using Narrow V-Belts and Sheaves E. Air Movement and Control Association (AMCA): 410-96..... Recommended Safety Practices for Air Moving Devices F. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): Section IX-2015......Welding and Brazing Qualifications Code for Pressure Piping: B31.3-2016.....Process Piping A13.1Scheme for the Identification of Piping Systems G. American Society for Testing and Materials (ASTM): A36/A36M-08.....Standard Specification for Carbon Structural Steel A53/A53M-12.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A105/A105M-14Standard Specification for Carbon Steel Forgings for Piping Applications A106/A106M-15Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A234/A234M-16 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service A575-96(2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-10.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-09c.....Standard Test Methods for Fire Tests of Building Construction and Materials H. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports-Materials, Design and Manufacture, Selection, Application, and Installation

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 SP 69-2003.....Pipe Hangers and Supports-Selection and

Application

SP 127-2001.....Bracing for Piping Systems, Seismic - Wind -Dynamic, Design, Selection, Application

- I. National Electrical Manufacturers Association (NEMA): MG-1-2009.....Motors and Generators
- J. National Fire Protection Association (NFPA):

31-06..... Standard for Installation of Oil-Burning Equipment

54-09.....National Fuel Gas Code 70-08....National Electrical Code 85-07....Boiler and Combustion Systems Hazards Code 90A-09....Standard for the Installation of Air Conditioning and Ventilating Systems 101-09...Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost to the Government.
 - Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.

- Clean interior of all tanks prior to delivery for beneficial use by the Government.
- Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bare manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.

- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
 - 5. Minimum Diameter of V-Belt Sheaves (ANSI/RMA recommendations) in millimeters and inches:
- I. Drive Types, Based on ARI 435:
 - Provide adjustable-pitch or fixed-pitch drive as follows:
 a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.

- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured, to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.7 CONTROLS AND INSTRUMENTATION, COMPUTER WORKSTATION

A. Provide, and place into proper operation a complete control package to deliver fuel to the main storage tanks and generator day tanks, filter the stored fuel, and return fuel to the main storage tanks from the day tanks. All level controls, pump controls, leak detection, flow sensing, and oil detection (oil-water separator) will be included in the package. Furnish all hardware, software, and programming to properly accomplish specified functions.

B. Electronic Systems: Provide complete, protected power supplies as specified. Power supplies shall protect computers, controls, instruments and accessories from damage due to spikes, surges, transients, and overloads in the incoming power supply. Provide all interconnections between elements of the system. Entire installation shall conform to NFPA 70.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Use ASME A13.1 Scheme for the Identification of Piping Systems for pipe labeling.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters permanently fastened to the equipment. Identify unit components such as pumps, filters, strainers, valves, etc.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16-inch) high riveted or bolted to the equipment.
- D. Control Items: Label all sensors and controllers. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Boiler Plant: Provide for all new valves.
 - 2. Generator Area: Provide for all new valves.
 - 3. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain to each valve.
 - 4. Valve lists: Typed or printed plastic-coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - 5. Provide detailed plan for each system indicating the location and valve number for each valve.

2.9 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint form.

2.10 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69.
- C. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the COR for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COR for each job condition.
- D. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- E. Attachment to Wood Construction: Wood screws or lag bolts.
- F. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or pre-insulated calcium silicate shield for insulated piping at each hanger.

- H. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or pre-insulated calcium silicate shields. Provide Type 40 insulation shield or pre-insulated calcium silicate shield at all other types of supports and hangers including those for pre-insulated piping.
 - 2. Piping Systems:
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Pre-insulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.

2.11 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:

- 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.

2.12 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.13 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:

- Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum.

- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Plant Operation: Government employees will be continuously operating and managing all plant facilities, including temporary facilities, that serve the steam and condensate requirements of the medical center.
 - 4. Maintenance of Steam Supply and Condensate Return Service: Schedule all work to permit continuous steam and condensate service at pressures and flow rates as required by the medical center. At all times there shall be one spare boiler available and one spare pump for each service available, in addition to those required for serving the load demand. The spare boiler and pumps must be capable of handling the loads that may be imposed if the operating boiler or pump fails.
 - 5. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the steam demands are not critical to the operation of the medical center. These non-critical periods are limited to between 8 pm and 5 am during the non-heating season. Provide at least one-week advance notice to the COR.
 - Phasing of Work: Comply with all requirements shown on drawings or specified.
 - 7. Plant Working Environment: Maintain the architectural and structural integrity of the plant building and the working environment at all

times. Maintain the interior of plant at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. No storm water or ground water leakage permitted. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA.

- 8. Acceptance of Work for Government Operation: As new facilities are made available for operation and these facilities are of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. NO BOILER or piece of equipment such as the DA Tank will be accepted for beneficial use until ALL Safety Devices have been tested and passed in accordance with the latest edition of the VHA Boiler Plant Safety Device Testing Manual, and all control systems are proven to be fully operational without faults or shutdowns for a period not less than 21 days of continues operation without interaction from any person other than that of normal operational duties. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- 9. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COR's approval, carefully cut opening through construction no larger than necessary for the required installation.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth

of the equipment and extending from to a height of 1.8 m (6 ft.) above the equipment to ceiling structure, whichever is lower (NFPA 70).

- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork. All electrical test points shall be accessible without working upside down or need of inspection mirrors, and done at terminal strips within sight of the equipment.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.

- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Do not permit

debris to accumulate in the area to the detriment of plant operation. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VA Medical Center, and Contractor shall follow all directives of the RE or COTR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:

- a. Motors, controllers, control switches, and safety switches.
- b. Control and interlock devices.
- c. Regulators.
- d. Pressure reducing valves.
- e. Control valves and thermostatic elements.
- f. Lubrication devices and grease fittings.
- g. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Valve stems and rotating shafts.
- i. Pressure gauges and thermometers.
- j. Glass.
- k. Name plates.
- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same color as utilized by the pump manufacturer
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.

3.8 MOTOR AND DRIVE ALIGNMENT

A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.

B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation. Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specifications will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.11 STARTUP AND TEMPORARY OPERATION

A. Startup equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS, and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.
- D. No adjustments maybe made during the acceptance inspection. All adjustments should have been made by this point.

3.13 DEMONSTRATIONS AND TESTS, TEMPORARY BOILER PLANT EQUIPMENT

- A. Test prior to placing in service.
- B. Demonstrate to COR the proper operation of all equipment, instruments, operating and safety controls, and devices.

3.14 INSTRUCTIONS TO VA PERSONNEL

A. Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

---END---

--- INTENTIONALLY BLANK ---

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

A. Noise criteria, vibration tolerance, and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Corridors (Public)	40
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Shops	50
Warehouse	50

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference

between sound power level emitted to room and sound pressure level in room.

- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - 2. Bases.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): 2009Fundamentals Handbook, Chapter 7, Sound and

Vibration

C. American Society for Testing and Materials (ASTM): A123/A123M-09.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-07b.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

July 30, 2021 Sioux Falls VA Medical Center Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness D. Manufacturers Standardization (MSS): SP-58-2009......Pipe Hangers and Supports-Materials, Design and Manufacture E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95.....Occupational Noise Exposure F. American Society of Civil Engineers (ASCE): ASCE 7-10Minimum Design Loads for Buildings and Other Structures. G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition. H. International Code Council (ICC): 2018 IBC..... International Building Code. I. Department of Veterans Affairs (VA):

H-18-8 2010......Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.

E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 4. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
 - 5. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.

- 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
- 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.

2.3 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.

- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

---END---

Wilkes-Barre	VAMC
--------------	------

Construct Emergency Generator

Wilkes-Barre, PA 18711

December 06, 2018 35% Design Development Project No.693-17-103

02-01-15

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT		c	N GRAD	E	20FT FLOOR SPAN		30FT FLOOR SPAN		40FT FLOOR SPAN		50FT FLOOR SPAN					
		BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
PUMPS																
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W	
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S	2.0
	UP TO 10 HP					D,L, W			D,L, W			D,L, W			D,L, W	
BASE MOUNTED																

NOTES:

1. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.

3. For separate chiller building on grade, pump isolators may be omitted.

4. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.

5. For projects in seismic areas, use only SS & DS type isolators and snubbers.

6. For floor mounted in-line centrifugal blowers (ARR 1): use "B" type in lieu of "R" type base.

7. Suspended: Use "H" isolators of same deflection as floor mounted.

--- INTENTIONALLY BLANK ---

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for:
 - 1. Fuel oil storage and handling facilities.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air-conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 60 degrees F (16 degrees C) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. DTOR: Day tank oil return.
 - 6. DTOS: Day tank oil supply.
 - 7. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, Boiler Plant, and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 8. FOF: Fuel oil (tank) fill.
 - 9. FOR: Fuel oil return.
 - 10. FOS: Fuel oil supply.
 - 11. FQMR: Fuel oil quality management return.
 - 12. FQMS: Fuel oil quality management supply.
 - 13. FSK: Foil-scrim-kraft facing.
 - 14. Hot: HVAC Ductwork handling air at design temperature above 60 degrees F (16 degrees C); HVAC equipment or piping handling media above 105 degrees F (16 degrees C) [Boiler Plant breechings and stack temperature range 300-700 degrees F (150-370 degrees C) and piping media and equipment 90-450 degrees F (32-230 degrees C).
 - Density: Pcf pounds per cubic foot (kg/m3 kilograms per cubic meter).

- Runouts: Branch pipe connections up to 1 inch (25 mm) nominal size to fan coil units or reheat coils for terminal units.
- 17. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: BTU per hour per square foot (Watt per square meter).
 - b. Pipe or Cylinder: BTU per hour per linear foot (Watt per square meter).
- 18. Thermal Conductivity (k): BTU per inch thickness, per hour, per square foot, per degrees F temperature difference (Watt per meter, per degrees C).
- 19. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 20. RS: Refrigerant suction.
- 21. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and

a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 feet (1.5 m) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 5 feet (1.5 m) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 1 inch (25 mm) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, *Standard Methods of Tests of Fire Endurance of Building Construction and Materials*

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 75 degrees F (24 degrees C) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.

- d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
- e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99(2004) Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation

Sioux Falls VA Medical Center July 30, 2 Redesign Upgrade Station Generator System - PSDM 100% Construction Docume Sioux Falls, SD Project No. 438-18-	021 nts 100
C449-07 Fiber	
Hydraulic-Setting Thermal Insulating and	
Finishing Cement	
C533-09Standard Specification for Calcium Silicate	
Block and Pipe Thermal Insulation	
C534-08 Flandard Specification for Preformed Flexible	
Elastomeric Cellular Thermal Insulation in	
Sheet and Tubular Form	
C547-07Standard Specification for Mineral Fiber pipe	
Insulation	
C552-07Standard Specification for Cellular Glass	
Thermal Insulation	
C553-08Standard Specification for Mineral Fiber	
Blanket Thermal Insulation for Commercial and	
Industrial Applications	
C585-09 Outer Diamete	rs
of Rigid Thermal Insulation for Nominal Sizes	
of Pipe and Tubing (NPS System) R (1998)	
C612-10Standard Specification for Mineral Fiber Bloc	k
and Board Thermal Insulation	
C1126-04Standard Specification for Faced or Unfaced	
Rigid Cellular Phenolic Thermal Insulation	
C1136-10Standard Specification for Flexible, Low	
Permeance Vapor Retarders for Thermal	
Insulation	
D1668-97a (2006)Standard Specification for Glass Fabrics (Wov	en
and Treated) for Roofing and Waterproofing	
E84-10Btandard Test Method for Surface Burning	
Characteristics of Building	
Materials	
E119-09cStandard Test Method for Fire Tests of Buildi	ng
Construction and Materials	
E136-09bof Materia	ls
in a Vertical Tube Furnace at 750 degrees C	
(1380 F)	

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 E. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 96-08.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations 101-19....Life Safety Code 251-06.....Standard methods of Tests of Fire Endurance of Building Construction Materials 255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials F. Underwriters Laboratories, Inc (UL): 723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08 G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009......Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

A. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.26 (0.037) at 75 degrees F (24 degrees C), for use at temperatures up to 450 degrees F (230 degrees C) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 7.5 pcf (120 kg/m3) nominal, k = 0.29 (0.033) at 75 degrees F (24 degrees C).
- B. Pipe insulation for use at temperatures up to 400 degrees F (200 degrees C) with all service vapor retarder jacket.

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.27 (0.039) at 75 degrees F (24 degrees C), flame spread not over 25, smoke developed not over 50, for temperatures from minus 40 degrees F (4 degrees C) to 200 degrees F (93 degrees C). No jacket required.

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 1 mil (0.025 mm) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 1-1/2 inch (40 mm) lap on longitudinal joints and minimum 3 inch (75 mm) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 30 inch-pounds (35 cm-kg) for interior locations and 80 inch-pounds (92 cm-kg) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 7.8 ounces per square yard (0.18 kg per square meter), 300 psig (2000 kPa) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.03 inches (0.7 mm). Provide color matching vapor retarder pressure sensitive tape.

H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.023 inch (0.6 mm) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.024 inch (0.6 mm) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 1/2-inch (13 mm) wide on 18 inch (450 mm) centers. System shall be weatherproof if utilized for outside service.

2.5 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3 pcf (48 kg/m3).

Nominal Pipe Size and Accessories Material (Insert Blocks)						
Nominal Pipe Size inches (mm)	Insert Blocks inches (mm)					
Up through 5 (125)	6 (150) long					
6 (150)	6 (150) long					
8 (200), 10 (250), 12 (300)	9 (225) long					
14 (350), 16 (400)	12 (300) long					
18-24 (450-600)	14 (350) long					

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 300 degrees F (149 degrees C), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 3 pcf (48 kg/m3).

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.

- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching Monel or galvanized steel.
- C. Wire: 18-gauge (1.3 mm) soft annealed galvanized or 14 gauge (1.9 mm) copper clad steel or nickel copper alloy.
- D. Bands: 0.5 inch (13 mm) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 40 degrees F (4 degrees C) to 250 degrees F (121 degrees C). Below 40 degrees F (4 degrees C) and above 250 degrees F (121 degrees C). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.9 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer Representative (COR) for application of insulation. Surface shall be

clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories) systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full-length section will fit.
- C. Insulation materials shall be installed in a first-class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 60 degrees F (16 degrees C) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 6 inches (150 mm).
- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- F. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- G. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. In hot piping: Unions, flexible connectors, and control valves.
 - 3. Insulate piping to within approximately 3 inches (75 mm) of uninsulated items.
- H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- I. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated

to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.

- J. Firestop Pipe and Duct insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed.
 - 2. Pipe and duct penetrations requiring fire stop insulation including the following:
 - a. Pipe risers through floors
 - b. Smoke partitions
 - c. Fire partitions
- K. Freeze protection of above grade outdoor piping (over heat tracing tape): 1 inch (26 mm) thick insulation, for all pipe sizes 3 inches (75 mm) and smaller and 1 inch (25 mm) thick insulation for larger pipes. Provide metal jackets for all pipes.
- L. Provide vapor barrier jackets over insulation as follows:1. All piping and ductwork exposed to outdoor weather.
- M. Provide metal jackets over insulation as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. A 2-inch (50 mm) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Cellular Glass Insulation:
 - Pipe and tubing, covering nominal thickness in millimeters and inches as specified in this section.
- B. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, shall be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in this section.

3.3 APPLICATION - PIPE, VALVES, STRAINERS AND FITTINGS:

- A. Temperature range 90 to 211 degrees F (32 to 99 degrees C):
 - 1. Application: Refrigerant piping.
 - 2. Insulation Jacket:
 - a. fiberglass.
 - b. ASJ with PVC premolded fitting coverings.
- B. Installation:
 - At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.
 - Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 12-inch (300 mm) centers.
 - At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.
 - 4. Terminate insulation and jacket hard and tight at anchor points.
 - Terminate insulation at piping facilities not insulated with a 45degree chamfered section of insulating and finishing cement covered with jacket.
 - On mineral fiber systems, insulate welded and threaded fittings more than 2 inches (50 mm) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.
 - Insulate fittings 2 inches (50 mm) and smaller with mastic finishing material and cover with jacket.
 - Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.

9. Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless steel bands 12 inches (300 mm) on center or aluminum screws on 4inch (100 mm) centers.

3.4 APPLICATION ON HEATED OR TRACED OIL FACILITIES OUTSIDE OF BUILDING:

- A. Temperature range 85 to 250 degrees F (30 to 120 degrees C).
 - Application: Aboveground oil storage tank, oil aboveground piping systems, oil piping in trenches outside, including DTOR, DTOS, FOF, FOR, FOS, FQMR, and FQMS.
 - 2. Insulation thickness:
 - a. Oil piping: 1 inch (25 mm) plus finish.
- B. Insulation and jacket (piping):
 - Calcium silicate with aluminum jacket, weatherproof jacket when used outside of building.
 - Cellular glass with aluminum jacket, weatherproof jacket when used outside of building.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification shall be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

---END---

SECTION 23 08 00 COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility exterior closure, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 23, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent

checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after

submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

---END---

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

Warranty, specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate 1 Engineering Control Center(s) and the control system shall accommodate 5 web-based Users simultaneously, and the access to the system shall be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractor's formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractor's formal acknowledgements in writing prior to submission the procurement of the products.
 - 1. Fuel Management System with controls.
 - 2. Fuel Quality Maintenance System with controls.
 - 3. Fuel and Water Leak Detection System with controls.
 - 4. Oil Detection System with controls.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of

the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractor's formal acknowledgements in writing prior to submission the details of the products. These products include, but are not limited to, the following:

- Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
- Advanced utility metering systems. These systems shall take information from the control system or its component meters and sensors. There is no command or control action from the advanced utility monitoring system on the control system however.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low	Line	
			Wiring	Power	
Control system low voltage	23 09 23	23 09 23	23 09 23	N/A	
and communication wiring					
Terminal units	23	23	N/A	26	
Controllers for terminal units	23 09 23	23	23 09 23	16	
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A	
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A	
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23	
Manual valves	23	23	N/A	N/A	
Automatic valves	23 09 23	23	23 09 23	23 09 23	
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A	
Thermowells	23 09 23	23	N/A	N/A	
Current Switches	23 09 23	23 09 23	23 09 23	N/A	
Control Relays	23 09 23	23 09 23	23 09 23	N/A	
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26	
Interface with chiller/boiler controls	23 09 23	23 09 23	23 09 23	26	
Chiller/boiler controls	23	23	23 09 23	26	

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
interface with control system				
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Fire Dampers	23	23	N/A	N/A
VFDs	23 09 23	26	23 09 23	26
Refrigerant monitors	23	23 09 23	23 09 23	26
Laboratory Environmental Controls	23 09 23	23 09 23	23 09 23	26
Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Fan Coil Unit controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26
Fuel Management System	23 09 23	23 09 23	23 09 23	23 09 23
Fuel Quality Maintenance System	23 09 23	23 09 23	23 09 23	23 09 23
Fuel and Water Leak Detection System	23 09 23	23 09 23	23 09 23	23 09 23
Oil Detection System	23 09 23	23 09 23	23 09 23	23 09 23
Main Tank Selection Panel	23 09 23	23 09 23	23 09 23	23 09 23

F. This facility's existing direct-digital control system is manufactured by Johnson Controls Incorporated (JCI), and its ECC is located at Building 26. The existing system's top-end communications is via JCI. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network,
services, spare capacity of the existing control system and its ECC prior to beginning work.

- Provide a new BACnet ECC, communications network, and controllers. Provide a programmable internetworking gateway allowing for realtime communication between the existing direct-digital control system and the new BACnet control system. Real-time communication shall provide all object properties and read/write services shown on VA-approved interoperability schedules. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and site-specific programming to execute the interoperability schedules.
 - a. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.
 - b. The combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have limited operations and control capability over the legacy systems, as described in the VA-approved interoperability schedules.
- G. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning verification work.
 - The General Contractor of this project shall directly hire the Johnson Controls in a contract separate from the contract procuring

the controls contractor administered by this Section of the technical specifications.

- 2. The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.
- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
- 4. Responsibility Table:

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point (analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

H. Unitary standalone systems including Unit Heaters, Cabinet Unit Heaters, Fan Coil Units, Base Board Heaters, thermal comfort

ventilation fans, and similar units for control of room environment conditions shall be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary. Examples of such systems include:

- 1. Light-switch-operated toilet exhaust
- 2. Vestibule heater
- 3. Exterior stair heater
- 4. Mechanical or electrical room heating and ventilation.
- I. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 26 05 11, Requirements for Electrical Installations.
- B. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- C. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- D. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- E. Section 26 32 13, Engine Generators.
- F. Section 27 15 00, Communications Horizontal Cabling.

1.3 DEFINITIONS

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current and velocity.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks, ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.

- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks shall sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls

- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 72 to 78 degrees F (22 to 25 degrees C), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.

- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software shall not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure and flow rate whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status and on-off equipment.

- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low-cost communication.
- 00. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number shall be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers shall be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.

- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.
- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats: devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

A. Criteria:

- 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
- Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be

manufacturer's latest standard design and have been tested and proven in actual use.

- 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects shall be on-line and functional such that the Department of Veterans Affairs COR would observe the control systems in full operation.
- 4. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, Contracting Officer's Representative (COR), the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information shall be a ground for disqualification of the supplier.
- 5. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.

- Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
- Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two (2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or workstation shall be current, within the prior six (6) seconds.
- Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy	
Space temperature	± 1 -degree F (0.5 degree C)	
Ducted air temperature	± 1 -degree F (0.5 degree C)	
Outdoor air temperature	± 1 -degree F (0.5 degree C)	
Dew Point	± 3 -degree F (1.5 degree C)	
Water temperature	± 1 -degree F (0.5 degree C)	
Relative humidity	±2% RH	
Water flow	±1% of reading	

Air flow (terminal)	±10% of reading	
Air flow (measuring stations)	±5% of reading	
Carbon Monoxide (CO)	±5% of reading	
Carbon Dioxide (CO ₂)	±50 ppm	
Air pressure (ducts)	±0.1 inches W.G. (25 Pa)	
Air pressure (space)	±0.001 inches W.G. (0.3 Pa)	
Water pressure	±2% of full scale *Note 1	
Electrical Power	±0.5% of reading	

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±0.2 inches W.G. (50 Pa)	0 to 6 inches W.G. (0 to 1.5 kPa)
Air Pressure	±0.01 inches W.G. (3 Pa)	-0.1 to 0.1 inches W.G. (-25 to 25 kPa)
Airflow	±10% of full scale	
Space Temperature	±2-degree F (1 degree C)	
Duct Temperature	±3-degree F (1.5 degree C)	
Humidity	±5% RH	
Fluid Pressure	±1.5 psi (10 kPa)	1 to 150 psi (0 to 1 MPa)
Fluid Pressure	±1 inches W.G. (250 Pa)	0 to 50 inches W.G. (0 to 12.5 kPa) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.

- C. Service to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall be extended to include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - A wiring diagram for each type of input device and output device including DDC controllers, modems and repeaters. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically

> applicable to the project shall be highlighted. Each submitted piece of literature and drawings shall clearly reference the specification and/or drawings that it supposed to represent.

- Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items shall be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.

- Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons shall be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Contracting Officer's Representative (COR) prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 32 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel shall work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor shall provide 16 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
 - 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor shall review the manual contents with VA facilities personnel during second phase of training.
 - 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 65 to 90 degrees F (20 to 35 degrees C) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 150 degrees F (-40 to 65 degrees C).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Standard 135-10.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME): B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings.

B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

- D. American Society of Testing Materials (ASTM): B32-08.....Standard Specification for Solder Metal B88-09....Standard Specifications for Seamless Copper Water Tube B88M-09....Standard Specification for Seamless Copper Water Tube (Metric) B280-08....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-03....Standard Specification for Polyethylene (PE) Plastic Tubing
- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 70-11.....National Electric Code 90A-09.....of Air-Conditioning and Ventilation Systems H. Underwriter Laboratories Inc (UL): 94-10..... Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10.....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11.....Standard for Smoke Dampers 916-10..... Energy Management Equipment 1076-10..... Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing. Spare parts shall be available for all equipment installed.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.

- f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
- g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture:
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations. They shall also utilize digital wireless technologies as appropriate to the application and if approved by the VA.
 - All necessary telephone lines, ISDN lines and internet Service Provider services and connections shall be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.

- 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator shall be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
- 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
 - The ARCNET data link / physical protocol shall be used in new BACnet sub-networks in VA non-healthcare and non-lab (i.e., business and cemetery) facilities.
 - 3. The MS/TP data link / physical layer protocol is not acceptable to the VA in any new BACnet network or sub-network in its healthcare or lab facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites shall be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location, a modem and field device connection shall allow

communication with each controller on the internetwork as specified in Paragraph D.

- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.5 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.6 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical

configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.

- The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and

b. DD = 00-99, this allows up to 100 devices per network.

- 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings and related structures. The suffix shall be ignored. Network numbers for facility codes above 400 shall be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming shall be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary

> controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names shall be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.7 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - 4. BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.8 CONTROLLERS

A. General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.

- 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
- The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
- 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
- 4. Controllers that perform scheduling shall have a real-time clock.
- 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall.

a. assume a predetermined failure mode, and

- b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.

- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 3 feet (1 m).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - 2. Each B-ASC shall contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
 - 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 3 feet (1 m).

- Transformer. Power supply for the ASC shall be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
 - 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
 - e. Automatic tuning of control loops.
 - 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator

to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.

- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Power Demand Limiting (PDL): Power demand limiting program shall monitor the building power consumption and limit the consumption of electricity to prevent peak demand charges. PDL shall continuously track the electricity consumption from a pulse input generated at the kilowatt-hour/demand electric meter. PDL shall sample the meter data to continuously forecast the electric demand likely to be used during successive time intervals. If the forecast demand indicates that electricity usage shall likely to exceed a user preset maximum allowable level, then PDL shall automatically shed electrical loads. Once the demand load has met, loads that have been shed shall be restored and returned to normal mode. Control system shall be capable of demand limiting by resetting the HVAC system set points to reduce load while maintaining indoor air quality.
 - b. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
 - c. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate

the system using dial up communications. Remote access shall allow the operator to function the same as local access.

d. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.10 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well shall be consistent with the system pressure in which it is to be installed.
 - b. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - c. Wire: Twisted, shielded-pair cable.
 - d. Output Signal: 4-20 ma.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.

- 2. 0 to 5 inches wg for duct static pressure range.
- 3. 0 to 0.25-inch wg for Building static pressure range.
- D. Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2inch full port gate valve.
 - a. Pipe size: 3 to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2-inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BMCS: Digital pulse type.
 - 3. 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24-volt DC
 - Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 0.05 inch (1 mm); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 VDC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2-digit display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40 to 140 degrees F (-40 to 60 degrees C), 5 to 100% humidity.
 - b. Operating conditions: 125 psig (850 kPa), 30 to 250 degrees F (0 to 120 degrees C), 0.5 to 40 fps (0.15 to 12 meters per second) velocity.

- c. Nominal range (turn down ratio): 10 to 1.
- d. Preamplifier mounted on meter shall provide 4-20 ma divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 6,000 feet (1,800 m). Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 4 inches (100 mm).
- e. Ambient temperature effects, less than 0.005 percent calibrated span per degrees F (degrees C) temperature change.
- f. RFI effect flow meter shall not be affected by RFI.
- g. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.
- F. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - Paddle-type switches (liquid service only) shall be UL Listed,
 SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall
 be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale
 range and differential suitable for specified application.
- G. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.11 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System shall service.

- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair and failed pair) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.12 THERMOSTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have manufacturer's

recommendation finish, setpoint range and temperature display and external adjustment:

- Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 a. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 1 linear foot (300 mm) of sensing element for each 1 square foot (0.093 square meter) of coil area. A freezing condition at any increment of 1 foot (300 mm) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually reset.

2.13 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 125 psig (900 kPa).
 - 2. Valves 2 inches (50 mm) and smaller shall be bronze body with threaded or flare connections.
 - Valves 2-1/2 inches (60 mm) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 210 degrees F (100 degrees C), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating values shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.

- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 10 feet (3 m) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- D. Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 2. See drawings for required control operation.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.

- Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- B. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 12 inches (300 mm) long.
 Equipment for fiber optics system shall be rack mounted, as

> applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.

- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls and panel cabinets.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams shall be used to accomplish cable identification.
- Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 5 feet (1.5 meters) above the finished floor.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.

- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation values on steam pressure sensing devices.
- 3. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 2 feet (600 mm) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.

- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller and pumping unit Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler and pumping unit. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance manual with performance verification test.
- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - System operation and calibration shall be demonstrated by the installer in the presence of the Architect or COR on random samples of equipment as dictated by the Architect or COR.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports and change in status.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.

- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration
 with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
 - k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
 - Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.

---END---

SECTION 23 10 00 FACILITY FUEL OIL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Diesel fuel oil and unheated burner fuel oil tanks, piping, and accessories located outside, underground or aboveground as shown on contract drawings. Refer to contract drawings for type of fuel and for tank capacities.
- B. Tank fluid level monitoring and alarm systems.
- C. Leak detection system for tanks and underground piping.
- D. Fuel oil quality maintenance system (water and particulate removal).
- E. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Petroleum Institute (API): RP 1631-2001.....Interior Lining and Periodic Inspection of Underground Storage Tanks
- C. American Society of Mechanical Engineers (ASME): B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard. B16.9-2012.....Factory Made Wrought Buttwelding Fittings

B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B31.1-2014....Power Piping

D. American Society for Testing and Materials (ASTM):
 A36/A36M-2014.....Standard Specification for Carbon Structural
 Steel

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A105/A105M-2014.....Standard Specification for Carbon Steel Forgings for Piping Applications A106/A106M-2015.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-04 (R2014)Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A234/A234M-2015.....Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service B62-2015..... Standard Specification for Composition Bronze or Ounce Metal Castings D2996-2015.....Standard Specification for Filament-Wound "Fiberglass" (Glass-Fiber-Reinforced Thermosetting-Resin) Pipe E. Federal Specifications (Fed. Spec.): A-A-60005-1998.....Frames, Covers, Grating, Steps, Sump and Catch Basin, Manhole F. NACE International (NACE): SP0169-2013.....Control of External Corrosion on Underground or Submerged Metallic Piping Systems 3/SSPC-SP6.....Commercial Blast Cleaning 4/SSPC-SP7.....Brush-off Blast Cleaning G. National Electrical Manufacturers Association (NEMA): Maximum) H. National Fire Protection Association (NFPA): 30-2015......Flammable and Combustible Liquids Code 31-2016..... of Oil-Burning Equipment 70-2014.....National Electrical Code (NEC) I. Steel Tank Institute (STI): F001-2014.....Flameshield® Standard for Fire Tested Tanks F841-2006.....Standard for Dual Wall Underground Steel Storage Tanks

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 F894-2015.....ACT-100® Specification for External Corrosion Protection of FRP Composite Steel Underground Storage Tanks F941-2015..... Fireguard: Specification for Fireguard Protected Aboveground Storage Tanks F961-2015.....ACT-100U Specification for External Corrosion Protection of Composite Steel Underground Storage Tanks P3-2015..... Specification and Manual for External Corrosion Protection of Underground Steel Storage Tanks R891-2006.....Recommended Practice for Hold Down Strap Isolation J. Underwriters Laboratories Inc. (UL): 58-1996 (R1998).....Standard for Steel Underground Tanks for Flammable and Combustible Liquids 142-2006 (R2014).....Standard for Steel Aboveground Tanks for Flammable and Combustible Liquids 971-2008..... Standard for Nonmetallic Underground Piping for Flammable Liquids 1316-2008.....Glass-Fiber-Reinforced Plastic Underground Storage Tanks for Petroleum Products, Alcohols, and Alcohol-Gasoline Mixtures 1746-2007 (R2014).....Standard for External Corrosion Protection Systems for Steel Underground Storage Tanks 2085-2003.....Standard for Protected Aboveground Tanks for Flammable and Combustible Liquids

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 10 00, FACILITY FUEL OIL SYSTEMS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

- D. Underground Tanks:
 - Drawings of tanks, anchoring devices, heating coils (if required), tank manholes, tank manhole enclosures, access doors for the tank manhole enclosures and all accessories. Include overall dimensions and dimensional locations and sizes of all anchoring devices, pipe connections, and access openings.
 - Manufacturer's installation instructions describing recommended foundation, bedding and backfill material, support and anchoring devices, and method of installation.
 - 3. Weight of entire tank assemblies, empty and flooded.
 - 4. Certification of compliance with specified standards.
 - 5. Certification that steel tank manufacturer participates in the Steel Tank Institute (STI) Quality Assurance Program.
 - Data certifying that tanks are designed for surcharge loads of backfill, traffic and other construction.
 - Design and construction of tanks, secondary containment, pipe connections, manholes, anchoring devices, access doors for tank manhole enclosures.
 - Application and performance data on tank coating (steel tanks) from manufacturer of coating.
 - 9. Design of cathodic protection system (when specified) for steel tanks.
- E. Aboveground Steel Tanks, Including Vault-type Tanks:
 - Drawings of tanks, supports, ladders, platforms, heating coils, tank manholes, emergency relief vents and all accessories. Include overall dimensions and dimensional locations and sizes of pipe connections, and access openings.
 - 2. Recommended tank support locations.
 - 3. Weight of entire tank assembly, empty and flooded.
 - Design and construction of primary tanks, insulation, secondary containment, supports, pipe connections, platforms.
 - 5. Application and performance data on coatings from manufacturer of coatings.
 - Data certifying tanks are designed for surcharge loads of platforms shown.
 - 7. Certification of compliance with specified standards.

- 8. Certification that steel tank manufacturer participates in Steel Tank Institute (STI) Quality Assurance Program.
- 9. Design, construction, performance, dimensions of emergency relief vents.
- F. Fuel Piping:
 - 1. ASTM and UL compliance.
 - 2. Grade, class or type, schedule number.
 - 3. Manufacturer.
- G. Pipe Fittings, Unions, Flanges:
 - 1. ASTM and UL compliance.
 - 2. ASTM standards number.
 - 3. Catalog cuts.
 - 4. Pressure and temperature rating.
- H. Foot Valves, Check Valves, Overfill Prevention Valves:
 - 1. Catalog cuts showing design and construction.
 - 2. Pressure and temperature ratings.
 - 3. Pressure loss and flow rate data.
 - 4. Materials of construction.
 - 5. Accessories.
- I. Secondary Containment System for Fuel Piping:
 - Sizes, materials, construction of containment system including end seals, sumps, coatings and pipe supports.
 - 2. Layout of system.
 - 3. Installation instructions.
 - 4. Design of cathodic protection system (steel casing).
- J. Leak Detection System:
 - Drawings, description and performance data on sensors, control units.
 - 2. Description of operation.
 - 3. Layout of system.
 - 4. Installation and operating instructions.
 - 5. Data on interconnecting wiring systems to be furnished.
- K. Tank Fluid Level Monitoring Instrumentation System:
 - Drawings showing instruments and in-tank sensing units, with dimensions.
 - 2. Design and construction of all elements of system.
 - 3. Installation instructions.

- L. Tank and Piping Accessories: Design, construction, and dimensions of vent caps, fill boxes, fill caps, spill containers and other accessories.
- M. Fuel Quality Maintenance System:
 - Drawings and description of all components and arrangement of system.
 - 2. Design and performance of pumps, filters.
 - 3. Catalog data and operation of control system.
 - 4. Installation instructions.
- N. Fuel Oil Transfer Pump System:
 - Drawings and description of all components and arrangement of system.
 - 2. Design and performance of pumps, etc..
 - 3. Catalog data and operation of control system.
 - 4. Installation instructions.
- O. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- P. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- Q. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Approval by Contracting Officer is required of products or services of proposed manufacturers, suppliers and installers, and shall be based on Contractor's certification that:
 - Manufacturers regularly and currently manufacture tanks, tank and piping accessories, tank fluid level monitoring and leak detection systems, and fuel quality management systems.

- Manufacturers of steel tanks participate in the Quality Assurance Program of the Steel Tank Institute (STI).
- 3. The design and size of each item of equipment provided for this project is of current production and has been in satisfactory operation on at least three installations for approximately three years. Current models of fluid level and leak detection systems with less than three years' service experience are acceptable if similar previous models from the same manufacturer have at least three years' service experience.
- B. Apply and install materials, equipment and specialties in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the COR for resolution. Provide copies of installation instructions to the COR two weeks prior to commencing installation of any item.
- C. All equipment shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components or overall assembly.
- D. Tanks, Secondary Containment Systems for Piping, Plastic Piping and Containment Systems, Tank Level Monitoring Systems, Leak Detection Systems, Fuel Quality Management Systems, Cathodic Protection Systems: Authorized manufacturer's representatives shall provide onsite training of installers and supervision of the installation and testing of the equipment and systems to assure conformance to written instructions of manufacturers.
- E. Tank and piping installation contractor shall be certified as acceptable by local and state pollution control authorities.
- F. Entire installation shall conform to requirements of local and state pollution control authorities.
- G. Pipe Welding: Conform to requirements of ASME B31.1. Welders shall show evidence of qualification. Welders shall utilize a stamp to identify their work. Unqualified personnel shall be rejected.
- H. Assembly of Glass Fiber Reinforced Plastic Piping: Installation personnel shall have been trained, tested and certified under a procedure approved by the manufacturer of the piping. Proof of certification, in writing, shall be provided to the COR.
- I. Where specified codes or standards conflict, consult the COR.

- J. Label of Conformance (definition): Labels of accredited testing laboratories showing conformance to the standards specified.
- K. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result shall be a safe, complete and fully operational system which conforms to contract requirements and in which no item is subject to conditions beyond its design capabilities.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner shall be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - As-built drawings are to be provided, with a copy of them on AutoCAD version 2014 provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 PERMITS

A. Contractor shall obtain and complete all tank permit and registration forms required by governmental authorities.

PART 2 - PRODUCTS

2.1 UNDERGROUND STEEL TANKS

- A. Factory-fabricated all welded double-wall steel, horizontal cylindrical configuration, atmospheric pressure, internal and external corrosion protection as specified. Tanks shall be fabricated in accordance with Steel Tank Institute (STI) design standards by manufacturer that participates in STI Quality Assurance Program.
- B. Construction:
 - 1. ASTM A36/A36M steel, UL 58 double-wall, 360-degree secondary containment.
 - 2. Conform to NFPA 30 or NFPA 31 as applicable.
 - The bottom 60 degrees of all lap or offset circumferential interior seams shall be seal welded 30 degrees each way from bottom centerline to retard corrosion.
 - Design for surcharge loads such as backfill and paving as shown. In addition, in paved areas, design for AASHTO H-20 14,515 kg (32,000 pound) axle loading.

- 5. Leaks and abrasions are prohibited. Maximum out-of-roundness is one percent of the diameter.
- 6. Outer wall shall provide leak tight secondary containment that covers 100 percent of tank volume and shall permit migration of any inner tank leakage to the lowest part of the tank where leak detectors are located. Make provisions for leak detectors to be furnished at lowest part of interstitial space between tank walls.
- C. Factory Cleaning: Clean interior and exterior. Remove all mill scale, dirt, rust, oil, welding debris, loose coatings and coatings and material incompatible with fuel stored or protective coating to be furnished. Sandblast exterior in accordance with NACE 3/SSPC-SP6 and STI corrosion protection system requirements.
- D. Factory Applied Exterior Corrosion Protection System: Steel Tank Institute (STI) ACT-100 steel/FRP composite (STI F894) or ACT-100-U urethane coating (STI F961) technology. Tank shall be labeled to indicate compliance. Provide signed holiday test results. Provide STI standard limited 30-year warranty against internal and external corrosion penetrating the tank.
- E. Factory Applied Interior Coating: API RP 1631 coating from bottom of tank to 1 m (3 feet) from bottom.
- F. Tank Manhole Enclosures:
 - Rectangular or cylindrical enclosures, sized as shown, designed to contain fuel spills from leaking piping. Locate all tank manholes and tank piping connections within the enclosure. Watertight pipe penetrations.
 - Fiberglass or polyethylene. Reinforce to prevent deflection. Leaktight attachment to tank. Clean and coat interior and exterior of steel enclosure as specified for exterior of tank.
 - 3. In traffic areas, enclosure must be designed to withstand traffic loads (AASHTO H-20 wheel loading, 14,515 kg, (32,000 pound)) and must have flexible isolation system to prevent wheel loads being transmitted to tank.
 - Access to Manhole Enclosure: Cast iron manhole frames and covers, rated for traffic, minimum opening as shown. Comply with Fed. Spec. A-A-60005.
- G. Pipe Connections to Tanks:
 - 1. Conform to UL 58.

- Pipe sizes 100 mm (4 inches) and smaller, threaded. Pipe sizes 150 mm (6 inches) and larger, raised faced slip-on flanges, 1034 kPa (150 psig) ASME rating.
- 3. Welded joints required on steel piping located inside tanks.
- 4. Provide and coordinate tank connection quantities, sizes and types with requirements of fluid level gauge unit; leak detector sensor; sounding rod; vent, fill, supply and return pipes; and other pipes as shown.
- 5. Dielectric insulation on all connections to steel piping.
- All tank piping connections, except vent, shall be within the tank manhole enclosure.
- H. Tank Manholes: Provide quantity shown. Bolted cover type, gasketed. Zinc plated bolts, nuts, washers.
- I. Internal Ladder: Provide as shown and shall have 50 mm x 6 mm (2 inch x 1/4 inch) sides, 20 mm (3/4 inch) diameter rungs on 300 mm (12 inch) centers. Provide slide supports to allow for tank movement.
- J. Wear (Striker) Plates: Provide 300 mm (12 inch) square, 6 mm (1/4 inch) thick steel plates rolled and seal-welded to bottom of tank directly under all openings.
- K. Lifting Lugs: Provide for rigging tanks.
- L. Hold Down Straps: Provide quantity and design of EPDM-type rubber encased steel straps as recommended by tank manufacturer to anchor tank to concrete ballast slab. Hold down strap electrical isolation shall conform to STI R891. Straps shall have tension load capability equal to hold-down capability of ballast slab, with a minimum safety factor of two. Provide complete anchorage devices, including turnbuckles, for adjusting tension.

2.2 ABOVEGROUND STEEL TANKS

- A. Type: Factory-fabricated all welded steel, horizontal cylindrical configuration, atmospheric pressure, internal and external corrosion protection as specified. In addition to specified requirements, tanks shall be fabricated in accordance with Steel Tank Institute (STI) design standards by manufacturer that participates in STI Quality Assurance Program.
- B. Construction:
 - ASTM A36/A36M steel, conform to UL 142. Inner and outer tanks of double wall tanks shall both conform. Provide label of conformance.

- 2. Conform to NFPA 30 or NFPA 31 as applicable.
- Double-wall, insulation between walls, conforming to STI F941
 "Fireguard" construction, and to UL 2085. Provide label of
 conformance.
- Design for surcharge load produced by tank-mounted platforms and platform loadings shown. Design tanks for saddle supports furnished by tank manufacturer.
- Leaks and abrasions are prohibited. Maximum permissible out-of-roundness of cylindrical shells is one percent of the diameter.
- 6. Provide lifting lugs for rigging tanks.
- Make provisions for leak detectors to be installed at lowest part of interstitial space between walls of double-wall tanks.
- C. Factory Cleaning: Clean interior and exterior of tanks and steel dikes (if furnished). Remove mill scale, dirt, rust, oil, welding debris, loose coatings and coatings incompatible with fuel stored or protective coating. Sandblast exterior in accordance with NACE 3.
- D. Factory Coating: Provide tanks and steel dikes (if furnished) with exterior coat of rust resistant metal primer. Coat interior from bottom of tank to 1 m (3 feet) above bottom in compliance with API RP 1631.
- E. Field Painting: Clean and coat all surfaces.
- F. Pipe Connections to Tanks:
 - 1. Conform to UL 142.
 - Pipe sizes 50 mm (2 inches) and smaller, threaded. Pipe sizes 65 mm (2-1/2 inches) and larger, flanged, 1034 kPa (150 psig) ASME rating.
 - 3. Welded joints required on steel piping located inside tanks.
 - 4. Provide and coordinate tank connection quantities, sizes and types with requirements of tank level gauge unit; sounding rod; vent, fill, supply and return pipes; and other pipes as shown.
 - 5. On double-wall tanks, provide valved drain of interstitial space.
- G. Tank Manholes: Provide quantity shown. Bolted cover type, gasketed.
- H. Wear (Striker) Plates: Provide 300 mm (12 inch) square, 6 mm (1/4 inch) thick steel plates welded to tank bottom directly under the sounding opening, the fuel return discharge, and the fill discharge.
- I. Lifting Lugs: Provide for rigging tanks.
- J. Emergency Relief Vents for Fire Exposure: Venting capacity shall conform to NFPA 30 or NFPA 31 as applicable. Standard product of a

manufacturer, designed to automatically open at tank pressure of 17 kPa (2.5 psig) gauge. Aluminum or cast-iron construction with Teflon seating surface. Provide separate vents for primary and secondary tanks.

K. Provide fittings for grounding per NFPA 70.

2.3 TANK AND PIPING ACCESSORIES

- A. Vent Caps: Galvanized cast iron or cast aluminum with brass or bronze screens, arranged to permit full venting and to prevent entry of foreign material into the vent line. Same pipe size as vent pipe.
- B. Fill Boxes:
 - Spill-container type enclosing a fill cap assembly with camlock hose connector with closure coordinated with fittings used by fuel supplier.
 - Watertight assembly, cylindrical body, quick-opening corrosionresistant watertight sealable cover, polyethylene spill containment compartment with minimum 10 gallon capacity. Integral drain valve with discharge to fill pipe.
 - 3. Fill cap shall be lockable, tight-fill design with provision for padlock on the top of the cap. Fill cap shall screw onto threaded adapter that can be removed without removing fill box. Entire assembly shall seal tight with no leakage during filling and when cap is in place.
 - Provide special tools necessary for opening fill boxes and fill caps.
 - 5. Protect spill container from traffic by ramped, drain-slotted cast iron body ring and cover. Design shall prevent transmission of traffic loads to the underground tank. Spill-container type not required at locations designated only for sounding tanks.
- C. Fill caps located above grade without fill boxes shall be lockable, tight-fill design, operated by special wrench that shall be furnished. Entire assembly shall seal tight with no leakage during fill and when cap is in place.
- D. Support horizontal portion of pipes located inside tank every 2100 mm (7 feet) maximum.
- E. Furnish gauging chart, liters versus mm and gallons versus inches depth.

- F. Furnish sounding rod for each tank size. Mark rods in increments representing five percent of tank capacity. Provide length of rod suitable for tank burial depth (if applicable). Rods shall be graduated in gallons.
- G. Fill Point Identification:
 - Fill Boxes at Grade Level: Aluminum, brass or bronze plate, anchored to concrete fill box pad with stamped or engraved letters 20 mm (3/4 inch) high.
 - Fill Caps above Grade: Aluminum, brass or bronze plate, clamped to fill pipe, with stamped or engraved letters 20 mm (3/4 inch) high.
 - 3. Legend: "DIESEL FUEL FILL" or "SOUNDING" as appropriate.

2.4 PIPING, VALVES, FITTINGS

A. Fuel supply and return, tank fill, vents, sounding, and pump out.

- B. Steel Pipe and Fittings:
 - Piping: Steel, seamless or electric resistance welded (ERW), ASTM A53/A53M Grade B or ASTM A106/A106M Grade B, Schedule 40. Aboveground piping shall be painted.
 - Joints: Socket or butt-welded. Threaded joints are prohibited except at valves, unions and tank connections.
 - 3. Fittings:
 - a. Butt-welded joints: Steel, ASTM A234/A234M, Grade B, ASME B16.9, same schedule as adjoining pipe.
 - b. Socket-welded joints: Forged steel, ASME B16.11, 13,790 kPa (2000
 psig) class.
 - 4. Unions: Malleable iron, 2070 kPa (300 psig) class.
 - 5. Companion flanges: Flanges and bolting, ASME B16.5.
 - Welding flanges: Weld neck, ASME B16.5, forged steel ASTM A105/A105M, 1034 kPa (150 psig).
- C. Glass Fiber Reinforced Plastic (FRP) Pipe and Fittings:
 - 1. Conform to UL 971 and ASTM D2996 using a filament-winding process and epoxy or vinyl ester resins.
 - Design pipe, fittings and joining system for required fuel service,
 65 degrees C (150 degrees F), 1034 kPa (150 psig) pressure, 68 kPa
 (20 inches Hg) vacuum.
 - 3. Provide an integral resin-rich liner, 0.5 mm (0.020 inches) minimum thickness to enhance the corrosion resistance. Outer layer shall include ultra-violet inhibitors. Joining adhesive shall be designed

for the pipe furnished and shall be supplied by the pipe manufacturer.

- 4. Plastic piping allowed in underground use only.
- D. Check Valves Fuel Pump Suction.
 - Pipe Sizes 50 mm (2 inches) and under: Rated for 1375 kPa (200 psig) water-oil-gas, swing-type, threaded ends, ASTM B62 bronze body. Provide union adjacent to valve.
 - 2. Pipe Sizes 65 mm (2-1/2 inches) and above: Rated for 1380 kPa (200 psig) water-oil-gas, swing-type, 861 kPa (125 pounds) ASME flanged ends, ASTM A126 class B cast iron body.
- E. Foot Valves Fuel Pump Suction: Double poppet, lapped-in metal-tometal seats, double-guided stems, 20 mesh inlet screen, same size as fuel suction piping. Foot valve shall be removable to above grade through the tank manhole enclosure or through extractor fitting.
- F. Extractor Fittings: Arranged to permit removal of foot valves, overfill prevention valves, and other devices that are located below grade. Access point shall be through a cast iron fill box-type manhole located at grade. Provide extractor wrench.
- G. Overfill Prevention Valve: Aluminum automatic valve designed for underground or aboveground tanks, as applicable. Removable through the extractor fitting on underground tanks. Locate valve near the top of the tank in the fill pipe. On underground tanks with gravity fill, provide two stage automatic float-operated valve. First stage operation at 92 percent tank capacity shall reduce flow to 0.3 L/s (5 gpm) or less. Second stage operation shall stop flow completely when tank is no more than 95 percent full. On aboveground tanks, or tanks pressurefilled, provide single stage valve, rated for fill flow and pressure, which stops flow completely at 95 percent of tank capacity. Valve shall include method for draining oil trapped above the valve into the tank.

2.5 SECONDARY CONTAINMENT FOR UNDERGROUND FUEL PIPING SYSTEMS

A. Enclose the fuel supply, return and fill pipes in factory-engineered and fabricated secondary containment conduit systems. The systems shall be complete with end seals, with 25 mm (1 inches) minimum continuous annular space, 40 mm (1-1/2 inches) between carrier pipes, which shall contain all leakage and which has provisions for leak detection system as specified.

- B. Steel Conduit with Fiberglass Reinforced Plastic (FRP) Coating:
 - Carbon steel pipe, ASTM A53/A53M, Grade B, Schedule 40 for diameters through 125 mm (5 inches), 3.4 mm (0.134 inch) thick for diameters greater than 125 mm (5 inches) up thru 660 mm (26 inches). All welded construction.
 - 2. Blast clean exterior per NACE 4/SSPC-SP7.
 - 3. Apply fiberglass reinforced polyester (FRP) external cladding at least 2.5 mm (0.10 inches) thick with ultra-violet inhibitor. Cladding on field joints shall be equivalent to factory-applied cladding applied on remainder of system.
 - Test entire system for holidays using a 35,000-volt holiday detector.
- C. Glass Fiber Reinforced Plastic (FRP) Conduit:
 - Conform to UL 971 and ASTM D2996 using a filament-winding process and epoxy or vinyl ester resins.
 - Design pipe, fittings and joining system for carrier pipe fuel service, 65 degrees C (150 degrees F), 1034 kPa (150 psig) pressure, 68 kPa (20 inches Hg) vacuum.
 - Provide an integral resin-rich liner, minimum thickness 0.25 mm (0.010 inch). Outer layer shall include ultra-violet inhibitors.
 - 4. Minimum total wall thickness 1.8 mm (0.07 inch) for diameters below 200 mm (8 inches), 2.8 mm (0.11 inch) for diameters 200 mm (8 inches) and 250 mm (10 inches), 5 mm (3/16 inch) for diameters 250 mm (10 inches) through 508 mm (20 inches), and 6 mm (1/4 inch) for diameters above 508 mm (20 inches).
- D. Pipe Supports: Provide supports within conduit for fuel carrier pipes spaced 2100 mm (7 feet) apart except 3000 mm (10 feet) apart for carrier pipe size 50 mm (2 inches) through 100 mm (4 inches). Support design shall permit differential movement of pipes, allow drainage of leakage to sumps, and maintain alignment of carrier pipes.
- E. Conduit End Seals: Same material and coating as conduit; leak tight.
- F. Leak Detector Sensor Locations: On each piping system, provide sumps at the low points with water-tight openings above grade for access to leak detector sensors. Design sumps to intercept all potential leakage. Maximum spacing between sumps, 3000 mm (10 feet).

2.6 LEAK DETECTION SYSTEMS

- A. Automatic digital continuous monitoring systems responsive to the presence of water and hydrocarbons in the interstitial space of the double-wall tanks, in the tank manhole access enclosures, and in the secondary containment of fuel piping systems. System shall distinguish between hydrocarbon and water and identify location of leak as to individual tank and piping system. System shall be combined with tank fluid level monitor and alarm system specified in paragraph, TANK FLUID LEVEL MONITOR AND ALARM SYSTEM.
- B. Functions and Arrangement:
 - 1. Single control station to monitor all sensing probes.
 - Visual indicator to monitor and identify leaks as water or hydrocarbon and location.
 - 3. Indicators showing system status including faults and alarms.
 - 4. On board printer that provides complete reports of all system functions upon command.
 - 5. Panel circuit test button.
 - 6. 95 dB audible alarm with silencing control to sound when leak is detected.
 - 7. Eight-hour memory backup system with battery.
 - 8. NEMA 250 Type 4 cabinet.
 - 9. UL or other accredited testing laboratory listing.
 - 10. RS232 Modbus communications with engineering control system to indicate system in service and alarm conditions.
- C. Sensors:
 - Designed for required locations including: Insertion between walls of double-wall tanks, in sumps in double-wall piping systems and in tank manhole enclosures. Sensing points shall be at lowest point of each tank or sump. Intrinsically safe design.
 - 2. Sensing units shall detect presence of water and a minimum 3.2 mm (1/8 inch) thick layer of hydrocarbon on surface of water and minimum 50 mm (2 inch) thickness of hydrocarbon in area that has no water present.
 - 3. Sensors shall be arranged to allow replacement of individual sensors without disturbing other portions of leak detection system or fuel storage and piping system. Underground sensors shall be accessed through caps as grade.

- 4. Materials of construction shall be non-corroding.
- 5. Transmit status signal to control unit.
- D. Components:
 - Provide manholes at grade for each sensor cap similar in construction to fill boxes. Manholes shall be cast iron, quickopening cover, watertight, minimum size necessary to accommodate sensor caps. Provide identification plates, similar to those specified for fill points, labeled "MONITORING/OBSERVATION WELL-DO NOT FILL". Provide special tools if necessary for opening covers.
 - Sensor housings from tank and piping to grade shall be Schedule 40 PVC, or stainless steel.
 - Underground wiring between probes and control unit: Place in watertight corrosion-resistant conduit system conforming to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

2.7 TANK FLUID LEVEL MONITOR AND ALARM SYSTEMS

- A. Digital systems for central monitoring of fuel and water levels in all fuel oil storage tanks in the project. High and low level visual and audible alarms. Volumetric tank-tightness testing. Complete with all transducing, transmitting, and receiving devices. On board printer to provide complete report of all system functions upon command. System shall be combined with leak detection system specified in paragraph, LEAK DETECTION SYSTEMS.
- B. Fluid Level Monitor:
 - Digital continuous readout, showing tank oil and water levels in gallons, smallest reading one gallon. Provide identification of product measured, measuring units, and the tank number.
 - 2. Tank and fuel characteristics contained in preprogrammed non-volatile field-replaceable databases. Protected power supply.
- C. High and Low Fluid Level Alarm System:
 - 1. Automatic continuous on-line monitoring of all tanks.
 - Visual and audible indicators combined with fluid level monitor. Identify the tank that is in alarm condition.
 - 3. Manual alarm test and silencing controls.
 - Low level alarm actuation adjustable 0-25 percent of tank capacity. High level alarm actuation adjustable 75-100 percent of tank capacity.

- D. Locate all indicators, selector switches, alarms on face of wallmounted NEMA 250, Type 4 panel.
- E. Remote Alarm Annunciator:
 - Visual and audible high-level alarms adjacent to tank fill box locations. Locate in NEMA 250 Type 4X weatherproof exterior wall or pole-mounted panels.
 - Alarm shall include flashing red light with 180-degree visibility for each tank and 95 dB horn or 100 mm (4 inch) diameter bell. Provide alarm silence control.
 - Provide identification sign: "WHEN ALARM SOUNDS FUEL TANK FILLED TO CAPACITY - DO NOT OVERFILL".
- F. Modbus communication to engineering control system to indicate tank fluid level and alarm conditions. Telephone modem communication capability.
- G. System Performance: Accuracy plus or minus 2.5 mm (0.10 inch) of fluid height in inventory mode and 0.25 mm (0.01 inch) in leak detection mode. Automatic compensation for fluid temperature changes. Volumetric tank tightness sensitivity of 0.4 lph (0.1 gph).
- H. Sensors:
 - Provide sensor types such as magnetostrictive, capacitance, float, hydrostatic and other types as necessary for the applications.
 - 2. Apply in accordance with manufacturer's instructions with provisions for easy future replacement without need for excavation.
 - 3. Provide for each hydrostatic sensor a constant flow differential pressure regulator and transmitter protected from fuel contamination. Air supply shall include filter and over-pressure protection. Provide desiccant-type dryer on air supply designed for removal of water vapor. Dryer rating, minimum 4.6 L/s (10 SCFM). Provide moisture indicator. Dryer shall be deleted if air supply source has a refrigerated dryer.
 - 4. Float-type units shall be designed for installation and removal through a 100 mm (4 inch) diameter vertical pipe mounted in the top of the tank.
- I. Underground Wiring and Piping: Enclose in water-tight corrosionresistant conduit system sized and arranged as recommended by system manufacturer and conforming to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

J. Code Conformance: NFPA 70.

2.8 FUEL OIL TRANSFER PUMP SYSTEMS

- A. Complete factory-assembled automatic fuel delivery system to provide oil to the generator day tanks or boilers. The system shall circulate the oil from the storage tank, through the system, and back to the storage tank. Provide quantity and capacity of systems to serve tanks as shown, connected to the tank pump-out and return pipes. Drawings may show multiple tanks served by one system. System shall be floor-mounted on steel skids on concrete foundations. Digital controls.
- B. Performance: Design for capacity as scheduled on the plans.
- C. Components:
 - Strainer: 100 mesh perforated stainless steel basket. Clamped covers. 861 kPa (125 psig) design pressure.
 - 2. Water Separation Unit: Two stage, designed to reduce water content of fuel to less than 10 ppm. Centrifugal separator for removal of large droplets and renewable resin-impregnated cellulose water coalescing elements. Water removed shall flow to water holding sump in the unit. Water sensing probe to alert the operator when water level in bowl has reached capacity. Automatic pumped drain to holding tank actuated by electronic water level sensing devices in the separation unit.
 - 3. Filter: 2-micron filtration with 96 percent removal efficiency, valved manual drain. Replaceable elements.
 - 4. circulation Pumps: Dual positive displacement pumps with cast iron or bronze housing, for circulating the oil from the storage tank, through the system and back to the storage tank. One pump as primary and one as back-up. Pumps shall have carbon bushings, stainless steel shaft and Teflon mechanical seal, ODP motor.
 - 5. Controls:
 - a. Digital PLC electronic controls for all system control and alarm functions. Relay logic not acceptable.
 - b. Control panel with selector for modes of operation, indicators to show system status, and visual and audible alarms to signal the need for operator intervention. Operator interface shall be 2 x 20 LCD and keypad.
 - c. Controls shall include:
 - 1) Control power "on-off".

- 2) "System Start".
- 3) "Cycle Cancel".
- 4) "Hand-off-Auto" for pumps.
- 5) Pump cycle timer set function.
- 6) Cycle duration selector.
- 7) Indications shall include:
- 8) "Control Power On".
- 9) "Pump Run".
- 10) "Pump Failure".
- 11) "High Pressure" alarm and automatic shutdown.
- 12) Low ambient air temperature pump cycle feature to circulate oil when the outside air temperature drops below 3.3 degrees C (38 degrees F) (adjustable).
- d. All primary wiring exiting the enclosure shall be encased in conduit.
- e. Magnetic motor starters with overload protection.
- f. Circuit breakers.
- g. Control enclosure shall be NEMA 4, fully gasketed doors with 3 point lockable latching. Interior shall have white gloss finish; exterior shall be chemical-resistant gray enamel. All controls and indicating devices shall be mounted on front of enclosure and labeled with black Phenolic labels with white lettering.
- h. Modbus communication to engineering control system for alarms and system status.
- D. Enclosure Wall Mounted Units: 14-gauge steel, NEMA Type 4 enclosure, continuously welded, framed cabinet. Provide doors for complete access to all equipment. Doors shall have a turned edge, piano hinges, threepoint locking mechanisms. Corrosion-resistant prime and finish coatings on all interior and exterior surfaces.

2.9 FUEL OIL QUALITY MAINTENANCE SYSTEMS

A. Complete factory-assembled automatic particulate filtration and dewatering and fuel additive injection system to maintain the purity of No. 2 fuel oil in storage. The system shall circulate the oil from the storage tank, through the system, and back to the storage tank. Provide quantity and capacity of systems to serve tanks as shown, connected to the tank pump-out and return pipes. Drawings may show multiple tanks served by one system. Smaller systems without large water storage tanks

and without fuel additive injection shall be wall-mounted. Units with water storage tanks and/or additive injection shall be floor-mounted on steel skids on concrete foundations. Digital controls.

- B. Performance: Design for nearly 100 percent water removal. Provide 2micron particulate filtration. Each system shall have capacity to turn over the largest connected full tank one time within 22 hours maximum. System shall be designed to allow continuous operation with brief interruptions to manually change filters and clean strainers.
- C. Components:
 - Strainer: 100 mesh perforated stainless steel basket. Clamped covers. 861 kPa (125 psig) design pressure.
 - 2. Water Separation Unit: Two stage, designed to reduce water content of fuel to less than 10 ppm. Centrifugal separator for removal of large droplets and renewable resin-impregnated cellulose water coalescing elements. Water removed shall flow to water holding sump in the unit. Water sensing probe to alert the operator when water level in bowl has reached capacity. Automatic pumped drain to holding tank actuated by electronic water level sensing devices in the separation unit.
 - 3. Filter: 2-micron filtration with 96 percent removal efficiency, valved manual drain. Replaceable elements.
 - 4. Filtration Pump: Positive displacement base-mounted pump with cast iron or bronze housing, for circulating the oil from the storage tank, through the water separation and filter units and back to the storage tank. Pump shall have carbon bushings, stainless steel shaft and Teflon mechanical seal, ODP motor.
 - 5. Controls:
 - a. Digital PLC electronic controls for all system control and alarm functions. Relay logic not acceptable.
 - b. Control panel with selector for modes of operation, indicators to show system status, and visual and audible alarms to signal the need for operator intervention. Operator interface shall be 2 x 20 LCD and keypad.
 - c. Controls shall include:
 - 1) Control power "on-off".
 - 2) "Cycle Start".
 - 3) "Cycle Cancel".

- 4) "Hand-off-Auto" for filtration pump.
- 5) Pump cycle timer set function.
- 6) Cycle duration selector.
- 7) "Auto-Off" for chemical additive pump.
- d. Indications shall include:
 - 1) "Control Power On".
 - 2) "Pump Run".
 - 3) "Pump Failure".
 - 4) "Excess Water in Fuel".
 - 5) "Filter Water Level High".
 - 6) "Rupture Basin Leak" alarm.
 - 7) "High-Pressure Drop-in Strainer" alarm.
 - 8) "High-Pressure Drop-in Filters" alarm.
 - 9) "High Pressure" alarm and automatic shutdown.
- e. Filter and strainer differential pressure gauges, differential pressure switches and control. Provide indication when filters should be changed.
- f. Over pressure switch and control to shut down pump if filter inlet pressure exceeds limits.
- g. All primary wiring exiting the enclosure shall be encased in conduit.
- h. Magnetic motor starters with overload protection.
- i. Circuit breakers.
- j. Control enclosure shall be NEMA 4, fully gasketed doors with 3 point lockable latching. Interior shall have white gloss finish; exterior shall be chemical-resistant gray enamel. All controls and indicating devices shall be mounted on front of enclosure and labeled with black Phenolic labels with white lettering.
- k. Modbus communication to engineering control system for alarms and system status.
- D. Enclosure Wall Mounted Units: 14-gauge steel, NEMA Type 4 enclosure, continuously welded, framed cabinet. Provide doors for complete access to all equipment. Doors shall have a turned edge, piano hinges, threepoint locking mechanisms. Corrosion-resistant prime and finish coatings on all interior and exterior surfaces.

- E. Water Drainage System: Sealed bowl (bottle) with high level alarm system. Water collected in filters shall drain to a sealed bowl that can be easily removed and emptied.
- F. Chemical Additive System: Provide welded steel chemical storage tank and chemical pump that shall automatically add chemical to the fuel being circulated. Tank shall be sized to hold five years supply of additive as recommended by additive supplier. Pump shall be positive displacement metering type with totally enclosed 250-watt (1/3 hp) motor, cast iron pump body, stainless steel trim and Teflon diaphragm. Output of pump shall be adjustable for 0 to 100 percent of capacity. Control system shall automatically operate the pump for an adjustable time period during each filtration cycle.

2.10 CONCRETE FOUNDATIONS

A. Ballast foundations shall be sized for buoyancy of entire tank when empty. Credit for overburden is allowed.

2.11 BURIED UTILITY WARNING TRACING TAPE

A. Tape shall be 0.1 mm (0.004 inch) thick, 150 mm (6 inches) wide, yellow polyethylene with a metallic core, acid and alkali-resistant and shall have a minimum strength of 12,000 kPa (1740 psig) lengthwise and 10,342 kPa (1500 psig) crosswise with an elongation factor of 350 percent. Provide bold black letters on the tape identifying the type of system. Insulating and labeling shall be unaffected by moisture and other substances contained in the backfill material.

2.12 ELECTRICAL HEAT TRACING SYSTEMS

- A. Systems shall meet requirements of NFPA 70.
- B. Provide tracing for outdoor piping subject to freezing temperatures below 3.3 degrees C (38 degrees F) as follows:
 - All Fuel Oil Piping lines exposed to weather, including FOS, FOR, FOF, DTOS, DTOR, FQMS, and FQMR.
 - 2. Fuel Oil Piping lines in uninsulated trenches.
- C. Heat tracing shall be provided to the extent shown on the drawings (Floor plans and Elevations). Heat tracing shall extend below grade to below the defined frost line of 3-feet.
- D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Self-

regulation shall prevent overheating and burnouts even where the cable overlaps itself.

- 1. Provide end seals at ends of circuits. Wire at the ends of the circuits is not to be tied together.
- Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 2.2 degrees C (36 degrees F) minimum during winter outdoor design temperature, but not less than the following:
 - a. 75 mm (3 inch) pipe and smaller with 25 mm (1 inch) thick insulation: 5 watts per foot of pipe.
- E. Electrical Heating Tracing Accessories:
 - Power supply connection fitting and stainless-steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
 - 2. 15 mm (1/2 inch) wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 300 mm (12 inch) intervals.
 - 3. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 15 mm (1/2 inch) NPT conduit hub, SPST switch rated 20 amps at 480 volts ac, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 1 degrees C (34 degrees F).
 - 4. Signs: Manufacturer's standard (NFPA 70), stamped "ELECTRIC TRACED" located on the insulation jacket at 3 m (10 feet) intervals along the pipe on alternating sides.
 - 5. Control Panel:
 - a. Enclosure Wall Mounted, 316 stainless steel, NEMA Type 4X enclosure. Provide removable front cover for complete access to all wiring connections.
 - b. With selector for modes of operation, indicators to show system status, and visual and audible alarms to signal the need for operator intervention. Operator interface shall be 3.5" 320x240 RGB Full color graphic TFT Module.
 - c. 2-circuit capacity.
 - d. PID, On/Off or manual control modes.
 - e. Visual indication that cable is energized.
 - f. Modbus communication to engineering control system for alarms and system status.
 - 6. Full monitoring and alarm for:

- a. High temperature.
- b. Low temperature.
- c. High current.
- d. Low current.
- e. GFPE and Sensor failure.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 INSTALLATION AND TESTING, UNDERGROUND STEEL TANKS

- A. Conform to NFPA 30 or NFPA 31 as applicable.
- B. Install tanks on 150 mm (6 inch) thick beds of clean, washed, inert sand that is placed on concrete foundation. Secure tank to concrete ballast foundation with specified straps. Slope tank. Completed tank installation shall successfully resist buoyant forces of flooding to top of tank when tank is empty.
- C. After tanks are set in place, prior to backfilling, test tanks by applying internal air pressure of 34 kPa to 48 kPa (5 to 7 psig). Also test air space between tank walls at pressure recommended by tank manufacturer. Repair leaks in steel tanks by chipping to bare metal and rewelding. Repair leaks in plastic tank jackets (if furnished) as recommended by tank manufacturer. Retest tanks until all leaks are repaired. Test manhole enclosures by filling with water and proving no leakage for 24 hours. Tests shall be witnessed by COR.
- D. Prior to backfilling, repair all damage to tank coating with the same coating material. Coat all metal parts that shall be below grade, including tie-down fittings and straps, bolts, rings, pipes, with the tank coating material. Perform 10,000-volt holiday test on all areas of coating which have been repaired.
- E. Backfill material shall be same as bedding material and shall conform to printed instructions of tank manufacturer. In addition, there shall be no stones, ashes, or corrosive materials in contact with the tanks. Unstable and unsuitable soil shall be removed and replaced with suitable material. Provide a soil separation mat to keep soil separate from sand and pea gravel. Minimum depth of cover shall conform to NFPA

30 or NFPA 31 as applicable. After completion of backfilling, measure tanks internally for out-of-roundness (deflection).

F. Do not place fluid in the tank until the backfilling and the piping connections to the tanks are complete, and the tanks have been inspected internally by the COR. Keep the tank excavation dewatered.

3.3 INSTALLATION AND TESTING, ABOVEGROUND TANKS

- A. Conform to NFPA 30 or NFPA 31 as applicable.
- B. Support tanks on steel saddles welded to the tanks. Anchor to concrete foundations. Provide molded neoprene isolation pads between the steel supports and the concrete foundation.
- C. After tanks are installed, test steel tanks with air pressure of 21 kPa to 34 kPa (3 to 5 psig), using soapsuds to locate leaks. Repair leaks by chipping to bare metal and rewelding. Retest until all leaks are repaired. Repair all damaged areas of prime coat on tanks and steel dikes (if furnished). Test interstitial area between steel tank walls with air at pressure recommended by tank manufacturer. Tests shall be witnessed by the COR.
- D. Provide electrical grounding in accordance with NFPA 70.

3.4 INSTALLATION AND TESTING, UNDERGROUND PIPING SYSTEMS

- A. Leak Detection System: Arrange fuel and tracing media (if required for heated oil) carrier piping, enclosed in secondary containment piping, to accommodate leak detection system. Slope piping down toward tanks and leak detectors at 25 mm in 12 m (1 inch in 40 feet).
- B. Steel Fuel and Tracing Media Carrier Piping: All joints butt or socket welding. Threaded piping is prohibited. Piping ends shall be accurately cut, true, and beveled for welding.
- C. Glass Fiber Reinforced Plastic (FRP) Fuel Carrier Piping and Secondary Containment Piping: Install in accordance with printed instructions of pipe manufacturer. Installation personnel trained in accordance with paragraph, QUALITY ASSURANCE. Plastic piping is prohibited in the same secondary containment system with steam or condensate piping.
- D. Secondary Containment Piping:
 - Provide sand bedding and backfill material for steel piping and pea gravel for FRP piping.
 - 2. Top of system 450 mm (18 inches) minimum below grade.
 - 3. Design and locate leak detector sumps to intercept all potential leakage. Maximum spacing along each system, 3000 mm (10 feet).

- 4. Seal all building and manhole wall penetrations with a modular, watertight flexible penetration seal system. The modular penetration seal shall have a nitrile rubber seal, or if a fire separation is required, a high temperature silicone fire seal.
- 5. After placing system, prior to backfill, repair all damage, including coatings, as recommended in printed instructions of system manufacturer. Perform 10,000-volt holiday test on coated steel systems.
- Fuel oil piping is prohibited in the same secondary containment system as steam or condensate piping.
- 7. On steel systems that do not have FRP cladding, install cathodic protection system.
- E. Anchorage of System: When heated oil system is provided, anchor systems and provide expansion loops and bends as shown and as recommended by manufacturer of system. Pipe stress due to thermal expansion shall not exceed the limits in ASME B31.1.
- F. Leak Test: Test carrier pipes with air pressure at 690 kPa (100 psig), and test the containment piping with air pressure at 55 kPa (8 psig). Systems shall hold the pressure for 30 minutes. Repair all leaks and retest.
- G. Coatings for Steel Piping not in Secondary Containment System: Provide urethane coating and cathodic protection.

3.5 INSTALLATION, FILL BOXES AND ACCESS MANHOLES AT GRADE

A. Provide for tank fill, tank sounding, leak detector sensors, and extractor fittings. Set at grade in concrete pads. Refer to fill box detail. Provide identification plate set into the concrete pad that identifies the purpose of the device and type of fuel in the tank.

3.6 INSTALLATION AND TESTING, LEAK DETECTOR SYSTEMS FOR TANKS AND PIPING

- A. Wiring shall conform to NFPA 70.
- B. Locate control monitor panels 1500 mm (5 feet) above the floor on inside wall of boiler room, generator room or garage, depending on type of fuel tank served, unless shown otherwise.
- C. Test operation of each probe, and monitoring system with fuel and water. If type of probe utilized is damaged by exposure to fuel, provide temporary probe for testing monitoring system.

3.7 INSTALLATION, TANK FLUID LEVEL INDICATOR AND ALARM SYSTEM

A. Wiring shall conform to NFPA 70.

- B. Locate level indicator and alarm panel 1500 mm (5 feet) above the floor on inside wall of boiler room, generator room or garage, depending on type of fuel tank served, unless shown otherwise.
- C. Locate remote high-level alarm on exterior wall or pole in view of tank fill point, 2400 mm (8 feet) above grade.

3.8 ELECTRIC HEAT TRACING

- A. Install tracing as recommended by the manufacturer.
- B. Coordinate electrical connections.

3.9 INSTALLATION, BURIED UTILITY WARNING TRACING TAPE

A. Install tracer wire in the trench approximately 457 mm (18 inches) above the non-metallic pipe. The tracer wire shall be taped approximately every 3 m (10 feet) to the pipe, where practical. The tracer wire shall be installed so that electrical continuity is maintained throughout the pipe system. As few connections as possible shall be made in the tracer wire. The wire shall be contiguous except at test stations, valve boxes, and where splicing is required. All splices shall be encased. Connections shall be made by stripping the insulation back one inch and joining the two ends using an approved mechanical connector and a split bolt connector. Twisting of copper wire is prohibited. To complete this connection, wrap all exposed wire thoroughly with electrical tape. A minimum 1.5 m (5 foot) of additional tracer wire shall be coiled, buried and terminate aboveground at the ends of the pipeline.

3.10 INSTALLATION, FUEL OIL QUALITY MAINTENANCE SYSTEMS

- A. Locate systems within easy reach of persons standing on floor, with sufficient elevation to allow gravity flow of water from system to water storage tank sitting on the floor.
- B. Connect to tank suction and return piping systems with isolation valves. Provide compound pressure gauges at suction and discharge piping connections.

3.11 TANK MANHOLE ENCLOSURES

A. All pipe penetrations shall be leak tight permitting no groundwater into enclosure.

3.12 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the

various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification shall be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

---END---

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, , switchgear, panelboards, , generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL) standards where test standards have been established. Materials and equipment which are not covered by UL standards shall be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts,

certifies, lists, labels, or determines to be safe, shall be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

- B. Definitions:
 - Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
 - 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
 - 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
 - Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.

- The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer and witnessed by the

contractor. In addition, the following requirements shall be complied with:

- The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the Contracting Officer Representative (COR) a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.
- When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels, and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl, or equal.
5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan shall include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment,

barriers to be installed, safety equipment to be used, and exit pathways.

- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system

shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval shall not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals shall not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION
 - Submittals shall be marked to show specification reference including the section and paragraph numbers.

".

- 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - Inscribe the following identification on the cover: the words
 "MAINTENANCE AND OPERATION MANUAL," the name and location of the
 system, material, equipment, building, name of Contractor, and
 contract name and number. Include in the manual the names,

> addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.

- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals shall be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.

5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed, and all equipment and material furnished under this Division, shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the COR for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.

C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

----INTENTIONALLY BLANK-----

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Medium-voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
 - 2. Samples:

- a. After approval and prior to installation, furnish the Contracting Officer Representative (COR) with a sample of each type and size of cable per the requirements of Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 3. Certifications:
 - a. Factory Test Reports: Submit certified factory production test reports for approval.
 - b. Field Test Reports: Submit field test reports for approval.
 - c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
 - d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install and test cables, splices, and terminations shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the approved splices and terminations.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.
- 5. Electric Utility Company Approval:
 - Prior to construction, obtain written approval from the electric utility company for the following items:
 - 1) Service entrance cables, splices, and terminations.
 - A list of qualified workers who shall install, splice, and terminate the service entrance cables.

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 **1.6 APPLICABLE PUBLICATIONS** A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American Society for Testing and Materials (ASTM): B3-01 (2007).....Standard Specification for Soft or Annealed Copper Wire C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 48-09.....Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded

386-16.....Separable Insulated Connector Systems for Power Distribution Systems above 600 V

Insulation Rated 2.5 kV through 500 kV

400-12.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems

400.2-13.....Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF)

400.3-06.....Guide for Partial Discharge Testing of Shielded Power Cable Systems in a Field Environment

404-06.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V

D. National Electrical Manufacturers Association (NEMA): WC 71-99.....Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy WC 74-06.....5-46 KV Shielded Power Cable for Use in the Transmission and Distribution of Electric

Energy

E. National Fire Protection Association (NFPA):
 7.....National Electrical Code (NEC)
F. Underwriters Laboratories (UL):

1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be

hermetically sealed with manufacturer's end caps and securely attached to the reel.

B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.
- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP or XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

A. Materials shall be compatible with the cables being spliced and terminated and shall be suitable for the prevailing environmental conditions.

- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.
- C. Splices:
 - 1. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - 2. Load-break terminations for indoor and outdoor use: 200 A loadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.3. Dead-break terminations for indoor and outdoor use: 600 A deadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their slack in medium-voltage cable, ground, and drain wires to permit
 - Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
 - 5. Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and per manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.

- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that shall prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be accomplished by qualified workers trained to perform medium-voltage equipment installations. Use tools as recommended or provided by the manufacturer. All manufacturer's instructions shall be followed.

- C. Splices in manholes shall be located midway between cable racks on walls of manholes and supported with cable arms at approximately the same elevation as the enclosing duct.
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they shall be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and electrical inspections.
- B. Test equipment, labor, and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the COR.
- C. Visual Inspection:
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - 3. Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
 - 4. Verify installation of fireproofing tape and identification tags.
- D. Electrical Tests:
 - Acceptance tests shall be performed on new and service-aged cables as specified herein.

- 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:
 - Maintenance tests shall be performed on service-aged cable interconnected to new cable.
 - After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
 - Test data shall include megohm readings and leakage current readings. Cables shall not be energized until insulation-resistance test results have been approved by the COR. Test voltages and minimum acceptable resistance values shall be:

Voltage Class	Test Voltage	Min.	Insulation	Resistance
15kV	2,500 VDC	5,000) megohms	

- 2. Perform Tan Delta test. Review test readings with the COR prior to proceeding with the Very Low Frequency (VLF) Withstand test
- 3. Perform Very Low Frequency (VLF) Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- G. Field Test Report: Submit a field test report to the COR that includes the following information:
 - 1. Project Name, Location, Test Date.
 - 2. Name of Technician and Company performing the test.
 - 3. Ambient temperature and humidity at time of test.
 - 4. Name, Model Number and Description of Test Equipment used.
 - 5. Circuit identification, cable length, cable type and size, insulation type, cable manufacturer, service age (if any), voltage rating, description of splices or terminations.
 - 6. Visual field inspection notes, findings, and photographs.
 - 7. Insulation Resistance Test results:
 - a. Test voltage.
 - b. Measurement in Megohms.
 - c. Leakage current.
 - 8. Tan Delta results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).

- c. Mean Tan Delta at $V_{\rm 0}\text{.}$
- d. Stability measured by Standard Deviation at V_0 .
- e. Differential Tan Delta.
- f. IEEE Condition Assessment Rating.
- 9. VLF Withstand results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Pass/Fail Rating.
- Conclusions. If any deficiency is discovered based on test results, provide recommendations for corrective action.
- 11. Submit a field test report to the COR that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the COR.

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-17.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical

Insulating Tape

D2304-18.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials

D3005-17.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical

Insulating Tape

C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the

Distribution of Electrical Energy

- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):

44-18..... Thermoset-Insulated Wires and Cables

83-17..... Thermoplastic-Insulated Wires and Cables

467-13.....Grounding and Bonding Equipment

486A-486B-18.....Wire Connectors

486C-18.....Splicing Wire Connectors

486D-15.....Sealed Wire Connector Systems

486E-15......Equipment Wiring Terminals for Use with

Aluminum and/or Copper Conductors

493-18..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-124.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V		
Black	А	Brown		
Red	В	Orange		
Blue	С	Yellow		
White	Neutral	Gray *		
* or white with colored (other than green) tracer.				

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Contracting Officer Representative (COR).

7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Underground Splices for No. 8 AWG and Larger:
 - Mechanical type, of high conductivity and corrosion-resistant material. Listed for wet locations, and approved for copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.

- 3. Splice and insulation shall be product of the same manufacturer.
- F. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.

- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that shall prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.

c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.
- E. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Mediumvoltage circuit breaker switchgear.
- F. Section 26 23 13, GENERATOR PARALLELING CONTROLS: Generator paralleling controls.
- G. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- H. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- I. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- J. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
- 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Contracting Officer Representative (COR).
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B1-07.....Standard Specification for Hard-Drawn Copper Wire
 - B3-07.....for Soft or Annealed Copper Wire
 - B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- - Ground Impedance, and Earth Surface Potentials

```
of a Ground System Part 1: Normal Measurements
```

- D. National Fire Protection Association (NFPA):
 - 70-11.....National Electrical Code (NEC)

70E-12.....National Electrical Safety Code

- 99-12.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):
 - 44-10 Thermoset-Insulated Wires and Cables
 - 83-08Thermoplastic-Insulated Wires and Cables
 - 467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-platedsteel

bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-platedsteel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 5. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.
- Rack and Cabinet Ground Bars: two-hole compression-type lugs using zinc-plated or copper alloy fasteners.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-platedsteel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.

- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to NFPA 99 and NEC.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Duct Banks and Manholes: Provide an insulated equipment grounding conductor in each duct containing medium-voltage conductors, sized per NEC except that minimum size shall be No. 2 AWG. Bond the equipment grounding conductors to the switchgear ground bus, to all manhole grounding provisions and hardware, to the cable shield grounding provisions of medium-voltage cable splices and terminations, and to equipment enclosures.
- C. Pad-Mounted Transformers:
 - Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- C. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.

- C. Switchgear, Switch boards, Unit Substations, Panelboards, Motor Control Centers, Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).

- 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT

A. Fences shall be grounded with a ground rod at each fixed gate post and at each corner post.

B. Drive ground rods until the top is 300 mm (12 inches) below grade. Attach a No. 4 AWG copper conductor by exothermic weld to the ground rods, and extend underground to the immediate vicinity of fence post. Lace the conductor vertically into 300 mm (12 inches) of fence mesh and fasten by two approved bronze compression fittings, one to bond the wire to post and the other to bond the wire to fence. Each gate section shall be bonded to its gatepost by a 3 mm x 25 mm (0.375 inch x 1 inch) flexible, braided copper strap and ground post clamps. Clamps shall be of the anti-electrolysis type.

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.9 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.10 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.11 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.

- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.12 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems shall be used to meet the required resistance, but the specified number of electrodes shall still be provided.
- C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END---

----INTENTIONALLY BLANK-----
SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- F. Section 31 20 11, EARTHWORK: Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - Certifications: Two weeks prior to final inspection, submit the following:

- a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

1-05......Flexible Metal Conduit 5-11.....Surface Metal Raceway and Fittings 6-07.....Electrical Rigid Metal Conduit - Steel 50-95.....Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13.....Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings 514C-07.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing

- 1242-06.....Electrical Intermediate Metal Conduit Steel
- E. National Electrical Manufacturers Association (NEMA):

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Project No. 438-18-100 Sioux Falls, SD TC-2-13.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-12.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13..... Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing) FB2.20-12.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable F. American Iron and Steel Institute (AISI): S100-2007.....North American Specification for the Design of

Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 19mm (.75inch) unless otherwise shown. Where permitted by the NEC, 19mm (.75inch)flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 13 mm (0.5inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and ANSI C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and ANSI C80.6.
 - 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 5. Flexible Metal Conduit: Shall conform to UL 1.
 - 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.

- 7. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Compression Couplings and Connectors: Concrete-tight and raintight, with connectors having insulated throats.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 4. Liquid-tight Flexible Metal Conduit Fittings:

- a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
- b. Only steel or malleable iron materials are acceptable.
- c. Fittings shall incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 6. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.

- Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Contracting Officer Representative (COR) prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.

- Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.

- b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there shall be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the system is prohibited.

- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.

3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 HAZARDOUS LOCATIONS

- A. Use rigid steel conduit only.
- B. Install UL approved sealing fittings that prevent passage of explosive vapors in hazardous areas equipped with explosion-proof lighting fixtures, switches, and receptacles, as required by the NEC.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere,

water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.

C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).

- c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall.

Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.

- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

---END---

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 31 20 11, EARTHWORK: Trenching, backfill, and compaction.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and

submit to Contracting Officer Representative (COR) for approval prior to construction.

- Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-11/318M-11.....Building Code Requirements for Structural Concrete & Commentary SP-66-04.....ACI Detailing Manual
- C. American National Standards Institute (ANSI): 77-10......Underground Enclosure Integrity
- D. American Society for Testing and Materials (ASTM):

C478-12.....for Precast Reinforced Concrete Manhole Sections

- C858-10e1......Underground Precast Concrete Utility Structures
- C990-09.....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants.
- E. National Electrical Manufacturers Association (NEMA): TC 2-03......Electrical Polyvinyl Chloride (PVC) Conduit TC 3-04.....Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing TC 6 & 8-03.....Polyvinyl Chloride (PVC) Plastic Utilities Duct for Underground Installations TC 9-04.....Fittings for Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation F. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 70E-12.....National Electrical Safety Code

G. Underwriters Laboratories, Inc. (UL):

6-07Clectrical Rigid Metal Conduit-Steel
467-07Erounding and Bonding Equipment
651-11 A Rigid PVC
Conduit and Fittings
651A-11Schedule 40 and 80 High Density Polyethylene
(HDPE) Conduit
651B-07Continuous Length HDPE Conduit

PART 2 - PRODUCTS

2.1 PULLBOXES

- A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 8 loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.
- B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom.

2.2 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. UL 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.
- C. Ducts (direct-burial):
 - 1. Plastic duct:
 - a. Schedule 80 PVC or HDPE conduit.
 - b. Duct shall be suitable for use with 75° C (167° F) rated conductors.

2. Rigid metal conduit: UL6 and NEMA RN1 galvanized rigid metal, halflap wrapped with 10 mil PVC tape.

2.3 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.5 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install pullboxes level and plumb.
 - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inches) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.

3.2 TRENCHING

- A. Refer to Section 31 20 11, EARTHWORK for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 foot) intervals to establish the grade and route of the duct bank.

- Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
- 3. The walls of the trench shall be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
- After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Individual conduits shall be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the COR.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - Join and terminate ducts with fittings recommended by the manufacturer.
 - 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inch) in 30 M (100 feet).
 - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
 - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
 - 6. Install insulated grounding bushings on the conduit terminations.
 - 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
 - 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a

minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.

- 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
- 10. Clearances between individual ducts:

a. For similar services, not less than 75 mm (3 inches).

- b. For power and signal services, not less than 150 mm (6 inches).
- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.

- 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
- Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
- 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
- Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
- 7. Where new ducts and concrete envelopes shall be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- Duct joints in concrete shall be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved COR.
- C. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- D. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt

from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the COR at no cost to the Government.
 - 4. Mandrel pulls shall be witnessed by the COR.

---END---

SECTION 26 05 73

OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the utility source and the on-site generator sources.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- C. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the contractor and performed by a qualified agency, approved and sealed by a licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide

device settings and ratings, and shall show selective coordination by time-current drawings.

- Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 241-90.....Recommended Practice Electrical Systems in Commercial Buildings 242-03....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems 399-97....Recommended Practice for Industrial and
 - Commercial Power Systems Analysis
 - 1584-02.....Performing Arc-Flash Hazards Calculations 1584A-04.....Performing Arc-Flash Hazards Calculations -

Amendment 1

1584B-11.....Performing Arc-Flash Hazards Calculations - Amendment 2

C. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

70E-18.....Standard for Electrical Safety in the Workplace 99-18.....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one-line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:

- 1. Show all electrical equipment and wiring to be protected by the overcurrent devices.
- 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and $\ensuremath{X/R}$ ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - 3. Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.

- 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
 - 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

---INTENTIONALLY BLANK---

SECTION 26 08 00 COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project shall have selected standby generation systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA shall manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning shall include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent shall provide a list of submittals that shall be reviewed by the Commissioning Agent. This list shall be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems shall require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent shall prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent shall spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent shall return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent shall select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader

sample of checklists is also inaccurate, all the checklists for the type of equipment shall be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent shall witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent shall prepare detailed Systems Functional Performance Test procedures for review and approval by the Contracting Officer Representative (COR). The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent shall witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA COR after submission and approval of formal

training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

----- END -----

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA): C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-16.....Standard for Industrial Controls and Systems
- C. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

Enclosures

D. Underwriters Laboratories, Inc. (UL):

20-10.....Standard for General-Use Snap Switches

98-16.....Enclosed and Dead-Front Switches

773-16.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

773A-16.....Nonindustrial Photoelectric Switches for Lighting Control 916-15....Standard for Energy Management Equipment Systems 917-06.....Clock Operated Switches 924-16....Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Solid state, with SPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.
 - 1. Light-Level Monitoring Range: 16.14 to 108 lx (1.5 to 10 fc), with adjustable turn-on and turn-off levels.
 - 2. Time Delay: 15-second minimum.
 - 3. Surge Protection: Metal-oxide varistor.
 - Mounting: Twist lock, with base-and-stem mounting or stem-andswivel mounting accessories as required.

2.2 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.3 OUTDOOR MOTION SENSOR (PIR)

A. Suitable for operation in ambient temperatures ranging from minus 40 to plus 130 degrees F (minus 40 to plus 54 degrees C).

- Operation: Turn lights on when sensing infrared energy changes between background and moving body in area of coverage; with a 1 to 15 minute adjustable time delay for turning lights off.
- 2. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outdoor junction box.
 - B. Relay: Internally mounted in a standard weatherproof electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 3. Bypass Switch: Override the on function in case of sensor failure.
- Automatic Light-Level Sensor: Adjustable from 11 to 215 lx (1 to 20 fc); keep lighting off during daylight hours.
- B. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.
- D. Individually Mounted Sensor: Contacts rated to operate the connected relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 1. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 2. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set vacancy sensor "off" duration to 15 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

A. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

---END---

---INTENTIONALLY BLANK---
SECTION 26 12 19

PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the pad-mounted, liquid-filled, medium-voltage transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 11, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and ducts for underground raceway systems.
- F. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per IEEE Standards. Factory tests shall be certified. The following tests shall be performed:
 - Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
 - 2. Perform turns-ratio tests at all tap positions.
- B. Factory test shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, factory test.

1.5 SUBMITTALS

A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

- 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
 - c. Complete nameplate data, including manufacturer's name and catalog number.
- d. Certification from the manufacturer that representative transformers have been seismically tested to International Building Code requirements. Certification shall be based upon simulated seismic forces on a shake table or by analytical methods, but not by experience data or other methods.
- 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - Approvals shall be based on complete submissions of manuals, together with shop drawings.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Update the manual to include any information necessitated by shop drawing approval.
 - 2) Show all terminal identification.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and recommended maintenance intervals.

> Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.

B. Certifications:

- Two weeks prior to the final inspection, submit the following certifications.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C37.47-11......High Voltage Distribution Class Fuses Current-Limiting Type Fuses and Fuse Disconnecting

Switches

C. American Society for Testing and Materials (ASTM):

D3487-09..... Standard Specification for Mineral Insulating Oil Used in Electrical Apparatus

D. Institute of Electrical and Electronic Engineers (IEEE):

48-09.....Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5kV Through 765kV or Extruded

- Insulation Rated 2.5kV Through 500kV
- 386-06..... Separable Insulated Connector Systems for Power Distribution Systems Above 600 V
 - 592-07.....Exposed Semiconducting Shields on High-Voltage Cable Joints and Separable Connectors
 - C2-12.....National Electrical Safety Code
 - C57.12.00-10.....Liquid-Immersed Distribution, Power and Regulating Transformers

C57.12.10-10.....Liquid-Immersed Power Transformers

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 C57.12.25-90.....Pad-Mounted, Compartmental-Type, Self-Cooled, Single-Phase Distribution-Transformers with Separable Insulated High Voltage Connectors; High Voltage, 34500 Grd Y/19920 Volts and Below; Low-Voltage 240/120 Volts; 167 kVA and Smaller Requirements C57.12.28-14.....Pad-Mounted Equipment - Enclosure Integrity C57.12.29-14.....Pad-Mounted Equipment - Enclosure Integrity for Coastal Environments C57.12.34-09.....Pad-Mounted, Compartmental-Type, Self-Cooled, Three-Phase Distribution Transformers, 5 MVA and Smaller; High Voltage, 34.5 kV Nominal System Voltage and Below; Low Voltage, 15kV Nominal System Voltage and Below C57.12.90-10.....Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers C62.11-12.....Metal-Oxide Surge Arresters for AC Power Circuits E. International Code Council (ICC): IBC-15..... International Building Code F. National Electrical Manufacturers Association (NEMA): TR 1-13..... Transformers, Regulators, and Reactors G. National Fire Protection Association (NFPA): 70-14.....National Electrical Code (NEC) H. Underwriters Laboratories Inc. (UL): 467-13.....Grounding and Bonding Equipment I. United States Department of Energy (DOE): 10 CFR Part 431.....Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Transformers shall be in accordance with ANSI, ASTM, IEEE, NEMA, NFPA, UL, as shown on the drawings, and as specified herein. Each transformer shall be assembled as an integral unit by a single manufacturer.

- B. Transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and with liquid-immersed windings.
- C. Ratings shall not be less than shown on the drawings.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the project site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat. All surfaces of the transformer that shall be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

2.2 COMPARTMENTS

- A. Construction:
 - 1. Enclosures shall be weatherproof and in accordance with IEEE C57.12.28.
 - The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.
 - 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing and with reinforcing gussets using jig welds to assure rectangular rigidity.
 - 4. All bolts, nuts, and washers shall be zinc-plated steel.
 - 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
 - 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.
- B. Doors:
 - Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
 - 2. The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

2.3 BIL RATING

A. 15 kV class equipment shall have a minimum 95 kV BIL rating.

2.4 TRANSFORMER FUSE ASSEMBLY

A. The primary fuse assembly shall be a combination of externally replaceable Bay-O-Net liquid-immersed fuses in series with liquidimmersed current-limiting fuses.

2.5 PRIMARY CONNECTIONS

- A. Primary connections shall be 200 A dead-front loadbreak wells and inserts for cable sizes shown on the drawings.
- B. Surge Arresters: Distribution class, one for each primary phase, complying with IEEE C62.11, supported from tank wall.

2.6 MEDIUM-VOLTAGE SWITCH

- A. The transformer primary disconnect switch shall be an oil-immersed, internal, gang-operated, load-interrupter type, rated at ampacity and system voltage as shown on the drawings, with a minimum momentary withstand rating of not less than the calculated available fault current shown on the drawings.
- B. For radial feeds, switch shall be a two-position, on-off, manual switch located in the medium-voltage compartment and hot-stick-operated.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium-voltage cables in the primary compartment with 200A loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
- B. Ground metallic cable shield with a cable shield grounding adapter, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly, bleeder wire, and ground braid.

2.8 LOW-VOLTAGE EQUIPMENT

A. Mount the low-voltage bushings, and hot stick in the low-voltage compartment.

- B. The low-voltage leads shall be brought out of the tank by epoxy pressure tight bushings, and shall be standard arrangement.
- C. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the secondary neutral and ground pad.

2.9 TRANSFORMERS

- A. Transformer ratings shall be as shown on drawings. kVA ratings shown on the drawings are for continuous duty without the use of cooling fans.
- B. Temperature rises shall not exceed the NEMA TR 1 of 65 $^\circ$ C (149 $^\circ$ F) by resistance.
- C. Transformer insulating material shall be less flammable, edible-seedoil based, and UL listed as complying with NFPA 70 requirements for fire point of not less than 300° C (600° F) when tested according to ASTM D 92. Liquid shall be biodegradable and nontoxic.
- D. Transformer impedance shall be not less than 4-1/2% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
- E. Sound levels shall conform to NEMA TR 1 standards.
- F. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.
 - 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- G. Primary windings shall have four 2-1/2% full-capacity voltage taps; two taps above and two taps below rated voltage.
- H. Core and Coil Assemblies:
 - Cores shall be grain-oriented, non-aging, silicon steel to minimize losses.
 - Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.

- 6. Provide end fillers or tie-downs for coil windings.
- I. The transformer tank, cover, and radiator gauge thickness shall not be less than that required by ANSI.
- J. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer. Provide warning sign.
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - e. Pressure relief valve.
 - f. Liquid level gauge and filling plug.
 - h. A grounding pad in the medium- and low-voltage compartments.
 - i. A diagrammatic nameplate.
 - j. Dial-type liquid thermometer with a maximum reading pointer and an external reset.l. Hot stick. Securely fasten hot stick within low-voltage compartment.
 - The accessories shall be made accessible within the compartments without disassembling trims and covers.
- K. Transformers shall meet the energy conservation standards for transformers per the United States Department of Energy 10 CFR Part 431.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers outdoors, as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Anchor transformers with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. In seismic areas, transformers shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- D. Mount transformers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges

above grade shall have 12-1/2 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turn ups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 11, CAST-IN-PLACE CONCRETE.

- E. Grounding:
 - Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
 - Connect the ground rod to the ground pads in the medium- and lowvoltage compartments.
 - 3. Install and connect the cable shield grounding adapter per the manufacturer's instructions. Connect the bleeder wire of the cable shield grounding adapter to the load break or dead break elbow grounding point with minimum No. 14 AWG wire, and connect the ground braid to the grounding system with minimum No. 6 AWG bare copper wire. Use soldered or mechanical grounding connectors listed for this purpose.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.
 - c. Verify that control and alarm settings on temperature indicators are as specified.
 - d. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, and perform thermographic survey after energization under load.
 - e. Vacuum-clean transformer interior. Clean transformer enclosure exterior.

- f. Verify correct liquid level in transformer tank.
- g. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- h. Verify the presence and connection of transformer surge arresters, if provided.
- i. Verify that the tap-changer is set at rated system voltage.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the COR two weeks prior to final inspection:
 - 1. Six insulated protective caps.
 - 2. One spare set of medium-voltage fuses for each size and type of fuse used in the project.

3.5 INSTRUCTION

A. The Contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the COR.

---END---

SECTION 26 13 13 MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of medium-voltage circuit breaker switchgear, indicated as switchgear in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables and terminations.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- F. Section 26 23 13, GENERATOR PARALLELING CONTROLS: For switchgear used as part of a generator paralleling system.
- G. Section 26 24 16, PANELBOARDS: For panelboards integral to the switchgear.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Switchgear shall be thoroughly tested at the factory, with the circuit breakers in the connected position in their cubicles. Tests shall be in accordance with ANSI C37.54 and C37.55, and IEEE C37.09. Factory tests shall be certified, and shall include the following tests:
 - 1. Design tests.
 - 2. Production tests.
 - 3. Conformance tests.
- B. The following additional tests shall be performed:

26 13 13- 1

- Verify that circuit breaker sizes and types correspond to drawings, and the Overcurrent Protective Device Coordination Study.
- Verify that current and voltage transformer ratios correspond to drawings.
- Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
- 4. Confirm correct operation and sequencing of key-type mechanical interlock systems for multiple circuit breakers by attempting closure on locked-open devices, and attempting to open locked-closed devices, and making key exchange with devices operated in off-normal positions.
- 5. Verify correct barrier and shutter installation and operation.
- 6. Exercise all active components.
- 7. Inspect indicating devices for correct operation.
- Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.
- 9. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 V DC for 300-volt rated cable and 1000 V DC for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
- 10. If applicable, verify correct function of control transfer relays located in the switchgear with multiple control power sources.
- Perform phasing checks on double-ended or dual-source switchgear to insure correct bus phasing from each source.
- C. Furnish four (4) copies of certified manufacturer's factory test reports to the Contracting Officer Representative (COR) prior to shipment of the switchgear to ensure that the switchgear has been successfully tested as specified.
- D. The Government shall have an option to witness the factory tests. All expenses of the Government Representative's trips to witness the testing shall be paid by the Government. Notify the COR not less than 30 days prior to making tests at the factory.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Switchgear shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Switchgear shop drawings shall be approved by Xcel Energy. Refer to the Xcel Energy Standard for Electrical Installation & Use Manual and Xcel Energy Distribution Engineering Specification for Customer Owned Medium Voltage Switchgear for requirements.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Prior to fabrication of switchgear, submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Circuit breaker sizes.
 - 3) Interrupting ratings.
 - 4) Safety features.
 - 5) Accessories and nameplate data.
 - 6) Switchgear one line diagram, showing ampere rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
 - 7) Elementary and interconnection wiring diagrams.
 - 8) Technical data for each component.
 - 9) Dimensioned exterior views of the switchgear.
 - 10) Dimensioned section views of the switchgear.
 - 11) Floor plan of the switchgear.
 - 12) Foundation plan for the switchgear.
 - Provisions and required locations for external conduit and wiring entrances.
 - 14) Approximate design weights.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

- 1) Three-line diagrams showing device terminal numbers.
- Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the switchgear.
- Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
- Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Test Reports:
 - a. Submit certified factory design and production test reports for approval.
 - b. Two weeks prior to the final inspection, submit certified field test reports and data sheets.
- Certifications: Two weeks prior to final inspection, submit four copies of the following.
 - a. Certification by the manufacturer that switchgear conforms to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that switchgear has been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI):
 - C37.54-10.....Indoor Alternating Current High-Voltage Circuit Breakers Applied as Removable Elements in Metal-Enclosed Switchgear - Conformance Test Procedures

C37.55-10.....Medium-Voltage Metal-Clad Assemblies -Conformance Test Procedures

C. Institute of Electrical and Electronics Engineers (IEEE):

26 13 13- 4

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 C37.04-09..... Standard for Rating Structure for AC High-Voltage Circuit Breakers C37.09-11.....Standard Test Procedure for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis C37.20.2-99.....Standard for Metal-Clad Switchgear C37.90-06.....Standard for Relays and Relay Systems Associated with Electric Power Apparatus C57.13-93..... Standard Requirements for Instrument Transformers D. International Code Council (ICC): IBC-12.....International Building Code E. National Electrical Manufacturers Association (NEMA): C37.06.1-00.....Guide for AC High-Voltage Circuit Breakers Rated on a Symmetrical Current Basis C37.57-10.....Switchgear-Metal-Enclosed Interrupter Switchgear Assemblies - Conformance Testing LA 1-09.....Surge Arrestors SG 4-09.....Alternating-Current High-Voltage Circuit Breakers F. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) G. Xcel Energy Xcel Energy Standard for Electrical Installation and Use Manual 2-22-2021 Xcel Energy Distribution Engineering Specification For Customer Owned Medium Voltage Switchgear 3-01-2015 Distributed Generation Standard Interconnection

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Switchgear shall be in accordance with ANSI, IEEE, NEMA, NFPA, as shown on the drawings, and have the following features:
 - Switchgear shall be a complete, grounded, continuous-duty, integral assembly, metal clad, dead-front, dead-rear, self-supporting, tamperproof, weatherproof, outdoor type switchgear assembly with

metal housing and a walk-in protected aisle. Incorporate devices shown on the drawings and all related components required to fulfill operational and functional requirements.

- 2. Ratings shall not be less than shown on the drawings. Short circuit ratings shall not be less than 350 MVA.
- 3. Switchgear shall conform to the arrangements and details shown on the drawings.
- 4. Coordinate all requirements with the electric utility company supplying electrical service to the switchgear. The incoming electric utility feeder and revenue metering installation shall conform to the requirements of the electric utility company.
- Key-type mechanical interlocks for multiple circuit breakers shall be provided as shown on the drawings.
- 5. Switchgear shall be assembled, connected, and wired at the factory so that only external circuit connections are required at the construction site. Split the structure only as required for shipping and installation. Circuit breakers and accessories shall be packaged and shipped separately. Packaging shall provide adequate protection against rough handling during shipment.
- All non-current-carrying parts shall be grounded per Section 26 05
 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS for additional requirements.

2.2 HOUSING

- A. Shall have the following features:
 - 1. Frames and enclosures:
 - a. The assembly shall be braced with reinforcing gussets using bolted connections to assure rectangular rigidity.
 - b. The enclosure shall be steel, leveled, and not less than the gauge required by applicable publications.
 - c. Die-pierce the holes for connecting adjacent structures to insure proper alignment, and to allow for future additions.
 - d. All bolts, nuts, and washers shall be zinc-plated steel.
 - 2. Cubicles:
 - An individual cubicle shall be supplied for each circuit breaker and each future circuit breaker as shown on the drawings.
 Cubicles shall be provided with isolated wireways for control wiring between devices.

26 13 13- 6

- Compartment each cubicle so that the circuit breaker, buses, and cable terminations are in separate compartments with steel partitions or barriers of approved and properly installed insulation.
- Each cubicle furnished with a circuit breaker (active or spare) shall be fully equipped as noted on drawings and specified below.
- 3) Each cubicle noted as space for future circuit breaker shall be fully equipped for positioning and connecting the breakers. Provide all equipment required to implement the future breaker installation, except the relays and meters on the cubicle doors and the associated current transformers.
- b. Conveniently locate test blocks within each cubicle for circuit breaker wiring connections.
- 3. Auxiliary compartments:
 - a. Cubicles shall be provided for auxiliaries, metering, and transition or termination sections as required by the manufacturer, and as shown on drawings. Cubicles shall be provided with isolated wireways for control wiring between devices.
- 4. Cubicle doors:
 - a. The doors shall permit convenient removal and interchanging of the circuit breakers between cubicles. The doors shall be capable of a swing approaching 180 degrees and shall be provided with intermediate doorstops.
 - b. Each door shall include suitable handles and padlocking provisions. Concealed or semi-concealed hinges shall be provided to attach the doors. Weld the hinges to the equipment structure and to the cubicle doors.
 - c. The following equipment shall be mounted on the door of circuit breaker cubicles:
 - 1) A breaker control switch.
 - 2) Breaker-position-indicator lamps.
 - Protective relays and/or metering as indicated on the drawings or other sections of the specifications.
 - 4) Any additional components indicated on the drawings.
- B. Walk-in Protected Enclosure:

- Where indicated on the drawings, provide an outdoor, weatherproof, protected walk-in aisle enclosure, fabricated and coordinated with the switchgear to form an integral enclosure. Enclosure shall be seismically rated for the seismic zone in which it is installed.
- 2. The entire length of the protected aisle shall be wide enough to permit two circuit breakers to pass side by side conveniently.
- 3. Adequate space shall be provided for convenient installation, operation and maintenance of the batteries, battery charger, circuit breaker test equipment, and the revenue metering equipment. The aisle area shall be not less than shown on the drawings.
- 4. The entire space within the enclosure shall be provided with a steel floor adequately reinforced to allow the circuit breakers to be interchanged and serviced without causing the floor to deflect. The entire floor shall be at the same level.
- 5. The roof of the enclosure shall slope to allow for adequate run-off of moisture.
- 6. The entire area between the floor and foundation, including feeder conduits, shall be enclosed by structural steel or steel sheets.
- 7. The enclosure shall include proper air conditioning, heating, and/or ventilation equipment as shown on the drawings or as recommended by the manufacturer. All ventilation openings shall be provided with suitable filters and rodent screens. The air conditioning and ventilation equipment shall limit the temperature rise to 6 degrees C (10 degrees F) above ambient, but no higher than 40 degrees C (104 degrees F).
- 8. Enclosure doors:
 - a. Locate a door wide enough to allow a circuit breaker to pass at each end of the protected aisle.
 - b. The doors shall be safety type, steel with concealed or semiconcealed hinges for attachment. Weld the hinges to the equipment structure.
 - c. Provide the doors with panic hardware on the inside and grab handle on the exterior. A latch bolt controlled by a key cylinder shall lock the door from the outside. Key the cylinder as directed by the COR and as coordinated with the electric utility company if applicable.
- 9. Equipment rear doors:

26 13 13- 8

- a. Provide suitable weatherproof type doors on the rear of the switchgear enclosure for each cubicle. Attach the doors by concealed or semi-concealed hinges. Weld the hinges to the enclosure and to the cubicle doors. Provide each door with a three-point latching and locking assembly and provisions for padlocking.
- b. The doors shall be capable of a swing approaching 180 degrees and shall be provided with intermediate doorstops.
- 10. Cubicle heaters:
 - a. Install a thermostatically controlled electric strip heater within each circuit breaker cubicle and cable termination compartment to limit excessive humidity during adverse weather conditions. Thermostat shall be set and marked with manufacturer's recommended setting.
 - b. Heater and associated control wiring shall be pre-wired at the factory. Properly fuse the wiring and protect to prevent terminal overheating.
- 11. Lighting:
 - a. Provide 1200 mm (4 foot), two-lamp equivalent, ceiling mounted, LED fixtures, 2400 mm (8 foot) on centers over the front aisle, with fixtures parallel to the switchgear. Connect unswitched circuit to battery-inverter unit of the fluorescent emergency ballast, and switched circuit to fixture ballast.
 - b. Fixtures shall be securely mounted (chains or wires are not allowed) and include wire guards to protect lamps in each fixture.
 - c. Install a 3-way switch at each enclosure entrance to control the lighting.
- 12. Receptacles: Provide one 2P, 3W, 20-amp heavy-duty duplex ground fault current interrupter (GFI) receptacle for each three cubicles or fraction thereof. Space receptacles equidistant along the interior wall of the aisle space. Provide duplex receptacles in the office space and the storage area, as shown on the drawings. Install a separate 20-amp circuit for every three (3) receptacles.
- 13. All branch circuit wiring shall be installed in conduit and shall be not less than No. 12 AWG.
- C. Finish:

- 1. All metal surfaces shall be thoroughly cleaned, phosphatized and factory primed prior to applying baked enamel or lacquer finish.
- 2. Provide a light gray finish for indoor switchgear.
- 3. Outdoor switchgear:
 - a. Interior finish shall be light gray.
 - b. Exterior finishes shall be as specified in the light gray.
 - c. The underside of the switchgear and enclosure shall be treated with corrosion resistant compounds, epoxy resin, or rubberized sealing compound.

2.3 BUS

- A. Bus Bars and Interconnections:
 - Provide copper buses, fully rated for the amperage shown on the drawings for entire length of the switchgear.
 - 2. Fully insulate and totally enclose the buses within the bus compartment of switchgear cubicles.
 - Mount the buses on appropriately spaced insulators and brace to withstand the available short circuit currents.
 - The bus and bus compartment shall be designed so that the acceptable NEMA standard temperature rises are not exceeded.
 - 5. Install a copper ground bus the full length of the switchgear assembly.
 - 6. All bolts, nuts, and washers shall be zinc-plated steel. Bolts shall be torqued to the values recommended by the manufacturer.
 - Make provisions for future bus extensions by means of bolt holes or other approved method.
- B. Insulation: The insulation shall be a high flame-retardant, self extinguishing, high track-resistant material that complies with the ANSI/IEEE C37.23-87 65 degree C (149 F) temperature rise.
- C. Control Bus: Extend the control buses to all of the circuit breaker cubicles including spare and spaces for future circuit breakers.

2.4 CIRCUIT BREAKERS

- A. Breakers that have the same ratings shall be interchangeable with other breakers in that line-up.
- B. Circuit breakers shall have the following features:
 - 1. Drawout, vacuum interrupter type.
 - a. Vacuum:
 - 1) Three independent sealed high-vacuum interrupters.

- 2) Protect the interrupter contacts from moisture and contaminated atmospheres.
- Readily accessible contact wear indicator for each interrupter.
- 4) Breaker total interrupting time of 3 cycles.
- 5) Maintenance free interrupter.
- Contact surfaces to be of special alloys (such as copper chrome) to reduce effect of chopping.
- 2. Operating mechanism:
 - a. The mechanism shall operate in a quick-make, quick-break manner and shall be charged by a small universal motor to provide stored-energy for breaker operation. Breaker tripping, closing, and indicating lamps shall be DC operated.
 - b. The speed of the contacts during the operation shall be independent of the control voltage and the operator's movements.
 - c. Equip the mechanism for manual opening and closing of the contacts during loss of normal control power.
- 3. Relays: Comply with IEEE C37.90, integrated digital type with test blocks and plugs. Provide ANSI functions as shown on the drawings.
- 4. Drawout rails:
 - a. Design the rails to guide the breakers to their disconnected, test, and connected positions. Provide a positive stop at each of the positions by a levering mechanism.
 - b. The breaker shall maintain contact with ground in all positions through flexible connections and ground shoes.
 - c. Make provisions for padlocking the breaker in the test and disconnected position.
 - d. Cradle sensor shall be provided.
- 5. Power line and load disconnecting contact fingers and springs:
 - a. The contact fingers shall be silver-plated, full-floating, self-aligning, self-coupling, and designed for cleaning action during engaging and disengaging movements.
 - b. Provide adequate flexibility between stationary and movable components to assure proper meeting of the contact fingers, while also providing adequate pressure on the contact surfaces.

- 6. The stationary contacts for the line and load breaker contact fingers shall be isolated from the breaker compartment by shutters when the breaker is removed from the connected position.
- 7. The control and auxiliary contacts of the breaker shall be silver plated, multi-contact, self-coupling, plug and socket type. The contacts shall connect the circuits through terminal blocks that shall be conveniently mounted on the breaker for visual inspection.
- 8. Mechanical interlocks:
 - a. Shall prevent the breaker from movement, except when the breaker contacts are in the open position.
 - b. Shall prevent the breaker from closing the contacts while in the connected position, except when the power line and load disconnecting contacts are completely connected.
- C. The interrupting ratings of the breakers shall be not less than 350 MVA.

2.5 CURRENT TRANSFORMERS

- A. Provide encapsulated type current transformers or approved equal. The transformers shall have a mechanical and one-second thermal rating in RMS amperes of not less than the momentary and interrupting rating of the breaker at rated voltage.
- B. Provide transformer ratios as shown on the drawings. Accuracies shall be coordinated with the associated relays by the switchgear manufacturer to assure proper operation at the selected pick-up and operating current ratings.

2.6 POTENTIAL TRANSFORMERS

- A. The potential transformers shall be encapsulated, drawout, disconnecting type, and shall be properly protected by primary currentlimiting fuses.
- B. When the transformers are withdrawn from the compartment the primary terminals shall be grounded.
- C. The transformer ratios and accuracies shall be coordinated, with the associated relays by the switchgear manufacturer.

2.7 CONTROL POWER TRANSFORMERS

- A. The control power transformers shall be encapsulated, drawout, disconnecting type and shall be properly protected by primary currentlimiting fuses.
- B. The ratings of the transformer shall be as indicated on the drawings.

- C. Refer to the drawings for rating and capacity of the circuit breaker equipped panelboard served by the control power transformer.
- D. Equip the control power transformer compartment door with indicating lights and nameplates to indicate when the control power is energized.

2.8 ELECTRIC UTILITY COMPANY EQUIPMENT

- A. Provide separate cubicles for electric utility company metering equipment.
- B. Provide suitable arrangements within the electric utility company primary metering cubicles for mounting metering equipment. Obtain the electric utility company's approval of the cubicle arrangements prior to fabrication of the switchgear.
- C. Allow access to electric utility company personnel as required for installation of utility metering equipment.

2.9 BATTERY SYSTEM

A. Batteries:

- Provide high discharge rate type maintenance-free nickel-cadmium batteries. Battery voltage shall be 125 volts nominal. Calculate the battery capacity based on the lowest ambient temperature in the room where it is to be installed. Include a safety margin of 50 percent for reserve capacity.
 - a. Provide sufficient battery capacity to carry all continuous loads (lamps, relays) for 8 hours and then perform the greater of the following duties, with the charger de-energized.
 - 1) Trip all circuit breakers simultaneously or,
 - 2) Close the largest breaker in a line-up of four or less breakers or close the two largest breakers simultaneously in a line-up of more than four breakers. Breaker closing current shall include both the spring release coil current and the starting current of the spring charging motor.
- Provide battery connector covers for protection against external short circuits.
- 3. Provide corrosion-resistant steel battery racks.
- B. Battery Charger:
 - Provide a charger of the full-wave rectifier type utilizing siliconcontrolled rectifiers as the power-control elements. Construction shall be modular with plug-in control units for easy replacement.

- The charger shall maintain 1/2 of one percent voltage regulation from no load to full load for line voltage variation of 10 percent, and frequency variation of 3 Hz from 60 Hz.
- 3. The charger shall maintain a nominal float voltage of 1.4 vpc, and a nominal equalizing voltage of 1.5 vpc.
- 4. The charger shall be capable of continuous operation in an ambient temperature of 40 degrees C (104 degrees F) without derating. The charger shall be installed in a convection cooled NEMA Type 1 ventilated enclosure. The housing is to have a hinged front door with all equipment accessible from the front.
- 5. Provide both AC and DC transient protection. Charger shall be able to recharge a fully discharged battery without tripping AC protective devices. AC circuit breaker shall not trip under any DC load condition, including short circuit on output terminals.
- The charger shall be capable of supplying the following demand simultaneously:
 - a. Recharging a fully discharged battery in 12 hours.
 - b. Supervisory panel and control panel.
 - c. Steady loads (indicating lamps, relays)
- 7. The charger shall have fused AC input and DC output protection.
- 8. The charger shall not discharge the batteries when AC power fails.
- 9. The charger shall have the following accessories:
 - a. On-off control switch with pilot light.
 - b. AC power failure alarm light.
 - c. High DC voltage alarm light.
 - d. Low DC voltage alarm light.
 - e. Ground detection switch and alarm light.
 - f. DC ammeter 2 percent accuracy.
 - g. DC voltmeter 2 percent accuracy: Float/equalize voltage marked in red on voltmeter.
 - h. Provisions for activation of remote annunciation of trouble for the above conditions.

2.10 METERING

B. As necessary, provide vertical structure with a front hinged door to provide safe isolated access to meters and all associated terminal and fuse blocks for maintenance, calibration or testing.

- C. Provide current transformers for each meter. Current transformers shall be wired to shorting-type terminal blocks.
- D. Provide voltage transformers including primary fuses and secondary protective devices for metering as shown on the drawings.

2.11 OTHER EQUIPMENT

- A. Furnish tools and accessories required for circuit breaker and switchgear test, inspection, maintenance, and proper operation.
- B. Cable terminations:
 - Cable terminations shall conform to the requirements in Section 26 05 13, MEDIUM-VOLTAGE CABLES.
 - 2. Coordinate cable terminations with the switchgear being furnished.
- C. Medium-voltage surge arresters:
 - 1. Distribution class, metal-oxide-varistor type. Comply with NEMA LA 1.
 - Provide each ungrounded conductor of each incoming circuit with an appropriate arrester for the application voltage.
 - 3. Provide each phase of each circuit breaker with appropriate surge arrester for application voltage.
- D. Panelboards: Requirements for panelboards shown to be installed in the switchgear shall be as shown on the drawings and in Section 26 24 16, PANELBOARDS.
- E. Circuit breaker removal equipment: Furnish a portable circuit breaker removal lift and carriage for installation and removal of circuit breakers.

2.12 CONTROL WIRING

A. Switchgear control wiring shall not be less than No. 14 AWG copper 600 volt rated. Install wiring complete at the factory, adequately bundled and protected. Provide separate control circuit fuses in each breaker compartment and locate for ease of access and maintenance.

2.13 NAMEPLATES AND MIMIC BUS

A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 12 mm (1/2 inch) engraved lettered nameplates next to each circuit breaker. Nameplates shall indicate equipment served, spaces, or spares in accordance with one-line diagram shown on drawings. Nameplates shall be

mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.

B. Mimic Bus: Provide an approved mimic bus on front of each switchgear assembly. Color shall be black for the Normal Power system and red for the Essential Electrical System, either factory-painted plastic or metal strips. Plastic tape shall not be used. Use symbols similar to one-line diagram shown on drawings. Plastic or metal strips shall be mounted with plated screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install switchgear in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor switchgear with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Exterior Location. Mount switchgear on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment shall be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 11, CAST-IN-PLACE CONCRETE.
- D. Interior Location. Mount switchgear on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (8 inches) beyond the equipment. Provide conduit turnups and cable

entrance space required by the equipment shall be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 11, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the switchgear manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted and tested in accordance with the manufacturer's recommendations.
- B. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Verify appropriate anchorage, required area clearances, and correct alignment.
 - e. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - f. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method or performing thermographic survey after energization.
 - g. Verify appropriate equipment grounding.
 - h. Confirm correct operation and sequencing of key-type mechanical interlock systems.
 - i. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - j. Inspect insulators for evidence of physical damage or contaminated surfaces.
 - k. Verify correct shutter installation and operation.
 - 1. Exercise all active components.
 - m. Verify the correct operation of all sensing devices, alarms, and indicating devices.

26 13 13- 17

- n. Verify that vents are clear.
- o. Inspect control power transformers.
- 2. Electrical tests:
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform over potential tests.
 - c. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - d. Perform phasing check on double-ended switchgear to ensure correct bus phasing from each source.
 - e. Circuit breakers shall be tripped by operation of each protective device.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the medium-voltage circuit breaker switchgear is in good operating condition and properly performing the intended function.

3.4 TEMPORARY HEATING

A. Apply temporary heat to switchgear, according to manufacturer's written instructions, throughout periods when switchgear environment is not controlled for temperature and humidity within manufacturer's stipulated service conditions.

3.5 WARNING SIGN

A. Mount on each entrance door of the outdoor switchgear enclosure or switchgear room, approximately 1.5 M (5 feet) above grade or floor, a clearly lettered warning sign for warning personnel. The sign shall be attached with rustproof metal screws.

3.6 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION

- A. At final inspection, an as-built one-line diagram shall be laminated or mounted under acrylic glass and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
- B. Furnish a written sequence of operation for the switchgear and connected line side/load side electrical distribution equipment. The sequence of operation shall be laminated or mounted under acrylic glass and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
- C. Deliver an additional four copies of the as-built one-line diagram and sequence of operation to the COR.

3.7 AS-LEFT RELAY SETTINGS, AND FUSE RATINGS FOR CONTROL EQUIPMENT

- A. The relay settings shall be set in the field by an authorized representative of the switchgear manufacturer per the approved Overcurrent Protective Device Coordination Study in accordance with Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY.
- B. Post a durable copy of the "as-left" relay settings, and fuse ratings for control equipment in a convenient location in the switchgear room or outdoor switchgear enclosure. Deliver four additional copies of the settings and fuse ratings to the COR. Furnish this information prior to the activation of the switchgear.

3.8 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the switchgear, on the dates requested by the COR.

---END---

--- INTENTIONALLY BLANK ---

SECTION 26 23 13 GENERATOR PARALLELING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of indoor control components for medium- voltage paralleling Stand by Electrical System generators.
- B. The generator paralleling controls shall be compatible and functional with the switchgear, engine generators, automatic transfer switches, remote annunciators, and all related components.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible fault currents.
- C. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- D. Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR: Mediumvoltage enclosures, busing, and circuit breakers for generator paralleling switchgear.
- E. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- F. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Generator paralleling controls shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Refer also to related specification sections for tests. Tests shall be conducted as per UL and ANSI standards. Factory tests shall be certified.
- B. Furnish four copies of certified manufacturer's factory test reports to the Contracting Officer Representative (COR) prior to shipment of the controls.

C. The Government shall have the option to witness the factory tests. The Government shall pay for all expenses of the Government Representative's trips to witness the testing. Notify the COR not fewer than 30 days prior to factory tests.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Per the requirements of Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR.
 - b. Include sequences of operation and interconnecting controls diagrams, showing connections to switchgear, generators, automatic transfer switches, and remote annunciators.
 - 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - The terminals of wiring diagrams shall be identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each piece of equipment and the interconnection between the pieces of equipment, including related equipment specified in other sections.
 - Provide a clear and concise description of operation, including detailed information required to properly operate the equipment.
 - Approvals shall be based on complete submissions of manuals together with shop drawings.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - 3. Test Reports:
 - a. Two weeks prior to the final inspection, submit certified field test reports and data sheets.
 - 4. Certifications: Two weeks prior to the final inspection, submit the following.

- a. Certification by the manufacturer that the generator paralleling controls conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the generator paralleling controls have been properly installed, connected, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-12....Health Care Facilities 110-10....Emergency and Standby Power Systems
- D. National Electrical Manufacturers Association (NEMA): 250-08......Enclosures for Electrical Equipment (1000 Volts Maximum)

ICS 6-06.....Enclosures

E. Underwriters Laboratories Inc. (UL): 50-95.....Enclosures for Electrical Equipment 508A-07....Industrial Control Panels

PART 2 - PRODUCTS

2.1 GENERATOR PARALLELING CONTROLS

- A. Generator paralleling controls shall be integral to the switchgear, or housed in a separate cubicle, or be integrated into the controls on each paralleled engine generator. The functional requirements are identical for all system topologies.
- B. The generator paralleling controls shall perform automatic and manual operation, synchronization, load management, monitoring, and alarm annunciation functions of the paralleled engine generator system.
- C. The control logic shall be distributed between the generator paralleling controls and each engine generator such that each engine generator is capable of starting and paralleling to the bus, in the event of failure of the generator paralleling controls and receipt of a start signal from any automatic transfer switch.

- D. The master control and display panel shall be a touchscreen panel, or a combination of digital and analog control, monitoring, and alarm devices. The generator paralleling control logic and master control and display panel shall be such that the master controls shall continue to function in the event of a master control and display panel failure.
 - 1. The master control and display panel shall indicate the following status information:
 - a. Status of utility-source and generator-source buses.
 - b. Status of each utility- and generator-source circuit breaker, including protective relays if applicable.
 - c. Status of each engine generator, including start, run, stop, off, automatic operation, manual operation, speed in rotations per minute (RPM), oil pressure, coolant temperature, hours of operation.
 - d. Status of each automatic transfer switch.
 - The master control and display panel shall indicate and trend the following metering information on a per-phase, line-to-line, lineto-neutral, and summary basis as applicable.
 - a. Instantaneous and average volts, amperes, kilowatts, kilovars, kilovolt-amperes, frequency, and power factor for each utility and generator bus, and for each utility and generator source.
 - b. Demand amperes, kilowatts, and kilovolt-amperes for each utility and generator bus, and for each utility and generator source.
 - 3. The master control and display panel shall provide the following control functions for each generator.
 - a. Automatic, manual, start, stop.
 - The master control and display panel shall provide the following system control functions.
 - a. Automatic, manual, exercise, test with load, and test without load operation.
 - b. Load management functions that monitor bus loads and automatically or manually control generators to meet system requirements, including prioritization of Essential and Normal Electrical System loads and groups of loads as shown on the drawings, and operation under failure conditions of one or more engine generators.
 - c. Password-protected means to alter the system programming.

- 5. The master control and display panel shall provide the following alarm functions.
 - a. All alarms annunciated by each engine generator.
 - b. All system alarms.
- E. The master control and display panel shall be powered by at least two sources, which shall be from engine generator start batteries and/or switchgear station batteries.
- F. Interconnecting Communications Protocol and Media: The generator paralleling controls shall be interconnected to the switchgear, engine generators, and the remote annunciator(s) by a dedicated dedicated CAT5E network. The network shall be per the requirements of Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING. Provide all necessary copper media, raceways, hardware, software, and programming necessary to establish interconnection between all components. All equipment shall share a non-proprietary and open topology and communications protocol.

2.2 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel shall be installed at the Electrical Shop or location as shown on the drawings.
- B. The annunciator shall indicate alarm conditions as required by NFPA 99 and 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.3 PARALLELING OPERATION

- A. Emergency Mode:
 - 1. Upon initiation of the automatic start sequence, all engine generators shall start. The first engine generator to achieve 90% of nominal voltage and frequency shall be connected to the bus. All first priority loads shall be transferred to the bus upon sensing availability of power on the bus. As the remaining engine generators start, their respective synchronizers shall initiate control of voltage and frequency of the oncoming set with the bus. Upon synchronizing with the bus, the oncoming engine generator shall be paralleled on the bus. Each time an additional engine generator is added to the bus, the remaining loads shall be transferred in priority sequence, until all loads are connected to the bus. The generator paralleling controls shall prevent the automatic transfer of loads to the bus until there is sufficient capacity to carry

these loads. Provision shall be made to manually override the load addition circuits for supervised operation.

- 2. Load management sensing shall be furnished to ensure that sufficient generating capacity is connected to the bus to carry the load. The load management sensing shall also ensure that not more than the required capacity plus a limited reserve is connected to the bus at any time. The system in conjunction with the load management shall ensure maximum efficiency in the utilization of engine generators to ensure maximum fuel economy.
- 3. Load management sensing shall ensure that the on-line reserve capacity does not fall to less than 10% or exceed more than 110% of a single engine generator. Upon sensing if the connected load exceeds the present limit for an established period of time, the next engine generator shall be started and paralleled. If upon sensing, the connected load is determined to be less than the preset limit for an established period of time, the last engine generator to be paralleled shall be disconnected and shut down. Its controls shall be automatically reset so that the engine generator shall be ready for next operation.
- 4. While one engine generator is connected to the bus, and if the connected load exceeds the capacity of the bus, resulting in a decrease in system frequency to 58 Hz or less, load dumping shall be initiated to reduce the connected load within the capacity of the bus. Similarly, with increased loading, the remaining engine generator shall be signaled to start and be paralleled to the engine generator already connected to the bus, and the load dump signal shall be automatically cancelled. Upon restoration of the normal source of power supply, as defined in the generator paralleling controls for an adjustable period of 0 to 30 minutes, the loads shall be transferred back to the normal power source. Subsequently, the engine generator shall be disconnected from the bus, run for an adjustable period of time up to 15 minutes maximum for cool down, and then shut down. All controls associated with operation of the engine generator shall automatically reset for the next automatic operation.
- B. Manual Mode: The engine generators and automatic transfer switch(es) can be operated manually.
C. Exercising Mode: Incorporate controls so as to allow automatic and manual testing of each engine generator and remotely located transfer switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Per the requirements of Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR
- B. Mount generator paralleling controls on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. An authorized representative of the generator paralleling controls manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the COR. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted, and tested in accordance with the manufacturer's recommendations.
- B. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - d. Verify appropriate equipment grounding.
 - e. Verify appropriate anchorage and required area clearances.
 - 2. Systems Tests:

- a. Verify proper operation of all control, monitoring, trending, and alarm functions.
- b. Verify undisrupted operation of the system under conditions of loss of the generator paralleling controls.
- c. Test and verify continuity of all interconnecting copper and fiber optic control media.
- C. Perform all acceptance checks and tests specified in Section 26 13 13, MEDIUM-VOLTAGE CIRCUIT BREAKER SWITCHGEAR, Section 26 32 13, ENGINE GENERATORS, and Section 26 36 23, AUTOMATIC TRANSFER SWITCHES.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the generator paralleling controls are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour periods to instruct personnel in the operation and maintenance of the generator paralleling controls and related equipment on the date requested by the COR.

---END---

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- F. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective devices integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):

PB 1-11.....Panelboards

250-14..... Enclosures for Electrical Equipment (1,000V Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

70E-18..... Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-15..... Enclosures for Electrical Equipment

67-09....Panelboards

489-16..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they shall be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.

- 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
 - 4. Inner and outer doors shall open left to right.
 - 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:1. 120/208 V Panelboard: 10,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker trip setting shall be set in the field, based on the approved protective device study as specified in Section 26 05 71, ELECTRICAL SYSTEM PROTECTIVE DEVICE STUDY
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator and provided with trip indicators.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.

- An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.

2.4 SURGE PROTECTIVE DEVICES

A. Where shown on the drawings, furnish panelboards with integral surge protective devices. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.

- e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
- f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA): WD 1-99(R2015).....General Color Requirements for Wiring Devices WD 6-16Wiring Devices - Dimensional Specifications
- C. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)
 - 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):

5-16.....Surface Metal Raceways and Fittings
20-10.....General-Use Snap Switches
231-16....Power Outlets
467-13....Grounding and Bonding Equipment
498-17....Attachment Plugs and Receptacles
943-16....Ground-Fault Circuit-Interrupters
1449-14...Surge Protective Devices
1472-15....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears and shall

include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be gray in color.

- Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
- Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles - hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.
 - 1. Bodies shall be brown nylon.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self-grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type smooth nylon . Oversize plates are not acceptable.
- B. Color shall be ivory unless otherwise specified.
- C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.

- D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- E. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specificuse receptacles at heights shown on the drawings.
- J. Install horizontally mounted receptacles with the ground pin to the right.
- K. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.

L. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-12.....Low Voltage Cartridge Fuses KS 1-13....Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL): 98-16.....Enclosed and Dead-Front Switches 248 1-11....Low Voltage Fuses 489-13....Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.

B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Service Entrance: Class RK1, time delay.
- C. Feeders: Class RK1, time delay.
- D. Motor Branch Circuits: Class RK1, time delay.
- E. Other Branch Circuits: Class RK1, time delay.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

--- INTENTIONALLY BLANK ---

SECTION 26 32 13 ENGINE GENERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the medium-voltage engine generators.

1.2 REFERENCES

- A. Section 03 30 11, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Requirements for pipe and equipment support and noise control.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- D. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- G. Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY: Short circuit and coordination study, and requirements for a coordinated electrical system.
- H. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Requirements for hot piping and equipment insulation.
- I. Section 26 23 13, GENERATOR PARALLELING CONTROLS: Requirements for generator paralleling.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.

1.4 FACTORY TESTS

A. Factory Tests shall be performed in the factory by the equipment manufacturer. Factory Tests shall comply with all Factory Tests

requirements stated in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the requirements stated in this section.

B. Load Test: Shall include two hours while the engine generator is delivering 100% of the specified kW, and four hours while the engine generator is delivering 80% of the specified kW. During this test, record the following data at 20-minute intervals:

Time	Engine RPM	Oil Temperature Out
kW	Water Temperature In	Fuel Pressure
Voltage	Water Temperature Out	Oil Pressure
Amperes	Oil Temperature In	Ambient Temperature

- C. Cold Start Test: Record time required for the engine generator to develop specified voltage, frequency, and kW load from a standstill condition with engine at ambient temperature.
- D. The manufacturer shall furnish fuel, load banks, testing instruments, and all other equipment necessary to perform these tests.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Scaled drawings, showing plan views, side views, elevations, and cross-sections.
 - 2. Diagrams:
 - a. Control system diagrams, control sequence diagrams or tables, wiring diagrams, interconnections diagrams (between engine generators, automatic transfer switches, paralleling switchgear, local control cubicles, remote annunciator panels, and fuel storage tanks, as applicable), and other like items.
 - 3. Technical Data:
 - a. Published ratings, catalog cuts, pictures, and manufacturer's specifications for engine generator, governor, voltage regulator, radiator, muffler, dampers, day tank, pumps, fuel tank, batteries and charger, jacket heaters, torsional vibration, and control and supervisory equipment.
 - b. Description of operation.

- c. Short-circuit current capacity and subtransient reactance.
- d. Sound power level data.
- 4. Calculations:
 - a. Calculated performance derations appropriate to installed environment.
- 5. Manuals:
 - a. When submitting the shop drawings, submit complete maintenance and operating manuals, to include the following:
 - 1) Technical data sheets.
 - 2) Wiring diagrams.
 - Include information for testing, repair, troubleshooting, and factory recommended periodic maintenance procedures and frequency.
 - 4) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 6. Test Reports:
 - a. Submit certified factory test reports for approval.
 - b. Submit field test reports two weeks prior to the final inspection.
- 7. Certifications:
 - a. Prior to fabrication of the engine generator, submit the following for approval:
 - A certification in writing that an engine generator of the same model and configuration, with the same bore, stroke, number of cylinders, and equal or higher kW/kVA ratings as the proposed engine generator, has been operating satisfactorily with connected loads of not less than 75% of the specified kW/kVA rating, for not fewer than 2,000 hours without any failure of a crankshaft, camshaft, piston, valve, injector, or governor system.
 - 2) A certification in writing that devices and circuits shall be incorporated to protect the voltage regulator and other components of the engine generator during operation at speeds other than the rated RPM while performing maintenance. Submit

thorough descriptions of any precautions necessary to protect the voltage regulator and other components of the system during operation of the engine generator at speeds other than the rated RPM.

- 3) A certification from the engine manufacturer stating that the engine exhaust emissions meet the applicable federal, state, and local regulations and restrictions. At a minimum, this certification shall include emission factors for criteria pollutants including nitrogen oxides, carbon monoxide, particulate matter, sulfur dioxide, non-methane hydrocarbon, and hazardous air pollutants (HPAs).
- b. Prior to installation of the engine generator at the job site, submit certified factory test data.
- c. Two weeks prior to the final inspection, submit the following.
 - Certification by the manufacturer that the engine generators conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the engine generators have been properly installed, adjusted, and tested.

1.6 STORAGE AND HANDLING

- A. Engine generators shall withstand shipping and handling stresses in addition to the electrical and mechanical stresses which occur during operation of the system. Protect radiator core with wood sheet.
- B. Store the engine generators in a location approved by the Contracting Officer Representative (COR).

1.7 JOB CONDITIONS

A. Job conditions shall conform to the arrangements and details shown on the drawings. The dimensions, enclosures, and arrangements of the engine generator system shall permit the operating personnel to safely and conveniently operate and maintain the system in the space designated for installation.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI):

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 C37.20.2..... Medium Voltage AC Power Circuit Breakers Used In Enclosures-Test Procedures C39.1-81 (R1992)Requirements for Electrical Analog Indicating Instruments C. American Society of Testing Materials (ASTM): A53/A53M-10.....Standard Specification for Pipe, Steel, Black, and Hot-Dipped, Zinc Coated Welded and Seamless B88-09.....Specification for Seamless Copper Water Tube B88M-11.....Specification for Seamless Copper water Tube (Metric) D975-11b.....Diesel Fuel Oils D. Institute of Electrical and Electronic Engineers (IEEE): C37.20.2..... Medium Voltage AC Power Circuit Breakers Used In Enclosures C37.90.1-02.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus E. International Code Council (ICC): IBC-12.....International Building Code F. National Electrical Manufacturers Association (NEMA): ICS 6-06.....Enclosures ICS 4-10.....Application Guideline for Terminal Blocks MG 1-11.....Motor and Generators MG 2-07.....Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators G. National Fire Protection Association (NFPA): 30-12.....Flammable and Combustible Liquids Code 37-10..... Installations and Use of Stationary Combustion Engine and Gas Turbines 70-11.....National Electrical Code (NEC) 99-12.....Health Care Facilities 110-10.....Standard for Emergency and Standby Power Systems H. Underwriters Laboratories, Inc. (UL): 50-07.....Enclosures for Electrical Equipment

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 142-06..... Steel Aboveground Tanks for Flammable and Combustible Liquids 467-07.....Grounding and Bonding Equipment 489-09..... Molded-Case Circuit Breakers, Molded-Case Switches and Circuit-Breaker Enclosures 508-99..... Industrial Control Equipment 1236-06.....Battery Chargers for Charging Engine-Starter Batteries 2085-97.....Insulated Aboveground Tanks for Flammable and Combustible Liquids 2200-98.....Stationary Engine Generator Assemblies

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. The engine generator system shall be in accordance with NFPA, UL, NEMA and ANSI, and as specified herein.
- B. Provide a factory-assembled, wired (except for field connections), complete, fully automatic engine generator system, as well as all associate equipment and devices intended for the operating, control, monitoring, and remote manual stop functions.
- C. Engine Generator Parameter Schedule:
 - 1. Power Rating: Emergency Standby
 - 2. Voltage: 13800V
 - 3. Rated Power: 2000 kW 2500 kVA
 - 4. Power Factor: 0.8 lagging
 - 5. Engine Generator Application: parallel with other generators on an isolated bus 6. Fuel: diesel
 - 7. Voltage Regulation: + 2% (maximum) (No Load to Full Load) (standalone applications)
 - 8. Phases: 3 Phase, Wye
 - 9. Each component of the engine generator system shall be capable of operating at 448 meters (1470 feet) above sea level in a ventilated enclosure which shall have average ambient air temperature ranging from a minimum of -15 °C (5 °F) in winter to maximum of 29.5 °C (85 °F) in summer.
- D. Assemble, connect, and wire the engine generator at the factory so that only the external connections need to be made at the construction site.

- E. Engine Generator Unit shall be factory-painted with manufacturer's primer and standard finishes.
- F. Connections between components of the system shall conform to the recommendations of the manufacturer.
- G. Couplings, shafts, and other moving parts shall be enclosed and guarded. Guards shall be metal, ruggedly constructed, rigidly fastened, and readily removable for convenient servicing of the equipment without disassembling any pipes and fittings.
- H. Engine generator shall have the following features:
 - 1. Factory-mounted on a common, rigid, welded, structural steel base.
 - Engine generator shall be statically and dynamically balanced so that the maximum vibration in the horizontal, vertical, and axial directions shall be limited to 0.15 mm (0.0059 inch), with an overall velocity limit of 24 mm/sec (0.866 inch per second) RMS, for all speeds.
 - 3. The isolators shall be constrained with restraints capable of withstanding static forces in any direction equal to twice the weight of the supported equipment.
 - 4. Shall be capable of operating satisfactorily as specified for not fewer than 10,000 hours between major overhauls.
- Each engine generator specified for parallel operation shall be configured for automatic parallel operation.

2.2 ENGINE

- A. The engine shall be coupled directly to a generator.
- B. Minimum four cylinders.
- C. The engine shall be able to start in a 4.5 °C (40 °F) ambient temperature while using No. 2 diesel fuel oil without the use of starting aids such as glow plugs and ether injections.
- D. The engine shall be equipped with electric heater for maintaining the coolant temperature between 32-38 °C (90-100 °F), or as recommended by the manufacturer.
 - Install thermostatic controls, contactors, and circuit breakerprotected circuits for the heaters.
 - 2. The heaters shall operate continuously except while the engine is operating or the water temperature is at the predetermined level.

2.3 GOVERNOR

A. Isochronous, electronic type.

B. Steady-state speed band at 60 Hz shall not exceed plus or minus 0.33%.

2.4 LUBRICATION OIL SYSTEM

- A. Pressurized type.
- B. Positive-displacement pump driven by engine crankshaft.
- C. Full-flow strainer and full-flow or by-pass filters.
- D. Filters shall be cleanable or replaceable type and shall remove particles as small as 3 microns without removing the additives in the oil. For by-pass filters, flow shall be diverted without flow interruption.
- E. Extend lube oil sump drain line out through the skid base and terminate it with a drain valve and plug.
- F. Provide a 120-volt oil heater for exterior engine generator.

2.5 FUEL SYSTEM

- A. Main fuel storage tank(s) shall comply with the requirements of Section 23 10 00, FACILITY FUEL SYSTEMS.
- B. Shall comply with NFPA 37 and NFPA 30, and have the following features:1. Injection pump(s) and nozzles.
 - Plungers shall be carefully lapped for precision fit and shall not require any packing.
 - 3. Filters or screens that require periodic cleaning or replacement shall not be permitted in the injection system assemblies.
 - 4. Return surplus oil from the injectors to the main storage tank by gravity or a pump.
 - 5. Filter System:
 - a. Dual primary filters shall be located between the main fuel oil storage and day tank.
 - b. Secondary filters (engine-mounted) shall be located such that the oil shall be thoroughly filtered before it reaches the injection system assemblies.
 - c. Filters shall be cleanable or replaceable type and shall entrap and remove water from oil as recommended by the engine manufacturer.
- C. Day Tank:
 - Each engine generator shall be provided with a welded steel integral day tank with double-wall fuel containment.
 - Each day tank shall have capacity to supply fuel to the engine for a 12-hour period at 100% rated load without being refilled, including

fuel that is returned to the main fuel storage tank. The calculation of the capacity of each day tank shall incorporate the requirement to stop the supply of fuel into the day tank at 90% of the ultimate volume of the tank.

- 3. Secure, pipe, and connect the tank adequately for maximum protection from fire hazards, including oil leaks.
- Incorporate a vent, drain cock, shutoff cocks, and gauge glass. Terminate the vent piping outdoors with mushroom vent cap.
- 5. Incorporate a float switch on the day tank to control the fuel oil transfer pump and to actuate an alarm in the engine generator control cubicle when the oil level in the tank drops below the level at which the transfer pump shall start to refill the tank.
 - a. The float switch contacts controlling the fuel oil transfer pump shall be set to energize the pump when the liquid level in the tank reaches one-third of the total volume of the tank.
 - b. The float switch contacts that actuate the low fuel oil day tank alarm device shall be set to alarm and energize the second fuel transfer pump when the liquid level in the tank reaches onequarter of the total volume of the tank.
- Day tank and engine supply line elevations shall be below the elevation of the injector return outlet on the engine.
- D. Fuel Transfer Pump Main Storage Tank to Day Tank(s):
 - Electric motor-driven, duplex arrangement, close-coupled, singlestage, positive-displacement type with built-in pressure relief valves. When the fuel is used for cooling components of the fuel injection system, the engine's fuel return line shall be returned to the main storage tank, rather than the day tank.
 - 2. Include a heavy-duty automatic alternator and H-O-A switch to alternate sequence of pumps. Pumps shall be controlled with the float switch on the day tank and H-O-A selector switch such that the day tank shall be refilled automatically when the oil level lowers to the low limit for the float switch. The H-O-A selector switches shall enable the pumps to be operated manually at any time.
 - 3. For all engines, the related transfer pump and its electrical and plumbing connections shall be sized to provide a flow rate of at least four times the engine's fuel pumping rate.

- 4. Provide a manually-operated, rotary-type transfer pump connected in parallel with the electric motor-driven transfer pumps so that oil can be pumped to the day tank while the electric motor-driven pumps are inoperative.
- E. Piping System: Black steel standard weight ASTM A-53 pipe and necessary valves and pressure gauges between:
 - 1. The engine and the day tank as shown on the drawings.
 - The day tank and the supply and return connections at the underground storage tank as shown on the drawings. Connections at the engine shall be made with flexible piping suitable for the fuel furnished.

2.6 COOLING SYSTEM

- A. Liquid-cooled, closed loop, with fin-tube radiator mounted on the engine generator, and integral engine driven circulating pump.
- B. Cooling capacity shall not be less than the cooling requirements of the engine generator and its lubricating oil while operating continuously at 100% of its specified rating. Radiator must be rated at 127F at the standby rating of 2000KW.
- C. Water circulating pumps shall be the centrifugal type driven by engine. Incorporate pressure relief devices where required to prevent excessive pressure increase after the engine stops.
- D. Coolant shall be extended-life antifreeze solution, 50% ethylene glycol and 50% soft water, with corrosion inhibitor additive as recommended by the manufacturer.
- E. Fan shall be driven by multiple belts from engine shaft.
- F. Coolant hoses shall be flexible, per manufacturer's recommendation.
- G. Self-contained thermostatic-control valve shall modulate coolant flow to maintain optimum constant coolant temperature, as recommended by the engine manufacturer.

2.7 AIR INTAKE AND EXHAUST SYSTEMS

- A. Air Intake:
 - 1. Provide an engine-mounted air cleaner with replaceable dry filter and dirty filter indicator.
- B. Exhaust System:
 - Where a turbocharger is required, they shall be engine-mounted, driven by the engine gases, securely braced against vibration and adequately lubricated by the engine's filtered lubrication system.

2. Exhaust Muffler:

Shall be critical grade type and capable of the following noise attenuation:

Octave Band Hertz (Mid Frequency)	Minimum db Attenuation (.0002 Microbar Reference)
31	5
63	10
125	27
500	37
1000	31
2000	26
4000	25
8000	26

- Pressure drop in the complete exhaust system shall be small enough for satisfactory operation of the engine generator while it is delivering 100% of its specified rating.
- 4. Exhaust pipe size from the engine to the muffler shall be as recommended by the engine manufacturer. Pipe size from muffler to air discharge shall be two pipe sizes larger than engine exhaust pipe.
- 5. Connections at the engine exhaust outlet shall be made with a flexible exhaust pipe. Provide bolted type pipe flanges welded to each end of the flexible section.
- C. Condensate drain at muffler shall be made with schedule 40 black steel pipe through a petcock.
- D. Exhaust Piping and Supports: Black steel pipe, ASTM A-53 standard weight with welded fittings. Spring type hangers, as specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, shall support the pipe.
- E. Insulation for Exhaust Pipe and Muffler:
 - Insulation shall be as specified in Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
 - 2. The installed insulation shall be covered with aluminum jacket 0.4 mm (0.016 inch) thick. The jacket is to be held in place by bands of 0.38 mm (0.015 inch) thick by 15 mm (0.5 inch) wide aluminum.
 - 3. Insulation and jacket are not required on flexible exhaust sections.

- F. Wall Sleeves: Pipe sleeves (thimble) shall be Schedule 40 standard weight steel pipe. Flash exhaust pipe thimble through roof with 16 oz soft sheet copper, flanged, and made watertight under built-up roofing and extended up around pipe thimble. The exhaust pipe shall be positioned within the thimble by four 150 mm (6 inches) wide spiders welded to the exhaust pipe.
- G. Vertical exhaust piping shall be provided with a hinged, gravityoperated, self-closing rain cover.

2.8 ENGINE STARTING SYSTEM

- A. The engine starting system shall start the engine at any position of the flywheel.
- B. Electric cranking motor:
 - 1. Shall be engine-mounted.
 - 2. Shall crank the engine via a gear drive.
 - 3. Rating shall be adequate for cranking the cold engine at the voltage provided by the battery system, and at the required RPM during five consecutive starting attempts of 10 seconds cranking each at 10-second intervals, for a total of 50 seconds of actual cranking without damage (the fifth starting attempt shall be manually initiated upon failure of a complete engine cranking cycle).
- C. Batteries shall be nickel-cadmium high discharge rate type.
 - Each battery cell shall have minimum and maximum electrolyte level indicators and a flip-top flame arrestor vent cap.
 - 2. Batteries shall have connector covers for protection against external short circuits.
 - 3. With the charger disconnected, the batteries shall have sufficient capacity so that the total system voltage does not fall below 85% of the nominal system voltage with the following demands: Five consecutive starting attempts of 10 seconds cranking at 10 second intervals for a total of 50 seconds of actual cranking (the fifth starting attempt shall be manually initiated upon failure of a complete engine cranking cycle).
 - 4. Battery racks shall be metal with an alkali-resistant finish and thermal insulation, and secured to the floor.
- D. Battery Charger:
 - 1. A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. The charger

> shall be capable of an equalize-charging rate for recharging fully depleted batteries within 24 hours and a floating charge rate for maintaining the batteries at fully charged condition. The battery charger shall have 20A minimum output.

2. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage.

2.9 JACKET COOLANT HEATER

A. Provide a thermostatically-controlled electric heater mounted in the engine coolant jacketing to automatically maintain the coolant within plus or minus 1.7 $^{\circ}$ C (3 $^{\circ}$ F) of the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.10 GENERATOR

- A. Synchronous, amortisseur windings, bracket-bearing, self-venting, rotating-field type connected directly to the engine.
- B. Lifting lugs designed for convenient connection to and removal from the engine.
- C. Integral poles and spider, or individual poles dove-tailed to the spider.
- D. Designed for sustained short-circuit currents in conformance with NEMA Standards.
- E. Designed for sustained operation at 100% of the RPM specified for the engine generator without damage.
- F. Telephone influence factor shall conform to NEMA MG 1.
- G. Furnished with brushless excitation system or static-exciter-regulator assembly.
- H. Nameplates attached to the generator shall show the manufacturer's name, equipment identification, serial number, voltage ratings, field current ratings, kW/kVA output ratings, power factor rating, time rating, temperature rise ratings, RPM ratings, full load current rating, number of phases and frequency, and date of manufacture.
- I. The grounded (neutral) conductor shall be electrically isolated from equipment ground and terminated in the same junction box as the phase conductors.

2.11 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator circuit breaker shall be drawout vacuum maintenance free interrupter type. The operating mechanism shall be quick-make, quick-

26 32 13 - 13

break. Provide required relays, breaker tripping, closing and indicating lamps.

2.12 CONTROLS

- A. Shall include Engine Generator Control Cubicle(s).
- B. General:
 - 1. Control equipment shall be in accordance with UL 508, NEMA ICS-4, ICS-6, and ANSI C37.90.1.
 - 2. Panels shall be in accordance with UL 50.
 - 3. Cubicles shall be in accordance with UL 891.
 - 4. Coordinate controls with the automatic transfer switches shown on the drawings so that the systems shall operate as specified.
 - 5. Cubicles:
 - a. Code gauge steel: manufacturer's recommended heavy gauge steel with factory primer and light gray finish.
 - b. Doors shall be gasketed, attached with concealed or semiconcealed hinges, and shall have a permanent means of latching in closed position.
 - c. Panels shall be wall-mounted or incorporated in other equipment as indicated on the drawings or as specified.
 - d. Door locks for panels and cubicles shall be keyed identically to operate from a single key.
 - 6. Wiring: Insulated, rated at 600 V.
 - a. Install the wiring in vertical and horizontal runs, neatly harnessed.
 - b. Terminate all external wiring at heavy duty, pressure-type, terminal blocks.
 - 7. The equipment, wiring terminals, and wires shall be clearly and permanently labeled.
 - The appropriate wiring diagrams shall be laminated or mounted under plexiglass within the frame on the inside of the cubicles and panels.
 - 9. All indicating lamps and switches shall be accessible and mounted on the cubicle doors.
 - 10. The manufacturer shall coordinate the interconnection and programming of the generator controls with all related equipment, including automatic transfer switches and generator paralleling controls as applicable, specified in other sections.

- C. Engine generator Control Cubicle:
 - 1. Starting and Stopping Controls:
 - a. A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL." Provide flashing amber light for OFF and MANUAL positions.
 - b. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."
 - c. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, in the 0 to 15 minute range, shall cause the engine generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine generator shall stop.
 - d. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL position shall also cause the engine to start when the manual start push-button is depressed momentarily.
 - e. With selector switch is in MANUAL position, depressing the MANUAL STOP push-button momentarily shall stop the engine after a cooldown period.
 - f. A maintained-contact, red mushroom-head push-button switch marked "EMERGENCY STOP" shall cause the engine to stop without a cooldown period, independent of the position of the selector switch.
 - 2. Engine Cranking Controls:
 - a. The cranking cycles shall be controlled by a timer that shall be independent of the battery voltage fluctuations.
 - b. The controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each with 10 seconds between each attempt.
 - c. Total actual cranking time for the complete cranking cycle shall be 40 seconds during a 70-second interval.
 - d. Cranking shall terminate when the engine starts so that the starting system shall not be damaged. Termination of the cranking

> shall be controlled by self-contained, speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.

- e. After the engine has stopped, the cranking control shall reset.
- 3. Supervisory Controls:
 - a. Overcrank:
 - When the cranking control system completes one cranking cycle (four starting attempts), without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.
 - The cranking control system shall lock-out, and shall require a manual reset.
 - b. Coolant Temperature:
 - When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine and high enough to avoid unnecessary engine shutdowns, the HIGH COOLANT TEMPERATURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage temperature settings shall be approximately -12 $^\circ\text{C}$ (10 $^\circ\text{F})$.
 - Permanently indicate the temperature settings near the associated signal light.
 - 5) When the coolant temperature drops to below 21 °C (70 °F), the "LOW COOLANT TEMPERATURE" signal light and the audible alarm shall be energized.
 - c. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.
 - d. Lubricating Oil Pressure:
 - When the pressure falls to the predetermined first stage level, the OIL PRESSURE - FIRST STAGE signal light and the audible alarm shall be energized.
- 2) When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to avoid unnecessary engine shutdowns, the OIL PRESSURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
- 3) The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.
- The pressure settings near the associated signal light shall be permanently displayed so that the running oil pressure can be compared to the target (setpoint) value.
- e. Overspeed:
 - When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.
- f. Low Fuel Day Tank:

When the fuel oil level in the day tank decreases to less than the level at which the fuel oil transfer pump shall start to refill the tank, the LOW FUEL DAY TANK light and the audible alarm shall be energized.

- g. Low Fuel Main Storage Tank: When the fuel oil level in the storage tank decreases to less than one-third of total tank capacity, the LOW FUEL-MAIN STORAGE TANK signal light and audible alarm shall be energized.
- h. Reset Alarms and Signals:

Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays or solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible alarm so that it shall be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be energized. Install the audible alarm just outside the engine

generator room in a location as directed by the COR. The audible alarm shall be rated for 85 dB at 3 M (10 feet).

- i. Generator Breaker Signal Light:
 - 1) A flashing green light shall be energized when the engine generator circuit breaker is in the OPEN or TRIPPED position.
 - 2) Simultaneously, the audible alarm shall be energized.
- 4. Monitoring Devices:
 - a. Electric type gauges for the cooling water temperatures and lubricating oil pressures. These gauges shall be engine mounted with proper vibration isolation.
 - b. A running time indicator, totalizing not fewer than 9,999 hours, and an electric type tachometer.
 - c. A voltmeter, ammeter, frequency meter, kilowatt meter, manual adjusting knob for the output voltage, and the other items shown on the drawings shall be mounted on the front of the generator control panels.
 - d. Install potential and current transformers as required.
 - e. Visual Indications:
 - 1) OVERCRANK
 - 2) HIGH COOLANT TEMPERATURE FIRST STAGE
 - 3) HIGH COOLANT TEMPERATURE SECOND STAGE
 - 4) LOW COOLANT TEMPERATURE
 - 5) OIL PRESSURE FIRST STAGE
 - 6) OIL PRESSURE SECOND STAGE
 - 7) LOW COOLANT LEVEL
 - 8) GENERATOR BREAKER
 - 9) OVERSPEED
 - 10) LOW FUEL DAY TANK
 - 11) LOW FUEL MAIN STORAGE TANK
 - f. Lamp Test: The LAMP TEST momentary contact switch shall momentarily actuate the alarm buzzer and all the indicating lamps.
- 5. Automatic Voltage Regulator:
 - a. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.

- b. Shall include voltage level rheostat located inside the control cubicle.
- c. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.13 REMOTE MANUAL STOP STATION

- A. Shall be provided per NFPA 101, and shall be a red mushroom-head pushbutton switch.
- B. Shall be connected to the main generator control panel to provide emergency shutdown of the generator.
- C. Shall be located outside the room housing the generator.
- D. Shall have permanent label reading "EMERGENCY STOP".

2.14 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel shall be installed at the Engineering Control Center orlocation as shown on the drawings.
- B. The annunciator shall indicate alarm conditions as required by NFPA 99 and 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.15 SOUND-ATTENUATED ENCLOSURE

- A. The engine generator and related equipment shall be housed in an outdoor weatherproof enclosure.
- B. The enclosure shall be provided with a factory-installed and factorywired panelboard, 20A 120V receptacles, and -LED light fixtures with guards and switches.
- C. Enclosure shall be walk-in type and sound-attenuated (maximum 85 dBA at 1525 mm (5 feet) from any side, top and bottom to no more than 75 dBA when measured at 15 M (50 feet) horizontally from any part of the enclosure or appendage on the enclosure. Sound ratings shall be based on full-load condition of engine generator in a single unit operation condition.
- D. Airflow configuration shall be intake through rear of unit, and discharge air vertically up. Enclosure shall be suitable for winds up to 193 kmh (120 miles per hour) roof load shall be equal to or greater than 200 kg/sq m (40 pounds per square foot) Non-distributed loading as required.
- E. The enclosure shall meet the following requirements:

- Radiator exhaust outlet shall be ducted through the end of the enclosure.
- 2. All exterior surfaces shall be factory-painted with industrial enamel.
- Unit shall have sufficient guards to prevent entrance by small animals.
- 4. Batteries shall fit inside enclosure and alongside the engine generator. Batteries under the generator are not acceptable.
- 5. The muffler shall be mounted and thermally-insulated inside the enclosure.

2.16 SPARE PARTS

- A. For each engine generator:
 - 1. One set of lubricating oil filters.
 - 2. One set of primary fuel oil filters.
 - 3. One set of secondary fuel oil filters.
 - 4. One set of intake air filters.
- B. For each battery charger:
 - 1. One complete sets of fuses, if applicable.
- C. For each control panel:
 - 1. One complete sets of fuses, if applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install concrete bases of dimensions shown on the drawings.
- B. Installation of the engine generator shall comply with manufacturer's written instructions and with NFPA 110.
- C. Mounting:
 - Support the base of engine generator on vibration isolators, each isolator bolted to the floor (pad), and the generator base bolted to isolator.
 - Install sufficient isolators so that the floor (pad) bearing pressure under each isolator is within the floor (pad) loading specification.
 - Install equal number of isolators on each side of the engine generator's base.

- Locate isolators for approximately equal load distribution and deflection per isolator. The base of the engine generator shall be drilled at the factory for the isolator bolts.
- 5. Isolators shall be shipped loose with the engine generator.
- 6. All connections between the engine generator and exterior systems, such as fuel lines, electrical connections, and engine exhaust system and air exhaust shroud, shall be flexible.
- D. In seismic areas, engine generators shall be adequately anchored and braced per details on structural contract drawings to withstand the seismic forces at the location where installed.
- E. Balance:
 - The vibration velocity in the horizontal, vertical, and axial directions shall not exceed 16.25 mm (0.65 inch) per second peak at any specific frequency. These limits apply to main structural components such as the engine block and the generator frame at the bearings.
- F. Connect all components of the generator system so that they shall continue to be energized during failure of the normal electrical power supply system.
- G. Install piping between engine generator and remote components of cooling, fuel, and exhaust systems.
- H. Flexible connection between radiator and exhaust shroud at the wall damper:
 - Install noncombustible flexible connections made of 20-oz neoprene-coated fiberglass fabric approximately 150 mm (6 inches) wide.
 - Crimp and fasten the fabric to the sheet metal with screws 50 mm (2 inches) on center. The fabric shall not be stressed, except by the air pressure.
- I. Exhaust System Insulation:
 - Adhesive and insulation materials shall be applied on clean, dry surfaces from which loose scale and construction debris has been removed by wire brushing.
 - Fill all cracks, voids, and joints of applied insulation material with high temperature 1093 °C (2000 °F) insulating cement before applying the outer covering.

- 3. The installation shall be clean and free of debris, thermally and structurally tight without sag, neatly finished at all hangers or other penetrations, and shall provide a smooth finished surface.
- 4. Insulation and jacket shall terminate hard and tight at all anchor points.
- 5. Insulate completely from engine exhaust flexible connection through roof or wall construction, including muffler.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Provide the services of a factory-authorized, factory-trained representative of the engine generator manufacturer to inspect fieldassembled components and equipment installation, and to supervise the field tests.
- B. When the complete engine generator system has been installed and prior to the final inspection, test all components of the system in the presence of the COR for proper operation of the individual components and the complete system and to eliminate electrical and mechanical defects.
- C. Furnish fuel oil, lubricating oil, anti-freeze liquid, water treatment, rust-inhibitor, and load bank for testing of the engine generator.
- D. Visual Inspection: Visually verify proper installation of engine generator and all components per manufacturer's pre-functional installation checklist.
- E. Set engine generator circuit breaker protective functions per Section 26 05 73, OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY.
- F. Field Tests:
 - 1. Perform manufacturer's after-starting checks and inspections.
 - Test the engine generator for six hours of continuous operation as follows:
 - a. Two hours while delivering 100% of the specified kW.
 - b. Four hours while the engine generator is delivering 80% of its specified kW rating.
 - c. If during the 6-hour continuous test, an engine generator failure occurs or the engine generator cannot maintain specified power output, the test(s) are null and void. After repair and/or adjustments, the test(s) shall be repeated at no additional cost to the Government until satisfactory results are attained.
 - 3. Record the following test data at 30-minute intervals:

- a. Time of day, as well as reading of running time indicator.
- b. kW.
- c. Voltage on each phase.
- d. Amperes on each phase.
- e. Engine RPM.
- f. Frequency.
- g. Coolant water temperature.
- h. Fuel pressure.
- i. Oil pressure.
- j. Outdoor temperature.
- k. Average ambient temperature in the vicinity of the engine generator.
- Demonstrate that the engine generator shall attain proper voltage and frequency within the specified time limit from a cold start after the closing of a single contact.
- 5. Furnish a resistance-type load for the testing of each of the engine generator. Test loads shall always include adequate resistance to assure stability of the loads and equipment during all of the testing operations. The test load kW rating shall not be less than 100% of the specified kW rating of the engine generator.
- G. Starting System Test:
 - Demonstrate that the batteries and cranking motor are capable of five starting attempts of 10 seconds cranking each at 10-second intervals with the battery charger turned off.
- H. Remote Annunciator Panel and Remote Manual Stop Tests: Simulate conditions to verify proper operation of each visual or audible indication, interconnecting hardware and software, and reset button. Simulate emergency stop of the generator by initiating the remote manual stop station, while the generator is in operation.
- I. Fuel systems shall be flushed and tested per Section 23 10 00, FACILITY FUEL SYSTEMS: Fuel supply and storage requirements.
- J. Automatic Operation Tests:

Test the engine generator and associated automatic transfer switches to demonstrate automatic starting, loading and unloading. The load for this test shall be the actual connected loads. Initiate loss of normal source and verify the specified sequence of operation. Restore the

normal power source and verify the specified sequence of operation. Verify resetting of controls to normal.

- K. Parallel Operation Test:
 - Test the capability of each engine generator to parallel and share load with other engine generators, individually and in all combinations. During operations, record load-sharing characteristics of each engine generator in parallel operation. Provide multiple load banks as required. Record the following data:
 - a. Ambient temperature (at 15-minute intervals).
 - b. Generator output current (before and after load changes).
 - c. Generator output voltage (before and after load changes).
 - d. Power division and exchange between engine generators.
 - e. Real power (watts) and reactive power (vars) on each engine generator.
 - 2. Connect each engine generator, while operating at no load, in parallel with one other engine generator in the system, operating at rated kW, until all possible two-unit-in-parallel combinations have been tested. Verify stabilization of voltage and frequency within specified bandwidths and proportional sharing of real and reactive loads. Document stabilization of voltage, frequency within specified bandwidth, the active power division, active power exchange, reactive power division, voltage and frequency stability, and transient response in the following steps for each combination.
 - a. Divide the load proportionally between the engine generators and operate in parallel for 15 minutes.
 - b. Increase the load in steps until each engine generator is loaded to its service load.
 - c. Decrease the load in steps until each engine generator is loaded to approximately 25% of its rated kW.
 - d. Increase the load in steps until each engine generator is loaded to approximately 50% of its rated kW. Verify stabilization of voltage and frequency within specified bandwidths and proportional sharing of real and reactive load.
 - e. Reduce the sum of the loads on all engine generators to the rated $k \ensuremath{\mathbb{W}}$ of one engine generator.
 - f. Transfer a load equal to the rated kW of one engine generator to and from each engine generator. Verify stabilization of voltage

and frequency within specified bandwidths and proportional sharing of real and reactive load.

- 3. Connect each engine generator, while operating at no load, in parallel with all multiple combinations of all other engine generators in the system, while operating at rated kW, until all multiple combinations of parallel operations have been achieved.
- L. At the completion of the field tests, fill the main storage tank and day tank with fuel of grade and quality as recommended by the manufacturer of the engine. Fill all engine fluids to levels as recommended by manufacturer.
- M. When any defects are detected during the tests, correct all the deficiencies and repeat all or part of the 6-hour continuous test as requested by the COR, at no additional cost to the Government.
- N. Provide test and inspection results in writing to the COR.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the engine generator(s) and control and annunciation components are in good operating condition and properly performing the intended function.

3.4 INSTRUCTIONS AND FINAL INSPECTIONS

- A. Laminate or mount under acrylic resin a set of operating instructions for the system and install instructions within a frame mounted on the wall near the engine generator at a location per the COR.
- B. Furnish the services of a competent and factory-trained technician for one 4-hour period for instructions to VA personnel in operation and maintenance of the equipment, on the date requested by the COR.

---END---

--- INTENTIONALLY BLANK ---

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 23 00, LOW-VOLTAGE SWITCHGEAR: For factory-installed or external SPD.
- C. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.

b. Certification by the Contractor that the SPD has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits IEEE C62.45-08.....Surge Testing for Equipment Connected to Low-

Voltage (1000 V and Less) AC Power Circuits

- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL): UL 1283-15.....Electromagnetic Interference Filters UL 1449-14....Surge Protective Devices

PART 2 - PRODUCTS

2.1 PANELBOARD SPD

- A. General Requirements:
 - 1. Comply with UL 1449 and IEEE C62.41.2.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - 8. Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Switchgear, switchboard, or panelboard manufacturer shall install SPD at the factory.
- C. Do not perform insulation resistance tests on switchgear, switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
 - d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - e. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the COR.

---END---

---INTENTIONALLY BLANK---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.

- h. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- C. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA): LM-79-08.....Electrical and Photometric Measurements of Solid-State Lighting Products

LM-80-15..... Measuring Lumen Maintenance of LED Light Sources

- LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature
- F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995).....Surge Voltages in Low Voltage AC Power Circuits
- G. International Code Council (ICC): IBC-15.....International Building Code

H. National Electrical Manufacturer's Association (NEMA): SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or

Systems

- I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18....Life Safety Code
- J. Underwriters Laboratories, Inc. (UL):
 - 844-12..... (Classified)

Locations

924-16..... Emergency Lighting and Power Equipment

- 1598-08.....Luminaires
- 2108-15.....Low-Voltage Lighting Systems
- 8750-15.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be LED type, in accordance with NFPA, UL, as shown on drawings, and as specified. Other lighting types are not permitted.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings and so forth) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- D. Metal Finishes:

- 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
- Interior light reflecting finishes shall be white with not less than
 85 percent reflectance, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- E. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- F. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.

2.2 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch.
 - Enclosure: Shall be impact-resistant thermoplastic. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - 3. Lamps: Shall be LED at the specified DC voltage.
 - Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be minimum of 10 years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.
 - Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.3 LED EXIT LIGHT FIXTURES

A. Exit light fixtures shall meet applicable requirements of NFPA and UL.

B. Housing and door shall be die-cast aluminum.

- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.4 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20 $^{\circ}$ C. (-4 $^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.

- b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
- c. Minimum Rated Life: 50,000 hours per IES L70.
- d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports shall be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
- E. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- F. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.

> b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

---INTENTIONALLY BLANK---

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 03 30 11, CAST-IN-PLACE CONCRETE.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- F. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- j. Submit site plan showing all exterior lighting fixtures with fixture tags consistent with Lighting Fixture Schedule as shown on drawings. Site plan shall show computer generated point-bypoint illumination calculations. Include lamp lumen and light loss factors used in calculations.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Aluminum Association Inc. (AA): AAH35.1-06.....Alloy and Temper Designation Systems for Aluminum
- C. American Association of State Highway and Transportation Officials (AASHTO):

32-LTS-6.....Structural Supports for Highway Signs, Luminaires and Traffic Signals

D. American Concrete Institute (ACI):

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 318-05Building Code Requirements for Structural Concrete E. American National Standards Institute (ANSI): C81.61-09Electrical Lamp Bases - Specifications for Bases (Caps) for Electric Lamps F. American Society for Testing and Materials (ASTM): A123/A123M-12Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A153/A153M-09.....Zinc Coating (Hot-Dip) on Iron and Steel Hardware B108-03a-08Aluminum-Alloy Permanent Mold Castings C1089-13 Spun Cast Prestressed Concrete Poles G. Federal Aviation Administration (FAA): AC 70/7460-IK-07.....Obstruction Lighting and Marking AC 150/5345-43F-06.....Obstruction Lighting Equipment H. Illuminating Engineering Society of North America (IESNA): HB-9-00.....Lighting Handbook RP-8-05.....Roadway Lighting LM-52-03..... Photometric Measurements of Roadway Sign Installations LM-72-10.....Directional Positioning of Photometric Data LM-79-08.....Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products LM-80-08..... Approved Method for Measuring Lumen Maintenance of LED Light Sources TM-15-07.....Backlight, Uplight and Glare (BUG) Ratings I. National Electrical Manufacturers Association (NEMA): C136.3-05For Roadway and Area Lighting Equipment -Luminaire Attachments C136.17-05Roadway and Area Lighting Equipment - Enclosed Side-Mounted Luminaires for Horizontal-Burning High-Intensity-Discharge Lamps - Mechanical Interchangeability of Refractors ICS 2-00 (R2005)Controllers, Contactors and Overload Relays Rated 600 Volts ICS 6-93 (R2006)Enclosures

- J. National Fire Protection Association (NFPA): 70-11National Electrical Code (NEC)
- K. Underwriters Laboratories, Inc. (UL):
 - 496-08Lampholders
 773-95.....Plug-In, Locking Type Photocontrols for Use
 with Area Lighting
 773A-06Nonindustrial Photoelectric Switches for
 Lighting Control
 1029-94.....High-Intensity-Discharge Lamp Ballasts
 1598-08Luminaires
 8750-09....Light Emitting Diode (LED) Equipment for Use in
 Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

A. Provide manufacturer's standard provisions for protecting finishes during transport, storage, and installation.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp heat, and safe cleaning.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Pre-wire internal components to terminal strips at the factory.
- F. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.

- G. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.
- H. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings, provide finishes as indicated.
- I. Luminaires shall carry factory labels, showing complete, specific lamp and ballast information.

2.3 LAMPS

- A. Install the proper lamps in every luminaire installed and every existing luminaire relocated or reinstalled as shown on the drawings.
- B. Lamps shall be general-service, outdoor lighting types.
- C. LED sources shall meet the following requirements:
 - 1. Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): 4000K.
 - 3. Color Rendering Index (CRI): \geq 85.
 - 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES) LM79 for photometric performance and LM80 for lumen maintenance and L70 life.
- D. Mercury vapor lamps shall not be used.

2.4 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (\pm 10%) volt.
 - 4. Power Supplies: Class I or II output.
 - 5. Surge Protection: The system shall survive 250 repetitive strikes of "C Low" (C Low: 6kV/1.2 x 50 μs, 10kA/8 x 20 μs) waveforms at 1minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
 - 6. Power Factor (PF): \geq 0.90.
 - 7. Total Harmonic Distortion (THD): \leq 20%.
 - 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
 - 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- C. Install lamps in each luminaire.
- D. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

Verify operation after installing luminaires and energizing circuits.

---END---

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere					
AC	Alternating Current					
AE	Architect and Engineer					
AFF	Above Finished Floor					
AHJ	Authority Having Jurisdiction					
ANSI	American National Standards Institute					
AWG	American Wire Gauge (refer to STP and UTP)					
AWS	Advanced Wireless Services					
BCT	Bonding Conductor for Telecommunications (also					
	Telecommunications Bonding Conductor (TBC))					
BDA	Bi-Directional Amplifier					
BICSI	Building Industry Consulting Service International					
BIM	Building Information Modeling					
BOM	Bill of Materials					
BTU	British Thermal Units					
BUCR	Back-up Computer Room					
BTS	Base Transceiver Station					
CAD	AutoCAD					
CBOPC	Community Based Out Patient Clinic					
CBC	Coupled Bonding Conductor					
CBOC	Community Based Out Patient Clinic (refer to CBOPC,					
	OPC, VAMC)					
CCS	TIP's Cross Connection System (refer to VCCS and					
	HCCS)					

CFE	Contractor Furnished Equipment						
CFM	US Department of Veterans Affairs Office of						
	Construction and Facilities Management						
CFR	Consolidated Federal Regulations						
CIO	Communication Information Officer (Facility, VISN or						
	Region)						
CM	Centimeters						
CO	Central Office						
COR	Contracting Officer Representative						
CPU	Central Processing Unit						
CSU	Customer Service Unit						
CUP	Conditional Use Permit(s) - Federal/GSA for VA						
dB	Decibel						
dBm	Decibel Measured						
dBmV	Decibel per milli-Volt						
DC	Direct Current						
DEA	United States Drug Enforcement Administration						
DSU	Data Service Unit						
EBC	Equipment Bonding Conductor						
ECC	Engineering Control Center (refer to DCR, EMCR)						
EDGE	Enhanced Data (Rates) for GSM Evolution						
EDM	Electrical Design Manual						
EMCR	Emergency Management Control Room (refer to DCR, ECC)						
EMI	Electromagnetic Interference (refer to RFI)						
EMS	Emergency Medical Service						
EMT	Electrical Metallic Tubing or thin wall conduit						
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,						
	LEC)						
EPBX	Electronic Digital Private Branch Exchange						
ESR	Vendor's Engineering Service Report						
FA	Fire Alarm						
FAR	Federal Acquisition Regulations in Chapter 1 of Title						
	48 of Code of Federal Regulations						
FMS	VA's Headquarters or Medical Center Facility's						
	Management Service						
FR	Frequency (refer to RF)						
FTS	Federal Telephone Service						
GFE	Government Furnished Equipment						
GPS	Global Positioning System						
GRC	Galvanized Rigid Metal Conduit						
GSM	Global System (Station) for Mobile						
HCCS	TIP's Horizontal Cross Connection System (refer to						

	CCS & VCCS)						
HDPE	High Density Polyethylene Conduit						
HDTV	Advanced Television Standards Committee High-						
	Definition Digital Television						
HEC	Head End Cabinets (refer to HEIC, PA)						
HEIC	Head End Interface Cabinets (refer to HEC, PA)						
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)						
HSPA	High Speed Packet Access						
ΗZ	Hertz						
IBT	Intersystem Bonding Termination (NEC 250.94)						
IC	Intercom						
ICRA	Infectious Control Risk Assessment						
IDEN	Integrated Digital Enhanced Network						
IDC	Insulation Displacement Contact						
IDF	Intermediate Distribution Frame						
ILSM	Interim Life Safety Measures						
IMC	Rigid Intermediate Steel Conduit						
IRM	Department of Veterans Affairs Office of Information						
	Resources Management						
ISDN	Integrated Services Digital Network						
ISM	Industrial, Scientific, Medical						
IWS	Intra-Building Wireless System						
LAN	Local Area Network						
LBS	Location Based Services, Leased Based Systems						
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)						
LED	Light Emitting Diode						
LMR	Land Mobile Radio						
LTE	Long Term Evolution, or 4G Standard for Wireless Data						
	Communications Technology						
М	Meter						
MAS	Medical Administration Service						
MATV	Master Antenna Television						
MCR	Main Computer Room						
MCOR	Main Computer Operators Room						
MDF	Main Distribution Frame						
MH	Manholes or Maintenance Holes						
MHz	Megaherts (10 ⁶ Hz)						
mm	Millimeter						
MOU	Memorandum of Understanding						
MW	Microwave (RF Band, Equipment or Services)						
NID	Network Interface Device (refer to DEMARC)						
NEC	National Electric Code						
NOR	Network Operations Room						

NRTL	OSHA Nationally Recognized Testing Laboratory						
NS	Nurse Stations						
NTIA	U.S. Department of Commerce National						
	Telecommunications and Information Administration						
OEM	Original Equipment Manufacturer						
T&IO	Office of Information and Technology						
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)						
OSH	Department of Veterans Affairs Office of Occupational						
	Safety and Health						
OSHA	United States Department of Labor Occupational Safety						
	and Health Administration						
OTDR	Optical Time-Domain Reflectometer						
PA	Public Address System (refer to HE, HEIC, RPEC)						
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)						
PCR	Police Control Room (refer to SPCC, could be						
	designated SCC)						
PCS	Personal Communications Service (refer to UPCS)						
PE	Professional Engineer						
PM	Project Manager						
PoE	Power over Ethernet						
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,						
	PBX)						
PSTN	Public Switched Telephone Network						
PSRAS	Public Safety Radio Amplification Systems						
PTS	Pay Telephone Station						
PVC	Poly-Vinyl Chloride						
PWR	Power (in Watts)						
RAN	Radio Access Network						
RBB	Rack Bonding Busbar						
RF	Radio Frequency (refer to FR)						
RFI	Radio Frequency Interference (refer to EMI)						
RFID	RF Identification (Equipment, System or Personnel)						
RMC	Rigid Metal Conduit						
RMU	Rack Mounting Unit						
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,						
	PA)						
RTLS	Real Time Location Service or System						
RUS	Rural Utilities Service						
SCC	Security Control Console (refer to PCR, SPCC)						
SMCS	Spectrum Management and Communications Security						
	(COMSEC)						
SFO	Solicitation for Offers						
SME	Subject Matter Experts (refer to AHJ)						

SMR	Specialized Mobile Radio					
SMS	Security Management System					
SNMP	Simple Network Management Protocol					
SPCC	Security Police Control Center (refer to PCR, SMS)					
STP	Shielded Balanced Twisted Pair (refer to UTP)					
STR	Stacked Telecommunications Room					
TAC	VA's Technology Acquisition Center, Austin, Texas					
TCO	Telecommunications Outlet					
TER	Telephone Equipment Room					
TGB	Telecommunications Grounding Busbar (also Secondary					
	Bonding Busbar (SBB))					
TIP	Telecommunications Infrastructure Plant					
TMGB	Telecommunications Main Grounding Busbar (also					
	Primary Bonding Busbar (PBB))					
TMS	Traffic Management System					
TOR	Telephone Operators Room					
TP	Balanced Twisted Pair (refer to STP and UTP)					
TR	Telecommunications Room (refer to STR)					
TWP	Twisted Pair					
UHF	Ultra High Frequency (Radio)					
UMTS	Universal Mobile Telecommunications System					
UPCS	Unlicensed Personal Communications Service (refer to					
	PCS)					
UPS	Uninterruptible Power Supply					
USC	United States Code					
UTP	Unshielded Balanced Twisted Pair (refer to TP and					
	STP)					
UV	Ultraviolet					
V	Volts					
VAAR	Veterans Affairs Acquisition Regulation					
VACO	Veterans Affairs Central Office					
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)					
VCCS	TIP's Vertical Cross Connection System (refer to CCS					
	and HCCS)					
VHF	Very High Frequency (Radio)					
VISN	Veterans Integrated Services Network (refers to					
LIGHT	geographical region)					
VSWR	Voltage Standing Wave Radio					
W	Watts					
WEB	World Electronic Broadcast					
WiMAX	Worldwide Interoperability (for MW Access)					
WI-FI	Wireless Fidelity					
WMTS	Wireless Medical Telemetry Service					

WSP		Wiı	reless	Service	e Pro	ovi	ders					
в.	Def	initio	ns:									
	1	Bond	Perman	ent ioi	nina	of	metallic	narts	+ 0	form	an	electrical

- Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 2. Conduit: Includes all raceway types specified.
- provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 4. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 5. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 9. Ohm: A unit of restive measurement.
- Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 11. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 12. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 13. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.

> 14. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - Each entity engaged in construction shall be familiar with industry standards applicable to its construction activity.
 - Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:

1. Federal Communica	tions Commission, (FCC) CFR, Title 47:
Part 15	Restrictions of use for Part 15 listed RF
	Equipment in Safety of Life Emergency Functions
	and Equipment Locations
Part 47	Chapter A, Paragraphs 6.1-6.23, Access to
	Telecommunications Service, Telecommunications
	Equipment and Customer Premises Equipment
Part 58	Television Broadcast Service
Part 73	Radio and Television Broadcast Rules
Part 90	Rules and Regulations, Appendix C
Form 854	Antenna Structure Registration
Chapter XXIII	National Telecommunications and Information
	Administration (NTIA, P/O Commerce, Chapter
	XXIII) the 'Red Book'- Chapters 7, 8 & 9 $$
	compliments CFR, Title 47, FCC Part 15, RF
	Restriction of Use and Compliance in "Safety of
	Life" Functions & Locations
2 UC Department of	Narigulturo (Title 7 USC Chapter 55 Sections

2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction:

Sioux Falls VA Medical Center Redesign Upgrade Station Gene: Sioux Falls, SD	July 30, 2021 rator System - PSDM 100% Construction Documents Project No. 438-18-100
RUS Bull 1751F-630	Design of Aerial Cable Plants
RUS Bull 1751F-640	Design of Buried Cable Plant, Physical
	Considerations
RUS Bull 1751F-643	Underground Plant Design
RUS Bull 1751F-815	Electrical Protection of Outside Plants,
RUS Bull 1753F-201	Acceptance Tests of Telecommunications Plants (PC-4)
RUS Bull 1753F-401	Splicing Copper and Fiber Optic Cables (PC-2)
RUS Bull 345-50	Trunk Carrier Systems (PE-60)
RUS Bull 345-65	Shield Bonding Connectors (PE-65)
RUS Bull 345-72	Filled Splice Closures (PE-74)
RUS Bull 345-83	Gas Tube Surge Arrestors (PE-80)
3. US Department of Commerce/I	National Institute of Standards
Technology, (NIST):	
FIPS PUB 1-1	Telecommunications Information Exchange
FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
	Circuit Terminating Equipment for operation
	with Packet Switched Networks, or Between Two
	DTEs, by Dedicated Circuit
FIPS PUB 140/2	Telecommunications Information Security
	Algorithms
FIPS PUB 143	General Purpose 37 Position Interface between DTE and Data Circuit Terminating Equipment
FIPS 160/2	Electronic Data Interchange (EDI),
FIPS 175	Federal Building Standard for
	Telecommunications Pathway and Spaces
FIPS 191	Guideline for the Analysis of Local Area
	Network Security
FIPS 197	Advanced Encryption Standard (AES)
FIPS 199	Standards for Security Categorization of
	Federal Information and Information Systems
4. US Department of Defense,	(DoD):
MIL-STD-188-110	Interoperability and Performance Standards for
	Data Modems
MIL-STD-188-114	Electrical Characteristics of Digital Interface Circuits
Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 Communications Timing and Synchronizations MIL-STD-188-115 Subsystems MIL-C-28883 Advanced Narrowband Digital Voice Terminals MIL-C-39012/21 Connectors, Receptacle, Electrical, Coaxial, Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2) 5. US Department of Health and Human Services: The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules 6. US Department of Justice: 2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD). 7. US Department of Labor, (DoL) - Public Law 426-62 - CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at http://www.osha.gov/dts/otpca/nrtl/faq nrtl.htm l) Subpart 35 Compliance with NFPA 101, Life Safety Code Subpart 36 Design and Construction Requirements for Exit Routes Subpart 268 Telecommunications Subpart 305 Wiring Methods, Components, and Equipment for General Use Subpart 508 Americans with Disabilities Act Accessibility Guidelines; technical requirement for accessibility to buildings and facilities by individuals with disabilities

8. US Department of Transportation, (DoT):

- a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C -Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E - Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 -Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND

TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:

- a. CoG, "Continuance of Government" communications guidelines and compliance.
- b. COMSEC, "VA wide coordination and control of security classified communication assets."
- c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information Security Office of Cyber and Information Security, and Handbook 6500 - Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems -"Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.

C. NRTL Standards: Refer to

https://www.osha.gov/dts/otpca/nrtl/index.html

- 1. Canadian Standards Association (CSA); same tests as presented by UL
- 2. Communications Certifications Laboratory (CEL); same tests as presented by UL.
- 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
- 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit

514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety
D. Industry Standards:	
1. Advanced Television System	as Committee (ATSC):
A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,

Digital Television System A/53 Part 2: 2011 ATSC Digital Television Standard, Part 2, RF/Transmission System Characteristics

 A/53 Part 3: 2013 ATSC Digital Television Standard, Part 3, Service Multiplex and Transport System Characteristics A/53 Part 4: 2009 ATSC Digital Television Standard, Part 4, MPEG- 2 Video System Characteristics A/53 Part 5: 2014 ATSC Digital Television Standard, Part 5, AC-3 Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics American Institute of Architects (AIA): 2006 Guidelines for Design 4 Construction of Health Care Facilities. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-1bf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride 	Sioux Fai Redesign Sioux Fai	lls VA Medical Center Upgrade Station Gene: lls, SD	July 30, 2021 rator System - PSDM 100% Construction Documents Project No. 438-18-100
Service Multiplex and Transport System Characteristics A/53 Part 4: 2009 ATSC Digital Television Standard, Part 4, MPEG- 2 Video System Characteristics A/53 Part 5: 2014 ATSC Digital Television Standard, Part 5, AC-3 Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design 4 Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-1bf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
Characteristics A/53 Part 4: 2009 ATSC Digital Television Standard, Part 4, MPEG- 2 Video System Characteristics A/53 Part 5: 2014 ATSC Digital Television Standard, Part 5, AC-3 Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for VinvU Chloride			Service Multiplex and Transport System
 A/53 Part 4: 2009 ATSC Digital Television Standard, Part 4, MPEG- 2 Video System Characteristics A/53 Part 5: 2014 ATSC Digital Television Standard, Part 5, AC-3 Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment American Society for Testing and Materials (ASTM): B1 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-1bf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride 			Characteristics
2 Video System Characteristics A/53 Part 5: 2014 ATSC Digital Television Standard, Part 5, AC-3 Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinyl Chloride		A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
A/53 Part 5: 2014 ATSC Digital Television Standard, Part 5, AC-3 Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-1bf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			2 Video System Characteristics
Audio System Characteristics A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
A/53 Part 6: 2014 ATSC digital Television Standard, Part 6, Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Audio System Characteristics
Enhanced AC-3 Audio System Characteristics 2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinyl Chloride		A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
2. American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-1bf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Enhanced AC-3 Audio System Characteristics
Construction of Health Care Facilities. 3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride	2. Amerio	can Institute of Arch	itects (AIA): 2006 Guidelines for Design &
3. American Society of Mechanical Engineers (ASME): A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride	Const	ruction of Health Care	e Facilities.
A17.1 (2013) Safety Code for Elevators and Escalators Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride	3. Amerio	can Society of Mechan	ical Engineers (ASME):
Includes Requirements for Elevators, Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		A17.1 (2013)	Safety Code for Elevators and Escalators
Escalators, Dumbwaiters, Moving Walks, Material Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Includes Requirements for Elevators,
Lifts, and Dumbwaiters with Automatic Transfer Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Escalators, Dumbwaiters, Moving Walks, Material
Devices 17.3 (2011) Safety Code for Existing Elevators and Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Lifts, and Dumbwaiters with Automatic Transfer
17.3 (2011)Safety Code for Existing Elevators and Escalators17.4 (2009)Guide for Emergency Personnel17.5 (2011)Elevator and Escalator Electrical Equipment4. American Society for Testing and Materials (ASTM):B1 (2001)B1 (2001)Standard Specification for Hard-Drawn Copper WireB8 (2004)Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or SoftD1557 (2012)Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3)D2301 (2004)Standard Specification for Vinvl Chloride			Devices
Escalators 17.4 (2009) Guide for Emergency Personnel 17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		17.3 (2011)	Safety Code for Existing Elevators and
17.4 (2009)Guide for Emergency Personnel17.5 (2011)Elevator and Escalator Electrical Equipment4. American Society for Testing and Materials (ASTM):B1 (2001)Standard Specification for Hard-Drawn Copper WireB8 (2004)Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or SoftD1557 (2012)Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3)D2301 (2004)Standard Specification for Vinvl Chloride			Escalators
17.5 (2011) Elevator and Escalator Electrical Equipment 4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		17.4 (2009)	Guide for Emergency Personnel
4. American Society for Testing and Materials (ASTM): B1 (2001) Standard Specification for Hard-Drawn Copper Wire B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		17.5 (2011)	Elevator and Escalator Electrical Equipment
B1 (2001)Standard Specification for Hard-Drawn Copper WireB8 (2004)Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or SoftD1557 (2012)Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3)D2301 (2004)Standard Specification for Vinvl Chloride	4. Amerio	can Society for Testi	ng and Materials (ASTM):
WireB8 (2004)Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or SoftD1557 (2012)Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3)D2301 (2004)Standard Specification for Vinvl Chloride		B1 (2001)	Standard Specification for Hard-Drawn Copper
B8 (2004) Standard Specification for Concentric-Lay- Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Wire
Stranded Copper Conductors, Hard, Medium-Hard, or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		B8 (2004)	Standard Specification for Concentric-Lay-
or Soft D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			Stranded Copper Conductors, Hard, Medium-Hard,
D1557 (2012) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride			or Soft
Characteristics of Soil Using Modified Effort 56,000 ft-lbf/ft3 (2,700 kN-m/m3) D2301 (2004) Standard Specification for Vinvl Chloride		D1557 (2012)	Standard Test Methods for Laboratory Compaction
D2301 (2004) 56,000 ft-lbf/ft3 (2,700 kN-m/m3)			Characteristics of Soil Using Modified Effort
D2301 (2004) Standard Specification for Vinvl Chloride			56,000 ft-lbf/ft3 (2,700 kN-m/m3)
		D2301 (2004)	Standard Specification for Vinyl Chloride
Plastic Pressure Sensitive Electrical			Plastic Pressure Sensitive Electrical
Insulating Tape			Insulating Tape
		B258-02 (2008)	Standard Specification for Standard Nominal
BZDO-UZ (ZUUO) Standard Specification for Standard Nominal		. ,	- Diameters and Cross-Sectional Areas of AWG
B258-U2 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG			Sizes of Solid Round Wires Used as Electrical
B256-02 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical			Conductors
B250-02 (2008) Standard Specification for Standard Nominal			Diameters and Cross-Sectional Areas of AWG
B258-02 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG			Sizes of Solid Round Wires Used as Electrical
B256-02 (2008) Standard Specification for Standard Nominal Diameters and Cross-Sectional Areas of AWG Sizes of Solid Round Wires Used as Electrical			Conductors

Sioux Falls VA Medical Center Redesign Upgrade Station Gene Sioux Falls, SD	July 30, 2021 rator System - PSDM 100% Construction Documents Project No. 438-18-100
D709-01(2007)	Standard Specification for Laminated
	Thermosetting Materials
D4566 (2008)	Standard Test Methods for Electrical
	Performance Properties of Insulations and
	Jackets for Telecommunications Wire and Cable
5. American Telephone and Tel	egraph Corporation (AT&T) - Obtain following
AT&T Publications at https	://ebiznet.sbc.com/SBCNEBS/):
ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
	Environmental, and Physical Design Requirements
ATT-TP-76300 (2012)	Merged AT&T Affiliate Companies Installation
	Requirements
ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and
	Removal Requirements - Cable Racks and Raceways
ATT-TP-76306 (2009)	Electrostatic Discharge Control
ATT-TP-76400 (2012)	Detail Engineering Requirements
ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and
	Installation Requirements
ATT-TP-76405 (2011)	Technical Requirements for Supplemental Cooling
	Systems in Network Equipment Environments
ATT-TP-76416 (2011)	Grounding and Bonding Requirements for Network
	Facilities
ATT-TP-76440 (2005)	Ethernet Specification
ATT-TP-76450 (2013)	Common Systems Equipment Interconnection
	Standards for AT&T Network Equipment Spaces
ATT-TP-76461 (2008)	Fiber Optic Cleaning
ATT-TP-76900 (2010)	AT&T Installation Testing Requirement
ATT-TP-76911 (1999)	AT&T LEC Technical Publication Notice
6. British Standards Institut	ion (BSI):
BS EN 50109-2	Hand Crimping Tools - Tools for The Crimp
	Termination of Electric Cables and Wires for
	Low Frequency and Radio Frequency Applications
	- All Parts & Sections. October 1997
7. Building Industry Consulti	ng Service International(BICSI):
ANSI/BICSI 002-2011	Data Center Design and Implementation Best
	Practices

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 ANSI/BICSI 004-2012 Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities ANSI/NECA/BICSI Standard for Installing Commercial Building 568-2006 Telecommunications Cabling NECA/BICSI 607-2011 Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System Design and Implementation Best Practices 8. Electronic Components Assemblies and Materials Association, (ECA). ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices -Recommended Procedures for User Certification EIA/ECA 310-E (2005) Cabinets, and Associated Equipment 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities. 10. Insulated Cable Engineers Association (ICEA): ANSI/ICEA S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems ANSI/ICEA S-84-608-2010 Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber outside Plant Communications Cable ANSI/ICEA S-90-661-2012 Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems S-98-688 (2012) Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors S-99-689 (2012) Broadband Twisted Pair Cable Filled, Polyolefin Insulated, Copper Conductors ICEA S-102-700

Sioux Falls VA Medical Center Redesign Upgrade Station Gene Sioux Falls, SD	July 30, 2021 rator System - PSDM 100% Construction Documents Project No. 438-18-100
(2004)	Category 6 Individually Unshielded Twisted Pair
	Indoor Cables (With or Without an Overall
	Shield) for use in Communications Wiring
	Systems Technical Requirements
11. Institute of Electrical an	d Electronics Engineers (IEEE):
ISSN 0739-5175	March-April 2008 Engineering in Medicine and
	Biology Magazine, IEEE (Volume: 27, Issue: 2)
	Medical Grade-Mission Critical-Wireless
	Networks
IEEE C2-2012	National Electrical Safety Code (NESC)
C62.41.2-2002/	
Cor 1-2012 IEEE	Recommended Practice on Characterization of
	Surges in Low-Voltage (1000 V and Less) AC
	Power Circuits 4)
C62.45-2002	IEEE Recommended Practice on Surge Testing for
	Equipment Connected to Low-Voltage (1000 V and
	Less) AC Power Circuits
81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
	Impedance, and Earth Surface Potentials of a
	Grounding System
100-1992	IEEE the New IEEE Standards Dictionary of
	Electrical and Electronics Terms
602-2007	IEEE Recommended Practice for Electric Systems
	in Health Care Facilities
1100-2005	IEEE Recommended Practice for Powering and
	Grounding Electronic Equipment
12. International Code Council	:
AC193 (2014)	Mechanical Anchors in Concrete Elements
13. International Organization	for Standardization (ISO):
ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and
	Computing Technology in Healthcare Facilities -
	Recommendations for Electromagnetic
	Compatibility (Management of Unintentional
	Electromagnetic Interference) with Medical
	Devices
14. National Electrical Manufa	cturers Association (NEMA):

Sioux Fa Redesign Sioux Fa	lls VA Medical Center Upgrade Station Gene: lls, SD	July 30, 2021 rator System - PSDM 100% Construction Documents Project No. 438-18-100
	NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V
		Maximum)
	ANSI C62.61 (1993)	American National Standard for Gas Tube Surge
		Arresters on Wire Line Telephone Circuits
	ANSI/NEMA FB 1 (2012)) Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing EMT)
		and Cable
	ANSI/NEMA OS 1 (2009)) Sheet-Steel Outlet Boxes, Device Boxes,
		Covers, and Box Supports
	NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems
	TC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with
		Rigid PVC Conduit and Tubing
	NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15. Nation	nal Fire Protection A:	ssociation (NFPA):
	70E-2018	Standard for Electrical Safety in the Workplace
	70-2020	National Electrical Code (NEC)
	72-2019	National Fire Alarm Code
	75-2017	Standard for the Fire Protection of Information
		Technological Equipment
	76-2016	Recommended Practice for the Fire Protection of
		Telecommunications Facilities
	77-2019	Recommended Practice on Static Electricity
	90A-2018	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	99-2018	Health Care Facilities Code
	101-2018	Life Safety Code
	241-2019	Safeguarding construction, alternation and
		Demolition Operations
	255-2009	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2019	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2017	Standard for the Installation of Lightning
		Protection Systems

Sioux Falls VA Medical Center Redesign Upgrade Station Gene Sioux Falls, SD	July 30, 2021 rator System - PSDM 100% Construction Documents Project No. 438-18-100
1221-2019	Standard for the Installation, Maintenance, and
	Use of Emergency Services Communications
	Systems
5000-2018	Building Construction and Safety Code
16. Society for Protective Coa	tings (SSPC):
SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17. Society of Cable Telecommu	nications Engineers (SCTE):
ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
	Distribution Coaxial Cable
18. Telecommunications Industr	y Association (TIA):
TIA-120 Series	Telecommunications Land Mobile communications
	(APCO/Project 25) (January 2014)
TIA TSB-140	Additional Guidelines for Field-Testing Length,
	Loss and Polarity of Optical Fiber Cabling
	Systems (2004)
TIA-155	Guidelines for the Assessment and Mitigation of
	Installed Category 6 Cabling to Support
	10GBASE-T (2010)
TIA TSB-162-A	Telecommunications Cabling Guidelines for
	Wireless Access Points (2013)
TIA-222-G	Structural Standard for Antenna Supporting
	Structures and Antennas (2014)
TIA/EIA-423-B	Electrical Characteristics of Unbalanced
	Voltage Digital Interface Circuits (2012)
TIA-455-C	General Requirements for Standard Test
	Procedures for Optical Fibers, Cables,
	Transducers, Sensors, Connecting and
	Terminating Devices, and other Fiber Optic
	Components (August 2014)
TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)

Sioux Falls VA Medical Center Redesign Upgrade Station Gene Sioux Falls, SD	July 30, 2021 Prator System - PSDM 100% Construction Documents Project No. 438-18-100
ANSI/TIA-492-B	62.5-µ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November 2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September 2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA 526-7	Measurement of Optical Power Loss of Installed
	Single-mode Fiber Cable Plant
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 TIA-574 Position Non-Synchronous Interface between Data Terminal equipment and Data Circuit Terminating Equipment Employing Serial Binary Interchange (May 2003) TIA/EIA-590-A Standard for Physical Location and Protection of Below Ground Fiber Optic Cable Plant (July 2001) TIA-598-D Optical Fiber Cable Color Coding (January 2005) ТТА-604-10-B Fiber Optic Connector Intermateablility Standard (August 2008) Administration Standard for Telecommunications ANSI/TIA-606-A1 Infrastructure (2012) TIA-607-B Generic Telecommunications Bonding and Grounding (Earthing) For Customer Premises (January 2013) TIA-613 High Speed Serial Interface for Data Terminal Equipment and Data Circuit Terminal Equipment (September 2005) ANSI/TIA-606-B.....Administration Standard for Telecommunications Infrastructure (2012) Customer-owned Outside Plant Telecommunications ANSI/TIA-758-B Infrastructure Standard (April 2012) ANSI/TIA-854 A Full Duplex Ethernet Specification for 1000 Mb/s (1000BASE-TX) Operating over Category 6 Balanced Twisted-Pair Cabling (2001) ANSI/TIA-862-A Building Automation Systems Cabling Standard (April 2011) Telecommunications Infrastructure Standard for TIA-942-A Data Centers (March 2014) TIA-1152 Requirements for Field Testing Instruments and Measurements for Balanced Twisted Pair Cabling (September 2009) Healthcare Facility Telecommunications TIA-1179 Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 3. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 19, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
 - Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 5. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
 - 6. Wiring devices: Section 26 27 26, WIRING DEVICES.
 - General requirements common to more than one section in Division
 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
 - Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
 - 9. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
 - Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.

- 1. Use of premises is restricted at times directed by COR.
- 2. Movement of materials: Unload materials and equipment delivered to site.
- Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
- 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
- 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
- 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (005OP2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty

maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.

- 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
- 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe OR IV twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.

3. Digital camera.

- a. Supply only test equipment with a calibration tag fromGovernment-accepted calibration service dated not more than12 months prior to test.
- b. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:

a. Telecommunications rooms.

- Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
- 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.

- 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
- 4. Furnish remaining manuals prior to final completion.
- 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
- Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
- Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.

- 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .dwg formats as determined by COR.
- Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.

1.9 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer shall produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM shall have three installations of equipment submitted presently in operation of similar size and type as this project that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.

- 3. Authorized representative of OEM shall be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor shall have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier shall be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system shall be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - When more than one unit of same class of equipment is required, units shall be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar shall be a product of a single manufacturer.
 - Identify factory wiring on equipment being furnished and on wiring diagrams.
- H. Contractor Qualification:
 - 1. The Contractor or sub-contractor shall be a licensed Contractor with a minimum of three (3) years' experience installing and servicing systems of similar scope and complexity. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references shall be include a current

> point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The technicians shall have a minimum of five (5) continuous years of technical experience in cabling and terminations of low voltage equipment. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Contracting Officer of Record (COR) reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer shall have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - Government's approval of submittals shall be obtained for equipment and material before delivery to job site.

- Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - 1. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.11 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components shall include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time shall not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time shall not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.12 WARRANTY

- A. Comply with FAR clause 52.246-21, except as follows:
 - Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplate with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape shall be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape shall be resistant to sunlight and ultraviolet light.
- D. Application shall withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES

- A. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound.
- B. Provide closure of adequate strength to protect splice and maintain cable shield electrical continuity in buried environment.
- C. Provide re-enterable encapsulating compound maintaining chemical stability of closure.

- D. Provide filled splice cases in accordance with RUS Bull 345-72.
- E. Provide gel filled cable meeting requirements of ICEA S-99-689 and RUS 1755.390 or RUS 1755.890.
- F. Re-Enterable Encapsulating Compound: Product maintaining chemical stability of closure.
- G. Provide gel-filled splice cases in accordance with RUS Bull 345-72.

2.7 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts.
 - Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - Fill slots, sleeves and other openings in floors or walls if not used.
 - Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.

- 7. Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
- Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- Annular space between conduit and sleeve shall be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a.Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b.Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following

conditions and then only after arranging to provide temporary utility services, according to requirements indicated:

- a.Notify COR in writing at least 14 days in advance of proposed utility interruptions.
- b.Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.

- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

A. Perform cutting and patching according to contract general requirements and as follows:

- 1. Remove samples of installed work as specified for testing.
- Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
- 3. Remove and replace defective work.
- 4. Remove and replace non-conforming work.
- B. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- C. Protect adjacent installations during cutting and patching operations.
- D. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- E. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to

> verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or non-compliance with project provisions.

- COR shall notify contractor, of hourly rates and travel expenses for additional site visits, and shall issue an invoice to Contractor for additional site visits.
- Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or noncompliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection shall verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
 - Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
 - Review cable tray, conduit and path/wire way installation practice.
 - 8. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.

- 9. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 10. Provide results of interim inspections to COR.
- 11. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.

a. Additional inspections are scheduled at direction of COR.

- b.Re-inspection of deficiencies noted during interim inspections, shall be part of system's Final Acceptance Proof of Performance Test.
- c.The interim inspection cannot affect the system's completion date unless directed by COR.
- Facility COR shall ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment shall not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a.Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:
 - a. Utility provider entrance.
 - b. Buried conduit duct locations.
 - c.Maintenance Holes (Manholes) and hand holes.
 - d.ENTR or DEMARC.

- e.MCR interconnections.
- f.TER interconnections.
- g.TR interconnections.
- h.System interfaces in locations listed herein.
- i.UPS areas.
- j.Emergency generator interconnections.
- k.Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- I. Operational Test:
 - 1. Government's Condition of Acceptance of System Language:
 - a.Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c.With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- J. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- K. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed) Once items have been

provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.

3. If system is declared unacceptable without conditions, rescheduled testing expenses shall be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.

- Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
- Patch and repair fireproofing damaged due to cutting or course of work shall be performed by installer of fireproofing and paid for by trade responsible for damage.

B. Maintain equipment and systems until final acceptance. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

3.10 COLOR CHART

Description Item	Jack	Cable	Patch Cables	I.D.	Notes
Telephone	Ivory	Ivory	Ivory	Т	4 Pair Cable
Data/Computer	Blue	Blue	Blue	С	4 Pair Cable
Data/Computer	Yellow	Yellow	Yellow	С	4 Pair Cable
Wireless Access point	Green	Green	Green	WAP	4 Pair Cable
Fiber - Multi-mode	Black	Aqua	Aqua	FO	6/12/24/36
Fiber - Single-mode	Ivory	Yellow	Yellow	FO	6/12
Sound System	-	Green		SS	Multi- conductors
CCTV - IP	White	White	White	CCTV	4 pair cable

A. All voice, video, and data cables and connectors to have the following colors:

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 15 00, Communications STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes
 6 mm² (10 AWG) and smaller. Identify all grounding conductors with

continuous green insulation color, except identify wire sizes 25 $\rm mm^2$ (4 AWG) and larger per NEC.

- Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
 - 1. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- C. Equipment Rack and Cabinet Ground Bars:
 - Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
 - b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
 - c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
 - d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole grounding lugs.
 - e. Copper splice bar of same material to transition between adjoining racks.
 - f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
 - g. Listed as grounding and bonding equipment.

- Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- D. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- E. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- F. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- G. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Exterior Equipment Grounding: Bond exterior metallic components (including masts and cabinets), antennas, satellite dishes, towers, raceways, primary telecommunications protector/arresters, secondary surge protection, waveguides, cable shields, down conductors and other conductive items to directly to Intersystem Bonding Termination.
- B. Install telecommunications bonding backbone conductor throughout building via telecommunications backbone pathways effectively bonding all interior telecommunications grounding busbars in telecommunications rooms to telecommunications main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.
- C. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- D. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- E. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- F. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- G. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
- Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
- 5. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
- 6. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
- 7. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
 - c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
 - d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- H. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.

- d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
- I. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - At each rack or cabinet containing active equipment or shielded cable terminations:
 - Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars are provided at rear of lineup of bolted together equipment racks.
 - c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
 - d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- J. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- K. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- L. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.

- 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- M. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.

- - - E N D - - -

--- INTENTIONALLY BLANK ---

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

A. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 32 mm (11/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 3. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 4. Flexible Galvanized Steel Conduit: Conform to UL 1.
 - 5. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
 - 6. Surface Metal Raceway: Conform to UL 5.

- 7. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.

- Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
- 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
- c. Indent type connectors or couplings are not permitted.
- d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
- e. Provide OEM approved fittings.
- 3. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings shall incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 5. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.

- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 8. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
 - 6. All communications outlets shall be two gang boxes with a minimum of 2 $\frac{1}{2}$ inch deep with single or two gang as shown on the drawings.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.

- 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
- 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
- 5. Size: Metric Designator 53 (trade size 2) or smaller.
- Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
- 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
- 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
- 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
- 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- H. Outlet Boxes:
 - Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- I. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Required
Communications Structured Cabling	27 15 00	Conduit
Video Surveillance	28 23 00	Complete Conduit

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR shall grant limited permission by request, in condition of limited working space.
 - c. Waterproofing at Floor, Exterior Wall, and Roof Conduit
 Penetrations:
 - Seal clearances around conduit and make watertight as or directed by waterproofing manufacturer.

C. Conduit Installation:

- Minimum conduit size of 25 mm (1 inch), but not less than size required for 40 percent fill.
- 2. Install insulated bushings on all conduit ends.
- Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
- Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.

- 6. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).

- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Furred or Suspended Ceilings and in Walls:
 - 1. Rigid steel, IMC, EMT. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- E. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or EMT.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.

- F. Each Conduit shall be labeled (Stenciled every 20 feet) with the following information for each system as follows:
 - 1. Orange: Demarcation Point
 - 2. Green: Network Connection.
 - 3. Purple: Common equipment.
 - White: First Level, Terminating building backbone, MC (CD) to IC (BD)
 - 5. Gray: Second level, IC(BD) to TR(HD)/FD)
 - 6. Blue: Horizontal Cabling.
 - 7. Brown: Campus Backbone.
 - 8. Yellow: Misc, security, PACS, CATV, MATV, Nurse call.
 - 9. Red: Fire Alarm.
- G. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
 - Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
 - 3. Install expansion and deflection couplings where shown.
- H. Seismic Areas:
 - 1. In seismic areas, follow H-18-8 Seismic Design Requirements.
 - Rigidly secure conduit to building structure on opposite sides of a building expansion joint with pull boxes on both sides of joint.
 - 3. Connect conduits to pull boxes with 375 mm (15 inches) of slack flexible conduit.
 - Install green copper wire minimum #6 AWG in flexible conduit for bonding jumper.
- I. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the

weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.

- 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- Bolts supported only by plaster or gypsum wallboard are not acceptable.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- J. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.

- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing shall be maintained between boxes.
- K. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - 1. Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - Install only in accessible spaces not subject to physical damage or corrosive influences.
 - Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

----INTENTIONALLY BLANK-----

SECTION 27 11 00 TELECOMMUNICATIONS ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies equipment cabinets, interface enclosures, relay racks, patch panels, grounding and bonding and associated hardware in service provider DEMARC, computer and telecommunications rooms.

1.2 RELATED WORK

- A. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION.
- B. Separate submittal into sections for each subsystem containing the following:
 - Pictorial layouts of each Telecommunications Room and Cross Connection Space (VCCS, and HCCS termination cabinets), each distribution cabinet layout, and TCO as each is expected to be installed and configured.
 - 2. Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.

1.4 WARRANTY

A. Work subject to term of Article "Warranty of Construction" FAR Clause 52.246.21.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. Provide components of cabinet system (cabinet, thermal, cable and power management accessories) from a single manufacturer.
- B. Equipment Standards and Testing:

- Equipment shall be listed by a NRTL where a UL standard is in existence; active and passive equipment shall conform to each UL standard in effect for equipment, on the submittal date.
- Each item of electronic equipment shall be labeled by a NRTL that warrants equipment has been tested in accordance with, and conforms to specified standards.
- C. Wall Mounted Hinged Distribution or System Interface Cabinet:
 - Construct of minimum 1.59 mm (16 gauge) cold rolled steel, with top, side and bottom panels.
 - Provide double-hinged front door and main cabinet body allowing access to all internal equipment and wiring; mount to solid walls or internal studs.
 - 3. Provide baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using FMS Chief or COR.
 - 4. Provide integral and adjustable EIA/ECA 310 standard predrilled rack mounting rails to allow front panel equipment mounting and access.
 - 5. After equipment, doors and panels are installed, snap-in-place chrome trim strip covers all front panel screw fasteners.
 - 6. Provide full-length vertical piano hinge to allow entire front portion of cabinet to "swing out" from wall for access to installed equipment, wires and cable; maintain minimum OSHA Safety clearances and NFPA operational functions.
 - 7. Provide an OEM's fully assembled unit enclosure.
 - Equip these cabinets same as equipment cabinets, except mount UPS on floor below cabinet with AC power connection in conduit to AC service panel.
 - 9. Technical Characteristics:
 - a. Overall Height: Maximum 1,218 mm (48 inches).
 - b. Overall Depth: Maximum 558 mm (22 inches).
 - c. Overall Width: Maximum 610 mm (24 inches).
 - d. Front Panel Horizontal: Maximum width 483 mm (19 inches).
 - e. Capacity: Maximum 180 kilograms (400 pounds).
 - f. Lockable:
 - 1) Tubular lock with 7-pin security.
 - 2) Key cabinets alike.
- D. Wire Management Equipment:

- Provide an orderly horizontal and vertical interface between outside and inside wires and cables, distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide an uniform connection media for system fire-retardant wires and cables and other subsystems.
- Interface to each cable tray, duct, wireway, or conduit used in the system.
- 3. Interconnection or distribution wires and cables shall enter system at top (or from a wireway in the floor) via overhead protection system and be uniformly routed down either or both sides at same time, of the frames side protection system, then laterally for termination on rear of each respective terminating assembly.
- E. Vertical Cable Managers:
 - Use same make, style and size of vertical cable manager on rack/frame or in between racks/frames when more than one cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color and cover style of racks/frames and cable managers.
- F. Horizontal Cable Managers:
 - Use same make and style of cable manager on rack/frame or racks/frames, when more than one horizontal cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color of racks/frames and cable managers.
- G. Provide installation hardware when enclosures or racks are attached to structural floor.
- H. Provide noise filters and surge protectors for each equipment interface cabinet, switch equipment cabinet, control console, and local and remote active equipment locations to ensure protection from input primary AC power surges so as a consequence noise glitches are not induced into low voltage data circuits.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate cabinet installation such that doors fully close and lock, with active and passive equipment installed and connected.
- B. Verify equipment dimensions and brackets allow mounting with cabinet doors closed. Front door or rear door of any cabinet that does not

close and lock shall result in immediate cancellation of inspections or tests.

3.2 INSTALLATION

- A. Equipment Cabinets:
 - Install cabinets in a manner that complies with OEM instructions, requirements of this specification, and in a manner which does not constitute a safety hazard.
 - Provide weatherproof equipment installed outdoors or install in NEMA
 3S rated enclosures with hinged doors and locks with two keys.
 - 3. Install equipment indoors in NEMA 4 rated metal cabinets with hinged doors and locks with two keys.
- B. Grounding:
 - Bond equipment, including identified Government furnished equipment, to ground so total ground resistance measures maximum 0.1 Ohm.
 - a. Install lightning arrestors and grounding in accordance with NFPA.
 - b. Install gas protection devices at nearest point of entrance in buildings where protection is required and on same circuits as MDF in telephone switch room.
 - c. Do not use AC neutral, including in power panel or receptacle outlet, for system control, subcarrier or audio reference ground.
 - d. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted.
 - Connect each equipment grounding terminal to a separate mounting hole on equipment mounting rail, to right as one looks at it from rear, with a minimum #12 AWG stranded copper wire with protective green jacket.
 - 3. Extend common ground bus of minimum #10 AWG solid copper wire throughout each equipment cabinet and bond to TGB. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground buses together.
 - 4. Bond equipment to cabinet bus with copper braid equivalent to #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

- 5. Bond cable shields to cabinet ground bus with minimum #12 AWG stranded copper wire at only one end of cable run. Insulate cable shields from each other, faceplates, equipment racks, consoles, enclosures or cabinets, except at system common ground point. Bond coaxial and audio cables only at source; in all cases, keep cable shield ground connections to a minimum.
- C. Equipment Assembly:
 - 1. Cabinets:
 - a. Install and adjust cabinet/frame accessories to position, including thermal management accessories, vertical cable managers, vertical power managers and equipment-mounting rails, using manufacturer's installation instructions prior to baying or placing cabinet for attachment to building and before installing any rack-mount equipment into cabinet. Shelves, horizontal cable managers and filler panels (rack-mount accessories), if used, shall be installed after cabinet is placed.
 - b. When used in a multi-cabinet bay, attach cabinets side-by-side using baying kits according to manufacturer's instructions.
 - c. Attach overhead ladder rack or cable tray to ceiling or top of cabinet. Maintain minimum 75 mm (3 inches) clearance between top of cabinet and bottom of ladder rack/cable tray. Position ladder rack/cable tray so that it does not interfere with hot air exhaust through cabinet's top panel. Use radius drops where cable enters or exits ladder rack/cable tray.
 - d. In seismic areas, install additional bracing as required by building codes and recommendations of a licensed structural engineer.
 - e. Install ladder rack with side stringers facing rack or cabinet so that ladder forms an inverted U-shape and so that welds between stringers (sides) and cross members (middle) face away from cables.
 - f. Secure ladder rack to tops of equipment racks or cabinets using manufacturer's recommended supports and appropriate hardware.
 - g. Attach bonding conductor sized per TIA-607-B between telecommunications grounding busbar and cabinet. Attach bonding conductor to cabinet using a ground terminal block according to manufacturer's installation instructions.

- h. Provide bonding conductor and other hardware required to make connections between cabinet and telecommunications grounding busbar.
- i. Install rack mounted equipment normally requiring adjustment or observation so operational adjustments can be conveniently made.
- j. Mount heavy equipment with rack slides or rails to allow servicing from front of enclosure. Provide support in addition to front panel mounting screws for heavy equipment.
- k. Provide with cable slack to permit servicing by removal of installed equipment from front of enclosure.
- Install color-matched blank panel spacer 44 mm (1.75 inches) high between each piece of active and passive equipment to ensure adequate air circulation for efficient equipment cooling and air ventilation.
- m. Provide quiet fans and non-disposable air filters at each console or cabinet.
- n. Install enclosures and racks plumb and square, permanently attached to building structure and held in place.
- o. Provide 381 mm (15 inches) of front vertical space opening for additional equipment.
- p. Install equipment located indoors in metal racks or enclosures with hinged doors to allow access for maintenance without causing interference to other nearby equipment.
- q. Cables shall enter equipment racks or enclosures in such a manner to allow doors or access panels to open and close without disturbing or damaging cables.
- r. Mount distribution hardware in a manner that allows access to connections for testing and provides room for doors or access panels to open and close without disturbing the cables.
- 2. Vertical Cable Managers:
 - Provide vertical managers so number of cables in each manager does not exceed OEM fill capacity.
 - b. Attach vertical cable managers to side of rack/frame using manufacturer's installation instructions and hardware.
 - c. Attach vertical cable manager to both racks/frames when a single vertical cable manager is used between two racks/frames.

- d. Dress cables through openings in between T-shaped guides on manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
- e. Attach doors to cable manager in closed position after cabling is complete.
- 3. Horizontal Cable Managers:
 - Attach horizontal cable managers to rack/frame with minimum four screws according to manufacturer's installation instructions.
 Center each cable manager within allocated rack-mount space (RMU).
 - b. Provide horizontal managers located so number of cables each manager supports is less than cable manager's cable fill capacity.
 - c. Dress cables through openings in between T-shaped guides on cable manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
 - Attach covers to cable manager in closed position after cabling is complete.
- D. Labeling: Permanently label each enclosure in accordance with TIA-606-B using laser printers handwritten labels are not acceptable.
 - 1. Equipment: Label system equipment with contrasting plastic laminate or bakelite material on face of unit corresponding to its source.
 - Conduit, Cable Duct, and/or Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 m (10 feet), identifying system.

- - - E N D - - -

---INTENTIONALLY BLANK---

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each IT room showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - 2. List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
 - Pre-acceptance Certification: Submit in accordance with test procedures.

- Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
 - 5. Active and passive equipment required by system design and approved technical submittal; shall conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by

Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment shall bear approved NRTL label.

- C. System Performance: Provide complete system to meet or exceed TIA Category 6A requirements.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems.)
 - 3. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

A. Cable Systems - Shielded Twisted Pair, Fiber optic: 1. General:

- a. Provide cable (i.e. backbone, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
- b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
- 2. Telecommunications Rooms (TR):
 - a. In TR's served with STP and fiber optic, terminate STP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels,
 - b. Provide 24 port fiber optic modular patch panels with "LC" or OEM specified couplers dedicated for voice, data and FMS applications.
 - c. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair.), to ensure complete and operational distribution systems.
 - d. In TR's, which are only served by a STP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.
- 3. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6A requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 250 MHz .
 - c. Provide four pair 0.326 mm2 (22 AWG) for Category 6A cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work areaTelecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 6A Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.

- 4. Fiber Optics Backbone Cable:
 - a. Provide 50/125 micron OM4 multi-mode cable, containing at minimum
 18 strands of fiber, unless otherwise specified.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Armored Cable construction:
 - 1. Optical fiber/glass core/cladding/coating/buffer.
 - 2. FR/UV Resistant inner jacket
 - 3. Rip cord.
 - 4. FR/UV resistant outer jacket
 - 5. Interlocking armor, aluminum or steel.
 - Overall outer flame-retardant thermoplastic to meet OFCP (plenum conductive) and OFNP (plenum none conductive).
 - d. Provide tight buffered interlocked armored fiber cable for indoor/outdoor cables for indoor runs.
 - e. Terminate multimode fibers at both ends with LC or SC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 ft.) cable loop at each end.
 - f. Install fiber optic cables in TR's, Voice (Telephone) Switch Room, and Main Computer Room, in rack mounted fiber optic patch panels. Provide female LC or SC couplers in appropriate panel for termination of each strand.
 - g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53). Provide written results to COR for review and approval.
- B. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
 - 3. Fiber Optic Cables:
 - a. Provide fiber CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - b. Install fiber optic cable slack in protective enclosures.

- C. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic, and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.
 - Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- D. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations and system ground with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- E. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber - these counts do not include 50 percent spare requirement. Provide cable management system for each panel.
 - Provide panels for minimum 24 female LC connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.

- 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures
- 3. Provide patch panels with highest OEM approved density of fiber LC termination's (maximum of 72 each), while maintaining a high level of manageability. Provide proper LC couplers installed for each pair of fiber optic cable LC connectors.
 - a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of connectors of same patch panel.
 - c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
- 4. Provide field installable connectors that are pre-polished.
 - a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic LC female connector terminated with a fiber optic cable.
 - b. Install a terminating cap for each unused LC connector.
- F. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate.
 - 2. Data and Voce Multi-Conductor:
 - a. Shielded twisted pair STP cable with solid conductors.
 - b. Able to handle the power and voltage used over the distance required.
 - c. Meets TIA transmission performance requirements of Category 6A
 - d. Meets or exceeds TIA-EIA-568-C2-10, TSB-155
 - e. Technical Characteristics:
 - 1) 0.326 mm2 (22 AWG) cable

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 2) Working Shield: 350 V. 3) Bend Radius: 10 times cable outside diameter. 4) Impedance: 100 Ohms + 15%, BAL. 5) Bandwidth: 250 MHz500 MHz 6) DC Resistance: Maximum 9.38 Ohms/100m (328 ft.) at 20 degrees С. 7) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.). 8) CMR (riser) Cable shall have star filler and rip cord. 9) CMP (plenum) cable shall have filler and rip cord. 10) NEXT loss headroom +5dB 11) PSNEXT loss Headroom +5dB 12) ACRF headroom +6dB 13) PSACRF headroom +6dB 14) Data cable color: BLUE 15) Voice cable color: GRAY 16) Shield Coverage: a) Overall Outside (if OEM specified): 100 percent. b) Individual Pairs (if OEM specified): 100 percent. 17) Maximum attenuation for 100m (328 ft.) at 20 $^{\circ}$ C: Frequency Category 6A (MHz) (dB) 1 2.1 3.8 4 0 E D

8	5.3
10	5.9
16	7.5
20	8.4
25	9.4
31.25	10.5
62.5	15.0
100	19.1
200	27.6
250	31.1
300	34.3
400	40.1
500	45.3

3. Fiber Optic:

a. Multimode Fiber:

- Provide OM4 Type tight buffered interlocked armored multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
- 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 50 microns.
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:
 - 1) 850 nanometer: Minimum 160 MHz.
 - 2) 1,300 nanometer: Minimum 500 MHz.
 - f) Connectors: Stainless steel.
- b. Single mode Tight Fiber:
 - Provide OS2 Type tight buffered interlocked armored single mode fiber optic cable installed in conduit for all system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 100 mm (4 inches).
 - b) Outer Jacket: PVC.
 - c) Fiber Diameter: 8.7 microns.
 - d) Cladding: 125 microns.
 - e) Attenuation at 850 nanometer: 1.0 dBm per kilometer.
 - f) Connectors: Ceramic.
- B. Outlet Connection Cables:
 - 1. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Category 6A.

- 3) Connector: CAT 6A RJ-45 male on each end.
- 4) Color Coding: Required, data industry standard.
- 5) Size: Minimum 22 AWG for CAT 6A.
- 2. Voice (Telephone):
 - a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Same as data.
 - 3) Connector: CAT 6A RJ-11/45 compatible male on each end.
 - 4) Size: Minimum 22 AWG.
 - 5) Color Coding: Required, telephone industry standard.
- 3. Fiber Optic:
 - a. Provide a connection cable for each TCO fiber optic connector in system with 10 percent spares. Provide data connection cable to connect a fiber optic instrument to TCO fiber optic jack. Do not provide fiber optic instruments/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Flexible single conductor with jacket.
 - 3) Connector: LC male on each end.
 - 4) Size: To fit OS1 single mode or OM4 multimode cable.
- C. System Connectors:
 - Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with STP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.

- 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
- 5) Leakage: Maximum 100 µA.
- 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: shall interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- D. Fiber Optic Terminators:
 - 1. Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.
 - b. Power Blocking: As required.
 - c. Return Loss: 25 dB.
 - d. Connectors: LC .
 - e. Construction: Ceramic.
- E. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 - e. Maximum 40 percent conduit fill for cable installation.
 - Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install for ease of operation, maintenance, and testing.

- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - Bond to ground metallic cable sheaths. (i.e. risers, underground, horizontal.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, shall be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - Print lettering of labels with thermal ink transfer process ;handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

 Verify that equipment provided adheres to installation requirements of this section. Interim inspection shall be conducted by a factorycertified representative and witnessed by COR.
- 2. Check each item of installed equipment to ensure appropriate NRTL label.
- Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
- Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
- 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
- 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections shall be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
 - Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.

- Test utilizing approved test equipment to certify proof of performance.
- 4. Verify that total system meets the requirements of this section.
- 5. Include expected duration of test time, with notification of the acceptance test.
- D. Verification Tests:
 - Test STP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
 - Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A, Optical Power Meter and Light Source and Method B, OTDR . Perform verification acceptance test.
 - 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using Method A, Optical Power Meter and Light Source and Method B, OTDR . Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 5E (or on a case by case basis Category 6 for specialized powered systems accepted by SMCS 0050P2H3, (202) 461– 5310, IT and FMS Services and COR) tests in accordance with TIA-568– B.1 and TIA-568–B.2. Include the following tests – wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- F. Total System Acceptance Test: Perform verification tests for STP copper cabling systems and multi-mode and single mode fiber optic cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:

- a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
- b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
- Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
- Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four-hour trouble shooting time.
 - b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

--- INTENTIONALLY BLANK ---

SECTION 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor shall comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include: video assessment and surveillance, and associated live camera, and uninterruptible power supplies (UPS) interface. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration,

and acceptance of equipment, software, materials, installation, documentation, and workmanship shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- C. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- F. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.

- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- Credential: Data assigned to an entity and used to identify that entity.
- J. DGP: Data Gathering Panel component of the Physical Access Control System capable to communicate, store and process information received from readers, reader modules, input modules, output modules, and Security Management System.
- K. DTS: Digital Termination Service: A microwave-based, line-of-sight communications provided directly to the end user.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- N. ESS: Electronic Security System.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- Q. IDC: Insulation displacement connector.
- R. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.
- S. I/O: Input/Output.
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- AA. M-JPEG: Motion Joint Photographic Experts Group.

- BB. MPEG: Moving picture experts group.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- FF. NTSC: National Television System Committee.
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space
 (e.g., between the studs of a wall cavity).
- II. PACS: Physical Access Control System; A system comprised of cards, readers, door controllers, servers and software to control the physical ingress and egress of people within a given space
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25-pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- RR. Solid-Bottom or Non-ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- SS. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.

- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of three (3) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references shall include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system

> manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of three (3) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] <insert number> miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Contracting Officer's Representative reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer shall have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which shall render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARRANGEMENT OF CONTRACT DOCUMENTS

A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that shall be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.

B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: The Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval shall not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals shall not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Submittals are required for all equipment anchors and supports. Submittals shall include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior

problems (e.g., vibration, thermal expansion,) associated with equipment or piping so that the proposed installation can be properly reviewed.

- 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements shall be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which shall be detrimental to successful performance of the completed work or system.
 - 2. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware) which are required to produce an accurate and detailed depiction of the project.
 - 3. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
 - 4. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS SHALL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings.

> If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.

- 5. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and/or maintenance of the component or system.
 - Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20-pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket

of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.

- Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2) Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and

instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.

- j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with

information contained in Project Record Drawings to assure correct illustration of the completed installation.

- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 6. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.

- 7. Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 8. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs

- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the COR to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage
 - e. Camera Location
 - f. Floor Plan Sheet Number
 - g. Camera Type
 - h. Mounting Type
 - i. Standard Detail Reference

- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- G. Approvals shall be based on complete submission of manuals together with shop drawings.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC): A117.1.....Standard on Accessible and Usable Buildings and Facilities
 C. American National Standards Institute (ANSI) / Security Industry Association (SIA): AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards
 CP-01-00.....Control Panel Standard-Features for False Alarm Reduction
 PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity
 TVAC-01.....CCTV to Access Control Standard - Message Set

for System Integration

D. American National Standards Institute (ANSI)/Electronic Industries
 Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV Cameras

375A-76.....Electrical Performance Standards for CCTV Monitors

- E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems
- F. American Society for Testing and Materials (ASTM) B1-07..... Standard Specification for Hard-Drawn Copper Wire

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 B3-07.....for Soft or Annealed Copper Wire B8-04.....for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape G. Architectural Barriers Act (ABA), 1968 H. Department of Justice: American Disability Act (ADA) 28 CFR Part 36-2010 ADA Standards for Accessible Design I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006 VA BIM Guide, V1.0 10 J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems K. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal Employees and Contractors L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities N. Homeland Security Presidential Directive (HSPD): HSPD-12.....Policy for a Common Identification Standard for Federal Employees and Contractors O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System 802.3af-08.....Power over Ethernet Standard 802.3at-09Power over Ethernet (PoE) Plus Standard

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810.....Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443.....Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693.....Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794..... Information technology - Biometric data interchange formats Q. National Electrical Contractors Association

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 303-2005..... Tinstalling Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): 250-08..... Enclosures for Electrical Equipment (1000 Volts Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable S. National Fire Protection Association (NFPA): 70-2018..... National Electrical Code (NEC) 731-2017.....Standards for the Installation of Electric Premises Security Systems 99-2018.....Health Care Facilities T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3....Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 44-05......Thermoset-Insulated Wires and Cables 50-07.....Enclosures for Electrical Equipment 83-08.....Thermoplastic-Insulated Wires and Cables 294-99......The Standard of Safety for Access Control System Units 305-08..... Standard for Panic Hardware 360-09.....Liquid-Tight Flexible Steel Conduit 444-08.....Safety Communications Cables 464-09.....Audible Signal Appliances 467-07..... Electrical Grounding and Bonding Equipment Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Systems for Underground Use or in Damp or Wet Locations 486E-00..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit 51-05.....Schedule 40 and 80 Rigid PVC Conduit 609-96.....Local Burglar Alarm Units and Systems 634-07..... Standards for Connectors with Burglar-Alarm Systems 636-01..... Standard for Holdup Alarm Units and Systems 639-97.....Detection Units 651-05.....Schedule 40 and 80 Rigid PVC Conduit Conduit 752-05.....Standard for Bullet-Resisting Equipment 797-07.....Electrical Metallic Tubing 827-08.....Central Station Alarm Services 1037-09.....Standard for Anti-theft Alarms and Devices 1635-10.....Digital Alarm Communicator System Units 1076-95..... Standards for Proprietary Burglar Alarm Units and Systems 1242-06.....Intermediate Metal Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1981-03.....Central Station Automation System 2058-05..... High Security Electronic Locks 60950..... Technology Equipment 60950-1..... Information Technology Equipment - Safety -Part 1: General Requirements Z. Uniform Federal Accessibility Standards (UFAS) 1984 AA. United States Department of Commerce:

Special Pub 500-101 \ldots Care and Handling of Computer Magnetic Storage

Media

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways shall be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.

- Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
- Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.
 - Interior, Uncontrolled Environment: System components installed in non-temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of -18 to 50 deg C (0 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, noncondensing. NEMA 250, Type 4X enclosures.
 - 3. Exterior Environment: System components installed in locations exposed to weather shall be rated for continuous operation in ambient conditions of -34 to 50 deg C (-30 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, condensing. Rate for continuous operation where exposed to rain as specified in NEMA 250, winds up to 137 km/h (85 mph) and snow cover up to 610 mm (24 in) thick. NEMA 250, Type 4X enclosures.
 - 4.
- B. Security Environment: Use vandal resistant enclosures in high-risk areas where equipment shall be subject to damage.

1.13 EQUIPMENT AND MATERIALS

A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.

- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 TRANSIENT VOLTAGE SUPPRESSION, POWER SURGE SUPPLESION, & GROUNDING

A. Transient Voltage Surge Suppression: All cables and conductors extending beyond building façade, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage Surge Suppression (TVSS) protection. The TVSS device shall be UL listed in accordance with Standard TIA 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 914.4 mm (3 ft) of the building cable entrance. Fuses shall not be used for

surge protection. The inputs and outputs shall be tested in both normal mode and common mode to verify there is no interference.

- 1. A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
- An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
- 3. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B.
- 4. Operating Temperature and Humidity: -40 to 85 deg C (-40 to 185 deg F), 0 to 95 percent relative humidity.
- B. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. To ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.
 - Security Contractor shall engineer and provide proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards referenced in this document.
 - 3. Principal grounding components and features. Include main grounding buses and grounding and bonding connections to service equipment.
 - Details of interconnection with other grounding systems. The lightning protection system shall be provided by the Security Contractor.
 - 5. Locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - Any cable that is shielded shall require a ground in accordance with the best practices of the trade and manufactures installation instructions.
 - 8. Protection shall be provided at both ends of cabling.

1.15 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Consoles, power supply enclosures, detector control and terminal cabinets, control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.

- Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
- 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.
- 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).

1.16 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.17 SUBSTITUTE MATERIALS & EQUIPMENT

A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related

components shall include, additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

- B. In addition to this Section the Security Contractor shall also reference Section 2, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the preparation of a list of substitutions, the following information shall be included, as a minimum:
 - Identity of the material or devices specified for which there is a proposed substitution.
 - Description of the segment of the specification where the material or devices are referenced.
 - Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
 - 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware shall not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware shall not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by

number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it shall accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a point-bypoint statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence shall be rejected.

1.18 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.All equipment provided shall be complete, new, and free of any defects.

1.19 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the

Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of its failure during the warranty period. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. All equipment associated within the Security Control Room, Security Console and Security Equipment Room shall be UL 827, UL 1981, and UL 60950 compliant and rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that shall provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that shall allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system shall be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- A. The Security Management System shall provide full interface with all components of the security subsystem as follows:
 - Shall allow for communication between the Physical Access Control System and Database Management and all subordinate work and monitoring stations, enrollment centers for badging and biometric devices as part of the PACS, local annunciation centers, the electronic Security Management System (SMS), and all other VA redundant or backup command center or other workstations locations.
 - 2. Shall provide automatic continuous communication with all systems that are monitored by the SMS, and shall automatically annunciate any communication failures or system alarms to the SMS operator

providing identification of the system, nature of the alarm, and location of the alarm.

- 3. Controlling devices shall be utilized to interface the SMS with all field devices.
- The Security control room and security console shall be supported by an uninterrupted power supply (UPS) or dedicated backup generator power circuit.
- 5. The Security Equipment room, Security Control Room, and Security Operator Console shall house the following equipment i.e. refer to individual master specifications for each security subsystem's specific requirements:

a. CCTV Monitoring, Controlling, and Recording Equipment

- B. Wires and Cables:
 - Shall meet or exceed the manufactures recommendation for power and signals.
 - Shall be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
 - 3. All conduits shall be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space shall be contained in either EMT or RGS conduit.
 - 4. All conduit, pull boxes, and junction boxes shall be marked with colored permanent tape or paint that shall allow it to be distinguished from all other infrastructure conduit.
 - 5. Conduit fills shall not exceed 50 percent unless otherwise documented.
 - 6. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
 - 7. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area.
 - 8. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security subsystems shall be any cable or sets of cables carrying 30 VDC/VAC or higher.

9. For all equipment that is carrying digital data between the Security Control Room, Security Equipment Room, Security Console, or at a remote monitoring station, it shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.

2.3 TRANSIENT VOLTAGE SURGE SUPPRESSION DEVICES (TVSS) AND SURGE SUPPRESION

- A. Transient Voltage Surge Suppression
 - 1. All cables and conductors extending beyond building perimeter, except fiber optic cables, which serve as communication, control, or signal lines shall be protected against Transient Voltage surges and have Transient Voltage surge suppression protection (TVSS) UL listed in accordance with Standard 497B installed at each end. Lighting and surge suppression shall be a multi-strike variety and include a fault indicator. Protection shall be furnished at the equipment and additional triple solid state surge protectors rated for the application on each wire line circuit shall be installed within 915 mm (36 in) of the building cable entrance. Fuses shall not be used for surge protection. The inputs and outputs shall be tested in both normal mode and common mode using the following waveforms:
 - A 10-microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 volts and a peak current of 60 amperes.
 - b. An 8-microsecond rise time by 20-microsecond pulse width waveform with a peak voltage of 1000 volts and a peak current of 500 amperes.
 - c. Maximum series current: 2 AMPS. Provide units manufactured by Advanced Protection Technologies, model # TE/FA 10B or TE/FA 20B or approved equivalent.
 - d. Operating Temperature and Humidity: -40 to + 85 deg C (-40 to 185 deg F), and 0 to 95 percent relative humidity, noncondensing.
- B. Video Surveillance System
 - Protectors shall be installed on STP cable systems on points of entry and exit from separate buildings. Suppressors shall be installed at each exterior camera location and include protection

> for 12 and/or 24-volt power, data signal and motor controls (for Pan, Tilt and Zoom systems). SPDs shall protect all modes herein mentioned and contain all modes in a single unit system. Protection for all systems mentioned above shall be incorporated at the head end equipment. Additionally, a minimum 450VA battery backup shall be used to protect the DVR or VCR and monitor. Protectors shall meet the following criteria:

- a. Head-End Power
 - 1) UL 1778, CUL (Battery Back Up)
 - 2) Minimum Surge Current Capacity: 65,000 Amps (8x20µsec)
 - 3) Minimum of two (2) NEMA 5-15R Receptacles (one (1) AC power only, one (1) with UPS)
 - 4) All modes protected (L-N, L-G, N-G)
 - 5) EMI/RFI Filtering
 - 6) Maximum Continuous Current: 12 Amps
- b. Camera Power
 - Minimum Surge Current Capacity: 1,000 Amps (8X20µsec); 240 Amps for IP Video/PoE cameras
 - 2) Screw Terminal Connection
 - 3) All protection modes L-G (all Lines)
 - 4) MCOV <40VAC
- c. Video And Data
 - 1) Surge Current Capacity 1,000 Amps per conductor
 - 2) "BNC" Connection (Coax)
 - 3) Protection modes: L-G (Data), Center Pin-G, Shield-G (Coax)
 - 4) Band Pass 0-2GHz
 - 5) Insertion Loss <0.3dB
- C. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, underground-fault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.

- Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
- 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
- 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
- 6. AC power receptacles are not to be used as a ground reference point.
- 7. Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- D. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)
 - 6. Weight: 2.88 g (0.18 lbs)
 - 7. Housing: ABS

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.
- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
- Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
- "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for <insert hours> hours to instruct VA personnel in operation and maintenance of units.

3.4 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.5 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.

3.6 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.
- B. The inspection and test shall be conducted by a factory-certified contractor representative and witnessed by a Government Representative.

The results of the inspection shall be officially recorded by a designated Government Representative and maintained on file by the COR (COR), until completion of the entire project. The results shall be compared to the Acceptance Test results.

- C. Contractor's Field Testing (CFT)
 - 1. The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to COR approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field-testing procedures shall be identical to the COR's acceptance testing procedures. The Contractor shall provide the COR with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to the COR stating the installed complete system has been calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.
- D. Exclusions
 - The Contractor shall not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.

- b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
- c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

3.7 COLOR CHART

A. All security cables and connectors to have the following colors:

Description Item	Jack	Cable	I.D.	Notes
Security Cable	-	White	S	Multi- conductors
Door Contact	-	White	DC	22/2
Power Transfer	-	Gray	PT	12/6 and 18/6
Request for Exit	-	Blue	REQ	18/4 or 22/4
Card Reader	-	Orange	CR	22/6
Motion Detector	-	White	MD	22/4
CCTV - IP	-	White	CCTV	4 pair UTP cable
Key Pad	-	White	K	22/6
Knox Box	-	Orange	KB	18/4
Lock Down	-	Red	LD	18/4
Door Release	-	Red	DR	18/4

---END---

SECTION 28 05 13

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- C. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00 COMMON WORKS RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Contracting Officer's Representative/COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only. Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) D. National Fire Protection Association (NFPA): 70-2018.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-05..... Thermoset-Insulated Wires and Cables 83-08.....Thermoplastic-Insulated Wires and Cables 467-07..... Electrical Grounding and Bonding Equipment 486A-03.....Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations 486E-00......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Fittings for Cable and Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops 1.7 DELIVERY, STORAGE, AND HANDLING A. Test cables upon receipt at Project site. 1. Test optical fiber cable to determine the continuity of the strand end to end. Use [optical-fiber flashlight] [or] [optical loss test set] <Insert test>.

- Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
- 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in

spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars, spools, J-hooks, and D-rings.
 - 3. Straps and other devices.
- B. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electronic Safety and Security. "Flexible metal conduit shall not be used.
 - Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels.

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6A.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG; or MPP, CMP, MPR, CMR, MP, or MPG.
 - b. Communications, Plenum Rated: Type CMP; or MPP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR; or MPP, CMP, or MPR, complying with UL 1666.

- d. Communications, Limited Purpose: Type CMX; or MPP, CMP, MPR, CMR, MP, MPG, CM, or CMG.
- e. Multipurpose: Type MP or MPG; or MPP or MPR.
- f. Multipurpose, Plenum Rated: Type MPP, complying with NFPA 262.
- g. Multipurpose, Riser Rated: Type MPR or MPP, complying with UL 1666.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.5 OPTICAL FIBER CABLE

- A. Description: Multimode, 50/125-micrometer, 12 fiber, tight buffer, optical fiber cable.
 - 1. Comply with ICEA S-83-596 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.3 for performance specifications.
 - 3. Comply with TIA/EIA-492AAAA-B/TIA/EIA-492AAAA-A for detailed specifications.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - a. General Purpose, Nonconductive: Type OFN or OFNG, or OFNR, OFNP.
 - b. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - c. Riser Rated, Nonconductive: Type OFNR or OFNP, complying with UL 1666.
 - d. General Purpose, Conductive: Type OFC or OFCG ; or OFNG, OFN, OFCR, OFNR, OFCP, or OFNP.
 - e. Plenum Rated, Conductive: Type OFCP or OFNP, complying with NFPA 262.
 - f. Riser Rated, Conductive: Type OFCR ; or OFNR, OFCP, or OFNP, complying with UL 1666.
 - 5. Conductive cable shall be aluminum armored type.
 - 6. Maximum Attenuation: 3.50 dB/km at 850 nm; 1.5 dB/km at 1300 nm.

- 7. Minimum Modal Bandwidth: 160 MHz-km at 850 nm; 500 MHz-km at 1300 nm.
- B. Jacket:
 - 1. Jacket Color: Aqua for 50/125-micrometer cable.
 - Cable cordage jacket, fiber, unit, and group color shall be according to TIA/EIA-598-B.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.6 OPTICAL FIBER CABLE HARDWARE

- A. Cable Connecting Hardware: Meet the Optical Fiber Connector Inter mateability Standards (FOCIS) specifications of TIA/EIA-604-2, TIA/EIA-604-3-A, and TIA/EIA-604-12. Comply with TIA/EIA-568-B.3.
 - Quick-connect, simplex and duplex, Type SC or Type LC connectors. Insertion loss shall be not more than 0.75 dB.
 - 2. Type SFF connectors may be used in termination racks, panels, and equipment packages.

2.7 RS-232 CABLE

- A. Standard Cable: NFPA 70, Type CM.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Polypropylene insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. PVC jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated Cable: NFPA 70, Type CMP.
 - 1. Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors.
 - 2. Plastic insulation.
 - 3. Individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage.
 - 4. Plastic jacket.
 - 5. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 6. Flame Resistance: Comply with NFPA 262.

2.8 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.10 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, [Type THHN-THWN, in raceway] [power-limited cable, concealed in building finishes] [powerlimited tray cable, in cable tray] complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.11 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.12 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable shall be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.13 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables shall not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.

- 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- 8. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that shall prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a nonhardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system shall not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to

supply such systems and have suitable spare circuit breakers or space for installation.

- H. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- I. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- J. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).

- 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.3 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.4 GROUNDING

A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.

3.5 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.

- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.

- Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling shall be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

---END---

---INTENTIONALLY BLANK---

SECTION 28 05 28.33

CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:

- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Contracting Officer's Representative (COR) four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- D. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.
- G. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, based on input from installers of the items involved:
 - Structural members in the paths of conduit groups with common supports.
- H. Manufacturer Seismic Qualification Certification: Submit certification that enclosures and cabinets and their mounting provisions, including those for internal components, shall withstand seismic forces. Include the following:
 - Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - a. The term "withstand" means "the cabinet or enclosure shall remain in place without separation of any parts when subjected to the seismic forces specified [and the unit shall retain its enclosure characteristics, including its interior accessibility, after the seismic event]."
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 I. Source quality-control test reports. **1.6 APPLICABLE PUBLICATIONS** A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. B. National Electrical Manufacturers Association (NEMA): TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable C. National Fire Protection Association (NFPA): 70-2018.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07..... Enclosures for Electrical Equipment 360-09.....Liquid-Tight Flexible Steel Conduit 467-07.....Grounding and Bonding Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.

- B. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- C. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- D. Flexible galvanized steel conduit: Shall Conform to UL 1.
- E. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- F. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high-density polyethylene (PE).

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case-hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.

- 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
- 4. Indent type connectors or couplings are prohibited.
- Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- C. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- D. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings shall incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- E. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- F. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- G. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - 2. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30-degree angular deflections.
 - Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.

- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 SLEEVES FOR RACEWAYS

- A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.
- B. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.

- C. Sleeves for Rectangular Openings: Galvanized sheet steel with minimum 0.052- or 0.138-inch (1.3- or 3.5-mm) thickness as indicated and of length to suit application.
- D. Coordinate sleeve selection and application with selection and application of firestopping.

2.10 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: [EPDM] [NBR] <Insert sealing element> interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - Pressure Plates: [Plastic] [Carbon steel] [Stainless steel]. Include two for each sealing element.
 - 3. Connecting Bolts and Nuts: [Carbon steel with corrosion-resistant coating] [Stainless steel] of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.11 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COR prior to drilling through structural sections.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COR as required by limited working space.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.

- 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
- 5. Mechanically continuous.
- 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
- 7. Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey shall be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:

- a. Where shown on the structural drawings.
- b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there shall be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:

- Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.
- D. Seismic Areas: In seismic areas, provide conduits rigidly secured to the building structure on opposite sides of a building expansion joint with junction boxes on both sides of the joint. Connect conduits to junction boxes with 375 mm (15 inches) of slack flexible conduit. Flexible conduit shall have a copper green ground bonding jumper installed.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.

- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90-degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90-degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire-retardant plywood specified in on the wall of communication closets where shown on drawings. Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

---END---

---INTENTIONALLY BLANK---

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras, data transmission wiring, and a control station with its associated equipment.
- C. Video surveillance system Video assessment & surveillance system shall be integrated with the existing Milestone Medical Center system

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- C. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- E. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).
- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): a encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.

- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of three (3) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a

> similar configuration as the proposed system. The references shall include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer shall have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which shall render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, Shop Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers)
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
- c. Include the number, size, identification, and maximum lengths of interconnecting wires.
- d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that shall correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface)
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- E. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- F. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

G. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV Cameras

375A-76.....Electrical Performance Standards for CCTV Monitors

C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits

802.3af-08.....Power over Ethernet Standard

- D. Federal Communications Commission (FCC):
- (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
- E. National Electrical Contractors Association (NECA): 303-2005.....Installing Closed Circuit Television (CCTV)

Systems

- F. National Fire Protection Association (NFPA): 70-2017.....Article 780-National Electrical Code
- G. Federal Information Processing Standard (FIPS): 140-2-02.....Security Requirements for Cryptographic Modules
- H. Underwriters Laboratories, Inc. (UL): 983-06.....Standard for Surveillance Camera Units 3044-01....Standard for Surveillance Closed Circuit

Television Equipment

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of video surveillance equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways shall be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Camera system shall run on Ethernet IP signal on 4 PR STP at 100 Ohms.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- C. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- D. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

A. All Cameras shall be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply

with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.

- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - 2. Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and shall be utilized to complement the fixed cameras.
 - 3. Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 - 4. Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
 - 5. Will be home run to a monitoring and recording device via a controlling device such as a matrix switcher or network server and monitored on a 24 hour basis at a designated Security Management System location.
 - Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
 - 7. Shall come with built-in video motion detection that shall automatically monitor and process information from each camera. The camera motion detection shall detect motion within the camera's field of view and provide automatic visual, remote alarms as a result of detected motion.
 - 8. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.
 - 9. Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
 - 10. P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
 - 11. Dummy or fake cameras shall not be utilized at any time.

12. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 DIGITAL BASED VIDEO MANAGEMENT SYSTEM

- A. Provide Video Management system to match the existing Milestone.
 - 1. Licensing Structure
 - a. Base Server License
 - i. An VMS Base Server license is mandatory for installing the product.
 - b. The Base Server license contains:
 - i. Unlimited numbers of Recording Server licenses
 - ii. Unlimited numbers of Smart Clients, Remote Clients, PDA Clients and Matrix Monitor licenses
 - c. Camera License
 - To connect to a camera, a Device License per camera channel is required
 - ii. In total, for all copies of the product installed under a given Base Server license, the product may only be used with as many cameras as you have purchased camera licenses for Video encoders and DVRs with multiple analog cameras require a license per channel to operate
 - iii. Camera Licenses can be purchased in any numbers. To extend the installation with additional Camera Licenses, the Base Server License number (SLC) is required when ordering.
 - d. Client License:
 - All client modules are not licensed and can be installed and used on any number of computers.

2.4 CONTROLLING EQUIPMENT

- A. Shall be utilized to call up, operate, and program all cameras associated VASS System components.
- B. Will have the ability to operate the cameras locally and remotely. A matrix switcher or a network server shall be utilized as the VASS System controller.
- C. The controller shall be able to fit into a standard 47.5 cm (19 inch) equipment rack.
- D. Control and programming keyboards shall be provided with its own type of switcher. All keyboards shall:
 - 1. Be located at each monitoring station.

- 2. Be addressable for programming purposes.
- 3. Provide interface between the operator and the VASS System.
- 4. Provide full control and programming of the switcher.
- 5. Have the minimum following controls:
 - a. programming
 - b. switching
 - c. lens function
 - d. P/T/Z
 - e. environmental housing
 - f. annotation

2.5 IP DOME COLOR CAMERA

- A. Provide Megapixel High Definition Integrated Digital IP Based Network Camera
 - The network camera shall offer dual video streams with up to 3.1 megapixel resolution (2048 x 1536) in progressive scan format.
 - An alarm input and relay output shall be built in for integration with hard wired external sensors.
 - 3. The network camera shall be capable of firmware upgrades through a network using a software-based device utility.
 - 4. The network camera shall offer auto back focus (ABF) functionality through a push button on the camera. ABF parameters shall also be configurable through a standard Web browser interface.
 - 5. The network camera shall offer a video output port providing an NTSC/PAL analog video output signal for adjusting field of view and focus at the camera.
 - 6. The network camera shall provide advanced low-light capabilities for color and day/night models with sensitivity down to 0.12 lux in color and 0.03 lux in black-white (B-W).
 - 7. The network camera shall have removable IR cut filter mechanism for increased sensitivity in low-light installations. The sensitivity of IR cut filter removal shall be configurable through a Web browser.
 - 8. The network camera shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be available for primary and secondary streams with selectable unicast and multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.

- 9. The network camera shall support industry standard Power over Ethernet (PoE)
- 10. IEEE 802.3af to supply power to the camera over the network. The network camera shall also offer a 24 VAC power input for optional use.
- 11. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 12. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 13. The network camera shall support standard IT protocols.
- 14. The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.
- B. Megapixel High Definition Integrated Digital Network Camera Technical Specifications:

Imaging Device	1/3-inch, effective
Imager Type	CMOS, Progressive scan
Maximum Resolution	2048 x 1536
Signal-to-Noise Ratio	50 dB
Auto Iris Lens Type	DC drive
Electronic Shutter Range	1~1/100,000 sec
Wide Dynamic Range	60 dB
White Balance Range	2,000° to 10,000°K
Sensitivity	<pre>f/1.2; 2,850K; SNR >24dB Color (1x/33ms) 0.50 lux Color SENS (15x/500 ms) 0.12 lux Mono SENS (15x/500 ms) Mono (1x/33ms)0.25 lux 0.03 lux</pre>
Dome Attenuation	Clear Zero light loss Smoke f/1.0 light loss
Compression	H.264 in base profile and MJPEG
Video Streams	Up to 2 simultaneous streams, the second Stream variable based on the setup of the primary stream
Frame Rate	Up to 30, 25, 24, 15, 12.5, 12, 10, 8, 7.5, 6.5, 4, 3, 2, and 1

	(depending upon coding, resolution, and stream configuration
Available Resolutions	<pre>3.1 MPx2048 x 1536; 4:3 aspect ratio; 2.0 ips max., 10.0 Mbps bit rate for MJPEG; 3.0 ips max., 2.6 Mbps bit rate H.264 2.1 MPx1920 x 1080; 16:9 aspect ratio: 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 5.0 ips max., 2.7 Mbps bit rate H.264 3.1.9 MPx1600 x 1200; 4:3 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 6.0 ips max., 2.6 Mbps bit rate H.264</pre>
	1.3 MPx1280 x 1024; 5:4 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 8.0 ips max., 2.5 Mbps bit rate H.264
	1.2 MPx1280 x 960; 4:3 aspect ratio; 15.0 ips max., 9.8 Mbps bit rate for MJPEG; 9.8 ips max., 8.5 Mbps bit rate H.264 6.0.9 MPx1280 x 720; 16:9 aspect ratio; 30.0 ips max.,10.0 Mbps bit rate for MJPEG; 12.5 ips max., 2.5 Mbps bit rate H.264
	<pre>0.5 MPx800 x 600; 4:3 aspect ratio; 30.0 ips max., 5.8 Mbps bit rate for MJPEG; 25.0 ips max., 2.0 Mbps bit rate H.264 8.0.3 MPx640 x 480; 4:3 aspect ratio; 30.0 ips max., 3.7 Mbps bit rate for MJPEG; 30.0 ips max.,1.6 Mbps bit rate H.264 0.1 MPx320 x 240; 4:3 aspect ratio;</pre>
	30.0 ips max., 0.9 Mbps bit rate for MJPEG; 30.0 ips max., 0.4 Mbps bit rate H.264
	Additional640 x 512, 640 x 352, 480 x 368, 480 x 272, 320 x 256, 320 x 176
Supported Protocols	TCP/IP, UDP/IP (Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP,IPv4, SNMP, QoS, HTTP, HTTPS, LDAP(client), SSH, SSL, STMP, FTP, MDNS(Bonjour), and 802.1x (EAP)
Security Access	Password protected
Software Interface	Web browser view and setup, up to 16 cameras
Connectors	RJ-45 for 100/1000 Base-TX, Auto MDI/MDI-X

Cable	Cat6 cable or better for 100Base-TX
Input Voltage	24 VAC or PoE (IEEE802.3af class 3)
Power Consumption	13.4 W
Current Consumption	PoE <200 mA maximum 24 VAC <295 mA nominal; <390 mA maximum
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Lens Mount	CS mount, adjustable
Pan/Tilt Adjustment	Pan 368° Tilt 160° (10° to 170°) Rotate 355°

- 1. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
- 2. Recommended Lenses
 - a. Megapixel lens, varifocal, 2.2~6.0 mm, f/1.3~2.0
 - b. Megapixel lens, varifocal, 2.8~8.0 mm, f/1.1~1.9
 - c. Megapixel lens, varifocal, 2.8~12.0 mm, f/1.4~2.7
- d. Megapixel lens, varifocal, 15.0~50.0 mm, f/1.5~2.1C. LENSES
 - Camera Field of View shall be set by the Contractor to produce full view of door or window opening and anyone entering or leaving through it. Follow the project construction drawings for design intent.
 - 2. Camera Lenses shall be of the type supplied with the camera from the manufacture. All cameras which are not supplied with lenses from the factory are specified in this specification. The lens shall be equipped with an auto-iris mechanism unless otherwise specified. Lenses having auto-iris, DC iris, or motor zoom functions shall be supplied with connectors, wiring, receiver/drivers, and controls as needed to operate the lens functions. Lenses shall have sufficient circle of illumination to cover the image sensor evenly. Lenses shall not be used on a camera with an image format larger than the lens is designed to cover. Lenses shall be provided with pre-set capability.

- 3. Lenses shall have optical-quality coated optics, designed specifically for video surveillance applications, and matched to specified camera. Provide color-corrected lenses with color cameras, megapixel lenses for megapixel cameras, and lenses with day/night for color/b&w cameras.
- 4. Auto-Iris Lens: Electrically controlled iris with circuit set to maintain a constant video level in varying lighting conditions.
- 5. Zoom Lenses: Motorized, remote-controlled units, rated as "quiet operating." Features include the following:
 - a. Electrical Leads: Filtered to minimize video signal interference.
 - b. Motor Speed: Variable.
 - c. Lens shall be available with preset positioning capability to recall the position of specific scenes.
- 6. Lenses: Shall be utilized in a manner that provides maximum coverage of the area being monitored by the camera. The lenses shall:
 - a. Be $1/3^{\prime\prime}$ to fit CCD fixed camera.
 - b. Be all glass with coated optics.
 - c. Have mounts that are compatible with the camera selected.
 - d. Be packaged and supplied with the camera.
 - e. Have a maximum f-stop of f/1.3 for fixed lenses, and a maximum fstop of f/1.6 for variable focus lenses.
 - f. Be equipped with an auto-iris mechanism.
 - g. Have sufficient circle of illumination to cover the image sensor evenly.
 - h. Not be used on a camera with an image format larger than the lens is designed to cover.
 - i. Be provided with pre-set capability.
- 7. Two types of lenses shall be utilized for both interior and exterior fixed cameras:
 - a. Manual Variable Focus
 - b. Auto Iris Fixed
- D. CAMERA HOUSINGS AND MOUNTS
 - This section pertains to all interior and exterior housings, domes, and applicable wall, ceiling, corner, pole, and rooftop mounts associated with the housing. Housings and mounts shall be specified in accordance to the type of cameras used.

- All cameras and lenses shall be enclosed in a tamper resistant housing. Any additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
- 3. The camera and lens contained inside the housing shall be installed on a camera mount. All additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
- 4. Environmentally Sealed
 - a. Shall be designed in manner that it provides a condensation free environment for correct camera operation.
 - b. Shall be operated in a 100 percent condensing humidity atmosphere.
 - c. Shall be constructed in a manner that:
 - Has a fill valve to allow for the introduction of nitrogen into the housing to eliminate existing atmospheric air and pressurize the housing to create moisture free conditions.
 - 2) Has an overpressure value to prevent damage to the housing in the event of over pressurization.
 - 3) Is equipped with a humidity indicator that is visible to the eye to ensure correct atmospheric conditions at all times.
 - The leak rate of the housing is not to be greater than 13.8kPa or 2 pounds per square inch at sea level within a 90 day period.
 - 5) It shall contain camera mounts or supports as needed to allow for correct positioning of the camera and lens.
 - 6) The housing and sunshield shall be white in color.
- All electrical and signal cables required for correct operations shall be supplied in a hardened carrier system from the controller to the camera.
- 7. The mounting bracket shall be adjustable to allow for the housing weight of the camera and the housing unit it is placed in.
- Accessibility to the camera and mounts shall be taken into consideration for maintenance and service purposes.
- E. Indoor Mounts
 - 1. Ceiling Mounts:

- a. This enclosure and mount shall be installed in a finished or suspended ceiling.
- b. The enclosure and mount shall be fastened to the finished ceiling, and shall not depend on the ceiling tile grid for complete support.
- 2. Wall Mounts:
 - a. The enclosure shall be installed in manner that it matches the existing décor and placed at a height that it shall be unobtrusive, unable to cause personal harm, and prevents tampering and vandalism.
 - b. The mount shall contain a manual pan/tilt head that shall provide 360 degrees of horizontal and vertical positioning from a horizontal position, and has a locking bar or screw to maintain its fixed position once it has been adjusted.
- F. Interior Domes
 - The interior dome shall be a pendant mount, pole mount, ceiling mount, surface mount, or corner mounted equipment.
 - The lower portion of the dome that provides camera viewing shall be made of black opaque acrylic and shall have a light attenuation factor of no more that 1 f-stop.
 - 3. The housing shall be equipped with integral pan/tilt capabilities complete with wiring, wiring harness, connectors, receiver/driver, pan/tilt control system, pre-position cards, or any other hardware and equipment as needed to fully provide a fully functional pan/tilt dome.
 - 4. The pan/tilt mechanism shall be:
 - a. Constructed of heavy duty bearings and hardened steel gears.
 - b. Permanently lubricated to ensure smooth and consistent movement of all parts throughout the life of the product.
 - c. Equipped with motors that are thermally or impedance protected against overload damage.
 - d. Pan movements shall be 360 degrees and tilt movement shall no be less than +/- 90 degrees.
 - e. Pan speed shall be a minimum of 10 degrees per second.
- G. Exterior Domes
 - The exterior dome shall meet all requirements outlined in the interior dome paragraph above.

- 2. The housing shall be constructed to be dust and water tight, and fully operational in 100 percent condensing humidity.
- H. Exterior Wall Mounts
 - 1. Shall have an adjustable head for mounting the camera.
 - 2. Shall be constructed of aluminum, stainless steel, or steel with a corrosion-resistant finish.
 - 3. The head shall be adjustable for not less than plus and minus 90 degrees of pan, and not less than plus and minus 45 degrees of tilt. If the bracket is to be used in conjunction with a pan/tilt, the bracket shall be supplied without the adjustable mounting head, and shall have a bolt-hole pattern to match the pan/tilt base.
 - Shall be installed at a height that allows for maximum coverage of the area being monitored.

2.6 POWER SUPPLIES

- A. Power supplies for the IP cameras shall be from a power over Ethernet switch (PoE).
- B. B.O.D.: Cisco 9300 series switch with 24 port PoE switch at 380 watts and 48 PoE ports at 780 watts with 2-10Gig Uplink and software

2.7 NETWORK EQUIPMENT

- A. Allow for the transmission of live video, data, and audio over either an existing Ethernet network or a dedicated security system network, requiring an IP address or Internet Explorer 5.5 or higher. The network shall operate in a box-to-box configuration allowing for encoded video to be decoded and displayed on an analog monitor.
- B. If a VASS System network is going to be utilized as the primary means of monitoring, operating, and recording cameras then the following equipment shall be required as part of the system:
 - 1. System Server
 - 2. Computer Workstation
 - 3. Recording Device
 - 4. Encoder/Decoder
 - 5. Monitor
 - 6. Hub/Switch
 - 7. Router
 - 8. Encryptor
- C. Shall provide overall control, programming, monitoring, and recording of all cameras and associated devices within the VASS System.

- D. All equipment on the network shall be IP addressable.
- E. The VASS System network shall meet or exceed the following design and performance specifications:
 - Two MPEG-4 video streams for a total of 40 images per second shall be provided.
 - PC Software that manages the installation and maintenance of all hardware transmitters and receivers on the network shall be provided.
 - 3. Video Source that supports any NTSC video source to the computer network shall be addressed.
 - 4. Receivers that could be used to display the video on a standard analog NTSC or PAL monitor shall be addressed.
- F. The system shall support the following network protocols:
 - Internet connections: RTP, Real Time Control Protocol (RTCP), UDP, IP, TCP, ICMP, HTTP, Simple Network Management Protocol (SNMP), IGMP, DHCP, and ARP.
 - 2. Video Display: MPEG-4, M-JPEG in server push mode only.
 - 3. Have the ability to adjust bandwidth, image quality and image rate.
 - 4. Support image sizes of either 704 x 576 pixels or 352 x 288 pixels.
 - 5. Have an audio coding format of G.711 or G.728.
 - 6. Provide a video frame rate of at least 30 images per second.
 - 7. Support LAN Interface Ethernet 10/100BaseT and be auto sensing.
 - 8. Have a LAN Data Rate of 9.6 Kbps to 5.0 Mbps.
 - 9. Utilize data interface RS-232/RS-422/RS-485.
- G. All connections within the system shall be via CAT-5 cable and RJ-45 jacks. If analog equipment is used as part of the system, then either an encoder or a decoder shall be utilized to convert the analog signal to a digital one.
- H. The VASS network system shall conform to all VA agency wide security standards for administrator and operator use.I. J. Network Switch Technical Characteristics

Protocol and standard	IEEE802.3 IEEE802.3u IEEE802.3ab	
Ports	24 10/100/1000M auto-negotiation RJ- 45 ports with auto MDI/MDI-X Provide 15.4 watt per port	
Network media	Cat 6 STP for 1,000Mbps	

Transmission method	store-and-forward
LED	indicator power, act/link, speed

K. Router Technical Characteristics

Network Standards	IEEE 802.3, 802.3u 10Base-T Ethernet (WAN) 100Base-T Ethernet (LAN) IEEE 802.3x Flow Control IEEE802.1p Priority Queue ANS/IEEE 802.3 NWay auto-negotiation
Protocol	CSMA/CD, TCP, IP, UDP, PPPoE, AND DHCP (client and server)
VPN Supported	PPTP, IPSec pass-through
Management	Browser
Ports	4 x 10/100Base-T Auto sensing RJ45 ports, and an auto uplink RJ45port(s) 1 x 10Base-T RJ45 port, WAN
LEDs	Power, WAN Activity, LAN Link (10/100), LAN Activity

L. Encryptor Technical Characteristics:

Cryptography	Standard - Triple DES 168-bit (ANSI 9.52) Rijndael - AES (128, 192, 256)
Performance	Throughput (end-to-end) @ 100 Mbps line speed: >188 Mbps full duplex (large frames) >200 kfps full duplex (small frames) Latency (end-to-end) @ 100 Mbps
Key Management	Automatic KEK/DEK Exchange Using Signed Diffie-Hellman Unit Authentication Using X.509 Certificates
Physical Interfaces	10BaseT or 10/100BaseT Ethernet (Host and Network Ports) 10BaseT Ethernet Management Port Back and Front-Panel Serial Control Port
Device Management	THALES Element Manager, Front Panel Viewer, and Certificate Manager 10Base T (RJ-45) or 9-pin Serial Control Port SNMP Network Monitoring
Security Features	Tamper Proof Cryptographic Envelope Tamper Evident Chassis Hardware Random Number Generator
Management	Channel Encrypted Using Same Algorithm as Data Traffic
Security Certifications	FIPS 140-2 Level 3 CAPS Baseline and Enhanced Grades Common Criteria EAL4 and EAL5 (under evaluation)

Regulatory	EN60950,	FCC,	UL,	CE,	EN	50082-1,	and
			EN	5502	22		

2.8 RECORDING DEVICES

- A. All cameras on the VASS System shall be recorded in real time using a Network Video Recorder (NVR), with 9 TB of storage. The type of recording device utilized shall be determined by the size and type of VASS System designed and installed, and to what extent the system is to be utilized.
- B. Provide 9 TB of recording device, device shall be 47.5 cm (19 inch) rack-mountable.
- C. All NVR's that are viewable over an Intranet or Internet shall be routed through an encryptor.
- D. Encryptors shall:
 - 1. Comply with FIPS PUB 140-2.
 - 2. Support TCP/IP.
 - 3. Directly interfaces to low-cost commercial routers.
 - 4. Provide packet-based crypto synchronization.
 - 5. Encrypt source and destination IP addresses.
 - Support web browser based management requiring no additional software.
 - 7. Have a high data sustained throughput 1000 Mbps full duplex data rate.
 - 8. Provide for both bridging and routing network architecture support.
 - 9. Support Electronic Key Management System (EKMS) compatible.
 - 10. Have remote management ability.
 - Automatically reconfigure when secure network or wide area network changes'B. Network Video Recorder (NVR)
 - Shall record video to a hard drive-based digital storage medium in MPEG, MPEG4 or H.264 format.
 - 2. Shall meet the following minimum requirements:
 - a. Record at minimum rate of 30 IPS.
 - b. Have a minimum of eight (8) to 16 looping inputs.
 - c. Have a minimum of eight (8) to 16 alarm inputs and two (2) relay outputs.
 - d. Shall provide instantaneous playback of all recorded images.
 - e. Be IP addressable, if part of a VASS network.

- f. Have built-in digital motion detection with masking and sensitivity adjustments.
- g. Easy playback and forward/reverse search capabilities.
- h. Complete audit trail database, with minimum of a six-month history that tracks all events related to the alarm; specifically who, what, where and when.
- i. NVR management capability providing automatic video routing to a back-up spare recorder in case of failure.
- j. Accessible locally and remotely via the internet, intranet, or a personal digital assistant (PDA).
- k. Records all alarm events in real time, ensuring 60 seconds before and after the event are included in the recording.
- Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
- m. Allow for independently adjustable frame rate settings.
- n. Be compatible with the matrix switcher utilized to operate the cameras.
- 3. Technical Characteristics:

Hardware/CPU	Pentium III Xeon or IV, 1.8 GHz			
HDD Interface	IDE or better; optional: SCSI II, SCSI Ultra, or Fiber Channel			
RAM	1024 MB			
Operating System	Latest Windows			
Graphic	High end Card VGA			
Ethernet Card	100/1000 MB			
Memory	500 MB			
Software Setup	Centralized setup from each authorized PC; access via integrated web server			
Storage Media	All storage media possible (e.g., HD, RAID), depending on operating system			
Storage Mode	Linear mode, ring mode (capacity-based)			
Recording Configuration	Camera name assignment, bandwidth limit, frame rate, video quality			
Recording Content	Video and/or audio data			
Search Parameters	Time, date, event			
Playback	Playback via any IP network (LAN/WAN) simultaneous recording, playback, and backup			
Network Interface	Ethernet (RJ-45, 100/1000M)			

Network Protocol	TCP/IP, DHCP, HTTP, UDP
Network Capabilities	Live/Playback/P/T/Z control
Recording Rate	30 ips for 720 x 240 (NTSC)
Password Protection	Menu Setup, Remote Access
Recording Capacity	640 (1 or 2 fixed HDD) 1 CD-RW
Power Interrupt	Auto recovered to recording mode

2.9 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits shall be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space shall contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that shall allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance.
- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.

- L. Cables
 - All video signal cables for the VASS System SHALL BE Ethernet 4 PR STP and have a characteristic impedance of 100 ohms plus or minus 5 ohms.
 - 2. Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.
 - b. If the camera is up to 295 ft from a hub or the server, then use a shielded STP category 6A cable a with standard RJ-45 connector at each end. The cable with comply with the Power over Ethernet, IEEE802.3af, Standard.
 - c. If the camera is over 300 ft from a hub or server then utilize a multimode fiber optic cable with a minimum size of 62 microns.
 - d. Provide a separate cable for power.
 - e. See section 27 15 00 for CAT-6A Technical Characteristics.

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that shall appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
 - The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal

cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.

- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.

- D. The VASS System shall be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.
- E. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- F. A complete VASS System shall be comprised of the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables
- G. The Contractor shall visit the site and verify that site conditions and the existing system are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that shall affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- H. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As

part of the report, the Contractor shall include a schedule for connection to all existing equipment.

- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- I. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and shall comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- J. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- K. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide

mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.

- L. Cameras:
 - 1. Install the cameras with the focal length lens as indicated for each zone.
 - 2. Connect power and signal lines to the camera.
 - 3. Aim camera to give field of view as needed to cover the alarm zone.
 - 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
 - 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
 - Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
 - PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- N. Switcher:
 - 1. Install the switcher as shown in the design and construction documents, and according to the OEM.
 - Connect all subassemblies as specified by the manufacturer and as shown.
 - Connect video signal inputs and outputs as shown and specified; terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as shown and specified; connect control signal inputs and outputs for ancillary equipment or secondary control/monitoring sites as specified by the manufacturer and as shown.
 - 5. Connect the switcher CPU and switcher subassemblies to AC power.
 - 6. Load all software as specified and required for an operational VASS System configured for the site and building requirements, including data bases, operational parameters, and system, command, and application programs.
 - 7. Provide the original and 2 backup copies for all accepted software upon successful completion of the endurance test.
 - 8. Program the video annotation for each camera.
- O. Video Encoder/Decoder

- Install the Video Encoder/Decoder per design and construction documents, and as specified by the OEM.
- 2. Connect analog camera inputs to video encoder.
- 3. Connect network camera to video decoder.
- 4. Connect video encoder to VASS network.
- 5. Connect video decoder to video matrix, DVR, monitor.
- 6. Connect unit to AC power (UPS).
- Configure the video encoder/decoder per manufacturer's recommendation and project requirements.
- Q. Network Switch:
 - Install the network switch per design and construction documents, and as specified by the OEM.
 - 2. Connect network switch to AC power (UPS).
 - 3. Connect network cameras to network switch.
 - 4. Configure the network switch per manufacturer's recommendation and project requirements.
- R. Network Recording Equipment
 - 1. Install the NVR or video storage unit as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect recording device to AC power (UPS).
 - 3. Connect recording device to network switch as shown and specified.
 - 4. Configure network connections
 - 5. Provide recording unit programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs
 - g. GUI maps, views, icons and actions
 - h. PTZ controls (presets, time schedules for privacy zones)
 - i. Reports
- S. Video Recording Equipment:

- 1. Install the video recording equipment as shown in the design and construction documents, and as specified by the OEM.
- 2. Connect video signal inputs and outputs as shown and specified.
- 3. Connect alarm signal inputs and outputs as shown and specified.
- 4. Connect video recording equipment to AC power.
- 5. Program the video recording equipment;
 - a. Recording schedules
 - b. Camera caption
- T. Video Signal Equipment:
 - 1. Install the video signal equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video or signal inputs and outputs as shown and specified.
 - 3. Terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as required.
 - 5. Connect control signal inputs and outputs as required
 - 6. Connect electrically powered equipment to AC power.
- U. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.
 - 2. Provide a foundation for each camera pole as specified and shown.
 - Provide a ground rod for each camera pole and connect the camera pole to the ground rod as specified in Division 26 of the VA Master Specification and the VA Electrical Manual 730.
 - Provide electrical and signal transmission cabling to the mount location via a hardened carrier system from the Physical Access Control System and Database Management to the device.
 - 5. Connect signal lines and AC power to the housing interfaces.
 - 6. Connect pole wiring harness to camera.

3.3 SYSTEM START-UP

- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.

- 2. A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
- System wiring has been tested and verified as correctly connected as indicated.
- 4. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent shall observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor shall be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.6 DEMONSTRATION AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications for COR approval.

---END--

SECTION 28 31 00

FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include; alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, and security.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Contracting Officer's Representative COR or his authorized representative. Installers shall have a minimum of 2 years' experience installing fire alarm systems.
- C. Fire alarm signals:
 - The new building(s) shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- D. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

A. Provide new Fully addressable fire alarm system as an extension of the existing fire alarm system and shall be designed and installed in accordance with the specifications and drawings. Device location and

28 31 00 - 1

wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. Equipment shall be covered as new equipment under the Warranty specified herein.
- C. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Class B in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Class B in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Class B in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
 - Notification appliance circuits (NAC) shall be wired Class B in accordance with NFPA 72.
 - 7. Communications between building fire alarm control panels shall be Class X per NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- C. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- D. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD latest Release software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer Representative (COR). Bid drawing files on AutoCAD shall be provided to the Contractor at the preconstruction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
 - 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits, battery and battery calculations. Diagrams shall be drawn to a scale sufficient to show

spatial relationships between components, enclosures and equipment configuration.

- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD latest release) . As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - i. A computerized preventive maintenance schedule for all equipment.The schedule shall be provided on disk in a computer format

acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.

- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.

28 31 00 - 5

3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices .It shall include all interfaced equipment including; elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):

Sioux Falls VA Medical Center July 30, 2021 Redesign Upgrade Station Generator System - PSDM 100% Construction Documents Sioux Falls, SD Project No. 438-18-100 NFPA 13.....Standard for the Installation of Sprinkler Systems, 2019 edition NFPA 14Standard for the Installation of Standpipes and Hose Systems, 2019 edition NFPA 20......Standard for the Installation of Stationary Pumps for Fire Protection, 2019 edition NFPA 70......National Electrical Code (NEC), 2020 edition NFPA 72.....National Fire Alarm Code, 2019 edition NFPA 90A..... Standard for the Installation of Air Conditioning and Ventilating Systems, 2018 edition NFPA 101.....Life Safety Code, 2018 edition C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011 E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008 F. International Code Council, International Building Code (IBC), 2009 edition. G. VA fire protection design manual December 2015

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - Conduit fill shall not exceed 40 percent of interior cross-sectional area.

28 31 00 - 7

- 3. All new conduits shall be 3/4-inch (19 mm) minimum.
- 4. Fire alarm conduits shall be factory painted "RED".
- 5. All fire alarm boxes, pull boxes, cover plates shall be factory painted "RED" and shall be labeled "Fire Alarm".
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - 2. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 3. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.

C. Terminal Boxes, Junction Boxes, and Cabinets:

- 1. Shall be galvanized steel in accordance with UL requirements.
- 2. All boxes shall be sized and installed in accordance with NFPA 70.
- 3. Covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
- Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COR.

2.3 FIRE ALARM CONTROL UNIT

A. General:

- 1. Each building shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
- 2. Each power source shall be supervised from the other source for loss of power.
- 3. All circuits shall be monitored for integrity.
- 4. Visually and audibly annunciate any trouble condition including; main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.
- 6. Provide fiber optic transceivers at each end to connect the new fire alarm panel, coordinate with FA vendor/contractor.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Operator terminal at main control unit:
 - Operator terminal shall consist of the central processing unit, display screen, keyboard and printer.
 - 2. Display screen shall have a minimum 15-inch (380 mm) diagonal nonglare screen capable of displaying 24 lines of 80 characters each.
 - 3. Keyboard shall consist of 60 alpha numeric and 12 user/functional control keys.
 - 4. Printer shall be the automatic type, printing the date, time and location for all alarm, supervisory, and trouble conditions.
- D. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - 2. The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
 - 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.

- 4. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
- 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
- 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
- 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
- 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
- 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
- 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- I. Remote Transmissions:
 - Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
 - Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.

- Under normal operating conditions, the load shall be filtered through a ferro resonant transformer.
- 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
- 4. Batteries shall be sealed, gel cell type.
- 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.
- B. Batteries:
 - Battery shall be of the sealed, maintenance free type, 24-volt nominal.
 - 2. Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.
 - 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.
 - Contractor shall provide battery calculation as part of the shop drawings.
- C. Battery Charger:
 - Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power sources.
 - Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
 - 3. Shall have protection to prevent discharge through the charger.
 - Shall have protection for overloads and short circuits on both AC and DC sides.
 - 5. A trouble condition shall actuate the fire alarm trouble signal.
 - 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ANNUNCIATION

A. Annunciator, Alphanumeric Type (System):

- 1. Annunciator shall be part of the NAC Panel.
- Shall be a supervised, LCD display containing a minimum of 2 lines of 40 characters for alarm annunciation in clear English text.
- 3. Message shall identify building number, floor, and zone on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
- 4. The initial alarm received shall be indicated as such.
- 5. A selector switch shall be provided for viewing subsequent alarm messages.
- 6. The display shall be UL listed for fire alarm application.
- 7. Annunciators shall display information for all buildings connected to the system. Local building annunciators, for general evacuation system buildings, shall be permitted when shown on the drawings and approved by the COR.

2.6 VOICE COMMUNICATION SYSTEM (VCS)

- A. General:
 - An emergency voice communication system shall be installed throughout the Buildings.
 - Upon receipt of an alarm signal from the building fire alarm system, the VCS shall automatically transmit a pre-recorded fire alarm message throughout the building .
 - A digitized voice module shall be used to store each prerecorded message.
 - The VCS shall be arranged as a dual channel system capable of transmitting 2 different messages simultaneously single channel system.
 - 5. The VCS shall supervise all speaker circuits, control equipment, remote audio control equipment, and amplifiers.
- B. Speaker Circuit Control Unit:
 - The speaker circuit control unit shall include switches to manually activate or deactivate speaker circuits grouped by floor in the system.
 - Speaker circuit control switches shall provide on, off, and automatic positions and indications.
 - The speaker circuit control unit shall include visual indication of active or trouble status for each group of speaker circuits in the system.

- 4. A trouble indication shall be provided if a speaker circuit group is disabled.
- 5. A lamp test switch shall be provided to test all indicator lamps.
- 6. A single "all call" switch shall be provided to activate all speaker circuit groups simultaneously.
- A push-to-talk microphone shall be provided for manual voice messages.
- 9. A voice message disconnect switch shall be provided to disconnect automatic digitized voice messages from the system. The system shall be arranged to allow manual voice messages and indicate a system trouble condition when activated.
- C. Speaker Circuit Arrangement:
 - Speaker circuits shall be arranged such that there is one speaker circuit per smoke zone.
 - 2. Audio amplifiers and control equipment shall be electrically supervised for normal and abnormal conditions.
 - 3. Speaker circuits shall be either 25 VRMS or 70.7 VRMS with a minimum of 50 percent spare power available.
 - Speaker circuits and control equipment shall be arranged such that loss of any one speaker circuit will not cause the loss of any other speaker circuit in the system.
- D. Digitized Voice Module (DVM):
 - The Digitized Voice Module shall provide prerecorded digitized evacuation and instructional messages. The messages shall be professionally recorded and approved by the COR prior to programming.
 - 2. The DVM shall be configured to automatically output to the desired circuits following a 10-second slow whoop alert tone.
 - 3. Prerecorded magnetic taped messages and tape players are not permitted.
 - 4. The digitized message capacity shall be no less than 15 second in length.
 - 5. The digitized message shall be transmitted 3 times.
 - 6. The DVM shall be supervised for operational status.
 - 7. Failure of the DVM shall result in the transmission of a constant alarm tone.

- 8. The DVM memory shall have a minimum 50 percent spare capacity after those messages identified in this section are recorded. Multiple DVM's may be used to obtain the required capacity.
- E. Audio Amplifiers:
 - Audio Amplifiers shall provide a minimum of 50 Watts at either 25 or 70.7 VRMS output voltage levels.
 - 2. Amplifiers shall be continuously supervised for operational status.
 - Amplifiers shall be configured for either single or dual channel application.
 - Each audio output circuit connection shall be configurable for Style X.
 - 5. A minimum of 50 percent spare output capacity shall be available for each amplifier.
- F. Tone Generator(s):
 - Tone Generator(s) shall be capable of providing a distinctive 3pulse temporal pattern fire alarm signal as well as a slow whoop.
 - Tone Generator(s) shall be continuously supervised for operational status.

2.7 ALARM NOTIFICATION APPLIANCES

- A. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.

- 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
- 4. Strobes may be combined with the audible notification appliances specified herein.
- 5. Strobe shall have 15, 35, 75, 90, 110, 150 and 170 candelas and shall be field adjustable.

2.8 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - 3. Stations shall be of dual action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - 1. Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - All spot type and duct type detectors installed shall be of the photoelectric type.

- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- Provide combination smoke detectors base with carbon monoxide (CO) sounder in each patient bedroom as specified here and/or as shown on the drawings.
- C. Heat Detectors:
 - Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
 - Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
 - 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in all rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
- D. Flame detectors
 - 1. Provide flame detectors in the generator housing.

2.9 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.10 INSTRUCTION CHART:

A. Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate.

28 31 00 - 17

Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Provide fire alarm devices per NFPA 72, VA fire protection design manual and connect all devices to new or existing fire alarm control panel.
- B. Provide service entrance protection for the fire alarm cables in each building-housing.
- C. Provide fiber optic cable to connect to existing system.
- D. Provide fiber optic transceivers at each end, coordinate with the existing building fire alarm vendor/contractor.
- E. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- F. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- G. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- H. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.

- I. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- J. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- K. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door and shall be provided no more than 200 feet apart to meet NFPA.
- L. Provide smoke detectors at each side of a fire rated doors.
- M. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.

3.2 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COR, the contractor may request a final inspection.
- C. Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.

- 3. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 4. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.3 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition, the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a COR.

3.4 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a

matrix format and provided in a loose-leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.1 SMOKE ZONE DESCRIPTIONS: NOT USED

4.2 DIGITIZED VOICE MESSAGES:

A. Match existing, coordinate message with VA.

---END---

--- INTENTIONALLY BLANK ---

SECTION 31 20 11

EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
 - Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proofrolling, or similar methods of improvement.
 - 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D1557 Method A.
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.

- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Rock Excavation:
 - 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
 - 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 0.75 m3 (1 cubic yard) capacity, properly used, having adequate power and in good running condition.
 - 3. Boulders or other detached stones each having a volume of 0.4 m3 (1/2 cubic yard) or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will include authorized excavation of satisfactory subgrade soil, and the volume of loose, scattered rocks and boulders collected within the limits of the work; allowance will be made on the same basis for selected backfill ordered as replacement. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as

borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- D. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Nursery and Landscape Association (ANLA): 2004.....American Standard for Nursery Stock
- C. American Association of State Highway and Transportation Officials (AASHTO):

T99-10......Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop

T180-10.....Standard Method of Test for Moisture-Density

Relations of Soils Using a 4.54-kg [10 lb]

Rammer and a 457 mm (18 inch) Drop

D. American Society for Testing and Materials (ASTM):

C33-03.....Concrete Aggregate

D698-e1.....Laboratory Compaction Characteristics of Soil Using Standard Effort

D1140-00.....Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve

D1556-00.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method D1557-09.....Laboratory Compaction Characteristics of Soil Using Modified Effort Sioux Falls VA Medical Center July 30, 2021
Redesign Upgrade Station Generator System - PSDM 100% Construction Documents
Sioux Falls, SD Project No. 438-18-100
D2167-94 (2001).....Standard Test Method for Density and Unit
Weight of Soil in Place by the Rubber Balloon
Method
D2487-06....Standard Classification of Soil for Engineering
Purposes (Unified Soil Classification System)
D6938-10....Standard Test Methods for Density of Soil and
Soil-Aggregate in Place by Nuclear Methods
(Shallow Depth)
E. Standard Specifications of South Dakota State Department of
Transportation, latest revision.

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Fills: Materials approved from onsite and off-site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.
- B. Granular Fill:
 - Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, 75 micrometers (No. 200) sieve and no more than 2 percent by weight passing the 4.75 mm (No. 4) size sieve.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No. 4).
- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 19 mm

to 32 mm (3/4 inch to 1 1/4 inches) excluding top growth. There shall be no broken pads and torn or uneven ends

- F. Requirements For Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site. Material shall not be brought on site until tests have been approved by the Resident Engineer.
- G. Buried Warning and Identification Tape: metallic core or metallicfaced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3-inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:	Electric
Yellow:	Gas, Oil, Dangerous Materials
Orange:	Telephone and Other Communications
Blue:	Water Systems
Green:	Sewer Systems
White:	Steam Systems

H. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.

- I. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m(3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- J. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inches) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inches) diameter, and nonperishable solid objects which will be a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 4500 mm (15 feet) of new construction and 2250 mm (7'-6") of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.
- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade

is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials, larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.

- 1. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to it's angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
 - If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and

> similar operations, provide a concrete fill support under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.

- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in-situ material. While the excavation is open, the water level shall be maintained continuously, at least 0.9 m (3 feet) below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly. Relieve hydrostatic head in pervious zones below subgrade elevation in layered soils to prevent uplift.
- C. Blasting: Blasting shall not be permitted.
- D. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft material to solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete, poured separately from the footings.

- Do not tamp earth for backfilling in footing bottoms, except as specified.
- E. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
 - g. Bedding shall be of the type and thickness shown. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the

> individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

- Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D 2487.
- Clean, coarse-grained sand classified as by ASTM D 2487 for bedding and backfill.
- Clean, coarsely graded natural gravel, crushed stone or a combination thereof identified as in accordance with ASTM D 2487 for bedding and as indicated.
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the Contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not. When unsuitable material is encountered and removed, the contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on meters (yardage) in cut section only.
- G. Finished elevation of subgrade shall be as follows:
 - Pavement Areas bottom of the pavement or base course as applicable.

 Planting and Lawn Areas - 100 mm (4 inches) below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or damp proofing applied, and pipes coming in contact with backfill have been installed, and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. Operate the roller in a systematic manner to ensure the number of passes over all areas, and at speeds between 4 to 5.5 km/hour (2 1/2 to 3 1/2 mph). When proof rolling, one-half of the passes made with the roller shall be in a direction perpendicular to the other passes. Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer.
- C. Placing: Place material in horizontal layers not exceeding 200 mm (8 inches) in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer until there is no evidence of further compaction to not less than 95 percent of the maximum density determined in accordance with the following test method ASTM D698. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum

density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.

- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Governmentcontrolled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.

- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside the building away from the building walls for a minimum distance of 3048 mm (10 feet)at a minimum five percent (5%) slope.
- D. The finished grade shall be 150 mm (6 inches) below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 150 mm (6 inches), unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 100 mm (4 inches), new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 100 mm (4 inches). Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 100 mm (4 inches) of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.

- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 100 mm (4 inches) at a rate of 12 kg/100 m2 (25 pounds per 1000 square feet).
- D. Seeding: Seed at a rate of 2 kg/100 m2 (4 pounds per 1000 square feet) and accomplished only during periods when uniform distribution may be assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 225 kg/m (150 pounds per foot) of roller width.
- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 225 kg/m (150 pounds per foot) of the roller width to improve contact of sod with the soil.
- F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

--- INTENTIONALLY BLANK ---

SECTION 32 90 00 PLANTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Plants, soils, edging, turf, and landscape materials.

1.2 RELATED REQUIREMENTS (NOT USED)

1.3 DEFINITIONS

- A. Pesticide: Any substance or mixture of substances, including biological control agents, that may prevent, destroy, repel, or mitigate pests and is specifically labeled for use by U.S. Environmental Protection Agency (EPA). Also, any substance used as plant regulator, defoliant, disinfectant, or biocide.
- B. Planter Bed: An area containing one or combination of following plant types: shrubs, vines, wildflowers, annuals, perennials, ground cover, and mulch topdressing excluding turf. Trees may also be found in planter beds.
- C. Stand of Turf: 95 percent of established species.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute (ANSI):
 - 1. Z60.1-2014 Nursery Stock.
- C. American Society for Testing And Materials (ASTM):
 - B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 3. C33/C33M-16-Concrete Aggregates.
 - 4. C136/C136M-14 Sieve Analysis of Fine and Coarse Aggregates.
 - 5. C602-13a Agricultural Liming Materials.
 - 6. D977-13e1 Emulsified Asphalt.
 - 7. D5268-13 Topsoil Used for Landscaping Purposes.
- D. Hortus Third: Concise Dictionary of Plants Cultivated in United States and Canada.
- E. Tree Care Industry Association (TCIA):
 - A300P1-2008 Tree Care Operations Trees, Shrubs and Other Woody Plant Maintenance Standard Practices (Pruning).

- 2. Z133.1-2012 Arboricultural Operations Safety Requirements.
- F. Turfgrass Producers International (TPI):
 - 1. 2006 Guideline Specifications to Turfgrass Sodding.
- G. United States Department of Agriculture (USDA):
 - 1. DOA SSIR 42-2014 Soil Survey Laboratory Methods Manual.
 - Handbook No. 60 Diagnosis and Improvement of Saline and Alkali Soils.

1.5 PREINSTALLATION MEETINGS

- A. Conduct pre-installation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. COR.
 - b. Architect/Engineer.
 - c. Contractor.
 - d. Installer.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Inspection of planting materials.
 - b. Installation schedule.
 - c. Installation sequence.
 - d. Preparatory work.
 - e. Protection before, during, and after installation.
 - f. Installation.
 - g. Inspecting.
 - h. Environmental procedures.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Photographs: Color photographs of each plant species showing actual size and condition of plants to be provided with measuring device included for scale. Where more than 20 plants are required of any species, submit minimum three photographs of average, best, and

worst quality plant to be provided. Include on each photograph, plant full scientific name, size, and source nursery.

- 3. Installation instructions.
- 4. Warranty.
- C. Samples:
 - Trees and Shrubs: Full sized of each variety and size. Deliver samples to project site and maintain samples for duration of construction period.
 - Mineral Mulch: 1.0 kg (2 lb.) sealed plastic bag of mulch, including label with source. Samples to match color, texture, and composition of installed material.
 - 3. Filter Fabric: 300 by 300 mm (12 by 12 inches).
 - 4. Edging Materials and Accessories: Manufacturer's standard sizes.
 - 5. Tree Wrap: Width of panel by 300 mm (12 inches).
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Biobased Content:
 - a. Show type and quantity for each product.
- E. Test reports: Certify products comply with specifications.
- F. Certificates: Certify products comply with specifications.
 - Plant Materials: Department of Agriculture certification by State Nursery Inspector declaring material to be free from insects and disease.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer, including supervisor with project experience list.
- H. Operation and Maintenance Data:
 - 1. Care instructions for each plant material.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - Project Experience List: Provide contact names and addresses for completed projects.
 - Member in good standing of either Professional Landcare Network or American Nursery and Landscape Association.

- Personnel assigned to Work certified in one of the following categories from Professional Landcare Network and submit one copy of certificate to the COR:
 - a. Certified Landscape Technician (CLT) Exterior, with installation, maintenance ,irrigation, specialty areas, designated CLT-Exterior.
 - b. Certified Landscape Technician (CLT) Interior, designated CLT-Interior.
 - c. Certified Ornamental Landscape Professional, designated COLP.
- B. Licensed Arborist required to submit one copy of license to Contracting Officer's Representative.
- C. Independent or university laboratory, recognized by State Department of Agriculture, with experience and capability to conduct testing indicated and that specializes in types of tests to be performed.
- D. Measure plants according to ANSI Z60.1. Pruning to obtain required sizes will not be permitted.
- E. Contracting Officer's Representative may review plant materials either at place of growth or project site before planting for compliance with requirements. Contracting Officer's Representative retains right to inspect trees and shrubs to determine if any unacceptable conditions exist and to reject any trees or shrubs at any time during Project. All rejected trees and shrubs shall be immediately removed from Project site.
 - Submit plant material source information to Contracting Officer's Representative seven days in advance of delivery to Project site.
- F. Material Test Reports: For standardized ASTM D5268 topsoil, existing in-place surface soil and imported or manufactured topsoil.
 - For each unamended soil type, provide soil analysis and written report by qualified soil-testing laboratory stating percentages of organic matter; gradation of sand, silt, and clay content; cation exchange capacity; deleterious material; pH; and mineral and plant-nutrient content of soil.
 - 2. Comply with USDA's Handbook No. 60 testing methods and written recommendations.
 - 3. Soil-testing laboratory to oversee soil sampling; with depth, location, and number of samples to be taken per instructions from Contracting Officer's Representative. Take minimum 3 representative

samples from varied locations for each soil to be used or amended for planting purposes.

- 4. Report suitability of tested soil for plant growth.
- 5. Based on test results, state recommendations for soil treatments and soil amendments to be incorporated. State recommendations in weight per 92.9 sq. m (1000 sq. ft.) or volume per 0.76 cu. m (1 cu. yd.) for nitrogen, phosphorus, and potash nutrients and soil amendments to be added to produce satisfactory planting soil suitable for healthy, viable plants.
- 6. Report presence of problem salts, minerals, or heavy metals, including aluminum, arsenic, barium, cadmium, chromium, cobalt, lead, lithium, and vanadium. If such problem materials are present, provide additional recommendations for corrective action.

1.8 DELIVERY

A. Deliver packaged products in manufacturer's original sealed packaging.

- B. Bulk Products:
 - Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.
 - 2. Install erosion control materials to prevent erosion or displacement of bulk products.
- C. Apply antidesiccant to trees and shrubs according to manufacturer's instructions to protect during digging, handling, and transportation.
 - For deciduous trees or shrubs in full leaf, spray with antidesiccant at nursery before transporting and again two weeks after planting.
- D. Wrap trees and shrubs with tree wrap according to manufacturer's instructions to protect from wind and other damage during digging, handling, and transportation.
- E. Deliver bare-root stock plants freshly dug with root system packed in wet straw, hay, or similar material.
- F. Deliver branched plants with branches tied and exposed branches covered with material that allows air circulation. Prevent damage to branches, trunks, root systems, and root balls and desiccation of leaves.
- G. Use of equipment such as "tree spades" is permitted provided plant balls are sized according to ANSI Z60.1 and tops are protected from damage.

1.9 STORAGE AND HANDLING

- A. Store bulbs, corms, and tubers in dry location at 16 to 18 degrees C(60 to 65 degrees F) until planting.
- B. Store seeds and other packaged materials in dry locations away from contaminants.
- C. Plant Storage and Protection: Store and protect plants not planted on day of arrival at Project site as follows:
 - Shade and protect plants in outdoor storage areas from wind and direct sunlight until planted.
 - 2. Heel-in bare root plants.
 - 3. Protect balled and burlapped plants from freezing or drying out by covering balls or roots with moist burlap, sawdust, wood chips, shredded bark, peat moss, or other approved material. Provide covering that allows air circulation.
 - Keep plants in moist condition until planted by watering with fine mist spray.
 - 5. Do not store plant materials directly on concrete or bituminous surfaces.
- D. Topsoil: Before stockpiling topsoil, eradicate on site undesirable growing vegetation. Clear and grub existing vegetation three to four weeks before stockpiling existing topsoil.
- E. Root Control Barrier and Weed Control Fabric: Store materials in site in enclosures or under protective covering in dry location out of direct sunlight. Do not store materials directly on ground.
- F. Handling: Do not drop or dump plants from vehicles. Avoid damaging plants being moved from nursery or storage area to planting site. Handle boxed and container plants carefully to avoid damaging or breaking earth ball or root structure. Do not handle plants by trunk or stem. Remove damaged plants from Project site.

1.10 FIELD CONDITIONS

- A. Environment:
 - Coordinate installation of planting materials during optimal planting seasons for each type of plant material required.
 - Restrictions: Do not plant when ground is frozen, snow covered, muddy, or when air temperature exceed 32 degrees C (90 degrees F).
- B. Weather Limitations: Install plantings only during current and forecasted weather conditions that are comply with plant requirements.

Apply associated products in compliance with manufacturers' instructions.

1.11 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant plantings and against material defects.
 - 1. Warranty Period: Two years.
 - 2. Plant and Turf Warranty Periods will begin from date of Government acceptance of project or phase for beneficial use and occupancy.
 - 3. Contracting Officer's Representative will reinspect plants and turf at end of Warranty Period. Replace any dead, missing, or defective plant material and turf immediately. Warranty Period will end on date of this inspection provided Contractor has complied with warranty work required by this specification. Comply with following requirements:
 - a. Replace any plants more than 25 percent dead, missing or defective plant material before final inspection.
 - b. Only one replacement of each plant shall be required except when losses or replacements are due to failure to comply with these requirements.
 - c. Complete remedial measures directed by Contracting Officer's Representative to ensure plant and turf survival.
 - d. Repair damage caused while making plant or turf replacements.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Provide each product from one source or manufacturer.
- B. Sustainable Construction Requirements:
 - Select products with recycled content to achieve overall Project recycled content requirement.
 - a. Fertilizer.
 - b. Weed control fabric.
 - c. Root control barrier.
 - 2. Steel Recycled Content: 30 percent total recycled content, minimum.
 - Aluminum Recycled Content: 50 percent total recycled content, minimum.
 - 4. Biobased Content:

- a. Organic Mulch: 100 percent.
- b. Peat: 100 percent.

2.2 PLANT MATERIALS

- A. Plant Materials: ANSI Z60.1, conforming to varieties specified and be true to scientific name as listed in Hortus Third. Well-branched, well-formed, sound, vigorous, healthy planting stock free from disease, sunscald, windburn, abrasion, and harmful insects or insect eggs and having healthy, normal, and undamaged root system.
 - 1. Trees-Deciduous and Evergreen: Single trunked with single leader, unless otherwise indicated; symmetrically developed deciduous trees and shrubs of uniform habit of growth; straight boles or stems; free from objectionable disfigurements; evergreen trees and shrubs with well-developed symmetrical tops, with typical spread of branches for each particular species or variety. Trees with damaged, crooked, or multiple leaders; tight vertical branches where bark is squeezed between two branches or between branch and trunk; crossing trunks; cut-off limbs more than 19 mm (3/4 inch) in diameter; or with stem girdling roots shall be rejected.
 - 2. Ground Cover and Vine Plants: Provide number and length of runners for size specified on drawings, together with proper age for grade of plants specified. Provide vines and ground cover plants well established in removable containers, integral containers, or formed homogeneous soil sections. Provide plants grown under climatic conditions similar to those in locality of project. Spray all plants budding into leaf or having soft growth with an anti-desiccant at nursery before digging.
 - 3. Provide plants of sizes indicated, measured before pruning with branches in normal position. Plants larger in size than specified is acceptable with approval of Contracting Officer's Representative, with no change in contract price. When larger plants are used, increase ball of earth or spread of roots according to ANSI Z60.1.
 - 4. Provide nursery grown plant material conforming to requirements and recommendations of ANSI Z60.1. Dig and prepare plants for shipment in manner that will not cause damage to branches, shape, and future development after planting.
- 5. Balled and burlapped (B&B) plant ball sizes and ratios will conform to ANSI Z60.1, consisting of firm, natural balls of soil wrapped firmly with burlap or strong cloth and tied.
- Bare root (BR) plants to have root system substantially intact, but with earth carefully removed. Cover roots with thick coating of mud by "puddling" after plants are dug.
- 7. Container grown plants to have sufficient root growth to hold earth intact when removed from containers, but not be root bound.
- 8. Make substitutions only when plant (or alternates as specified) is not obtainable and Contracting Officer's Representative authorizes change order providing for use of nearest equivalent obtainable size or variety of plant with same essential characteristics and an equitable adjustment of contract price.
- 9. Existing plants to be relocated: Ball sizes to conform to requirements for collected plants in ANSI Z60.1, and plants dug, handled, and replanted according to applicable articles of this Section.
- 10. Only plants grown in nursery are permitted.
- B. Label plants with durable, waterproof labels in weather-resistant ink. Provide labels stating correct botanical and common plant name and variety and size as specified in list of required plants. Groups of plants shall be labels by tagging one plant. Labels to be legible for minimum 60 days after delivery to planting site.

2.3 PLANTING SOILS

- A. Planting Soil: Evaluate soil for use as topsoil according to ASTM D5268. From 5 to 10 percent organic matter as determined by topsoil composition tests of Organic Carbon, 6A, Chemical Analysis Method described in USDA DOA SSIR 42. Maximum particle size, 19 mm (3/4 inch), with maximum 3 percent retained on 6 mm (1/4 inch) screen. Mix topsoil with following soil amendments and fertilizers as recommended by soils analysis.
- B. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process and stockpiled on-site. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 - 1. Supplement with planting soil when quantities are insufficient.

- Mix existing, native surface topsoil with soil amendments and fertilizers as recommended by soils analysis.
- C. Imported Planting Soil: Imported topsoil or manufactured topsoil from off-site sources are acceptable if sufficient topsoil is not available on site to meet specified depth. At least 10 days before topsoil delivery, notify Contracting Officer's Representative of topsoil sources. Obtain imported topsoil displaced from naturally well-drained construction or mining sites where topsoil is at least 100 mm (4 inches) deep. Topsoil from agricultural land, bogs, or marshes shall be rejected.

2.4 INORGANIC SOIL AMENDMENTS

- A. Lime: Commercial grade hydrated limestone containing calcium carbonate equivalent (CCE) specified in ASTM C602 of minimum 80 percent.
- B. Sulfur: 100 percent elemental.
- C. Iron Sulfate: 100 percent elemental.
- D. Aluminum Sulfate: Commercial grade.
- E. Perlite: Horticultural grade.
- F. Agricultural Gypsum: Coarsely ground from recycled scrap gypsum board comprised of calcium sulfate dehydrate 91 percent, calcium 22 percent, sulfur 17 percent, minimum 96 percent passing through 850 micrometers 20 mesh screen, 100 percent passing through 970 micrometers 16 mesh screen.
- G. Coarse Sand: ASTM C33/C33M, clean and free of materials harmful to plants.
- H. Vermiculite: Horticultural grade for planters.
- I. Diatomaceous Earth: Calcined, 90 percent silica, with approximately 140 percent water absorption capacity by weight.
- J. Zeolites: Mineral clinoptilolite with at least 60 percent water absorption by weight.

2.5 ORGANIC SOIL AMENDMENTS

- A. Organic Matter: Commercially prepared compost. Free of substances toxic to plantings and as follows:
 - Organic Matter Content: Biobased content 100 percent. Wood cellulose fiber processed to contain no growth or germination-inhibiting factors, dyed with non-toxic, biodegradable dye to appropriate color to facilitate visual metering of materials application.

- Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.
- B. Peat: Natural product of peat moss conforming to ASTM D4427 and containing no invasive species, including seeds. Shred and granulate peat to pass 12.5 mm (1/2 inch) mesh screen and condition in storage pile for minimum 6 months after excavation. Biobased content minimum 100 percent.
- C. Composted Derivatives: Ground bark, nitolized sawdust, humus, or other green wood waste material free of stones, sticks, invasive species, including seeds, and soil stabilized with nitrogen and having following properties:
 - 1. Particle Size: Minimum percent by weight passing:
 - a. 4.75 mm (No. 4) mesh screen: 95.
 - b. 2.36 mm (No. 8) mesh screen: 80.
 - Nitrogen Content: Minimum percent based on dry weight:
 a. Fir sawdust: 0.7.
 - b. Fir or pine bark: 1.0.
 - 3. Biobased Content: 100 percent.
- D. Manure: Well-rotted, horse or cattle manure containing maximum 25 percent by volume of straw, sawdust, or other bedding materials; free of seeds, stones, sticks, soil, and other invasive species.

2.6 PLANT FERTILIZERS

A. Soil Test: Evaluate existing soil conditions and requirements before fertilizer selection and application to minimize use of all fertilizers and chemical products. Obtain approval of Contracting Officer's Representative for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements. Fertilizers to be registered and approved by EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer applicable to specific areas as required for Project conditions and application. Provide commercial grade plant and turf fertilizers, free flowing, uniform in composition and conforms to applicable state and federal regulations.

- B. Fertilizer for groundcover, wildflowers, and grasses is not acceptable. Provide fertilizer for trees, plants, and shrubs as recommended by plant supplier, except synthetic chemical fertilizers are not acceptable. Fertilizers containing petrochemical additives or that have been treated with pesticides or herbicides are not acceptable.
- C. Granular Fertilizer: Organic, granular controlled release fertilizer containing minimum percentages, by weight, of plant food nutrients.
 - Composition: Nitrogen, phosphorous, potassium, sulfur, and iron in amounts recommended in soil reports from qualified soil-testing laboratory.
- D. Fertilizer Tablets: Organic plant tablets composed of tightly compressed fertilizer chips, insoluble in water, to provide continuous release of nutrients for minimum 24 months and containing following minimum percentages, by weight, of plant food nutrients:
 - Nutrient Composition: 20 percent available nitrogen, 20 percent available phosphorous, and 5 percent available potassium.

2.7 WEED CONTROL FABRIC

- A. Roll Type Polypropylene or Polyester Mats: Woven, needle punched, or non-woven fabric treated for protection against deterioration due to ultraviolet radiation. Minimum 99 percent opaque to prevent photosynthesis and seed germination, fabric allows air, water, and nutrients to pass through to plant roots.
 - Minimum weight: 0.11 kg per square meter (5 ounces per square yard).
 Minimum thickness: 0.50 mm (20 mils).

2.8 MULCH

- A. Mineral Mulch: Coarse, clean stone of following type, size, and color:
 - 1. Type: Decomposed granite, gravel, river stone.
 - Size: See sheet CI100 for type, size, and color of all crushed stone mulch.

2.9 EDGING

- A. Aluminum Edging: ASTM B221M (ASTM B221), manufactured from extruded aluminum alloy 6063-T6, in interlocking sections with punch-outs fabricated in each section for installation with stakes.
 - 1. Edging Size: 4.8 mm (3/16 inch) wide by 140 mm (5-1/2 inches) deep.
 - 2. Stakes: Aluminum to match edging, minimum 300 mm (12 inches) long by 38 mm (1-1/2 inches) wide.

2.10 ANTIDESICCANT

A. Antidesiccant: An emulsion specifically manufactured for agricultural use that will provide protective film over plant surfaces permeable enough to permit transpiration.

2.11 EROSION CONTROL

- A. Erosion Control Blankets: 70 percent agricultural straw and 30 percent coconut fiber matrix stitched with degradable nettings, designed to degrade within 12 months.
- B. Erosion Control Fabric: Knitted construction of polypropylene yarn with uniform mesh openings 19 to 25 mm (3/4 to 1 inch) square with strips of biodegradable paper. Minimum filler paper strip life of six months.
- C. Erosion Control Net: Heavy, twisted jute mesh weighing approximately 605 grams per meter (1.22 pounds per linear yard) and 1200 mm (4 feet) wide with mesh openings approximately 25 mm (1 inch) square.
- D. Erosion Control Material Anchors: As recommended by erosion control material manufacturer.

2.12 ROOT CONTROL BARRIER

A. Root Control Barrier: Flexible and permeable geotextile fabric with permanently attached time-release nodules. Pre-formed barrier with integral vertical root deflecting ribs constructed of ultraviolet resistant polypropylene material.

2.13 BIOSTIMULANTS

A. Biostimulants: Formulation containing soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions.

2.14 STAKING AND GUYING MATERIALS

- A. Staking Material:
 - Tree Support Stakes: Rough sawn hardwood free of knots, rot, cross grain, bark, long slivers, or other defects that impair strength. Minimum 50 mm (2 inches) square by 2.4 m (8 feet) long, pointed at one end.
 - Ground Stakes: 50 mm (2 inches) square by 0.91 m (3 feet) long wood or plastic, pointed at one end.
- B. Guying Material:
 - 1. Guying Wire: ASTM A580/A580M, galvanized steel wire.
 - Guying Cable: Minimum five-strand, 5 mm (3/16 inch) galvanized steel cable.

- C. Hose Chafing Guards: New or used 2 ply 19 mm (3/4 inch) reinforced rubber or plastic hose, black or dark green, all of same color.
- D. Flags: White surveyor's plastic tape 150 mm (6 inches) long, fastened to guying wires or cables.
- E. Turnbuckles: Galvanized or cadmium-plated steel with minimum 75 mm (3 inch) long openings fitted with screw eyes and galvanized or cadmium-plated steel eye bolts with 25 mm (1 inch) diameter eyes and 38 mm (1-1/2 inches) minimum screw length.

2.15 TREE WRAP

- A. Crinkled Paper Tree Wrap: Two thicknesses of crinkled paper cemented together with layer of bituminous material. Minimum 100 mm (4 inches) wide with stretch factor of 33 1/3 percent. Tie with lightly tarred medium or coarse sisal yarn twine.
- B. Tree Shelters: Extruded, translucent, twin walled polypropylene protection board sheets,3 mm (1/8 inch) thick, 1800 mm (6 feet) long, utilized for short trunk trees 75 mm (3 inch) caliper or less.
- C. Synthetic Fabric Tree Wrap: White, breathable polypropylene fabric in 75 mm (3 inch) wide rolls.
- D. Tape: Bio-degradable tape suitable for nursery use to secure tree wrap which degrades in sunlight maximum 2 years after installation.

2.16 TACKIFIERS AND ADHESIVES

- A. Nonasphalt Tackifier: Colloidal liquid fixative recommended by fiber mulch manufacturer for hydroseeding.
- B. Asphalt emulsion: ASTM D977, Grade SS-1.

2.17 WATER

A. Water: Source approved by Contracting Officer's Representative and suitable quality for irrigation, containing no elements toxic to plant life, including acids, alkalis, salts, chemical pollutants, and organic matter. Use collected storm water or graywater when available.

2.18 PESTICIDES

A. Consider IPM (Integrated Pest Management) practices to minimize use of all pesticides and chemical products. Obtain Contracting Officer's Representative's approval for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements.

2.19 FINISHES

- A. Steel Paint Finish:
 - Powder-Coat Finish: Manufacturer's standard two-coat finish system consisting of following:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: Refer to Section 09 06 00, SCHEDULE FOR FINISHES.

B. Aluminum Anodized Finish: NAAMM AMP 500.

 Color Anodized Finish: AA-C22A32 or AA-C22A34; Class II Architectural, 0.01 mm (0.4 mil) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.
 - Verify that no materials that would inhibit plant growth are present in planting area. If such materials are present, remove soil and contaminants ad directed by Contracting Officer's Representative and provide new planting soil.
 - Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
 - Suspend soil spreading, grading, and tilling operations if soil moisture becomes excessive. Resume soil preparations when moisture content returns to acceptable level.
 - If soil is excessively dry, not workable, and too dusty, moisten uniformly.
 - Special conditions may exist that warrant variance in specified planting dates or conditions. Submit written request to Contracting Officer's Representative stating special conditions and proposed variance.
- B. Proceed with planting operations only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Protect existing and proposed landscape features, elements, and site construction and completed work from damage. Protect trees, vegetation, and other designated features by erecting high-visibility, reusable construction fencing. Locate fence no closer to trees than drip line.

Plan equipment and vehicle access to minimize and confine soil disturbance and compaction to areas indicated on drawings.

- B. Install erosion control materials at all areas inside or outside limits of construction that are disturbed by planting operations. Provide erosion control and seeding with native plant species to protect slopes.
- C. Stake out approved plant material locations and planter bed outlines on project site before digging plant pits or beds. Contracting Officer's Representative reserves right to adjust plant material locations to meet field conditions. Do not plant closer than 300 mm (12 inches) to building wall, pavement edge, fence or wall edge and other similar structures. Provide on-site locations for excavated rock, soil, and vegetation.

3.3 PLANT BED PREPARATION

- A. Verify location of underground utilities before excavation. Protect existing adjacent turf before excavations are made. Do not disturb topsoil and vegetation in areas outside those indicated on Drawings. Where planting beds occur in existing turf areas, remove turf to depth that will ensure removal of entire roof system. Measure depth of plant pits from finished grade. Provide depth of plant pit excavation and relation of top of root ball and finish grade as indicated on drawings. Install plant materials as specified in Article 3.8. Do not plant trees within 3 m (10 feet) of any utility lines or building walls.
- B. For newly graded subgrades, loosen subgrade to minimum 150 mm (6 inches) deep. Remove stones larger than 25 mm (1 inch) in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Government's property.
 - Apply fertilizer, lime, and soil amendments directly to subgrade before loosening, at rates recommended by soils analysis.
 - 2. Spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 - 3. Spread planting soil 100 mm (4 inches) deep but minimum required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.

- a. Spread approximately 1/2 thickness of planting soil over loosened subgrade. Mix thoroughly into top 100 mm (4 inches) of subgrade. Spread remainder of planting soil.
- b. Reduce elevation of planting soil to allow for soil thickness of sod.
- C. Finish grade planting areas to smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 13 mm (1/2 inch) of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in immediate future.

3.4 GROUND COVER AND PLANT INSTALLATION

- A. Place ground cover and plants, not including trees, shrubs, and vines, as indicated on drawings in even rows and with triangular spacing.
- B. Use prepared soil mixture for backfill.
- C. Place so roots are in natural position.
- D. Do not remove plants from flats or containers until immediately before planting. Plat at depth to sufficiently cover all roots. Start watering areas planted as required by temperature and wind conditions. Water plants at sufficient rate to ensure thorough wetting of soil to 150 mm (6 inches) deep without runoff or puddling. Smooth planting areas after planting to provide even, smooth finish.
- E. Plant ground cover in areas to receive erosion control materials through material after erosion control materials are in place.

3.5 TREE, SHRUB, AND VINE PLANTING

- A. Move plant materials only by supporting root ball and container. Set plants on hand compacted layer of prepared backfill soil mixture 150 mm (6 inches) thick and hold plumb in center of pit until soil has been tamped firmly around root ball.
- B. Set plant materials in relation to surrounding finish grade 25 to 50 mm (1 to 2 inches) above depth at which they were grown in nursery, collecting field, or container. Replace plant material whose root balls are cracked or damaged either before or during planting process.
- C. Place backfill soil mixture on previously scarified subsoil to completely surround root balls and bring to smooth and even surface, blending into existing areas.
- D. Balled and Burlapped Stock: Backfill with prepared soil mixture to approximately half ball depth then tamp and water. Carefully remove or

fold back excess burlap and tying materials from top to minimum 1/3 depth from top of root ball. Tamp and complete backfill, place mulch topdressing, and water. Remove wires and non-biodegradable materials from plant pit before backfilling.

3.6 MECHANIZED TREE SPADE PLANTING

- A. At designated locations and with approved equipment, trees shall be planted by mechanized tree spade. Tree spade is not acceptable for moving trees that are larger than maximum size of similar field-grown, balled-and-burlapped root-ball diameter recommended by ANSI Z60.1, or that are larger than manufacturer's recommended maximum size for tree spade to be used, whichever is smaller.
- B. For tree extraction, center trunk in tree spade and move tree and solid root ball.
- C. Cut any exposed roots with sharp instruments.
- D. Excavate planting hole with same tree spade used to extract and move tree.
- E. If possible, place trees with same orientation as at location from which they were extracted.

3.7 TREE WRAP

A. Wrap deciduous tree trunks immediately after planting. Wrap tree trunks 40 mm (1-1/2 inches) or greater in caliper with specified material beginning at base and extending to lowest branches. Remove tree wrap after one year. Securely tie crinkled paper wrap with twine at top and bottom and at maximum 450 mm (18 inch) intervals.

3.8 TREE AND SHRUB PRUNING

- A. Pruning: Performed by trained and experience personnel according to TCIA A300P1.
- B. Remove dead and broken branches. Prune only to correct structural defects.
- C. Retain typical growth shape of individual plants with as much height and spread as practical. Do not central leader on trees. Make cuts with sharp instruments. Do not flush cut with trunk or adjacent branches. Collars to remain in place.
- D. Do not apply tree wound dressing to cuts.

3.9 STAKING AND GUYING

A. Staking: Stake plants with number of stakes indicated on drawings with double strand of guy wire. Attach guy wire at half tree trunk height

but maximum 1.5 m (5 feet) high. Drive stakes to depth of 0.80 to 0.91 m (2-1/2 to 3 feet) into the ground outside plant pit. Do not injure root ball. Install hose chafer guards where wire is in contact with tree trunk.

B. Guying: Guy plants as indicated on drawings. Attach two strands of guy wire around tree trunk at 0.785 rad (45 degrees) at half tree trunk height. Install hose chafer guards where wire is in contact with tree trunk. Anchor guys to ground stakes. Fasten flags to each guying wire at 2/3 of the distance above ground level.

3.10 ROOT CONTROL BARRIER INSTALLATION

- A. At trees planted within 1500 mm (60 inches) of paving, walls, curbs, and walkways, install root control barrier, unless otherwise shown on Drawings.
- B. Install geotextile fabric in soil for vertical application with appropriate holding device to ensure fabric position. For vertical and horizontal application, provide minimum 50 mm (2 inch) soil cover over top surface. Extend fabric minimum 450 mm (18 inches) beyond structure area to be protected to prevent root growth around fabric edges.
- C. Install polypropylene barrier minimum 25 mm (1 inch) above finished grade to prevent root growth over barrier. Backfill outside barrier with 19 to 25 mm (3/4 to 1 inch) of gravel for minimum 50 mm (2 inches). For linear application, use device recommended by barrier manufacturer to connect two pieces.

3.11 MULCH INSTALLATION

A. Provide specified mulch over entire planting bed surfaces and individual plant surfaces, including earth mount watering basin around plants, to 75 mm (3 inches) depth after plant installation and before watering. Do not place mulch in crowns of shrubs. Place mulch minimum 50 to 75 mm (2 to 3 inches) away from tree or shrub trunks. Place mulch on all weed control fabric.

3.12 EDGING INSTALLATION

- A. Uniformly edge beds of plants to provide clear cut division line between planted area and adjacent lawn. Construct bed shapes as indicated on drawings.
- B. Metal Edging: Install aluminum edging material according to manufacturer's instructions. Install edging with minimum 12.5 mm (1/2 inch) visible above ground level.

3.13 PLANT MAINTENANCE

- A. Frequency: Begin maintenance immediately after plants have been installed. Inspect plants at least once week and perform required maintenance promptly.
- B. Promotion of Plant Growth and Vigor: Water, prune, fertilize, mulch, eradicate weeds, and perform other operations necessary to promote plant growth and vigor.
- C. Planter Beds: Weed, fertilize, and irrigate planter beds and keep pest free, pruned, and mulch levels maintained. Do not permit planter beds encroach into turf areas. Maintain edging breaks between turf areas and planter beds. Fertilize plant materials to promote healthy growth without encouraging excessive top foliar growth. Remove noxious weeds common to area from planter beds by mechanical means.
- D. Shrubs: In addition to planter bed maintenance requirements, selectively prune and shape shrubs for health and safety when following conditions exist:
 - Remove growth in front of windows, over entrance ways or walks, and any growth which will obstruct vision at street intersections or of security personnel.
 - Remove dead, damaged, or diseased branches or limbs where shrub growth obstructs pedestrian walkways, where shrub growth is growing against or over structures, and where shrub growth permits concealment of unauthorized persons.
 - 3. Properly dispose of all pruning debris.
- E. Trees: Adjust stakes, ties, guy supports and water, fertilize, control pests, mulch, and prune for health and safety and provide fall leaf cleanup.
 - Fertilize trees to promote healthy plant growth without encouraging excessive top foliar growth. Inspect and adjust stakes, ties, guy supports to avoid girdling and promote natural development.
 - 2. Selectively prune all trees within project boundaries, regardless of caliper, for safety and health reasons, including, but not limited to, removal of dead and broken branches and correction of structural defects. Prune trees according to their natural growth characteristics leaving trees well shaped and balanced.

- 3. All pruning, including palm tree pruning, shall be by or in presence of certified member of International Society of Arboriculture and according to TCIA Z133.1.
- 4. Properly dispose of all pruning debris.

3.14 SLOPE EROSION CONTROL MAINTENANCE

- A. Provide slope erosion control maintenance to prevent undermining of all slopes in newly landscaped and natural growth areas. Maintenance tasks include immediate repairs to weak spots in sloped areas and maintaining clean, clear culverts and graded berms to intercept and direct water flow to prevent development of large gullies and slope erosion and securing irrigation systems during periods of extended rainfall.
 - 1. Fill eroded areas with amended topsoil and replant with same plant species.
 - 2. Reinstall erosion control materials damaged due to slope erosion.

3.15 REMOVAL OF DYING OR DEAD PLANTS

- A. Remove dead and dying plants and provide new plants immediately upon commencement of specified planting season and replace stakes, guys, mulch, and eroded earth mound water basins. No additional correction period shall be required for replacement plants beyond original warranty period. Plants shall be considered dead or dying as follows:
 - 1. Tree: Main leader died back or minimum 20 percent of crown died.
 - 2. Shrub and Ground Cover: Minimum 20 percent of plant died.
 - Determination: Scrape on maximum 2 mm (1/16 inch) square branch area to determine dying plant material cause and provide recommendations for replacement.

3.16 CLEANING

A. Remove and legally dispose of all excess soil and planting debris.

3.17 PROTECTION

- A. Protect plants from traffic and construction operations.
- B. Provide temporary fences or enclosures and signage, at planted areas.
 Maintain fences and enclosures during maintenance period.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

--- INTENTIONALLY BLANK ---