Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 6/20/2021 Construction Documents

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	07-16
22 05 19	Meters and Gages for Plumbing Piping	09-15
22 05 23	General-Duty Valves for Plumbing Piping	09-15
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	11-19
22 13 00	Facility Sanitary and Vent Piping	09-15
22 14 00	Facility Storm Drainage	09-15
22 15 00	General Service Compressed-Air Systems	09-15

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 26 - ELECTRICAL	İ
26 05 11	Requirements for Electrical Installations	01-16
26 05 13	Medium-Voltage Cables	01-17
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 09 23	Lighting Controls	01-18
26 27 26	Wiring Devices	01-18
26 56 00	Exterior Lighting	01-18
	DIVISION 27 - COMMUNICATIONS	
27 15 00	Communications Structured Cabling	01-16
	DIVISION 31 - EARTHWORK	
31 20 11	Earthwork (Short Form)	7-16

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 33 - UTILITIES	
33 40 00	Storm Sewer Utilities	12-17

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control
 - 25. DI: Digital Input
 - 26. DISS: Diameter Index Safety System
 - 27. DO: Digital Output

- 28. DVD: Digital Video Disc
- 29. DN: Diameter Nominal
- 30. DWV: Drainage, Waste and Vent
- 31. ECC: Engineering Control Center
- 32. EPDM: Ethylene Propylene Diene Monomer
- 33. EPT: Ethylene Propylene Terpolymer
- 34. ETO: Ethylene Oxide
- 35. F: Fahrenheit
- 36. FAR: Federal Acquisition Regulations
- 37. FD: Floor Drain
- 38. FED: Federal
- 39. FG: Fiberglass
- 40. FNPT: Female National Pipe Thread
- 41. FPM: Fluoroelastomer Polymer
- 42. GPM: Gallons Per Minute
- 43. HDPE: High Density Polyethylene
- 44. Hg: Mercury
- 45. HOA: Hands-Off-Automatic
- 46. HP: Horsepower
- 47. HVE: High Volume Evacuation
- 48. ID: Inside Diameter
- 49. IPS: Iron Pipe Size
- 50. Kg: Kilogram
- 51. kPa: Kilopascal
- 52. lb: Pound
- 53. L/s: Liters Per Second
- 54. L/min: Liters Per Minute
- 55. MAWP: Maximum Allowable Working Pressure
- 56. MAX: Maximum
- 57. MED: Medical
- 58. m: Meter
- 59. MFG: Manufacturer
- 60. mg: Milligram
- 61. mg/L: Milligrams per Liter
- 62. ml: Milliliter
- 63. mm: Millimeter
- 64. MIN: Minimum

- 65. NF: Oil Free Dry (Nitrogen)
- 66. NPTF: National Pipe Thread Female
- 67. NPS: Nominal Pipe Size
- 68. NPT: Nominal Pipe Thread
- 69. OD: Outside Diameter
- 70. OSD: Open Sight Drain
- 71. OS&Y: Outside Stem and Yoke
- 72. OXY: Oxygen
- 73. PBPU: Prefabricated Bedside Patient Units
- 74. PH: Power of Hydrogen
- 75. PLC: Programmable Logic Controllers
- 76. PP: Polypropylene
- 77. PPM: Parts per Million
- 78. PSIG: Pounds per Square Inch
- 79. PTFE: Polytetrafluoroethylene
- 80. PVC: Polyvinyl Chloride
- 81. PVDF: Polyvinylidene Fluoride
- 82. RAD: Radians
- 83. RO: Reverse Osmosis
- 84. RPM: Revolutions Per Minute
- 85. RTRP: Reinforced Thermosetting Resin Pipe
- 86. SCFM: Standard Cubic Feet Per Minute
- 87. SDI: Silt Density Index
- 88. SPEC: Specification
- 89. SPS: Sterile Processing Services
- 90. STD: Standard
- 91. SUS: Saybolt Universal Second
- 92. SWP: Steam Working Pressure
- 93. TEFC: Totally Enclosed Fan-Cooled
- 94. TFE: Tetrafluoroethylene
- 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 97. T/P: Temperature and Pressure
- 98. USDA: U.S. Department of Agriculture
- 99. V: Volt
- 100. VAC: Vacuum
- 101. VA: Veterans Administration

- 102. VAMC: Veterans Administration Medical Center
- 103. VAC: Voltage in Alternating Current
- 104. WAGD: Waste Anesthesia Gas Disposal
- 105. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- F. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- G. Section 03 30 53, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- H. Not Used
- I. Section 05 36 00, COMPOSITE METAL DECKING: Building Components for Attachment of Hangers.
- J. Section 05 50 00, METAL FABRICATIONS.
- K. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- L. Section 07 84 00, FIRESTOPPING.
- M. Section 07 92 00, JOINT SEALANTS.
- N. Section 09 91 00, PAINTING.
- O. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- P. Not Used
- Q. Section 22 07 11, PLUMBING INSULATION.
- R. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- S. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- T. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- U. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- V. Section 26 29 11, MOTOR CONTROLLERS.
- W. Section 31 20 11, EARTH MOVING: Excavation and Backfill.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 ASME Boiler and Pressure Vessel Code -

	DDVC Cootion TV 2012 Welding Dusting and Dusting Auglifications
	BPVC Section IX-2013Welding, Brazing, and Fusing Qualifications
~	B31.1-2012Power Piping
С.	American Society for Testing and Materials (ASTM):
	A36/A36M-2012Standard Specification for Carbon Structural
	Steel
	A575-96(R2013)elStandard Specification for Steel Bars, Carbon,
	Merchant Quality, M-Grades
	E84-2013aStandard Test Method for Surface Burning
	Characteristics of Building Materials
	E119-2012aStandard Test Methods for Fire Tests of
	Building Construction and Materials
	F1760-01(R2011)Standard Specification for Coextruded
	Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic
	Pipe Having Reprocessed-Recycled Content
D.	International Code Council, (ICC):
	IBC-2012International Building Code
	IPC-2012International Plumbing Code
Ε.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	Industry, Inc:
	SP-58-2009Pipe Hangers and Supports - Materials, Design,
	Manufacture, Selection, Application and
	Installation
	SP-69-2003Pipe Hangers and Supports - Selection and
	Application
F.	Military Specifications (MIL):
	P-21035B Paint High Zinc Dust Content, Galvanizing
	Repair (Metric)
G.	National Electrical Manufacturers Association (NEMA):
	MG 1-2011Motors and Generators
Н.	National Fire Protection Association (NFPA):
	51B-2017Standard for Fire Prevention During Welding,
	Cutting and Other Hot Work
	54-2018National Fuel Gas Code
	70-2017National Electrical Code (NEC)
I.	NSF International (NSF):
- ·	5-2012
	Heat Recovery Equipment
	near necovery nauthment

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

	14-2012Plastic Piping System Components and Related
	Materials
	61-2012 Drinking Water System Components - Health
	Effects
	372-2011Drinking Water System Components - Lead Content
J.	Department of Veterans Affairs (VA):
	PG-18-10Plumbing Design Manual
	PG-18-13-2011Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.

- 3. Firestopping materials.
- 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.
 - 3. Hangers, inserts, supports, and bracing.
 - 4. Pipe sleeves.
 - 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- J. Maintenance Data and Operating Instructions:
 - 1. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.

- 2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
- L. Submit training plans, trainer qualifications and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Products Criteria:

- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.

- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
 - 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
 - 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
 - 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- G. Cleanliness of Piping and Equipment Systems:
 - 1. Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - 4. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - 1. Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - 2. Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. PVC pipe shall contain a minimum of 25 percent recycled content. Steel pipe shall contain a minimum of 25 percent recycled content.
- B. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.

- C. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372.
- D. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- E. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS, MOTOR CONTROL, CONTROL WIRING

A. All material and equipment furnished and installation methods used shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.

B. Special Requirements:

- 1. Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
- 2. Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71° C (160°
 F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers and water heaters.

- b. Other wiring at boilers and water heaters, and to control panels, shall be NFPA 70 designation THWN.
- c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.
- 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act (EPACT), revised 2005. Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.
- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC).
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

2.7 VARIABLE SPEED MOTOR CONTROLLERS

A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

- B. The combination of controller and motor shall be provided by the respective pump manufacturer and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. pumps, shall be product of a single manufacturer.
- C. Motors shall be premium efficient type, "invertor duty", and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor sheaves shall be fixed pitch.
- D. Controller shall not add any current or voltage transients to the input AC power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the AC power system.

2.8 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - 1. Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).

- 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches), shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
- 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.10 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) and Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.

- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Not Used
- F. For Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide

Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.

- 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - 1.) Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - 2.) For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - 3.) For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4.) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
 - 1.) Not Used
 - 2.) Not Used
 - j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.

- c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
- d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- J. Pre-insulated Calcium Silicate Shields:
 - 1. Provide 360 degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.
- K. Seismic Restraint of Piping: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.

- 2. For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum

of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and

- utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.
- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.

F. Cutting Holes:

- 1. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 2. Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.

H. Protection and Cleaning:

 Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 53, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Work in Existing Building:
 - 1. Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.

- N. Work in Animal Research Areas: Seal all pipe penetrations with silicone sealant to prevent entrance of insects.
- O. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumber's putty.
- P. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.

Q. Inaccessible Equipment:

- 1. Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipeline and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.

E. Overhead Supports:

- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- 2. Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.

F. Floor Supports:

- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.
 Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of one liter (one quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.

- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

3.6 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.
- E. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - 1. Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.

- 4. Pumps, motors, steel and cast iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

3.8 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

- A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.
- B. The commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of two weeks prior notice.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

- tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. Perform tests as required for commissioning provisions in accordance with Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

B. Components provided under this section of the specification will be tested as part of a larger system.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 19 METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gages primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Not Used

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 B40.100-2013...........Pressure Gauges and Gauge Attachments
 B40.200-2008...........Thermometers, Direct Reading and Remote Reading
 C. American Water Works Association (AWWA):
 - C700-2009......Standard for Cold Water Meters, Displacement Type, Bronze Main Case
 - C701-2012......Cold Water Meters-Turbine Type, for Customer Service
 - C702-2010......Cold Water Meters Compound Type
 - C706-2010......Direct-Reading, Remote-Registration Systems for Cold-Water Meters
- D. Institute of Electrical and Electronics Engineers (IEEE): C2-2012.....National Electrical Safety Code (NESC)
- E. International Code Council (ICC):
 - IPC-2012.....International Plumbing Code
- F. National Fire Protection Association (NFPA): 70-
 - 2017......National Electrical Code (NEC)

VA Project 438-22-700 06-20-2021 Construction Documents

G.	NSF	International	(NSF):
----	-----	---------------	--------

61-2012	.Drinking	Water	System	Components	-	Health
	Effects					

372-2011......Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAGES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Water Meter.
 - 2. Pressure Gages.
 - 3. Thermometers.
 - 4. Product certificates for each type of meter and gage.
 - 5. BACnet communication protocol.
- D. Operations and Maintenance manual shall include:
 - 1. System Description.
 - 2. Major assembly block diagrams.
 - 3. Troubleshooting and preventive maintenance guidelines.
 - 4. Spare parts information.
- E. Shop Drawings shall include the following: One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit copies of complete operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder per the requirements of Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written

description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

- 2.1 DISPLACEMENT WATER METER NOT USED
- 2.2 TURBINE WATER METER NOT USED
- 2.3 COMPOUND WATER METER NOT USED
- 2.4 WATER METER STRAINER NOT USED
- 2.5 WATER METER PROGRAMMING NOT USED
- 2.6 WATER METER COMMUNICATION PROTOCOL NOT USED
- 2.7 REMOTE READOUT REGISTER NOT USED

2.8 PRESSURE GAGES FOR WATER AND SEWAGE USAGE

- A. ASME B40.100 all metal case 115 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1380 kPa (0 to 200 psig) gage.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.
- H. The pressure gage for water domestic use shall conform to NSF 61 and NSF 372.

2.9 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 175 mm (7 inches) high, 4 degrees C to 100 degrees C (40 degrees F to 212 degrees F). Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gages shall be installed in piping tees with pressure gage located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gage.
- C. Test plugs shall be installed on the inlet and outlet pipes of all heat exchangers or water heaters serving more than one plumbing fixture.
- D. Pressure gages shall be installed where indicated on the drawings and at the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure reducing valve.
 - 3. Suction and discharge of each domestic water pump or re-circulating hot water return pump.
- E. Not Used
- F. Not Used
- G. Thermometers shall be installed on the water heater inlet and outlet piping, thermostatic mixing valve outlet piping, and the hot water circulation pump inlet piping.
- H. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 FIELD QUALITY CONTROL

A. The meter assembly shall be visually inspected and operationally tested. The correct multiplier placement on the face of the meter shall be verified.

3.3 TRAINING

A. A training course shall be provided to the medical center on meter configuration and maintenance. Training manuals shall be supplied for all attendees with four additional copies supplied. The training course shall cover meter configuration, troubleshooting, and diagnostic procedures.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 A112.14.1-2003.....Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2008	.Performance	Requirements	for	Atmospheric	Type
	Vacuum Brea	kers			

1003-2009	.Performar	nce Requ	iiren	ments for	r Water	Pressure
	Reducing	Valves	for	Domesti	c Water	Distribution
	Systems					

- 1011-2004......Performance Requirements for Hose Connection

 Vacuum Breakers
- 1013-2011......Performance Requirements for Reduced Pressure

 Principle Backflow Preventers and Reduced

 Pressure Principle Fire Protection Backflow

 Preventers

1015-2011......Performance Requirements for Double Check

Backflow Prevention Assemblies and Double Check

Fire Protection Backflow Prevention Assemblies

	1017-2009	.Performance Requirements for Temperature
		Actuated Mixing Valves for Hot Water
		Distribution Systems
	1020-2004	.Performance Requirements for Pressure Vacuum
		Breaker Assembly
	1035-2008	.Performance Requirements for Laboratory Faucet
		Backflow Preventers
	1069-2005	.Performance Requirements for Automatic
		Temperature Control Mixing Valves
	1070-2004	.Performance Requirements for Water Temperature
		Limiting Devices
	1071-2012	.Performance Requirements for Temperature
		Actuated Mixing Valves for Plumbed Emergency
		Equipment
D.	American Society for Tes	sting and Materials (ASTM):
	A126-2004 (R2009)	.Standard Specification for Gray Iron Castings
		for Valves, Flanges, and Pipe Fittings
	A276-2013a	.Standard Specification for Stainless Steel Bars
		and Shapes
	A536-1984 (R2009)	.Standard Specification for Ductile Iron
		Castings
	B62-2009	.Standard Specification for Composition Bronze
		or Ounce Metal Castings
	B584-2013	.Standard Specification for Copper Alloy Sand
		Castings for General Applications
Ε.	International Code Counc	cil (ICC):
	IPC-2012	.International Plumbing Code
F.	Manufacturers Standardi	zation Society of the Valve and Fittings
	Industry, Inc. (MSS):	
	SP-25-2008	.Standard Marking Systems for Valves, Fittings,
		Flanges and Unions
	SP-67-2011	-
	SP-70-2011	.Gray Iron Gate Valves, Flanged and Threaded
		Ends
	SP-71-2011	.Gray Iron Swing Check Valves, Flanged and
	a= 00 0010	Threaded Ends
	SP-80-2013	.Bronze Gate, Globe, Angle, and Check Valves

VA Project 438-22-700 06-20-2021 Construction Documents

SP-85-2011	.Gray	Iron	Globe	&	Angle	Valves,	Flanged	and
	Threa	aded 1	Ends					

SP-110-2010......Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

G. National Environmental Balancing Bureau (NEBB):

7th Edition 2005 Procedural Standards for Testing, Adjusting,
Balancing of Environmental Systems

H. NSF International (NSF):

61-2012......Drinking Water System Components - Health

Effects

372-2011......Drinking Water System Components - Lead Content

I. University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USC FCCCHR):

9th Edition......Manual of Cross-Connection Control

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Gate Valves.
 - 3. Butterfly Valves.
 - 4. Balancing Valves.
 - 5. Check Valves.
 - 6. Globe Valves.
 - 7. Water Pressure Reducing Valves and Connections.
 - 8. Backwater Valves.
 - 9. Backflow Preventers.
 - 10. Chainwheels.
 - 11. Thermostatic Mixing Valves.
- D. Test and Balance reports for balancing valves.

- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 4. Piping diagrams of thermostatic mixing valves to be installed.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - 4. Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large valves. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials.

 Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.

VA Project 438-22-700 06-20-2021 Construction Documents

- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- F. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
 - 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.
 - 3. 100 mm DN100 (4 inches) and larger:
 - a. Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS SP-70 type I standard. The gate valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall meet ASTM A126, grey iron with bolted bonnet, flanged ends, bronze trim, and positive-seal resilient solid wedge disc. The gate valve shall be

- gear operated for sizes under 200 mm or DN200 (8 inches) and crank operated for sizes 200 mm or DN200 (8 inches) and above.
- b. Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem.
- c. Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall be epoxy coated ductile iron conforming to ASTM A536 with two piece stainless steel stem, EPDM encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated.
- B. Reagent Grade Water: Valves for reagent grade, reverse osmosis, or deionized water service shall be ball type of same material as used for pipe.

2.3 BALANCING VALVES

- A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- B. Larger than 75 mm or DN75 (3 inches): Manual balancing valves shall be of heavy duty cast iron flanged construction with 861 kPa (125 psig) flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal

insert and stainless steel stem. The design pressure shall be 1200 kPa (175 psig) at 121 degrees C (250 degrees F).

2.4 CHECK VALVES

- A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.
- B. 100 mm or DN100 (4 inches) and larger:
 - 1. Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.
 - 2. All check valves on the discharge side of submersible sump pumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.5 GLOBE VALVES

- A. 75 mm or DN75 (3 inches) or smaller: Class 150, bronze globe valve with non-metallic disc. The globe valve shall meet MSS SP-80, Type 2 standard. The globe valve shall have a CWP rating of 2070 kPa (300 psig). The valve material shall be bronze with integral seal and union ring bonnet conforming to ASTM B62 with solder ends, copper-silicon bronze stem, PTFE or TFE disc, and malleable iron hand wheel.
- B. Larger than 75 mm or DN75 (3 inches): Similar to above, except with cast iron body and bronze trim, Class 125, iron globe valve. The globe valve shall meet MSS SP-85, Type 1 standard. The globe valve shall have a CWP rating of 1380 kPa (200 psig). The valve material shall be gray iron with bolted bonnet conforming to ASTM A126 with flanged ends, bronze trim, and malleable iron handwheel.

2.6 WATER PRESSURE REDUCING VALVE AND CONNECTIONS

A. 75 mm or DN75 (3 inches) or smaller: The pressure reducing valve shall consist of a bronze body and bell housing, a separate access cover for the plunger, and a bolt to adjust the downstream pressure. The pressure

VA Project 438-22-700 06-20-2021 Construction Documents

reducing valve shall meet ASSE 1003. The bronze bell housing and access cap shall be threaded to the body and shall not require the use of ferrous screws. The assembly shall be of the balanced piston design and shall reduce pressure in both flow and no flow conditions. The assembly shall be accessible for maintenance without having to remove the body from the line.

- B. 100 mm or DN100 (4 inches) and larger: The pressure reducing valve shall consist of a flanged cast iron body and rated to 1380 kPa (200 psig). The valve shall have a large elastomer diaphragm for sensitive response. The pressure reducing valve shall meet ASSE 1003.
- C. The regulator shall have a tap for pressure gauge.
- D. The regulator shall have a temperature rating of 100 degrees C (212 degrees F) for hot water or hot water return service. Pressure regulators shall have accurate pressure regulation to 6.9 kPa (+/- 1 psig).
- E. Setting: Entering water pressure, discharge pressure, capacity, size, and related measurements shall be as shown on the drawings.
- F. Connections Valves and Strainers: Shut off valves shall be installed on each side of reducing valve and a bypass line equal in size to the regulator inlet pipe shall be installed with a normally closed globe valve. A strainer shall be installed on inlet side of, and same size as pressure reducing valve. A pressure gage shall be installed on the inlet and outlet of the valve.

2.7 BACKWATER VALVE

- A. The backwater valve shall have a cast iron body, automatic thermoplastic type valve seat and flapper suited for water service. The flapper shall be slightly open during periods of non-operation. The pressure reducing valve shall meet ASME A112.14.1. The cleanout shall be extended to the finish floor and fit with a threaded countersunk plug. A clamping device shall be included when the cleanout extends through the waterproofing membrane.
- B. When the backwater valve is installed greater than 600 mm (24 inches) below the finish floor elevation, a pit or manhole large enough for a repair person can enter to service the backwater valve shall be installed.

2.8 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.
 - 1. Deionizers.
 - 2. Sterilizers.
 - 3. Stills.
 - 4. Dialysis, Deionized or Reverse Osmosis Water Systems.
 - 5. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water.
 - 6. Water service entrance from loop system.
 - 7. Dental equipment.
 - 8. Power washer.
 - 9. Medical equipment.
 - 10. Process equipment.
 - 11. Autopsy, on each hot and cold water outlet at each table or sink.
 - 12. Reclaimed water systems.
- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal

operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.

- 1. Hose bibs and sinks with threaded outlets.
- 2. Disposers.
- 3. Showers (telephone/handheld type).
- 4. Hydrotherapy units.
- 5. All kitchen equipment, if not protected by air gap.
- 6. Ventilating hoods with wash down system.
- 7. Film processor.
- 8. Detergent system.
- 9. Fume hoods.
- 10. Glassware washers.
- 11. Service sinks (integral with faucet only).
- 12. Laundry tubs (integral with faucet only).
- 13. Sitz baths.
- D. The hose connection vacuum breaker shall be ASSE listed 1011. The main body shall be cast brass with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to hose thread outlets. Hose connection vacuum breakers shall be installed in the following locations requiring non-continuous pressure:
 - 1. Hose bibbs and wall hydrants.
- E. The pressure vacuum breaker shall be ASSE listed 1020. The main body shall be brass. The disc and O-ring seal shall be the elastomer type. The valve seat and disc float shall be the thermoplastic type. Tee handle or lever handle shut-off ball valves. Test cocks for testing and draining where freezing conditions occur. All materials shall be suitable for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Pressure vacuum breakers shall be installed in the following locations requiring continuous pressure and no backpressure including equipment with submerged inlet connections:
 - 1. Lawn Irrigation.
- F. The laboratory faucet vacuum breaker shall be ASSE listed 1035. The main body shall be cast brass. Dual check valves with stainless steel

working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to laboratory faucets for non-continuous pressure applications.

- G. The double check backflow prevention assembly shall be ASSE listed 1015 and supply with full port, OS&Y, positive-seal, resilient gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276. The seat disc shall be the elastomer type suited for water service. The first and second check valve shall be accessible for maintenance without removing the device from the line. Double check valves shall be installed in the following location requiring continuous pressure subject to backpressure and back siphonage conditions.
 - 1. Lawn Irrigation.
 - 2. Food Processing Equipment.
 - 3. Laundry equipment.

2.9 CHAINWHEELS - NOT USED

2.10 THERMOSTATIC MIXING VALVES - NOT USED

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Not Used
- F. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - 1. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are not acceptable for this application.
- H. Install pressure gages on outlet of backflow preventers.
- I. Do not install bypass piping around backflow preventers.
- J. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - Install cabinet-type units recessed in or surface mounted on wall as specified.
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Master, thermostatic, water mixing valves.
 - 3. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing valves and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of valves and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

VA Project 438-22-700 06-20-2021 Construction Documents

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
 - 2. Re-insulation of plumbing piping and equipment after asbestos abatement and or replacement of any part of existing insulation system (insulation, vapor retarder jacket, protective coverings/jacket) damaged during construction.

B. Definitions:

- 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
- 4. Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
- 5. Concealed: Piping above ceilings and in chases, and pipe spaces.
- 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 7. FSK: Foil-scrim-Kraft facing.
- 8. Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
- 9. Density: kg/m^3 kilograms per cubic meter (Pcf pounds per cubic foot).

- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- F. Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT: Insulation containing asbestos material.
- G. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- H. Section 11 41 21, WALK-IN COOLERS AND FREEZERS: Insulation used in refrigerators and freezers.
- I. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- J. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.

- K. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- L. Not Used
- M. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- N. Section 23 21 13, HYDRONIC PIPING: electrical heat tracing systems.
- O. Not Used

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011......Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013)......Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014)......Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450.....Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C533-2013......Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534/C534M-2014.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2015......Standard Specification for Mineral Fiber Pipe Insulation C552-2014......Standard Specification for Cellular Glass Thermal Insulation C553-2013......Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications

	C591-2013Standard Specification for Unfaced Preformed
	Rigid Cellular Polyisocyanurate Thermal
	Insulation
	C680-2014Standard Practice for Estimate of the Heat Gain
	or Loss and the Surface Temperatures of
	Insulated Flat, Cylindrical, and Spherical
	Systems by Use of Computer Programs
	C612-2014Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
	C1126-2014Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
	C1136-2012Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
	C1710-2011Standard Guide for Installation of Flexible
	Closed Cell Preformed Insulation in Tube and
	Sheet Form
	D1668/D1668M-1997a (2014)el Standard Specification for Glass Fabrics
	(Woven and Treated) for Roofing and
	Waterproofing
	E84-2015aStandard Test Method for Surface Burning
	Characteristics of Building Materials
	E2231-2015Standard Practice for Specimen Preparation and
	Mounting of Pipe and Duct Insulation to Assess
	Surface Burning Characteristics
С.	Federal Specifications (Fed. Spec.):
	L-P-535E-1979Plastic Sheet (Sheeting): Plastic Strip; Poly
	(Vinyl Chloride) and Poly (Vinyl Chloride -
	Vinyl Acetate), Rigid.
D.	International Code Council, (ICC):
	IMC-2012International Mechanical Code
Ε.	Military Specifications (Mil. Spec.):
	MIL-A-3316C (2)-1990Adhesives, Fire-Resistant, Thermal Insulation
	MIL-A-24179A (2)-1987Adhesive, Flexible Unicellular-Plastic Thermal
	Insulation
	MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and
	Water-Resistant, Vapor-Barrier
	water hearstant, vapor-parrier

22 07 11 - 4
PLUMBING INSULATION

VA Project 438-22-700 06-20-2021 Construction Documents

MIL-C-20079H-1987......Cloth, Glass; Tape, Textile Glass; and Thread,
Glass and Wire-Reinforced Glass

- F. National Fire Protection Association (NFPA):
 - 90A-2018......Standard for the Installation of Air-Conditioning and Ventilating Systems
- G. Underwriters Laboratories, Inc (UL):
 - 723-2008 (R2013)......Standard for Test for Surface Burning
 Characteristics of Building Materials

1887-2004 (R2013)......Standard for Fire Test of Plastic Sprinkler

Pipe for Visible Flame and Smoke

Characteristics

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; https://insulationinstitute.org/toolsresources/

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.

- e. Make reference to applicable specification paragraph numbers for coordination.
- f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.
- E. Not Used
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through
 - 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:
 - **4.3.3.1** Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.
 - 4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).
 - 4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.
 - 4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.
 - 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
 - 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal

insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Not Used
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2013

provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers.

Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-5, Density 32 kg/m 3 (nominal 2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (842 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, Type III, grade 1, k=0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service vapor retarder jacket (ASJ) and with PVC premolded fitting covering.
- B. Equipment Insulation, ASTM C1126, Type II, grade 1, $k=0.021\ (0.15)$ at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees

C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket (ASJ).

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.5 POLYISOCYANURATE CLOSED-CELL RIGID - NOT USED

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.7 CALCIUM SILICATE - NOT USED

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt

- strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended.

 Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed

Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.

- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m^3 (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.12 REINFORCEMENT AND FINISHES

A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).

- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.

VA Project 438-22-700 06-20-2021 Construction Documents

- D. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- E. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- F. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- G. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage.

 Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- H. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- I. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- J. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.

- 4. Distilled water piping.
- K. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- L. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- M. Firestop Pipe insulation:
 - 1. Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - 2. Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- N. Freeze protection of above grade outdoor piping (over heat tracing tape): 20 mm (3/4 inch) thick insulation, for all pipe sizes 75 mm (3 inches) and smaller and 25 mm (1 inch) thick insulation for larger pipes. Provide metal jackets for all pipe insulations. Provide freeze protection for cold water make-up piping and equipment where indicated on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- O. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature.
- P. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1829 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets except for cold pipe or tubing

- applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
- 3. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- Q. Provide PVC jackets over insulation as follows:
 - 1. Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.)
 Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain unfaced board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, troweled to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
 - 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with vapor retarder ASJ or FSK. Seal all facings, laps, and termination points

and do not use staples or other attachments that may puncture ASJ or FSK.

- a. Water filter, chemical feeder pot or tank.
- b. Pneumatic, cold storage water and surge tanks.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with unsealed ASJ or FSK.
 - a. Domestic water heaters and hot water storage tanks (not factory insulated).
 - b. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of

glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.

- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

C. Rigid Cellular Phenolic Foam:

- 1. Rigid closed cell phenolic insulation may be provided, exterior only, for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
- 2. Note the ASTM E84 or UL 723 surface burning characteristics requirements of maximum 25/50 indexes in paragraph "Quality Assurance".
- 3. Provide secure attachment facilities such as welding pins.
- 4. Apply insulation with joints tightly drawn together.
- 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
- 6. Final installation shall be smooth, tight, neatly finished at all edges.
- 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
- 8. Condensation control insulation: Minimum 25 mm (1 inch) thick for all pipe sizes depending on high humidity exposures.
 - a. Body of roof and overflow drains horizontal runs and offsets (including elbows) of interior downspout piping in all areas above pipe basement.
 - b. Waste piping from electric water coolers and icemakers to drainage system.
 - c. Waste piping located above basement floor from ice making and film developing equipment and air handling units, from equipment (including trap) to main vertical waste pipe.
 - d. MRI quench vent piping.
 - e. Bedpan sanitizer atmospheric vent
 - f. Reagent grade water piping.
 - g. Cold water piping, exterior only.

D. Cellular Glass Insulation:

1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.

VA Project 438-22-700 06-20-2021 Construction Documents

- 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1.) Insulation in place before coating.
 - 2.) After coating.
 - f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
 - g. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.
- E. Not Used
- F. Flexible Elastomeric Cellular Thermal Insulation:
 - 1. Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

- c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.
- 3. Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- G. Not Used

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal 1	Pipe Size M	illimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)

	ground piping only)				
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
4-15 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
(4-15 degrees C (40-60 degrees F)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 22 08 00

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. . All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance
Testing that is intended to test systems functional performance under
steady state conditions, to test system reaction to changes in
operating conditions, and system performance under emergency
conditions. The Commissioning Agent will prepare detailed Systems
Functional Performance Test procedures for review and approval by the
Resident Engineer. The Contractor shall review and comment on the
tests prior to approval. The Contractor shall provide the required
labor, materials, and test equipment identified in the test procedure
to perform the tests. The Commissioning Agent will witness and
document the testing. The Contractor shall sign the test reports to
verify tests were performed. See Section 01 91 00 GENERAL
COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent.

Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00

VA Project 438-22-700 06-20-2021 Construction Documents

GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

END

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING.
- H. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint.
- I. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- J. Section 22 07 11, PLUMBING INSULATION.
- K. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007	(R2013)	.Scheme	for Id	entificati	on of	Pipi	ng Syste	ms
B16.3-2011.		.Malleab	le Iro	n Threaded	Fitti	ngs:	Classes	150
		and 300						

and 300
B16.9-2012Factory-Made Wrought Buttwelding Fittings
B16.11-2011Forged Fittings, Socket-Welding and Threaded
B16.12-2009 (R2014)Cast Iron Threaded Drainage Fittings
B16.15-2013
125 and 250
B16.18-2012

B16.18-2012...... Cast Copper Alloy Solder Joint Pressure
Fittings

	B16.22-2013	Wrought Copper and Copper Alloy Solder-Joint
	1	Pressure Fittings
	B16.24-2011	Cast Copper Alloy Pipe Flanges and Flanged
	1	Fittings: Classes 150, 300, 600, 900, 1500, and
	2	2500
	B16.51-2013	Copper and Copper Alloy Press-Connect Fittings
	ASME Boiler and Pressure	Vessel Code -
	BPVC Section IX-2015	Welding, Brazing, and Fusing Qualifications
С.	American Society of Sanit	tary Engineers (ASSE):
	1010-2004	Performance Requirements for Water Hammer
	2	Arresters
D.	American Society for Test	ting and Materials (ASTM):
	A47/A47M-1999 (R2014)\$	Standard Specification for Ferritic Malleable
	<u> </u>	Iron Castings
	A53/A53M-2012	Standard Specification for Pipe, Steel, Black
	ā	and Hot-Dipped, Zinc-Coated, Welded and
	S	Seamless
	A183-2014	Standard Specification for Carbon Steel Track
	I	Bolts and Nuts
	A269/A269M-2014e1	Standard Specification for Seamless and Welded
	2	Austenitic Stainless Steel Tubing for General
	5	Service
	A312/A312M-2015	Standard Specification for Seamless, Welded,
	ć	and Heavily Cold Worked Austenitic Stainless
	S	Steel Pipes
	A403/A403M-2014	Standard Specification for Wrought Austenitic
	S	Stainless Steel Piping Fittings
	A536-1984 (R2014)	Standard Specification for Ductile Iron
		Castings
	A733-2013	Standard Specification for Welded and Seamless
		Carbon Steel and Austenitic Stainless Steel
	1	Pipe Nipples
	B32-2008 (R2014)	Standard Specification for Solder Metal
	B43-2014	Standard Specification for Seamless Red Brass
]	Pipe, Standard Sizes
	B61-2008 (R2013)	Standard Specification for Steam or Valve
	I	Bronze Castings

22 11 00 - 2 FACILITY WATER DISTRIBUTION

	в62-2009	.Standard Specification for Composition Bronze
		or Ounce Metal Castings
	B75/B75M-2011	.Standard Specification for Seamless Copper Tube
	B88-2014	.Standard Specification for Seamless Copper
		Water Tube
	B584-2014	.Standard Specification for Copper Alloy Sand
		Castings for General Applications
	B687-1999 (R2011)	.Standard Specification for Brass, Copper, and
		Chromium-Plated Pipe Nipples
	C919-2012	.Standard Practice for Use of Sealants in
		Acoustical Applications
	D1785-2012	.Standard Specification for Poly (Vinyl
		Chloride) (PVC) Plastic Pipe, Schedules 40, 80,
		and 120
	D2000-2012	.Standard Classification System for Rubber
		Products in Automotive Applications
	D2564-2012	.Standard Specification for Solvent Cements for
		Poly (Vinyl Chloride) (PVC) Plastic Piping
		Systems
	D2657-2007	.Standard Practice for Heat Fusion Joining of
		Polyolefin Pipe and Fittings
	D2855-1996 (R2010)	.Standard Practice for Making Solvent-Cemented
		Joints with Poly (Vinyl Chloride) (PVC) Pipe
		and Fittings
	D4101-2014	.Standard Specification for Polypropylene
		Injection and Extrusion Materials
	E1120-2008	.Standard Specification for Liquid Chlorine
	E1229-2008	.Standard Specification for Calcium Hypochlorite
	F2389-2010	.Standard Specification for Pressure-rated
		Polypropylene (PP) Piping Systems
	F2620-2013	.Standard Practice for Heat Fusion Joining of
		Polyethylene Pipe and Fittings
	F2769-2014	.Standard Specification for Polyethylene of
		Raised Temperature (PE-RT) Plastic Hot and
		Cold-Water Tubing and Distribution Systems
Ε.	American Water Works As	
	C110-2012	.Ductile-Iron and Gray-Iron Fittings

VA Project 438-22-700 06-20-2021 Construction Documents

		C151-2009	.Ductile Iron Pipe, Centrifugally Cast
		C153-2011	.Ductile-Iron Compact Fittings
		C203-2008	.Coal-Tar Protective Coatings and Linings for
			Steel Water Pipelines - Enamel and Tape - Hot
			Applied
		C213-2007	.Fusion-Bonded Epoxy Coating for the Interior
			and Exterior of Steel Water Pipelines
		C651-2014	.Disinfecting Water Mains
]	F.	American Welding Societ	y (AWS):
		A5.8M/A5.8-2011-AMD1	.Specification for Filler Metals for Brazing and
			Braze Welding
(G.	International Code Coun	cil (ICC):
		IPC-2012	.International Plumbing Code
Ι	Н.	Manufacturers Specifica	tion Society (MSS):
		SP-58-2009	.Pipe Hangers and Supports - Materials, Design,
			Manufacture, Selection, Application, and
			Installation
		SP-72-2010a	.Ball Valves with Flanged or Butt-Welding Ends
			for General Service
		SP-110-2010	.Ball Valves Threaded, Socket-Welding, Solder
			Joint, Grooved and Flared Ends
	I.	NSF International (NSF)	:
		14-2015	.Plastics Piping System Components and Related
			Materials
		61-2014a	.Drinking Water System Components - Health
			Effects
		372-2011	.Drinking Water System Components - Lead Content
·	J.	Plumbing and Drainage I	nstitute (PDI):
		PDI-WH 201-2010	.Water Hammer Arrestors
Ι	Κ.	Department of Veterans .	Affairs:
		н-18-8-2013	.Seismic Design Handbook

1.4 SUBMITTALS

A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

VA Project 438-22-700 06-20-2021 Construction Documents

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. All items listed in Part 2 Products.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more

information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 UNDERGROUND WATER SERVICE CONNECTIONS TO BUILDINGS - NOT USED

2.3 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 150 mm (6 inches) and larger, stainless steel, ASTM A312, schedule 10 shall be used.
- B. Fittings for Copper Tube:
 - 1. Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
 - 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical press-connect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.
 - 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide

free flow where the branch tube penetrates the fitting. Braze joints.

- 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Fittings for Stainless Steel:
 - 1. Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ASME B16.9.
 - 2. Grooved fittings, stainless steel, Type 316, Schedule 10, conforming to ASTM A403/A403M. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, 4138 kPa (600 psig), ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- D. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- E. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- F. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.
- G. Not Used

2.4 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: ASTM B43, standard weight.
 - 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
 - 3. Nipples: ASTM B687, Chromium-plated.
 - 4. Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.5 ETHYLENE OXIDE (ETO) STERILIZER WATER SUPPLY PIPING - NOT USED

2.6 TRAP PRIMER WATER PIPING

- A. Pipe: Copper tube, ASTM B88, type K, hard drawn.
- B. Fittings: Bronze castings conforming to ASME B16.18 Solder joints.
- C. Solder: ASTM B32 alloy type Sb5. Provide non-corrosive flux.

2.7 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.8 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.9 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120.
- B. Liquid Chlorine: ASTM E1229.

2.10 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements.
 - Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.
 - 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - 1. Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and

- equipment, including those furnished by the Government or specified in other sections.
- 2. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
- 3. All pipe runs shall be laid out to avoid interference with other work/trades.
- 4. Install union and shut-off valve on pressure piping at connections to equipment.
- 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1.) Solid or split un-plated cast iron.
 - 2.) All plates shall be provided with set screws.
 - 3.) Pipe Hangers: Height adjustable clevis type.
 - 4.) Adjustable Floor Rests and Base Flanges: Steel.
 - 5.) Concrete Inserts: "Universal" or continuous slotted type.
 - 6.) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7.) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - 8.) Rollers: Cast iron.
 - 9.) Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10.) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of

insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, center-ribbed shields shall be used.

- 11.) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12.) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- 6. Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

7. Penetrations:

- a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING. Completely fill and seal clearances between raceways and openings with the firestopping materials.
- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.

VA Project 438-22-700 06-20-2021 Construction Documents

- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - 2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.

E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS: Sealant products.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- J. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS
- K. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- L. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 - A13.1-2007......Scheme for the Identification of Piping Systems A112.36.2M-1991(R 2012).Cleanouts
 - A112.6.3-2001 (R2007)...Standard for Floor and Trench Drains
 - B1.20.1-2013......Pipe Threads, General Purpose (Inch)
 - B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings
 - B16.4-2011.....Standard for Grey Iron Threaded Fittings

Classes 125 and 250

	B16 15-2013	.Cast Copper Alloy Threaded Fittings, Classes
		125 and 250
	B16 18-2012	.Cast Copper Alloy Solder Joint Pressure
		Fittings
	B16 21-2011	.Nonmetallic Flat Gaskets for Pipe Flanges
		.Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.23-2011	.Cast Copper Alloy Solder Joint Drainage
		Fittings: DWV
	B16.24-2001 (R2006)	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings
	B16.29-2012	.Wrought Copper and Wrought Copper Alloy Solder-
		Joint Drainage Fittings: DWV
	B16.39-2009	.Malleable Iron Threaded Pipe Unions Classes
		150, 250, and 300
	B18.2.1-2012	.Square, Hex, Heavy Hex, and Askew Head Bolts
		and Hex, Heavy Hex, Hex Flange, Lobed Head, and
		Lag Screws (Inch Series)
С.	American Society of San	itary Engineers (ASSE):
	1001-2008	.Performance Requirements for Atmospheric Type
		Vacuum Breakers
	1018-2001	.Performance Requirements for Trap Seal Primer
		Valves - Potable Water Supplied
	1044-2001	.Performance Requirements for Trap Seal Primer
		Devices - Drainage Types and Electronic Design
		Types
	1079-2012	.Performance Requirements for Dielectric Pipe
		Unions
D.	American Society for Te	sting and Materials (ASTM):
	A53/A53M-2012	.Standard Specification for Pipe, Steel, Black
		And Hot-Dipped, Zinc-coated, Welded and
		Seamless
	A74-2013a	.Standard Specification for Cast Iron Soil Pipe
		and Fittings
	A888-2013a	.Standard Specification for Hubless Cast Iron
		Soil Pipe and Fittings for Sanitary and Storm
		Drain, Waste, and Vent Piping Applications

B32-2008Standard Specification for Solder Metal
B43-2009Standard Specification for Seamless Red Brass
Pipe, Standard Sizes
B75-2011Standard Specification for Seamless Copper Tube
B88-2009Standard Specification for Seamless Copper
Water Tube
B306-2013Standard Specification for Copper Drainage Tube
(DWV)
B584-2013Standard Specification for Copper Alloy Sand
Castings for General Applications
B687-1999 (R 2011)Standard Specification for Brass, Copper, and
Chromium-Plated Pipe Nipples
B813-2010Standard Specification for Liquid and Paste
Fluxes for Soldering of Copper and Copper Alloy
Tube
B828-2002 (R 2010)Standard Practice for Making Capillary Joints
by Soldering of Copper and Copper Alloy Tube
and Fittings
C564-2012Standard Specification for Rubber Gaskets for
Cast Iron Soil Pipe and Fittings
D1785-2012Standard Specification for Poly(Vinyl Chloride)
(PVC) Plastic Pipe, Schedules 40, 80, and 120
D2321-2011Standard Practice for Underground Installation
of Thermoplastic Pipe for Sewers and Other
Gravity-Flow Applications
D2564-2012Standard Specification for Solvent Cements for
Poly(Vinyl Chloride) (PVC) Plastic Piping
Systems
D2665-2012Standard Specification for Poly(Vinyl Chloride)
(PVC) Plastic Drain, Waste, and Vent Pipe and
Fittings
D2855-1996 (R 2010)Standard Practice for Making Solvent-Cemented
Joints with Poly(Vinyl Chloride) (PVC) Pipe and
Fittings
D5926-2011Standard Specification for Poly(Vinyl Chloride)
(PVC) Gaskets for Drain, Waste, and Vent (DWV),
Sewer, Sanitary, and Storm Plumbing Systems

VA Project 438-22-700 06-20-2021 Construction Documents

	F402-2005 (R 2012)Standard Practice for Safe Handling of Solvent
	Cements, Primers, and Cleaners Used for Joining
	Thermoplastic Pipe and Fittings
	F477-2010Standard Specification for Elastomeric Seals
	(Gaskets) for Joining Plastic Pipe
	F1545-1997 (R 2009)Standard Specification for Plastic-Lined
	Ferrous Metal Pipe, Fittings, and Flanges
Ε.	Cast Iron Soil Pipe Institute (CISPI):
	2006Cast Iron Soil Pipe and Fittings Handbook
	301-2012Standard Specification for Hubless Cast Iron
	Soil Pipe and Fittings for Sanitary and Storm
	Drain, Waste, and Vent Piping Applications
	310-2012Specification for Coupling for Use in
	Connection with Hubless Cast Iron Soil Pipe and
	Fittings for Sanitary and Storm Drain, Waste,
	and Vent Piping Applications
F.	Copper Development Association, Inc. (CDA):
	A4015Copper Tube Handbook
G.	International Code Council (ICC):
	IPC-2012International Plumbing Code
Н.	Manufacturers Standardization Society (MSS):
	SP-123-2013Non-Ferrous Threaded and Solder-Joint Unions
	for Use with Copper Water Tube
I.	National Fire Protection Association (NFPA):
	70-2017National Electrical Code (NEC)
J.	Plumbing and Drainage Institute (PDI):
	WH-201 (R 2010)Water Hammer Arrestors Standard
К.	Underwriters' Laboratories, Inc. (UL):
	508-99 (R2013)Standard for Industrial Control Equipment
1 9	RIIBMTTTAT.S

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.

VA Project 438-22-700 06-20-2021 Construction Documents

- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Grease Removal Unit.
 - 4. Cleanouts.
 - 5. Trap Seal Protection.
 - 6. Penetration Sleeves.
 - 7. Pipe Fittings.
 - 8. Traps.
 - 9. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - 1. Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or no-hub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

B. Copper Tube, (DWV):

- 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
- 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
- 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
- 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

C. Polyvinyl Chloride (PVC)

- 1. Polyvinyl chloride (PVC) pipe and fittings are permitted where the waste temperature is below 60 degrees C (140 degrees F).
- 2. PVC piping and fittings shall NOT be used for the following applications:
 - a. Waste collected from steam condensate drains.

VA Project 438-22-700 06-20-2021 Construction Documents

- b. Spaces such as mechanical equipment rooms, kitchens, Sterile Processing Services, sterilizer areas, and areas designated for sleep.
- c. Vertical waste and soil stacks serving more than two floors.
- d. Exposed in mechanical equipment rooms.
- e. Exposed inside of ceiling return plenums.
- 3. Polyvinyl chloride sanitary waste, drain, and vent pipe and fittings shall be solid core sewer piping conforming to ASTM D2665, sewer and drain series with ends for solvent cemented joints.
- 4. Fittings: PVC fittings shall be solvent welded socket type using solvent cement conforming to ASTM D2564.

2.2 PUMP DISCHARGE PIPING - NOT USED

2.3 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.4 SPECIALTY PIPE FITTINGS

A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:

- 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- 2. For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F477 or ASTM D5926.
- 3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.5 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall

VA Project 438-22-700 06-20-2021 Construction Documents

be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.

- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule.

 Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.6 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drainpipe. For drains not installed in connection with a waterproof membrane, a .45 kg (16-ounce) soft copper flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.
- B. Type B (FD-B) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type B floor drain shall be constructed of

galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with secondary strainer in bottom for large debris. The grate shall be 175 mm (7 inches) minimum.

- C. Type C (FD-C) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty nickel bronze adjustable strainer with round or square grate of 150 mm (6 inches) width or diameter minimum for toilet rooms, showers and kitchens.
- D. Not Used
- E. Not Used
- F. Not Used
- G. Not Used
- H. Not Used
- I. Not Used
- J. Not Used
- K. Not Used
- L. Not Used
- M. Not Used
- N. Not Used
- O. Not Used
- P. Not Used
- Q. Not Used
- R. Not Used
- S. Not Used
- T. Not Used
- U. Not Used
- V. Not Used
- W. Not Used
- X. Not Used

2.7 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or

steel pipe respectively, and size shall be as required by connected service or fixture.

2.8 PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS

- A. Trap Primer (TP-1): The trap seal primer system shall be electronic type conforming to ASSE 1044.
 - 1. The controller shall have a 24 hour programmable timer, solid state, 6 outlet zones, minimum adjustable run time of 1 minute for each zone, 12 hour program battery backup, manual switch for 120VAC power, 120VAC to 24VAC internal transformer, fuse protected circuitry, UL listed, 120VAC input-24VAC output, constructed of enameled steel or plastic.
 - 2. The cabinet shall be recessed mounting with a stainless steel cover.
 - 3. The solenoid valve shall have a brass body, suitable for potable water service, normally closed, 861 kPa (125 psig) rated, 24VAC.
 - 4. The control wiring shall be copper in accordance with the National Electric Code (NFPA 70), Article 725 and not less than 18 gauge. All wiring shall be in conduit and in accordance with Division 26 of the specifications.
 - 5. The vacuum breaker shall conform to ASSE 1001.
- B. Trap Primer (TP-2): The trap seal primer valve shall be hydraulic, supply type with a pressure rating of 861 kPa (125 psig) and conforming to standard ASSE 1018.
 - 1. The inlet and outlet connections shall be 15 mm or DN15 (NPS 1/2 inch)
 - 2. The trap seal primer valve shall be fully automatic with an all brass or bronze body.
 - 3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required.
 - 4. The trap seal primer valve shall include a manifold when serving two, three, or four traps.
 - 5. The manifold shall be omitted when serving only one trap.

2.9 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the

VA Project 438-22-700 06-20-2021 Construction Documents

top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends.

 Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.

VA Project 438-22-700 06-20-2021 Construction Documents

- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- M. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.
- N. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.
- F. For PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendixes.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. The maximum spacing for plastic pipe shall be $1.22 \, \text{m}$ (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than $4.6~\mathrm{m}$ (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplanted cast iron.

- 2. All plates shall be provided with set screws.
- 3. Height adjustable clevis type pipe hangers.
- 4. Adjustable floor rests and base flanges shall be steel.
- 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser clamps shall be malleable iron or steel.
- 7. Rollers shall be cast iron.
- 8. See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

J. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- K. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.

- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS: Seismic Restraint.
- I. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- J. Not Used
- K. Section 22 07 11, PLUMBING INSULATION.
- L. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A112.6.4-2003 (R2012) .Roof, Deck, and Balcony Drains

A13.1-2007 (R2013).....Scheme for Identification of Piping Systems

B1.20.1-2013......Pipe Threads, General Purpose, Inch

and 300

B16.3-2011......Malleable Iron Threaded Fittings: Classes 150

B16.9-2012.....Factory-Made Wrought Buttwelding Fittings

	B16.11-2011Forged	Fittings, Socket-Welding and Threaded	
	B16.12-2009 (R2014)Cast I:	ron Threaded Drainage Fittings	
		opper Alloy Threaded Fittings: Classes	
	125 and 250 B16.18-2012Cast Copper Alloy Solder-Joint Pressure		
	Fitting		
	B16.22-2013Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings		
		opper Alloy Solder Joint Drainage	
	Fittings - DWV B16.29-2012Wrought Copper and Wrought Copper Alloy Sol		
Joint Drainage Fittings - DWV			
C. American Society of Sanitary Engineering (ASSE)			
		mance Requirements for Dielectric Pipe	
	Unions	1	
D.). American Society for Testing ar	nd Materials (ASTM):	
	A47/A47M-1999 (R2014)Standard Specification for Ferritic Malleable Iron Castings		
	A53/A53M-2012Standa:	rd Specification for Pipe, Steel, Black	
	And Ho	t-Dipped, Zinc-coated Welded and Seamless	
	A74-2013aStanda	rd Specification for Cast Iron Soil Pipe	
	and Fi	ttings	
	A183-2014Standard Specification for Carbon Steel		
	Bolts	and Nuts	
	A312/A312M-2015Standa	rd Specification for Seamless, Welded,	
	and He	avily Cold Worked Austenitic Stainless	
	Steel 3	Pipes	
	A536-1984 (R2014)Standa:	rd Specification for Ductile Iron	
	Castin	da	
	A733-2013Standard Specification for Welded and Seaml Carbon Steel and Austenitic Stainless Steel		
Pipe Nipples		ipples	
	A888-2013aStanda	rd Specification for Hubless Cast Iron	
	Soil P	ipe and Fittings for Sanitary and Storm	
	Drain,	Waste, and Vent Piping Applications	
	B32-2008 (R2014)Standa:	rd Specification for Solder Metal	

B61-2008 (R2013)Standard Specification for Steam or Valve
Bronze Castings
B62-2009Standard Specification for Composition Bronze
or Ounce Metal Castings
B75/B75M-2011Standard Specification for Seamless Copper Tube
B88-2014Standard Specification for Seamless Copper
Water Tube
B306-2013Standard Specification for Copper Drainage Tube
(DWV)
B584-2014Standard Specification for Copper Alloy Sand
Castings for General Applications
B687-1999 (R2011)Standard Specification for Brass, Copper, and
Chromium-Plated Pipe Nipples
B828-2002 (R2010)Standard Practice for Making Capillary Joints
by Soldering of Copper and Copper Alloy Tube
and Fittings
B813-2010Standard Specification for Liquid and Paste
Fluxes for Soldering of Copper and Copper Alloy
Tube
Tube C564-2014Standard Specification for Rubber Gaskets for
C564-2014Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings
C564-2014Standard Specification for Rubber Gaskets for
C564-2014Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings
C564-2014
C564-2014 Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings C1173-2010 (R2014) Standard Specification for Flexible Transition Couplings for Underground Piping Systems D1785-2012 Standard Specification for Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80 and 120 D2000-2012 Standard Classification System for Rubber Products in Automotive Applications D2321-2014e1. Standard Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications D2564-2012 Standard Specification for Solvent Cements for
C564-2014
C564-2014
C564-2014 Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings C1173-2010 (R2014) Standard Specification for Flexible Transition Couplings for Underground Piping Systems D1785-2012 Standard Specification for Poly(Vinyl Chloride)
C564-2014

	D2855-1996 (R2010)	Standard Practice for Making Solvent-Cemented
		Joints with Poly (Vinyl Chloride) (PVC) Pipe
		and Fittings
	D4101-2014	Standard Specification for Polypropylene
		Injection and Extrusion Materials
	D5926-2011	Standard for Poly (Vinyl Chloride) (PVC)
		Gaskets for Drain, Waste, and Vent (DWV),
		Sewer, Sanitary, and Storm Plumbing Systems
	F477-2014	Standard Specification for Elastomeric Seals
		(Gaskets) for Joining Plastic Pipe
	F656-2010	Standard Specification for Primers for Use in
		Solvent Cement Joints of Poly (Vinyl Chloride)
		(PVC) Plastic Pipe and Fittings
	F1545-2015	Standard Specification for Plastic-Lined
		Ferrous Metal Pipe, Fittings, and Flanges
E. American Welding Society (AWS):		(AWS):
	A5.8M/A5.8 AMD1-2011	Specification for Filler Metals for Brazing and
		Braze Welding
F.	Copper Development Assoc	iation (CDA):
	A4015-2011Copper Tube Handbook	
		11
G.	Cast Iron Soil Pipe Inst	
G.		
G.	301-2012	itute (CISPI):
G.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron
G.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm
G.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications
G.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in
G.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and
	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications
	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications
н.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications il (ICC):
н.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications il (ICC): International Plumbing Code
н.	301-2012	itute (CISPI): Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications il (ICC): International Plumbing Code
н.	301-2012	Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications il (ICC): International Plumbing Code ation Society of the Valve and Fittings Ball Valves with Flanged or Butt-Welding Ends for General Service
н.	301-2012	Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications Standard Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications il (ICC): International Plumbing Code ation Society of the Valve and Fittings Ball Valves with Flanged or Butt-Welding Ends

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 00, FACILITY STORM DRAINAGE", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and Fittings.
 - 2. Specialty Pipe Fittings.
 - 3. Cleanouts.
 - 4. Roof Drains.
 - 5. Expansion Joints.
 - 6. Downspout Nozzles.
 - 7. Sleeve Flashing Devices.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.
- E. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.

- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - 1. Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.

- d. All mechanical equipment rooms or other areas containing mechanical air handling equipment.
- 2. The cast iron storm pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
- 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Copper Tube, (DWV): May be used for piping above ground.
 - 1. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 2. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 3. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.
- C. Polyvinyl Chloride (PVC):
 - 1. PVC storm sewer pipe and fittings are permitted for single story structures except for mechanical equipment rooms and other areas containing air handling equipment or hot water generation equipment.
 - 2. PVC storm sewer pipe and fittings shall be schedule 40 solid core piping conforming to ASTM D1785 and ASTM D2665, Sewer and Drain Series, with ends for solvent cemented joints.
 - 3. PVC joints shall be solvent welded socket type using solvent cement conforming to ASTM D2564 and adhesive primer conforming to ASTM F656. Bio-based materials shall be utilized when possible.
- D. Roof drain piping and body of drain in locations where the outdoor conditions are subject to freezing shall be insulated.

2.2 PUMPED DRAIN PIPING

A. Pumped drain piping 75 mm (3 inches) and less shall be copper tube conforming to ASTM B88, type K or L. For pumped drain piping 100 mm (4 inches) and greater, galvanized steel conforming to ASTM A53/A53M, seamless, schedule 40 may be used.

- B. Pumped drain pipe fittings shall comply with the following:
 - 1. Wrought copper or bronze castings for use with copper tube conforming to ASME B16.18 and B16.22.
 - 2. Unions, for use with copper tube up to 50 mm (2 inches) shall be cast with bronze, conforming to ASME B16.18 and ASTM B584 with solder or braze joints.
 - 3. Grooved fittings, for use with copper tube 65 mm to 100 mm (2-1/2 to 4 inch) shall be wrought copper conforming to ASTM B75/B75M, alloy C12200, 125 to 150 mm (5 to 6 inch) bronze castings conforming to ASTM B584.
 - 4. Mechanical grooved couplings shall have a ductile iron housing conforming to ASTM A536 (Grade 65-45-12) elastomer gasket suitable for potable water service and process temperature and steel track head bolts conforming to ASTM A183, housing shall be coated with colored alkyd enamel paint.
- C. Adapters shall be provided for joining pipe with different end connections.
- D. The solder shall be lead free using a water flushable, non-corrosive flux conforming to ASTM B32.
- E. Dielectric fittings and specialties shall be provided when joining pipe of dissimilar metals.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be unshielded, elastomeric, sleeve type reducing or transition pattern conforming with ASTM C1173 and include shear ring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal conforming to ASTM F477 or PVC conforming to ASTM D5926.
 - 3. dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.

- B. Dielectric fittings shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flanges shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig). The flange shall be a factory fabricated, bolted, companion flange assembly. The end connection shall be threaded or solder-joint copper alloy and threaded ferrous.
- D. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- E. Dielectric nipples shall be electroplated steel and shall conform with ASTM F1545 with a pressure ratings of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene. Bio-based materials shall be utilized when possible.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside caulk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way

- cleanouts shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.5 ROOF DRAINS AND CONNECTIONS

- A. Roof Drains: Roof Drains (RD) shall be cast iron with clamping device for making watertight connection and shall conform with ASME A112.6.4. Free openings through strainer shall be twice area of drain outlet. For roof drains not installed in connection with a waterproof membrane, a soft copper membrane shall be provided 300 mm (12 inches) in diameter greater than outside diameter of drain collar. An integral gravel stop shall be provided for drains installed on roofs having built up roofing covered with gravel or slag. Integral no-hub, soil pipe gasket or threaded outlet connection shall be provided.
 - 1. Flat Roofs: The roof drain shall have a beehive or dome shaped strainer with integral flange not less than 300 mm (12 inches) in diameter. For an insulated roof, a roof drain with an adjustable drainage collar shall be provided, which can be raised or lowered to meet required insulation heights, sump receiver and deck clamp. The bottom section shall serve as roof drain during construction before insulation is installed.
 - 2. Canopy Roofs: The roof drain shall have a beehive or dome shaped strainer with the integral flange no greater than 200 mm (8 inches) in diameter. For an insulated roof, the roof drain shall be provided with an adjustable drainage collar, which can be raised or lowered to meet the required insulation heights, sump receiver and deck clamp. Bottom section shall serve as roof drain during construction before insulation is installed.

- 3. Promenade Decks: the roof drain shall be the same as for canopy roofs, except decks shall have flat, round, loose, non-slip, bronze grate set in square, non-slip, bronze frame.
- 4. Portico Roofs and Gutters: Roof drains shall be horizontal angle type drain with flat bottom and horizontal outlet at the same elevation as the pipe to which it is connected. Strainer shall be removable angle grate type.
- 5. Protective Roof Membrane Insulation Assembly: The roof drain shall have a perforated stainless steel extension filter, non-puncturing clamp ring, large sump with extra wide roof flange and deck clamp.
 - a. Non pedestrian Roofs: The roof drain shall have large polypropylene or aluminum locking dome.
 - b. Pedestrian Roof: The roof drain shall have a bronze promenade top 356 mm (14 inches) square, set in square secured frame support collar
- 6. Roof Drains, Overflow or Secondary (Emergency): Roof Drains identified as overflow or secondary (emergency) drains shall have a 50 mm (2 inch) water dam integral to the drain body.
- 7. Roof drains in areas subject to freezing shall have heat tape and shall be insulated.
- B. Expansion Joints: Expansions joints shall be heavy cast iron with cast brass or PVC expansion sleeve having smooth bearing surface working freely against a packing ring held in place and under pressure of a bolted gland ring, forming a water and air tight flexible joint.

 Asbestos packing is prohibited.
- C. Interior Downspouts: An expansion joint shall be provided, specified above, at top of run on straight, vertical runs of downspout piping 12 m (40 feet) long or greater.
- D. Downspout Nozzle: The downspout nozzle fitting shall be of brass, unfinished, with internal pipe thread for connection to downspout.

2.6 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished

floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the IPC and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for glass, shall be reamed to remove burns and a clean smooth finish restored to full pipe inside diameter.
- D. All pipe runs shall be laid out to avoid interference with other work/trades.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 2.44 m (8 feet) (1 percent slope) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep 4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two drains are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried storm drainage piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and

- other installation requirements. Bio-based materials shall be utilized when possible.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA A4015.
- M. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burns and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - Pipe sections with damaged threads shall be replaced with new undamaged sections of pipe at no additional time or cost to Government.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.
- F. For PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendices.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the IPC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 23 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6~m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, wall and ceiling plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.

- 5. Hanger Rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
- 6. Riser Clamps shall be malleable iron or steel.
- 7. Roller shall be cast iron.
- 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield shall be 100 mm (4 inches) in length and be 1.6 mm (16 gage) steel. The shield shall be sized for the insulation.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.

J. Penetrations:

- 1. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
- 2. Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

3.5 INSULATION

A. Insulate horizontal sections and 600 mm (2 feet) past changes of direction to vertical sections for interior section of roof drains.

Install insulation in accordance with the requirements of Section 22 07 11, PLUMBING INSULATION.

3.6 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
 - 3. Final Tests: While either one of the following tests may be used, Contractor shall check with VA as to which test will be performed.
 - **a.** Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 0.25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.
- C. COR shall witness all tests. Contractor shall coordinate schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to flushing, disinfection/sterilization, startup, and testing.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

VA Project 438-22-700 06-20-2021 Construction Documents

3.8 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for two hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 15 00 GENERAL SERVICE COMPRESSED-AIR SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for NFPA 99 Category 4 shop compressed air systems for non-medical air piping materials, including compressors, electric motors and starters, receiver, all necessary piping, fittings, valves, gages, switches and all necessary accessories, connections and equipment. NFPA 99 Category 4 systems are non-medical systems of 100 psi or less in which failure of equipment would have no impact on patient care.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Not Used
- H. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Exposed Piping and Gages.
- I. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- J. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):
 A13.1-2007......Scheme for the Identification of Piping Systems
 B16.21-2011.....Nonmetallic Flat Gaskets for Pipe Flanges

	B16.22-2013Wrought Copper and Copper Alloy Solder-Joint		
	Pressure	Fittings	
	B16.24-2011Cast Cop	per Alloy Pipe Flanges and Flanged	
	Fittings	: Classes 150, 300, 600, 900, 1500, and	
	2500		
	B18.2.1-2012Square,	Hex, Heavy Hex, and Askew Head Bolts	
	and Hex,	Heavy Hex, Hex Flange, Lobed Head, and	
	Lag Scre	ws (Inch Series)	
	Code -		
	BPVC Section VIII-1-2013 Rules for Construction of Pressure		
	Vessels,	Division 1	
С.	C. American Society for Testing and Materials (ASTM): A126-2004 (R2009Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings		
	B32-2008Standard	Specification for Solder Metal	
	B61-2008 (R2013)Standard	Specification for Steam or Valve	
	Bronze C	astings	
	B62-2009Standard	Specification for Composition Bronze	
	or Ounce	Metal Castings	
	B88-2009Standard	Specification for Seamless Copper	
	Water Tu	be	
	B584-2013Standard	Specification for Copper Alloy Sand	
	Castings	for General Applications	
	B813-2010Standard	Specification for Liquid and Paste	
	Fluxes f	or Soldering of Copper and Copper Alloy	
	Tube		
	B819-2000 (R2011)Standard	Specification for Seamless Copper Tube	
	for Medi	cal Gas Systems	
D.	O. American Welding Society (AWS):		
	A5.8/A5.8M AMD1-2011Specific	ation for Filler Metals for Brazing and	
	Braze We	lding	
Ε.			
	IPC-2012International Plumbing Code		
F.	F. Manufacturer Standardization of the Valve and Fittings Industry, Inc		
	(MSS):		
	SP-70-2011Gray Irc	n Gate Valves, Flanged and Threaded	
	Ends		

VA Project 438-22-700 06-20-2021 Construction Documents

	SP-71-2011Gray Iron Swing Check Valves, Flanged and
	Threaded Ends
	SP-72-2010aBall Valves with Flanged or Butt-Welding Ends
	For General Service
	SP-80-2013Bronze Gate, Globe, Angle, and Check Valves
	SP-110-2010Ball Valves Threaded, Socket-Welding, Solder
	Joint, Grooved and Flared Ends
	SP-123-2013Non-Ferrous Threaded and Solder-Joint Unions
	for Use with Copper Water Tube
G.	National Electrical Manufacturers Association (NEMA):
	250-2008Enclosures for Electrical Equipment (1000 Volts
	Maximum)

H. National Fire Protection Association (NFPA):

70-2017.....National Electrical Code (NEC)

99-2018......Health Care Facilities Code

I. Underwriters' Laboratories, Inc. (UL):

508-1999 (R2013)......Standard for Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 15 00, GENERAL SERVICE COMPRESSED-AIR SYSTEMS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Aboveground Piping
 - 2. Underground Piping
 - 3. Supporting elements
 - 4. Valves
 - 5. Pressure Gages
 - 6. Air Pressure Reducing and Regulating Valves
 - 7. Automatic drain valves
 - 8. Filter capacity and operating characteristics
 - 9. Vibration Isolation

- 10. Quick couplings
- 11. Hose Assemblies
- 12. Air Compressor System:
 - a. Characteristic performance curves
 - b. Efficiency
 - c. Compressor; manufacturer and model
 - d. Compressor operating speed
 - e. Capacity; (free air delivered at indicated pressure)
 - f. Type of bearing in compressor
 - g. Type of lubrication
 - h. Capacity of receiver
 - i. Unloader; manufacturer, type, and model
 - j. Type and adjustment of drive
 - k. Electrical motor; manufacturer, frame and model
 - 1. Speed of motor
 - m. Current characteristics and HP of motor
 - n. Air muffler filter; manufacture, type, and model
 - o. After cooler; manufacturer, type, and model
- D. Pneumatic compressed air system and hydrostatic drainage piping test reports shall be submitted.
- E. Brazing and welding certificates shall be submitted.
- F. Not Used
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. The Contractor shall obtain the services of a qualified engineer or technician from the compressor manufacturer to review final installation, and supervise start-up, and testing of the compressor. After satisfactory installation of the equipment, the engineer or technician shall provide a signed certification that the equipment is installed in accordance with the manufacturer's recommendations.
- B. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations.

 Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished.

 Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- B. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version 2013 provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

VA Project 438-22-700 06-20-2021 Construction Documents

PART 2 - PRODUCTS

2.1 PIPES, TUBES AND FITTINGS

- A. Pipe for general service compressed air system shall be drawn temper, Type "K" or "L" seamless copper tube, conforming to ASTM B88 with wrought copper solder joint fittings conforming to ASME B16.22.
- B. Copper unions shall conform to ASME B16.22 or MSS SP-123.
- C. Cast copper alloy flanges shall be Class 300 conforming to ASME B16.24.
 - 1. Pipe-Flange Gasket Materials: ASME B16.21, nonmetallic, flat, asbestos free, 3.2 mm (1/8 inch) maximum thickness, full-face type.
 - 2. Flange Bolts and Nuts: ASME B18.2.1, carbon steel.
- D. Solder filler metal shall consist of lead free alloys conforming to ASTM B32 with water flushable flux conforming to ASTM B813.
- E. Silver Brazing Filler metals shall be BCuP series, copper phosphorus alloys for general duty brazing conforming to AWS A5.8/A5.8M.
- F. Pipe identification shall comply with ASME A13.1. Pipe identification labels shall be located as follows:
 - 1. At intervals of not more than 6.1 m (20 feet).
 - 2. At least visible once in or above every room.
 - 3. On both sides of walls or partitions penetrated by the piping.
 - 4. At least once in every story height traversed by risers.

2.2 VALVES

A. Ball:

- 1. Ball valves 75 mm or DN75 (3 inches) and smaller shall be full port, two or three piece ball valve conforming to MSS SP-110. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be soldered.
- 2. Not Used

B. Check:

- 1. Check valves smaller than 100 mm or DN100 (4 inches) shall be Class 125, bronze swing check valves with nonmetallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.
- 2. Not Used

2.3 DIELECTRIC FITTINGS

- A. Fittings joining copper alloy and ferrous materials shall be isolated.
- B. Dielectric unions shall be factory fabricated union assemblies, rated at 1725 kPa (250 psig) minimum working pressure at 82 degrees C (180 degrees F) suitable for compressed air service.
- C. Dielectric flanges shall be factory fabricated companion flange assemblies, rated at 2070 kPa (300 psig) minimum working pressure at 82 degrees C (180 degrees F) suitable for compressed air service.

2.4 FLEXIBLE PIPE CONNECTORS

- A. Stainless steel hose flexible connectors shall be corrugated, stainless steel tubing with stainless steel wire braid covering and ends welded to inner tubing. The stainless steel hose connectors shall be rated at 1380 kPa (200 psig) minimum. The end connections for 50 mm or DN50 (NPS 2 inches) and smaller shall be threaded steel pipe nipple. The end connections for 65 mm or DN65 (NPS 2-1/2 inches) and larger shall be flanged steel nipple.
- B. Corrugated-bronze tubing with bronze wire-braid covering and ends brazed to inner tubing. The corrugated- bronze tubing shall be rated at 1380 kPa (200 psig) minimum.

2.5 SPECIALTIES

- A. Pressure Gages: Pressure gages permanently installed in the system or used for testing purposes shall be listed for compressed air service and shall include a snubber or pulsation dampener and an isolation valve for maintenance access.
 - 1. For line pressure use adjacent to source equipment: ASME B40.1, pressure gage, single, size 115 mm (4-1/2 inches), for compressed air, accurate to within two percent, with metal case. Range shall be two times operating pressure. Dial graduations and figures shall be black on a white background, or white on a black background. Gage shall be labeled for appropriate service and marked "USE NO OIL".
 - 2. For all services downstream of main shutoff valve: Manufactured for compressed air use and marked "USE NO OIL", 40 mm (1-1/2 inch) diameter gage with dial range 1-690 kPa (1-100 psig) for air service.

B. Air Pressure Regulating Valves:

1. Air pressure regulating valves under 75 mm or DN75 (NPS 3 inches) shall be pilot or diaphragm operated, bronze body and trim, direct

acting, spring loaded manual pressure setting adjustment and rated for $1380~\mathrm{kPa}$ (200 psig) inlet pressure. Delivered pressure shall not vary more than one kPa for each $10~\mathrm{kPa}$ (1.5 psig) variation in inlet pressure.

- 2. Air pressure regulators 75 mm or DN75 (3 inches) and larger shall be pilot operated, bronze body, direct acting, spring loaded manual pressure setting adjustment and rated for 1725 kPa (250 psig) inlet pressure. Delivered pressure shall not vary more than one kPa for each 10 kPa (1.5 psig) variation in inlet pressure.
- C. Safety valves shall be constructed according to the ASME BPVC Section VIII and be National Board Certified, labeled, and factory sealed. The safety valve shall be constructed of bronze body with poppet type safety valve for compressed air service.
- D. The automatic drain valves shall have stainless steel body and internal parts rated for 1380 kPa (200 psig) minimum working pressure. The automatic drain valve shall be capable of automatic discharge of collected condensate.
- E. The coalescing filter shall be capable of removing water and oil aerosols, efficiency of 99.9 percent retention of particles 0.3 micrometer and smaller, with color change dye to indicate when carbon is saturated and warning light to indicate when selected maximum pressure drop has been exceeded. The coalescing filter shall include mounting brackets for wall mount application.
- F. Airline lubricators shall come with a drip chamber and sight dome for observing oil drop entering air stream. The airline lubricator shall have oil feed adjustment screw and quick release collar for easy bowl removal. The Airline lubricators shall include mounting brackets for wall mount application. Lubricators shall be suitable for 1380 kPa (200 psig) at 71 degrees C (160 degrees F).

2.6 QUICK CONNECT COUPLINGS

- A. The quick connect coupling assemblies shall have a locking mechanism constructed to permit one-handed feature for quick connection and disconnection of compressed air hose and equipment. Furnish complete keyed indexing noninterchangeable coupling to prevent connection to medical compressed-air pressure outlets.
- B. Automatic shutoff quick couplings shall be straight through brass body with O-ring or gasket seal and stainless steel or nickel plated steel

- operating parts. The automatic shutoff quick connect coupling shall consist of socket or plug ends with one way valve and with barbed outlet or threaded hose fittings for attaching hose.
- C. Valveless quick couplings shall be straight through brass body with O-ring or gasket seal and stainless steel or nickel plated steel operating parts. The valve less quick connect coupling shall consist of socket or plug ends and with barbed outlet or threaded hose fittings for attaching hose.

2.7 HOSE ASSEMBLIES

- A. Hose, clamps, couplings, splicers shall be suitable for compressed air service of nominal diameter indicated and rated for 2070 kPa (300 psig) minimum working pressure.
- B. The hose shall be reinforced double wire braid, chloroprene reinforced covered hose.
- C. Hose clamps shall be stainless steel.
- D. Hose couplings shall be two-piece straight through, threaded brass or stainless steel O-ring or gasket seal swivel coupling with barbed ends for connecting two sections of hose.
- E. Hose splicers shall be one piece, straight through brass or stainless steel fitting with barbed ends.

2.8 AIR COMPRESSOR FOR SHOP AIR SYSTEMS - NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Piping shall be installed concealed from view and protected from physical contact unless indicated to be exposed. Piping shall be installed exposed in mechanical rooms and service areas.
- B. All pipe shall be installed at right angles or parallel to building walls. Diagonal runs are prohibited unless indicated.
- C. Piping shall be installed above accessible ceilings, allowing for sufficient space for ceiling panel removal and to coordinate with other services occupying that that space.
- D. Piping installed adjacent to equipment shall be located to allow for the required service clearances.
- E. Air and drain piping shall be installed with a 1 percent slope downward in direction of flow.

VA Project 438-22-700 06-20-2021 Construction Documents

- F. Nipples, flanges, unions, transitions, and special fittings, and valves shall be installed with pressure ratings same as or higher than system pressure rating.
- G. Cast copper alloy companion flange with gasket and brazed joints shall be used to connect equipment and specialties with flanged connections.
- H. Flanged joints may be used instead of specified joint for any piping or tubing system.
- I. Only eccentric reducers shall be installed where compressed air piping is reduced in direction of flow, with bottoms of both pipes and reducers fitting flush.
- J. Branch connections shall be installed from the top of the main compressed air line. Drain legs and drain trap shall be installed at the end of each main and branch and at all low points in the system.
- K. Thermometers and pressure gages shall be installed on discharge piping from each air compressor and on each receiver.
- L. Valves shall be installed to permit servicing to all equipment.
- M. Pipes shall be installed free of all sags and bends.
- N. Seismic restraint shall be installed for all piping and equipment as required for location.
- O. Piping shall be cut square and accurately with a tube cutter (sawing is not permitted) to measurements determined at place of installation and worked into place without springing or forcing the pipe. Tube must bottom in each solder socket so there are no gaps between tube and fitting where solder can enter the inside of line. The tube shall be reamed to remove burrs, being careful not to expand tube and that no chips of copper remain in the line. Care shall be exercised in handling equipment and tools used in cutting or reaming of pipe to prevent oil or grease being introduced into piping.
- P. Particular care shall be exercised, when flux is applied to avoid leaving any excess inside the completed joints. Thoroughly wash the outside of each joint with clean hot water after assembly to remove oxide coating.
- Q. Hanger spacing shall be based upon NFPA 99.
- R. Not Used
- S. Rigidly support valves and other equipment to prevent strain on tube or joints.
- T. Not Used

- U. Suitably brace piping against sway and vibration. Bracing shall consist of brackets, anchor chairs, rods, and structural steel for vibration isolation.
- V. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 PRELIMINARY STAGE TESTS

- A. Preliminary tests shall be performed by the contractor prior to testing witnessed by the COR. Tests shall be pneumatic and shall use dry, oilfree compressed air, carbon dioxide or nitrogen in metallic systems.
- B. Testing of any system for any purpose shall include preliminary testing by swabbing joints under test with standard soap solution and observing for bubbles at internal pressures not in excess of 5 psi.
- C. When testing reveals system leakage, isolate and repair the leaks, replace defective materials where necessary, and retest the system until there is no loss of pressure. Remake leaking gaskets with new gaskets and new flange bolting, and discard used bolting and gaskets.
- D. Drainage piping shall be hydrostatically tested to a pressure of 5 psi to ensure the piping does not leak. Repair all observed leaks and retest until all leaks have been corrected.

3.3 STARTUP AND TESTING

- A. As recommended by product manufacturer and listed standards and under actual or simulated operating conditions, pneumatic tests shall be conducted to prove piping system integrity and full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with each integrated system. Tests shall be pneumatic and shall use dry, oil-free compressed air, carbon dioxide or nitrogen in metallic systems.
- B. The tests shall include initial piping purge test, initial pneumatic test for positive-pressure gas systems, initial cross-connection test, and initial standing positive-pressure gas piping tests, system capacity, control function, and alarm functions.
- C. Pneumatic tests shall be performed utilizing a test pressure of 50 psi higher than the MAWP, minimum of 150 psi. Test pressure shall be maintained for a minimum period of four hours to ensure the temperature in the piping system stabilizes, then the pressure is refreshed and held for two hours with no loss of pressure. Pneumatic testing performance shall be in accordance with industry safety standards with

VA Project 438-22-700 06-20-2021 Construction Documents

the pressure gradually increased in increments of 25% of the MAWP until the required test pressure is reached. At each interval, the system pressure shall be held long enough for piping strains to stabilize. If leaks are observed, the leaks shall be identified, the system depressurized and repairs made before proceeding.

- D. Other than standard piping flanges, plugs, caps and valves, only use commercially manufactured expandable elastomer plugs for sealing off piping for test purposes. Published safe test pressure rating of any plug used shall be not less than three times the actual test pressure being applied. During pneumatic testing evacuate personnel from areas where plugs are used.
- E. Remove components that could be damaged by test pressure from piping systems to be tested.
- F. Perform valve-operating tests and drainage tests to insure valves do not leak when operating under pressure and are correctly labeled.
- G. Check piping system components, such as valves, for proper operation under system test pressure.
- H. No test media shall be added to a system during a test for a period specified or determined by the Contracting Officer.
- I. Duration of a test will be determined by the Contracting Officer and will be for a minimum of 15 minutes with a maximum of 24 hours. Test may be terminated by direction of the Contracting Officer at any point after it has been determined that the pressure leak test has been satisfied.
- J. Prepare and maintain test records of all piping systems tests. Records shall show Governmental and Contractor test personnel responsibilities, dates, test gage identification numbers, ambient temperatures, pressure ranges, rates of pressure drop, and leakage rates.
- K. System verification and final testing shall be conducted comprising of a system verifier standing pressure test, verifier cross-connection test, verifier piping purge test, verifier final tie-in test, verifier operational pressure test, verifier piping particulate test, verifier piping purity test, labeling, and source equipment verification test.
- L. When any defects are detected, correct defects and repeat test at no additional costs to the Government. When testing reveals system leakage, isolate and repair the leaks, replace defective materials where necessary, and retest the system until there is no loss of

VA Project 438-22-700 06-20-2021 Construction Documents

- pressure. Remake leaking gaskets with new gaskets and new flange bolting, and discard used bolting and gaskets.
- M. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and Commissioning Agent. Provide a minimum of 7 days prior to notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings.

 Capacities and ratings of motors, conductors and cable, panelboards and other items and arrangements for the specified items are shown on the drawings.
- C. Not Used
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC.

 Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters
 Laboratories, Inc. (UL), Institute of Electrical and Electronics
 Engineers (IEEE), and National Fire Protection Association (NFPA) codes
 and standards are the minimum requirements for materials and
 installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.

VA Project 438-22-700 06-20-2021 Construction Documents

B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- 4. Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - 1. Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.

VA Project 438-22-700 06-20-2021 Construction Documents

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - 2. Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - 1. The Government shall have the option of witnessing factory tests.

 The Contractor shall notify the Government through the COR a minimum

- of thirty (30) days prior to the manufacturer's performing of the factory tests.
- 2. When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - 2. During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J General Environmental Controls, OSHA Part 1910 subpart K Medical and First Aid, and OSHA Part 1910 subpart S Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - 1. Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.

VA Project 438-22-700 06-20-2021 Construction Documents

- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Not Used

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and

maintenance of items such as panelboards, cabinets, motor controllers, fused and non-fused safety switches, separately enclosed circuit breakers, control devices and other significant equipment.

- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - 2. Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.
- D. Service equipment shall be labeled with the type and location of all on-site emergency power sources.
- E. Label each transformer with the location of the transformer disconnecting means.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications,

VA Project 438-22-700 06-20-2021 Construction Documents

samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION"
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements.
 Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 2. Not Used
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - 1. Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions

covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.

- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - 1. A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 POLYCHLORINATED BIPHENYL (PCB) EQUIPMENT - NOT USED

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

VA Project 438-22-700 06-20-2021 Construction Documents

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE

 TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted,
 liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - 1. A representative sample of Medium-voltage cables from each lot shall be factory tested per NEMA WC 74 to ensure that there are no electrical defects in that specific lot of cable.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Submit sufficient information to demonstrate compliance with drawings and specifications.
- b. Submit the following data for approval:
 - 1.) Complete electrical ratings.
 - 2.) Installation instructions.

2. Samples:

a. After approval of submittal and prior to installation, Contractor shall furnish sample in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

3. Certifications:

- a. Factory Test Reports: Submit certified factory production test reports for approval.
- b. Field Test Reports: Submit field test reports for approval.
- c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
- d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - 2.) Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3.) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.

4. Qualified Worker Approval:

- a. Qualified workers who install cables, splices, and terminations shall have a minimum of five years of experience splicing and terminating cables, including experience with the materials in the approved splices and terminations. Qualified workers who perform cable testing shall have a minimum of five year of experience performing electrical testing of medium-voltage cables, including the ability to understand, interpret test results and develop test report.
- b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.

5. Not Used

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American Society for Testing and Materials (ASTM): B3-13......Standard Specification for Soft or Annealed Copper Wire C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 48-09..... Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation Rated 2.5 kV through 765 kV or Extruded Insulation Rated 2.5 kV through 500 kV 386-06......Separable Insulated Connector Systems for Power Distribution Systems above 600 V 400-12.....Guide for Field Testing and Evaluation of the Insulation of Shielded Power Cable Systems 400.2-13......Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) 404-12.....Extruded and Laminated Dielectric Shielded Cable Joints Rated 2500 V to 500,000 V D. National Electrical Manufacturers Association (NEMA): WC 71-14.....Non-Shielded Cables Rated 2001-5000 Volts for Use in the Distribution of Electric Energy WC 74-12.....5-46 KV Shielded Power Cable for Use in the
- E. National Fire Protection Association (NFPA):
 70-17......National Electrical Code (NEC)

Energy

F. Underwriters Laboratories (UL):

1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

A. Cable shall be shipped on reels such that it is protected against physical, mechanical and environmental damage. Each end of each length

Transmission and Distribution of Electric

- of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or field-installed heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with ASTM, IEEE, NEC, NEMA and UL, and as shown on the drawings.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:
 - 1. Not Used
 - 2. 15,000 V cable shall be used on all distribution systems with voltages ranging from 5,000 V to 15,000 V.
 - 3. Not Used
- 4. Not Used
- D. Insulation:
 - 1. Insulation level shall be 133%.
 - 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
 - b. Cable type abbreviation, XLP, XLPE, or TR-XLPE: cross-linked polyethylene insulation shall be thermosetting, light and heat stabilized, and chemically cross-linked.
 - E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
 - F. Insulation shall be wrapped with copper shielding tape, helically-applied over semi-conducting insulation shield.
 - G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
 - H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pull boxes, the splices shall be submersible.

C. Splices:

1. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.

D. Terminations:

- 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
- 2. Not Used
- 3. Not Used
- 4. Not Used
- 5. Load-break terminations for indoor and outdoor use: 200 A loadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
- 6. Not Used
- 7. Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
- 8. Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- I. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS - NOT USED

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.

- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Not Used
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be executed by qualified person trained to perform medium-voltage equipment installations. Tools shall be as recommended or provided by the manufacturer. Installation shall comply with manufacturer's instructions.
- C. Not Used
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

A. General:

- Perform tests in accordance with the latest IEEE 400 and 400.2, manufacturer's recommendations, and as specified in this specification.
- 2. Contractor shall make arrangements to have tests witnessed by the COR. Contractor shall proceed with tests only after obtaining approval from the COR.
- B. Visual Inspection: Perform visual inspection prior to electrical tests.
 - 1. Inspect exposed sections of cables for physical damage.
 - 2. Inspect shield grounding, cable supports, splices, and terminations.
 - 3. Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
 - 4. Verify installation of fireproofing tape and identification tags.
 - 5. At the time of final acceptance, Contractor shall provide the COR visual field inspection notes, findings, and photographs detailing accessible inspection locations.
- C. Electrical Tests New Cables: Perform preparation and tests in order
 shown below:
 - 1. Preparation Prior to Testing: Splices and terminations applied to new cables shall be completed prior to testing. For renovation installation, ends of new cables intended to be spliced to existing service-aged cables shall be prepared (cut back) to allow testing without flashover or tracking. Cables shall not be connected to other equipment while under test.
 - Perform Insulation-Resistance Test. Test all cables with respect to ground and adjacent cables. All adjacent cables shall be grounded during testing.

- a. Apply test voltage for a period sufficient to stabilize output voltage and insulation resistance measurement.
- b. Test data shall include megohm, applied test voltage, and leakage current readings.
- c. Further testing shall not continue unless the insulation resistance test results meet or exceed the values listed below. Test voltages and minimum acceptable resistance values shall be:

Voltage Class	Test Voltage	Min. Insulation Resistance
5kV	2,500 VDC	1,000 megohms
15kV	2,500 VDC	5,000 megohms
25kV	5,000 VDC	20,000 megohms
35kV	15,000 VDC	100,000 megohms

- 3. Perform Tan Delta test. Review test readings with the COR prior to proceeding with the Very Low Frequency (VLF) Withstand test
- 4. Perform Very Low Frequency (VLF) Withstand test. Utilize test voltages in accordance with IEEE 400.2.
- D. Not Used
- E. Not Used
- F. Field Test Report: Submit a field test report to the COR that includes the following information:
 - 1. Project Name, Location, Test Date.
 - 2. Name of Technician and Company performing the test.
 - 3. Ambient temperature and humidity at time of test.
 - 4. Name, Model Number and Description of Test Equipment used.
 - 5. Circuit identification, cable length, cable type and size, insulation type, cable manufacturer, service age (if any), voltage rating, description of splices or terminations.
 - 6. Visual field inspection notes, findings, and photographs.
 - 7. Insulation Resistance Test results:
 - a. Test voltage.
 - b. Measurement in Megohms.
 - c. Leakage current.
 - 8. Tan Delta results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Mean Tan Delta at V_0 .
 - d. Stability measured by Standard Deviation at V_0 .

VA Project 438-22-700 06-20-2021 Construction Documents

- e. Differential Tan Delta.
- f. IEEE Condition Assessment Rating.
- 9. VLF Withstand results:
 - a. Test voltage.
 - b. Waveform (sinusoidal or cosine-rectangular).
 - c. Pass/Fail Rating.
- 10. Conclusions. If any deficiency is discovered based on test results, provide recommendations for corrective action.
- G. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the COR.

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2.) Splicing materials and pulling lubricant.
 - 2. Certifications: Two weeks prior to final inspection, submit the following.

- a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
- b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

.5 A	APPLICABLE PUBLICATIONS
A.	Publications listed below (including amendments, addenda, revisions,
	supplements and errata) form a part of this specification to the extent
	referenced. Publications are reference in the text by designation only.
В.	American Society of Testing Material (ASTM):
	D2301-10Standard Specification for Vinyl Chloride
	Plastic Pressure-Sensitive Electrical
	Insulating Tape
	D2304-10Test Method for Thermal Endurance of Rigid
	Electrical Insulating Materials
	D3005-10Low-Temperature Resistant Vinyl Chloride
	Plastic Pressure-Sensitive Electrical
	Insulating Tape
С.	National Electrical Manufacturers Association (NEMA):
	WC 70-09Power Cables Rated 2000 Volts or Less for the
	Distribution of Electrical Energy
D.	National Fire Protection Association (NFPA):
	70-17National Electrical Code (NEC)
Ε.	Underwriters Laboratories, Inc. (UL):
	44-14Thermoset-Insulated Wires and Cables
	83-14Thermoplastic-Insulated Wires and Cables
	467-13Grounding and Bonding Equipment
	486A-486B-13Wire Connectors
	486C-13Splicing Wire Connectors
	486D-15Sealed Wire Connector Systems
	486E-15Equipment Wiring Terminals for Use with
	Aluminum and/or Copper Conductors
	493-07Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cables
	514B-12Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Not Used
- E. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - 3. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 4. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V		
Black	А	Brown		
Red	В	Orange		
Blue	С	Yellow		
White	Neutral	Gray *		
* or white with colored (other than green) tracer.				

5. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated

- above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 6. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Not Used
- F. Not Used
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.

VA Project 438-22-700 06-20-2021 Construction Documents

- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES - NOT USED

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. Not Used

3.9 DIRECT BURIAL CABLE INSTALLATION - NOT USED

3.10 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors' phase-to-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE
 TRANSFORMERS: pad-mounted, liquid-filled, medium-voltage transformers.
- E. Not Used
- F. Not Used
- G. Not Used
- H. Not Used
- I. Not Used
- J. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- K. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- L. Not Used
- M. Not Used
- N. Not Used
- O. Not Used

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

26 05 26 - 1
GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.
 - 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

81-12..... EEEE Guide for Measuring Earth Resistivity,

- Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements D. National Fire Protection Association (NFPA):

26 05 26 - 2

VA Project 438-22-700 06-20-2021 Construction Documents

	Ε.	Underwriters	Laboratories	Inc.	(UL)
--	----	--------------	--------------	------	------

44-14	.Thermoset-Insulated	Wires and	Cables
83-14	.Thermoplastic-Insula	ated Wires	and Cables
467-13	.Grounding and Bondir	ng Equipmer	nt

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper.

 Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Not Used
- B. Above Grade:
 - 1. Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.

26 05 26 - 3

VA Project 438-22-700 06-20-2021 Construction Documents

- 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
- 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - 3. Not Used

VA Project 438-22-700 06-20-2021 Construction Documents

- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Not Used
- B. Not Used
- C. Pad-Mounted Transformers:
 - 1. Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- D. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - 1. Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchboards, Panelboards and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - 1. Not Used

2. Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.

3.5 RACEWAY

A. Conduit Systems:

- 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
- 2. Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
- 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
- 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - 1. Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

D. Wireway Systems:

- Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
- 2. Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).

VA Project 438-22-700 06-20-2021 Construction Documents

- 3. Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- 4. Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Not Used
- I. Not Used

3.6 OUTDOOR METALLIC FENCES AROUND ELECTRICAL EQUIPMENT

- A. Fences shall be grounded with a ground rod at each fixed gate post and at each corner post.
- B. Drive ground rods until the top is 300 mm (12 inches) below grade. Attach a No. 4 AWG copper conductor by exothermic weld to the ground rods and extend underground to the immediate vicinity of fence post. Lace the conductor vertically into 300 mm (12 inches) of fence mesh and fasten by two approved bronze compression fittings, one to bond the wire to post and the other to bond the wire to fence. Each gate section shall be bonded to its gatepost by a 3 mm x 25 mm (0.375 inch x 1 inch) flexible, braided copper strap and ground post clamps. Clamps shall be of the anti-electrolysis type.

3.7 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

VA Project 438-22-700 06-20-2021 Construction Documents

3.8 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.
- 3.9 LIGHTNING PROTECTION SYSTEM NOT USED
- 3.10 MAIN ELECTRICAL ROOM GROUNDING NOT USED
- 3.11 EXTERIOR LIGHT POLES NOT USED

3.12 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.13 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.14 ACCEPTANCE CHECKS AND TESTS

A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.

VA Project 438-22-700 06-20-2021 Construction Documents

- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the COR prior to backfilling. The Contractor shall notify the COR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Not Used
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- G. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- designation only. B. National Electrical Manufacturer's Association (NEMA): C136.10-10......American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements ICS-2-05......Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-16.....Standard for Industrial Controls and Systems Enclosures C. National Fire Protection Association (NFPA): 70-17......National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 20-10.....Standard for General-Use Snap Switches 98-16......Enclosed and Dead-Front Switches 773-16.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St.
Sioux Falls, SD 57105

VA Project 438-22-700 06-20-2021 Construction Documents

773A-16	Nonindustrial Photoelectric Switches for
	Lighting Control
916-15	Standard for Energy Management Equipment
	Systems
917-06	Clock Operated Switches
924-16	Emergency Lighting and Power Equipment (for use
	when controlling emergency circuits).

PART 2 - PRODUCTS

- 2.1 ELECTRONIC TIME SWITCHES NOT USED
- 2.2 ELECTROMECHANICAL-DIAL TIME SWITCHES NOT USED
- 2.3 OUTDOOR PHOTOELECTRIC SWITCHES NOT USED
- 2.4 TIMER SWITCHES NOT USED
- 2.5 CEILING-MOUNTED PHOTOELECTRIC SWITCHES
 - A. Solid-state, light-level sensor unit, with separate relay unit.
 - Sensor Output: Contacts rated to operate the associated relay.
 Sensor shall be powered from the relay unit.
 - 2. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 3. Monitoring Range: 108 to 2152 lx (10 to 200 fc), with an adjustment for turn-on and turn-off levels.
 - 4. Time Delay: Adjustable from 5 to 300 seconds, with dead bandadjustment.
 - 5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.6 SKYLIGHT PHOTOELECTRIC SENSORS - NOT USED

2.7 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - 1. Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay.Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.

4. Mounting:

- a. Sensor: Suitable for mounting in any position on a standard outlet box.
- b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- 8. Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
- 9. Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in) and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.8 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - 1. Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - 2. Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.

- 5. Switch: Manual operation to turn lights on and override lights off.
- 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- 7. Provide 0-10 volt dimming adjustment integral to sensor switch where indicated.
- 2.9 OUTDOOR MOTION SENSOR (PIR) NOT USED
- 2.10 LIGHTING CONTROL SYSTEM RELAY PANEL TYPE (NETWORK) NOT USED
- 2.11 LIGHTING CONTROL SYSTEM RELAY PANEL TYPE (STAND ALONE) NOT USED
- 2.12 LIGHTING CONTROL SYSTEM DISTIBUTIVE RELAY TYPE NOT USED
- 2.13 LIGHTING CONTROL SYSTEM CIRCUIT BREAKER PANEL TYPE NOT USED
- 2.14 LIGHTING CONTROL SYSTEM DIGITAL ADDRESSABLE LIGHTING INTERFACE (DALI) NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 foot-candle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability.
 Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Not Used

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 8-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.

2. Manuals:

a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):WD 1-99(R2015)......General Color Requirements for Wiring DevicesWD 6-16......Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA):
 - 70-17......National Electrical Code (NEC) 99-18......Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):

 - 498-17.....Attachment Plugs and Receptacles
 - 943-16.....Ground-Fault Circuit-Interrupters
 - 1449-14.....Surge Protective Devices
 - 1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings. All GFCI, hospital grade and non-hospital grade, receptacles shall be of the tamper resistant type.
 - 1. Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears and shall

- include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
- 2. Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - Bodies shall be ivory in color. Bodies shall be red in color for devices on emergency circuits.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Not Used
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be ivory in color. Bodies shall be red in color for devices on emergency circuits.

- 1.) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
- 2.) Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles - hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.
 - 1. Not Used
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.
- F. Surge Protective (TVSS) Receptacles shall have integral surge suppression in line to ground, line to neutral, and neutral to ground modes.
 - 1. TVSS Components: Multiple metal-oxide varistors; with a nominal clamp-level rating of 400 Volts, and minimum single transient pulse energy dissipation of 210 Joules.
 - 2. Active TVSS Indication: LED, visible in face of device to indicate device is active or no longer in service.
- G. Not Used

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self-grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.

3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be ivory in color unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. Not Used
- C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- D. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- E. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - 2. Receptacles shall be duplex. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.

- 3. Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
- 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
- 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
- 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- ${\tt H.}$ Install wall switches 1.2 ${\tt M}$ (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.

- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 03 30 53, CAST-IN-PLACE CONCRETE.
- B. Not Used
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS:

 Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.
- H. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details include information on housing and optics system.

- c. Physical dimensions and description.
- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Not Used
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- k. Not Used

2. Manuals:

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO):

LRFDLTS-17.....Structural Supports for Highway Signs,
Luminaires and Traffic Signals

C. American Concrete Institute (ACI):

318-14Building Code Requirements for Structural
Concrete

D.	American National Standards Institute (ANSI):		
	H35.1/H35 1M-17American National Standard Alloy and Temper		
	Designation Systems for Aluminum		
Ε.	American Society for Testing and Materials (ASTM):		
	A123/A123M-17Zinc (Hot-Dip Galvanized) Coatings on Iron and		
	Steel Products		
	A153/A153M-16Zinc Coating (Hot-Dip) on Iron and Steel		
	Hardware		
	B108/B108M-15Aluminum-Alloy Permanent Mold Castings		
	C1089-13Spun Cast Prestressed Concrete Poles		
F.	Federal Aviation Administration (FAA):		
	AC 70/7460-IL-15Obstruction Lighting and Marking		
	AC 150/5345-43H-16Obstruction Lighting Equipment		
G.	Illuminating Engineering Society of North America (IESNA):		
	HB-9-00Lighting Handbook		
	RP-8-14Roadway Lighting		
	LM-52-03Photometric Measurements of Roadway Sign		
	Installations		
	LM-72-97 (R2010)Directional Positioning of Photometric Data		
	LM-79-08Approved Method for the Electrical and		
	Photometric Measurements of Solid-Sate Lighting		
	Products		
	LM-80-15 Approved Method for Measuring Luminous Flux and		
	Color Maintenance of LED Packages, Arrays and		
	Modules		
	TM-15-11Luminaire Classification System for Outdoor		
	Luminaires		
Н.	National Electrical Manufacturers Association (NEMA):		
	C78.41-16 Electric Lamps - Guidelines for Low-Pressure		
	Sodium Lamps		
	C78.42-09(R2016)Electric Lamps - Guidelines for High-Pressure		
	Sodium Lamps		
	C78.43-13Electric Lamps - Single-Ended Metal-Halide		
	Lamps		
	C78.1381-98Electric Lamps - 70-Watt M85 Double-Ended		
	Metal-Halide Lamps		

	C81.61-17Electrical Lamp Bases - Specifications for
	Bases (Caps) for Electric Lamps
	C82.4-17Ballasts for High-Intensity-Discharge and Low-
	Pressure Sodium Lamps (Multiple-Supply Type)
	C136.3-14For Roadway and Area Lighting Equipment -
	Luminaire Attachments
	C136.17-05(R2010)(S2017) Roadway and Area Lighting Equipment -
	Enclosed Side-Mounted Luminaires for
	Horizontal-Burning High-Intensity-Discharge
	Lamps - Mechanical Interchangeability of
	Refractors
	ICS 2-00(R2005)Controllers, Contactors and Overload Relays
	Rated 600 Volts
	ICS 6-93(R2016) Enclosures
I	. National Fire Protection Association (NFPA):
	70-17National Electrical Code (NEC)
	101-18Life Safety Code
J	. Underwriters Laboratories, Inc. (UL):
	496-17 Lampholders
	773-16Plug-In, Locking Type Photocontrols for Use
	with Area Lighting
	773A-16Nonindustrial Photoelectric Switches for
	Lighting Control
	1029-94
	1598-08 Luminaires
	8750-15Light Emitting Diode (LED) Equipment for Use in
	Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 305 mm (12 inches) above ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 POLES - NOT USED

2.3 FOUNDATIONS FOR POLES - NOT USED

2.4 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and driver heat, and safe cleaning and relamping.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate driver in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Not Used
- F. Pre-wire internal components to terminal strips at the factory.
- G. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.
- H. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.
- I. Provide manufacturer's standard finish, as scheduled on the drawings.
 Where indicated on drawings, match finish process and color of pole or support materials.
- J. Luminaires shall carry factory labels, showing complete, specific lamp and driver information.

2.5 LAMPS

- A. Install the proper lamps in every luminaire installed and every existing luminaire relocated or reinstalled as shown on the drawings.
- B. Lamps shall be general-service, outdoor lighting types.
- C. Not Used
- D. Not Used
- E. Not Used
- F. LED sources shall meet the following requirements:
 - 1. Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): 4000K.

- 3. Color Rendering Index (CRI): ≥ 85 .
- 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES) LM79 for photometric performance and LM80 for lumen maintenance and L70 life.
- G. Mercury vapor lamps shall not be used.
- 2.6 HIGH INTENSITY DISCHARGE BALLASTS NOT USED
- 2.7 METAL HALIDE CORE AND COIL BALLASTS NOT USED
- 2.8 METAL HALIDE ELECTRONIC BALLASTS NOT USED

2.9 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (±10%) volt.
 - 4. Power Supplies: Class I or II output.
 - 5. Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: 6kV/1.2 x 50 μs, 10kA/8 x 20 μs) waveforms at 1-minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
 - 6. Power Factor (PF): \geq 0.90.
 - 7. Total Harmonic Distortion (THD): $\leq 20\%$.
 - 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
 - 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

2.10 EXISTING LIGHTING SYSTEMS

- A. For modifications or additions to existing lighting systems, the new components shall be compatible with the existing systems.
- B. New poles and luminaires shall have approximately the same configurations, dimensions, lamping and reflector type as the existing poles and luminaires, except where otherwise shown on the drawings.

2.11 OBSTRUCTION LIGHTING - NOT USED

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- B. Not Used

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

- C. Install lamps in each luminaire.
- D. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

Verify operation after installing luminaires and energizing circuits.

3.4 WATER TANKS AND COOLING TOWERS - NOT USED

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Building 1 and Building 5 here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. Not Used
- C. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- E. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- F. Not Used
- G. Not Used
- H. Not Used
- I. Not Used
- J. Not Used
- K. Not Used

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each telecommunications room, showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - 2. List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

B. Certifications:

1. Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105

VA Project 438-22-700 06-20-2021 Construction Documents

maintenance are authorized representatives of OEM. Include

- individual's legal name and address and OEM warranty credentials in the certification.
- 2. Pre-acceptance Certification: Submit in accordance with test procedures.
- 3. Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- 4. Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.

B. Industry Standards:

- Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
- Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
- 3. Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
- 4. Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.

- 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6 requirements.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - 1. Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Not Used
 - 3. Not Used
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional data, communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic unterminated, unconnected, lose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EOUIPMENT AND MATERIALS

- A. Not Used
- B. Cable Systems Twisted Pair, Fiber optic:
 - 1. General:

- a. Provide cable (i.e. backbone and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
- b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.

2. Telecommunications Rooms (TR):

- a. In TR's served with UTP fiber optic, terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels.
- b. Provide 24 port fiber optic modular patch panels with "LC" dedicated for voice, data and FMS applications.
- c. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
- d. In TR's, which are only served by a UTP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.

3. Backbone Copper Cables:

a. Riser Cable:

- Provide communication riser cables listed in NEC Table 800,
 154(a) for the purpose and suited for electrical connection to a communication network.
- 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24
 American Wire Gauge (AWG) solid, thermoplastic insulated
 conductors for communication (analog RF coaxial cable is not
 to be provided in riser systems) riser cables with a
 thermoplastic outer jacket.
- 3) Label and test complete riser cabling system.
- 4. Horizontal Cable: Installed from TCO jack to the TR patch panel.

- a. Tested to ANSI/TIA-568-C.2 Category 6 requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
- b. Minimum Transmission Parameters: 500 MHz.
- c. Provide four pair 0.205 mm2 (24 AWG) cable
- d. Terminate all four pairs on same port at patch panel in TR.
- e. Terminate all four pairs on same jack, at work area
 Telecommunication Outlets (TCO):
 - 1) Jacks: Minimum four eight-pin RJ-45 ANSI/TIA-568-C.2 Category 6 Type jacks at TCO.
 - a) Not Used
 - b) All Ports: Unkeyed RJ-45 jacks for data. Jack color, blue.
- 5. Not Used
- 6. Fiber Optics Backbone Cable:
 - a. Provide 62.5/125 (for Bell System Interconnection Compatibility micron OM4 multi-mode cable, containing at minimum 24 strands of fiber, unless otherwise specified. Fiber cables shall be within inner jacket covered with interlocking metal armor jacket. The armor jacket shall be covered with plenum rated outer jacket.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Provide tight buffered fiber cable or indoor/outdoor cables for indoor runs.
 - d. Terminate multimode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 ft.) cable loop at each end.
 - e. Not Used
 - f. Install fiber optic cables in TR's, Voice (Telephone) Switch Room, and Main Computer Room, in rack mounted fiber optic patch panels. Provide female LC couplers in appropriate panel for termination of each strand.
 - g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53).

 Provide written results to COR for review and approval.

- C. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - 2. Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
 - 3. Not Used
- D. Telecommunication Room (TR):
 - 1. Terminate backbone and horizontal, copper, fiber optic and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.
 - 2. Not Used
- E. Not Used
- F. Not Used
- G. Not Used
- H. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Not Used
 - c. Provide patch cords with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided. Provide standard white Category 6 patch cable 5 feet in length. Provide 30% quantity based on installed jacks.
- I. Not Used
- J. Not Used
- K. Horizontal Cabling (HC):

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

- 1. Horizontal cable length to farthest system outlet to be maximum of $90\ \mathrm{m}\ (295\ \mathrm{ft})$.
- 2. Splitting of pairs within a cable between different jacks is not permitted.
- L. Air Blown Fiber: Alternative fiber optic cable installation method.
 - 1. Not Used
 - 2. Not Used
 - 3. Not Used
 - 4. Not Used
 - 5. Not Used
 - 6. Not Used
 - 7. Fiber Termination Units: Provide at locations where fiber is to be terminated.
 - a. Provide for strain relief of incoming microducts.
 - b. Provide connector panels and connector couplings adequate to accommodate the number of fibers to be terminated.
 - c. Incorporate radius control mechanisms to limit bending of fibers to manufacturer's recommended minimum or 76 mm (3 inches), whichever is larger.
 - d. Where rack-mount fiber termination hardware is required, provide wall-mount microduct distribution unit near rack and provide individual microducts to route and connect fiber bundle passing through microduct distribution units to fiber termination hardware.
 - e. Provide LC connectors mounted on a coupler panel that snaps into patch panel housing assembly.
 - 8. Not Used

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum four data RJ45 jacks mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - 2. Provide RJ-45 female type data multi-pin connections.

- 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit data multi- pin jacks and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications.
- 4. Not Used
- B. Backbone Distribution Cables:
 - Meet TIA transmission performance requirements of Voice Grade Category 3.
 - 2. Provide cable listed for environments where it is installed.
 - 3. Technical Characteristics:
 - a. Length: As required, in minimum 1 kilometer (3,000 ft.) reels.
 - b. Size:
 - 1) Minimum 0.326 mm2 (22 AWG) outside plant installation.
 - 2) Minimum 0.205 mm2 (24 AWG) interior installations.
 - c. Color Coding: American Telephone and Telegraph Company Standard; Bell System Practices Outside Plant Construction and Maintenance Section G50.607.3, Issue 2 February 1959.
 - d. Minimum Bend Radius: 10X cable outside diameter.
 - e. Impedance: 120 Ohms + 15 percent.
 - f. DC Resistance: Maximum 8.00 ohms/100 m
 - g. Not Used
 - h. Maximum attenuation for 100m at 20° C:

Frequency	Category 3	Category 5e	Category 6	Category 6A
(MHz)	(dB)	(dB)	(dB)	(dB)
.772	2.2	-	_	_
1	2.6	2.0	2.0	2.1
4	5.6	4.1	3.8	3.8
8	8.5	5.8	5.3	5.3
10	9.7	6.5	6.0	5.9
16	13.1	8.2	7.6	7.5
20		9.3	8.5	8.4
25		10.4	9.5	9.4

Frequency	Category 3	Category 5e	Category 6	Category 6A
(MHz)	(dB)	(dB)	(dB)	(dB)
31.25		11.7	10.7	10.5
62.5		17.0	15.4	15.0
100		22.0	19.8	19.1
200			29.0	27.6
250			32.8	31.1
300				34.3
400				40.1
500				45.3

- 4. Not Used
- 5. Fiber Optic:
 - a. Multimode Fiber:
 - 1) Provide OM4 Type general purpose multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation. Armored fiber optic cables shall be installed in conduit.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 50 microns.
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:
 - 1) 850 nanometer: Minimum 160 MHz.
 - 2) 1,300 nanometer: Minimum 500 MHz.
 - f) Connectors: Stainless steel.
 - b. Not Used
- C. Outlet Connection Cables:
 - 1. Not Used

2. Data:

- a. Provide a connection cable for each TCO data jack in system with 10 percent spares to connect a data instrument to TCO data jack. Do not provide data terminals/equipment.
- b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Data grade Category 6.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard. Cable jacket, blue.
 - 5) Size: Minimum 24 AWG.
- 3. Not Used
- D. System Connectors:
 - 1. Modular (RJ-45): Provide high speed data transmission applications type modular plugs compatible with computer terminals and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - a. Number of Pins:
 - 1) RJ-45: Eight.
 - 2) Not Used
 - b. Dielectric: Surge.
 - c. Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - d. Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - e. Leakage: Maximum 100 μA.
 - f. Connections:
 - 1) Initial contact resistance: Maximum 20 milli-Ohms.
 - 2) Insulation displacement: Maximum 10 milli-Ohms.
 - 3) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - 4) Durability: Minimum 200 insertions/withdrawals.
- E. Fiber Optic Terminators:
 - 1. Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.

- b. Power Blocking: As required.
- c. Return Loss: 25 dB.
- d. Connectors: LC.
- e. Construction: Ceramic.
- F. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 - e. Maximum 40 percent conduit fill for cable installation.
 - 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99
 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission
 Manual for Health Care Facilities, and original equipment
 manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - 1. Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - 3. Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

- 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Not Used
- E. Labeling:
 - 1. Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - 2. Print lettering of labels with thermal ink transfer process; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - 1. Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factory-certified representative and witnessed by COR.
 - 2. Check each item of installed equipment to ensure appropriate NRTL label.
 - 3. Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
 - 4. Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
 - 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.

Sioux Falls VAHCS, Sioux Falls, SD Repair Water Tower Deficiencies 2501 West 22nd St. Sioux Falls, SD 57105 VA Project 438-22-700 06-20-2021 Construction Documents

- 7. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.

B. Pretesting:

- 1. Pretest entire system upon completion of system installation.
- Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
- 3. Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.

C. Not Used

D. Acceptance Test:

- 1. After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
- 2. Test only in presence of a COR.
- 3. Test utilizing approved test equipment to certify proof of performance.
- 4. Verify that total system meets the requirements of this section.
- 5. Include expected duration of test time, with notification of the acceptance test.

E. Verification Tests:

- Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
- 2. Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A, Optical Power Meter and Light Source and Method B, OTDR. Perform verification acceptance test. Include a check for loss at full

transmission speed. Use certified fluke fiber testing system or equal.

- 3. Not Used
- F. Performance Testing:
 - Perform Category 6 tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- G. Total System Acceptance Test: Perform verification tests for UTP copper cabling systems and multi-mode fiber optic cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements for one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - 2. Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
 - 3. Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.

VA Project 438-22-700 06-20-2021 Construction Documents

4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 31 20 11 EARTHWORK (SHORT FORM)

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the requirements for furnishing all equipment, materials, labor and techniques for earthwork including excavation, fill, backfill and site restoration utilizing fertilizer, seed and/or sod.

1.2 DEFINITIONS:

A. Unsuitable Materials:

- 1. Fills: Topsoil, frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 3 inches; organic materials, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable.
- 2. Existing Subgrade (except footings): Same materials as above paragraph, that are not capable of direct support of slabs, pavement, and similar items, with the possible exception of improvement by compaction, proof rolling, or similar methods ofimprovement.
- 3. Existing Subgrade (footings only): Same as Paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Earthwork: Earthwork operations required within the new construction area. It also includes earthwork required for auxiliary structures and buildings and sewer and other trenchwork throughout the job site.
- C. Degree of Compaction: Degree of compaction is expressed as a percentage of maximum density obtained by the test procedure presented in ASTM D698.
- D. The term fill means fill or backfill as appropriate.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 01 35 26, SAFETY REQUIREMENTS, Article, ACCIDENT PREVENTION.

- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on the surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Classified Excavation: Removal and disposal of all material not defined as rock.

C. Rock Excavation:

- 1. Solid ledge rock (igneous, metamorphic, and sedimentary rock).
- 2. Bedded or conglomerate deposits so cemented as to present characteristics of solid rock which cannot be excavated without blasting; or the use of a modern power excavator (shovel, backhoe, or similar power excavators) of no less than 1 cubic yard capacity, properly used, having adequate power and in good running condition.
- 3. Boulders or other detached stones each having a volume of 1/2 cubic yard or more.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

- A. Measurement: Cross section and measure the uncovered and separated materials, and compute quantities by the Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:
 - 1. 12 inches outside of the perimeter of formed footings.
 - 2. 24 inches outside the face of concrete work for which forms are required, except for footings.
 - 3. 6 inches below the bottom of pipe and not more than the pipe diameter plus 24 inches in width for pipe trenches.
 - 4. The outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.
- C. Qualifications of the commercial testing laboratory or Contractor's Testing facility shall be submitted.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- C. American Association of State Highway and Transportation Officials (AASHTO):

Т99-10		5.5
	lb Rammer and a 12 inch Drop	

	T180-10	Standard Method of Test for Moisture-Density
	1	Relations of Soils Using a 10 lb Rammer and a
		18 inch Drop
D.	American Society for Tes	ting and Materials (ASTM):
	C33-03	Concrete Aggregate
	D698-e1	Laboratory Compaction Characteristics of Soil
	1	Using Standard Effort
	D1140-00	Amount of Material in Soils Finer than the No.
	:	200 Sieve
	D1556-00	Standard Test Method for Density and Unit
	1	Weight of Soil in Place by the Sand-Cone Method
	D1557-09	Laboratory Compaction Characteristics of Soil
	1	Using Modified Effort
	D2167-94 (2001)	Standard Test Method for Density and Unit
	1	Weight of Soil in Place by the Rubber Balloon
	I	Method
	D2487-06	Standard Classification of Soil for Engineering
		Purposes (Unified Soil Classification System)
	D6938-10	Standard Test Methods for Density of Soil and
	:	Soil-Aggregate in Place by Nuclear Methods
		(Shallow Depth)

PART 2 - PRODUCTS

2.1 MATERIALS:

A. Fills: Materials approved from on site and off site sources having a minimum dry density of 110 pcf, a maximum Plasticity Index of 6, and a maximum Liquid Limit of 30.

B. Granular Fill:

- 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C33 with a maximum of 3 percent by weight passing ASTM D1140, No. 200 sieve and no more than 2 percent by weight passing the No. 4 size sieve.
- 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 1/2 inch to No. 4.

- C. Fertilizer: (5-10-5) delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- D. Seed: Grass mixture comparable to existing turf delivered to site in unopened containers that clearly display the manufacturer's label, indicating the analysis of the contents.
- E. Sod: Comparable species with existing turf. Use State Certified or State Approved sod when available. Deliver sod to site immediately after cutting and in a moist condition. Thickness of cut must be 3/4 inch to 1 1/4 inches excluding top growth. There shall be no broken pads and torn or uneven ends
- Buried Warning and Identification Tape: Polyethylene plastic and acidand alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red: Electric

- G. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.003 inch. Tape shall have a minimum strength of 1500 psi lengthwise, and 1250 psi crosswise, with a maximum 350 percent elongation.
- H. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.004 inch. Tape shall have a minimum strength of 1500 psi lengthwise and 1250 psi crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 3 feet deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.

I. Detection Wire for Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clearing within the limits of earthwork operations as described or designated by the Resident Engineer. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash and any other obstructions. Remove materials from the Medical Center.
- B. Grubbing: Remove stumps and roots 3 inches and larger diameter.

 Undisturbed sound stumps, roots up to 3 inches diameter, and

 nonperishable solid objects which will be a minimum of 3 feet below

 subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from the areas within 15 feet of new construction and 7'-6" of utility lines if such removal is approved in advance by the Resident Engineer. Remove materials from the Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in the construction area. Repair immediately damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including the roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Building materials shall not be stored closer to trees and shrubs that are to remain, than the farthest extension of their limbs.
- D. Stripping Topsoil: Unless otherwise indicated on the drawings, the limits of earthwork operations shall extend anywhere the existing grade is filled or cut or where construction operations have compacted or otherwise disturbed the existing grade or turf. Strip topsoil as defined herein, or as indicated in the geotechnical report, from within the limits of earthwork operations as specified above unless specifically indicated or specified elsewhere in the specifications or shown on the drawings. Topsoil shall be fertile, friable, natural topsoil of loamy character and characteristic of the locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by the Resident Engineer. Eliminate foreign material, such as weeds, roots, stones, subsoil,

frozen clods, and similar foreign materials, larger than 1/2 cubic foot in volume, from soil as it is stockpiled. Retain topsoil on the station. Remove foreign materials larger than 2 inches in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work, shall not, under any circumstances, be carried out when the soil is wet so that the tilth of the soil will be destroyed.

- 2. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 12 inches on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from the Medical Center.
- E. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope to it's angle of repose banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities, in compliance with OSHA requirements.
 - Extend shoring and bracing to the bottom of the excavation. Shore excavations that are carried below the elevations of adjacent existing foundations.
 - 2. If the bearing of any foundation is disturbed by excavating, improper shoring or removal of shoring, placing of backfill, and similar operations, provide a concrete fill support in compliance with Specification Section 31 23 23.33, FLOWABLE FILL, under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Specification Section 31 23 23.33, FLOWABLE FILL shall be provided by the COR when required. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required, to keep excavations free of water and subgrades dry, firm, and undisturbed until approval of

permanent work has been received from Resident Engineer. Approval by the Resident Engineer is also required before placement of the permanent work on all subgrades. When subgrade for foundations has been disturbed by water, remove the disturbed material to firm undisturbed material after the water is brought under control. Replace disturbed subgrade in trenches by mechanically tamped sand or gravel. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 3 feet of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material.

Blasting: Blasting shall not be permitted.

D. Building Earthwork:

- 1. Excavation shall be accomplished as required by drawings and specifications.
- 2. Excavate foundation excavations to solid undisturbed subgrade.
- 3. Remove loose or soft material to solid bottom.
- 4. Fill excess cut under footings or foundations with 3000 psi concrete, poured separately from the footings.
- 3. Do not tamp earth for backfilling in footing bottoms, except as specified.

E. Trench Earthwork:

- 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell-holes, scooped-out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 6 inches loose thickness.
 - d. The length of open trench in advance of pipe laying shall not be greater than is authorized by the Resident Engineer.

- e. Provide buried utility lines with utility identification tape.

 Bury tape 12 inches below finished grade; under pavements and slabs, bury tape 6 inches below top of subgrade
- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 12 inches above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 3 feet of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over its entire length. The wire shall enter manholes between the top of the corbel and the frame and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein.

 Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - Class I: Angular, 0.25 to 1.5 inches, graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 1.5 inches, including various graded sands and gravels containing small percentages of fines, generally granular and non-cohesive, either wet or dry. Soil Types GW, GP, SW, and SPare included in this class as specified in ASTM D 2487.
- F. Site Earthwork: Excavation shall be accomplished as required by drawings and specifications. Remove subgrade materials that are determined by the Resident Engineer as unsuitable, and replace with

acceptable material. G. Finished elevation of subgrade shall be as follows:

- Pavement Areas bottom of the pavement or base course as applicable.
- 2. Planting and Lawn Areas 4 inches below the finished grade, unless otherwise specified or indicated on the drawings.

3.3 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from the excavation. Proof-roll exposed subgrades with a fully loaded dump truck. Use excavated materials or borrow for fill and backfill, as applicable. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or damp proofing applied, and pipes coming in contact with backfill have been installed and inspected and approved by Resident Engineer.
- B. Proof-rolling Existing Subgrade: Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut as directed by the Resident Engineer.
- C. Placing: Place material in horizontal layers not exceeding 8 inches in loose depth and then compacted. Do not place material on surfaces that are muddy, frozen, or contain frost.
- D. Compaction: Use approved equipment (hand or mechanical) well suited to the type of material being compacted. Do not operate mechanized vibratory compaction equipment within 10 feet of new or existing building walls without the prior approval of the Resident Engineer. Moisten or aerate material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used. Compact each layer to not less than 95 percent of the maximum density determined in accordance with the following test method ASTM D698. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density

for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure.

- E. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- F. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.4 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In unfinished areas fill low spots and level off with coarse sand or fine gravel.

- C. Slope backfill outside the building away from the building walls for a minimum distance of 10 feet a minimum five percent (5%) slope.
- D. The finished grade shall be 6 inches below bottom line of windows or other building wall openings unless greater depth is shown.
- E. Place crushed stone or gravel fill under concrete slabs on grade tamped and leveled. The thickness of the fill shall be 6 inches, unless otherwise indicated.
- F. Finish subgrade in a condition acceptable to the Resident Engineer at least one day in advance of the paving operations. Maintain finished subgrade in a smooth and compacted condition until the succeeding operation has been accomplished. Scarify, compact, and grade the subgrade prior to further construction when approved compacted subgrade is disturbed by contractor's subsequent operations or adverse weather.
- G. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 0.25 inches of indicated grades.

3.5 LAWN AREAS:

- A. General: Harrow and till to a depth of 4 inches, new or existing lawn areas to remain, which are disturbed during construction. Establish existing or design grades by dragging or similar operations. Do not carry out lawn areas earthwork out when the soil is wet so that the tilth of the soil will be destroyed. Plant bed must be approved by Resident Engineer before seeding or sodding operation begins.
- B. Finished Grading: Begin finish grading after rough grading has had sufficient time for settlement. Scarify subgrade surface in lawn areas to a depth of 4 inches. Apply topsoil so that after normal compaction, dragging and raking operations (to bring surface to indicated finish grades) there will be a minimum of 4 inches of topsoil over all lawn areas; make smooth, even surface and true grades, which will not allow water to stand at any point. Shape top and bottom of banks to form reverse curves in section; make junctions with undisturbed areas to conform to existing topography. Solid lines within grading limits indicate finished contours. Existing contours, indicated by broken lines are believed approximately correct but are not guaranteed.
- C. Fertilizing: Incorporate fertilizer into the soil to a depth of 4 inches at a rate of 25 pounds per 1000 square feet.
- D. Seeding: Seed at a rate of 4 pounds per 1000 square feet and accomplished only during periods when uniform distribution may be

assured. Lightly rake seed into bed immediately after seeding. Roll seeded area immediately with a roller not to exceed 150 pounds per foot of roller width.

- E. Sodding: Topsoil shall be firmed by rolling and during periods of high temperature the topsoil shall be watered lightly immediately prior to laying sod. Sod strips shall be tightly butted at the ends and staggered in a running bond fashion. Placement on slopes shall be from the bottom to top of slope with sod strips running across slope. Secure sodded slopes by pegging or other approved methods. Roll sodded area with a roller not to exceed 150 pounds per foot of the roller width to improve contact of sod with the soil.
- F. Watering: The Resident Engineer is responsible for having adequate water available at the site. As sodding is completed in any one section, the entire sodded area shall be thoroughly irrigated by the contractor, to a sufficient depth, that the underside of the new sod pad and soil, immediately below sod, is thoroughly wet. Resident Engineer will be responsible for sod after installation and acceptance.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- C. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- D. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 6 mil polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN-UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove debris, rubbish, and excess material from the Medical Center.

- - - E N D - - -

SECTION 33 40 00 STORM SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 11, EARTHWORK (SHORT FORM).
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 53, (SHORT FORM) CAST-IN-PLACE CONCRETE.
- C. Materials and Testing Report Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- D. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

1.4 ABBREVIATIONS

- A. HDPE: High-density polyethylene
- B. PE: Polyethylene
- C. PVC: Polyvinyl Chloride

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Handle manholes, catch basins, and/or stormwater inlets according to manufacturer's written rigging instructions.

1.6 COORDINATION

A. Coordinate exterior utility lines and connections to building services up to the actual extent of building wall.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.

1.8 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185 Steel Welded Wire Reinforcement, Plain, for Concrete
A242 (2009)
A536-84(2009)Ductile Iron Castings
A615Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement
C33Concrete Aggregates
C76-11
C139-10
C150Portland Cement
C443-10Joints for Concrete Pipe and Manholes, Using Rubber Gaskets
C478-09Precast Reinforced Concrete Manhole Sections
C857-07Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
C891-09Installation of Underground Precast Concrete Utility Structures
C913-08Precast Concrete Water and Wastewater

Structures

C923-08	Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals
C924-02(2009)	Testing Concrete Pipe Sewer Lines by Low- Pressure Air Test Method
C990-09	Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants
C1103-03(2009)	Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines
C1173-08	Flexible Transition Couplings for Underground Piping Systems
C1433-10	Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers
C1479-10	Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations
D448-08	Sizes of Aggregate for Road and Bridge Construction
D698-07e1	Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3)
D1056-07	Flexible Cellular Materials—Sponge or Expanded Rubber
D1785-06	Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
D2321-11	Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications
D2774-08	Underground Installation of Thermoplastic Pressure Piping
D3034-08	Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings

33 40 00-3

	D3350-10	.Polyethylene Plastics Pipe and Fittings Materials
	D3753-05e1	.Glass-Fiber-Reinforced Polyester Manholes and Wetwells
	D4101-11	.Polypropylene Injection and Extrusion Materials
	D5926-09	.Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems
	F477-10	.Elastomeric Seals (Gaskets) for Joining Plastic Pipe
	F679-08	.Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings
	F714-10	.Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter
	F794-03(2009)	.Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter
	F891-10	.Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe with a Cellular Core
	F894-07	.Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe
	F949-10	.Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe with a Smooth Interior and Fittings
	F1417-11	.Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air
	F1668-08	.Construction Procedures for Buried Plastic Pipe
С.	American Association of (AASHTO):	State Highway and Transportation Officials
	M198-10	.Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants

33 40 00-4

VA Project 438-22-700 06-20-202120 Construction Documents

	M252-09Corrugated Polyethylene Drainage Pipe
	M294-10Corrugated Polyethylene Pipe, 12 to 60 In. Diameter
D.	American Water Works Association (AWWA):
	C900-07Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In., for Water Transmission and Distribution
	M23-2nd edPVC Pipe "Design and Installation"
Ε.	American Society of Mechanical Engineers (ASME):
	A112.6.3-2001Floor and Trench Drains
	A112.14.1-2003Backwater Valves
	A112.36.2M-1991 Cleanouts
F.	American Concrete Institute (ACI):
	318-05Structural Commentary and Commentary
	350 Environmental Engineering Concrete Structures

G. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control

and Commentary

1.10 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of two years from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 PE PIPE AND FITTINGS

- A. Corrugated PE drainage pipe and fittings, NPS 3 to NPS 10; ASTM F714, SDR 21 with smooth waterway for coupling joints.
 - 1. Silt-tight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.
- B. Corrugated PE pipe and fittings, NPS 12 to NPS 60; ASTM F714, SDR 21 for pipes 3 to 24 inches with smooth waterway for coupling joints. Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.
 - 1. Silt-tight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.
 - 2. Water tight joints shall be made using a PVC or PE coupling and rubber gaskets as recommended by the pipe manufacturer. Rubber gaskets shall conform to ASTM F477. Soil tight joints shall conform to requirements in AASHTO HB-17, Division II, for soil tightness and shall be as recommended by the manufacturer.
- C. Profile Wall PE Pipe: Pipe shall comply with ASTM F894, Class 160.
 - 1. Profile Wall PE Plastic Pipe Joints: Joints shall be as per ASTM F894, gasket with integral bell.
- D. PVC Pipe and Fittings
 - 1. PVC Cellular-Core Pipe and Fittings: ASTM F891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 - 2. Fittings: ASTM D3034, Schedule 40, PVC socket-type fittings.
- E. PVC Corrugated Sewer Piping
 - 1. Pipe: ASTM F949, PVC, corrugated pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM F949, PVC molded or fabricated, socket type.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- F. PVC Profile Sewer Piping
 - 1. Pipe: ASTM F794, PVC profile, gravity sewer pipe with bell-and-spigot ends.
 - 2. Fittings: ASTM D3034, PVC with bell ends.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- G. PVC Gravity Sewer Piping

- 1. Pipe and fittings shall be ASTM F679, PVC gravity sewer pipe with bell-and-spigot ends.
- 2. Gaskets: ASTM F477, elastomeric seals for gasketed joints.

2.3 NONPRESSURE TRANSITION COUPLINGS

- A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground non-pressure piping. Include ends of same sizes as piping to be joined, and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Sleeve Materials
 - 1. For concrete pipes: ASTM C443, rubber.
 - 2. For plastic pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
 - 3. For dissimilar pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings: Couplings shall be an elastomeric sleeve with corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, flexible couplings shall be elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.
- E. Ring-Type, flexible couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.4 CLEANOUTS

A. Plastic Cleanouts shall have PVC body with PVC threaded plug. Pipe fitting and riser to cleanout shall be of same material as main line pipe.

2.5 MANHOLES AND CATCH BASINS

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 - 4. Base Section: 6 inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.

- 5. Riser Sections: 4 inch minimum thickness, and lengths to provide depth indicated.
- 6. Top Section: Eccentric-cone type unless concentric-cone or flatslab-top type is indicated, and top of cone of size that matches grade rings.
- 7. Joint Sealant: ASTM C990, bitumen or butyl rubber.
- 8. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
- 9. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches. Individual FRP steps or FRP ladder, width of 16 inches minimum, spaced at 12 to 16 inch intervals.
- 10. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Designed Precast Concrete Manholes:

- 1. Description: ASTM C913; designed for A-16 (AASHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
- 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
- 3. Joint Sealant: ASTM C990, bitumen or butyl rubber.
- 4. Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
- 5. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches. Individual FRP steps or FRP ladder, width of 16 inches minimum, spaced at 12 to 16 inch intervals.
- 6. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

C. Manhole Frames and Covers:

1. Description: Ferrous; 24 inch ID by 7 to 9 inch (riser with 4 inch minimum width flange and 26-inch (diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."

2. Material: ASTM A536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.6 CONCRETE FOR MANHOLES AND CATCH BASINS

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C150, Type II.
 - 2. Fine Aggregate: ASTM C33, sand.
 - 3. Coarse Aggregate: ASTM C33, crushed gravel.
 - 4. Water: Potable.
- B. Concrete Design Mix: 4000 psi minimum, compressive strength in 28 days.
 - 1. Reinforcing Fabric: ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A615, Grade 60 deformed steel.
- C. Manhole Channels and Benches: Channels shall be the main line pipe material. Include benches in all manholes and catch basins.
 - 1. Channels: Main line pipe material or concrete invert. Height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope. Invert Slope: Same slope as the main line pipe. Bench to be concrete, sloped to drain into channel. Minimum of 6 inch slope from main line pipe to wall sides.

2.7 PIPE OUTLETS

- A. Head walls: Cast in-place reinforced concrete, with apron and tapered sides.
- B. Riprap basins: Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."
 - 1. Average Size: As noted on the Drawings.

2.8 FLARED END SECTIONS

A. Flared End Sections: Sections shall be of standard design fabricated from same material as storm sewer piping and conforming to same requirements.

2.9 RESILIENT CONNECTORS AND DOWNSPOUT BOOTS FOR BUILDING ROOF DRAINS

A. Resilient connectors and downspout boots: Flexible, watertight connectors used for connecting pipe to manholes and inlets and shall conform to ASTM C923.

2.10 WARNING TAPE

A. Standard, 4-Mil polyethylene 3 inch wide tape detectable type, green with black letters, and imprinted with "CAUTION BURIED STORM DRAIN LINE BELOW".

PART 3 - EXECUTION

3.1 PIPE BEDDING

A. The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class IB or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.2 PIPING INSTALLATION

- A. Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping with minimum cover as shown on the Drawings.
- C. Install all piping materials beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 1. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
 - 2. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
 - Inspect pipes and fittings, for defects before installation.
 Defective materials shall be plainly marked and removed from the

site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.

- 4. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
- 5. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
- 6. Do not walk on pipe in trenches until covered by layers of shading to a depth of 12 inches over the crown of the pipe.
- 7. Warning tape shall be continuously placed 12 inches above storm sewer piping.
- D. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- E. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- F. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of micro tunneling.

3.3 REGRADING

- A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure and shall prevent debris from entering the wastewater stream.

3.4 CONNECTIONS TO EXISTING VA-OWNED MANHOLES

A. Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable

requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.5 CONNECTIONS TO EXISTING PUBLIC UTILITY MANHOLES

- A. Comply with all rules and regulations of the public utility.
- B. Cleanout Installation
 - 1. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast iron soil pipe fittings in sewer pipes at branches for cleanouts and cast iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - a. Use Medium-Duty, top-loading classification cleanouts in earth, unpaved foot-traffic and/or paved foot-traffic areas.
 - b. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic areas.
 - 2. Set cleanout frames and covers in earth in cast in-place concrete block, 12 by 12 by 6 inches deep. Set with tops flush with surrounding earth grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 MANHOLE INSTALLATION

- A. Install manholes, complete with appurtenances and accessories indicated. Install precast concrete manhole sections with sealants according to ASTM C891.
- B. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops no more than 3 inches above finished surface elsewhere unless otherwise indicated.
- C. Circular Structures:
 - 1. Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch or cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top shall be sealed with a preform flexible gasket material specifically manufactured for this type of application. Adjust the length of the

rings so that the eccentric conical top section will be at the required elevation. Cutting the conical top section is not acceptable.

3. Precast reinforced concrete manhole risers and tops. Install as specified for precast reinforced concrete rings.

D. Rectangular Structures:

- 1. Precast concrete structures shall be placed on an 8 inch reinforced concrete pad or be provided with a precast concrete base section. Structures provided with a base section shall be set on an 8 inch thick aggregate base course compacted to a minimum of 95 percent of the maximum density as determined by ASTM D698. Set precast section true and plumb. Seal all joints with preform flexible gasket material.
- 2. Do not build structures when air temperature is 32 deg F, or below.
- 3. Invert channels shall be smooth and semicircular in shape conforming to inside of adjacent sewer section. Make changes in direction of flow with a smooth curve of as large a radius as size of structure will permit. Make changes in size and grade of channels gradually and evenly. Construct invert channels by one of the listed methods:
 - a. Forming directly in concrete base of structure.
 - b. Building up with brick and mortar.
- 4. Floor of structure outside the channels shall be smooth and slope toward channels not less than 1 to 12 or more than 1 to 6. Bottom slab and benches shall be concrete.
- 5. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
- 6. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- 7. Install manhole frames and covers on a mortar bed, and flush with the finish pavement. Frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. In unpaved areas, the rim elevation shall be 2 inches above the adjacent finish grade. Install an 8 inch thick, by 12 inch concrete

collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.7 CATCH BASIN INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

3.8 STORMWATER INLET AND OUTLET INSTALLATION

- Α.
- B. Construct riprap of broken stone.
- C. Install outlets that spill onto grade, with flared end sections that match pipe.
- D. Construct energy dissipaters at outlets.

3.9 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edge of underground structures.

3.10 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.

3.11 TESTING OF STORM SEWERS:

- A. Submit separate report for each test.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.

- 1. Do not enclose, cover, or put into service before inspection and approval.
- 2. Test completed piping systems according to requirements of authorities having jurisdiction.
- 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours advance notice.
- 4. Submit separate report for each test.
- 5. Air test gravity sewers. Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.
- C. Leaks and loss in test pressure constitute defects that must be repaired. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

3.12 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

--- E N D ---