

Specifications

Project #438-CSI-305 – MRI Site Prep for Sioux Falls

Sioux Falls, SD VA Health Care System

100% Submittal – Volume 2

November 9th, 2020

Stone Group Architects West Plains Engineering Ericksen Roed & Associates

SECTION 21 00 60

FIRE PROTECTION DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the demolition and removal of fire protection piping, heads, and accessories in existing building.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify field measurements, piping and head arrangements.
- B. Verify that abandoned equipment serve only abandoned facilities.
- C. Demolition drawing are based on casual field observation and existing record documents. The demolition drawings are diagrammatic and show the general scope of demolition work and do not show all the construction detail of the original record drawings. Report discrepancies to the VA Project Engineer before disturbing existing installations.
- D. The contractor shall visit the existing building and grounds and review the existing building record drawings for details of existing installation to familiarize himself/herself with existing conditions prior to submitting bid. No allowance will be made subsequently, in this connection, on behalf of the contractor for any error or negligence on his part.
- E. Beginning of demolition means the contractor accepts existing conditions.

3.2 PREPARATION

- A. Disconnect fire protection systems in areas scheduled for removal. Notify VA Project Engineer of areas to be affected by fire protection demolition work prior to commencing.
- 3.3 DEMOLITION AND EXTENSION OF EXISTING FIRE PROTECTION WORK
 - A. Demolish and remove from site, and extend existing fire protection work under provisions of the division and as indicated on the drawings unless otherwise noted.

21 00 60 - 1

- B. Unless otherwise noted on the drawings, all salvage items removed in connection with this contract are to become the property of the contractor. Salvage items noted to remain the property of the VA shall be delivered to a location to be designated by the VA Project Engineer. Contractor shall remove from construction areas all trash or debris as it accumulates and dispose of it off campus at no additional cost to the VA. All construction areas shall be kept clean, safe, and orderly at all times. At the completion and acceptance for work, contractor shall remove from the site all debris and surplus materials resulting from this work and dispose of them off campus at no additional cost to the VA.
- C. Remove, relocate and extend existing installations to accommodate new construction as required for proper installation and system operation.
- D. Remove, relocate or provide brackets, hangers, and other accessories as required.
- E. Repair adjacent construction and finishes damaged during demolition and extension work.
- F. Maintain access to existing fire protection installations, which remain active.

3.4 CLEANING AND REPAIR

- A. Clean and repair existing materials and equipment, which remain or are to be returned to the VA Project Engineer.
- B. All building surfaces damaged and openings left by new work or the removal or relocation of fire protection systems shall be repaired to original condition and painted by the Contractor

----- END -----

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of an existing hydraulically calculated automatic wet-pipe system complete and ready for operation, for the portions of Building 5 as defined by the plans
- C. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
 - F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - 1. When required, perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section. Hydraulic calculations shall not be required for this project as the occupancy classification of the scope of work area is not changing and the quantity of sprinklers required for protection shall be similar to the existing.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:

a. Light Hazard Occupancies: MRI areas.

- 3. Hydraulic Calculations: When required, calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve. Hydraulic calculations shall not be required for this project. 1 inch piping shall serve be used to serve each individual sprinkler attached to the existing adjacent branch line piping as indicated on the drawings.
- 4. Water Supply: Base water supply on a Fire Pump Discharge test of:a. Location Existing Fire Pump
 - b. Churn pressure: 923.8 kPa (134 psi)
 - c. Residual pressure: __758.4____ kPa (_110____ psi)
 - d. Flow: __92.2___ L/s (__1218____ gpm)
 - e. Date: 2016
- 5. Zoning:
 - a. Scope of work area to be served by the existing fire sprinkler system piping located within.
 - b. Existing sprinkler zone shall remain for service of the scope of work area.

1.4 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc. Submittals shall include, but not be limited to, the following:
 - 1. Qualifications:
 - a. Provide a copy of the installing contractors South Dakota fire sprinkler contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the

detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.

- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 5. Valve Charts: Where no existing valve charts exist, provide a valve chart that identifies the location of each control valve for the scope of work area. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system within the scope of work area that includes the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - One complete set in AutoCAD format compatible with that in use at the Sioux Falls VA.

- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Where it is found that the existing Operations and Maintenance Manuals do not include the following information pertinent to the scope of work area an Operation and Maintenance Manual shall be provided that includes step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of South Dakota fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-16.....Installation of Sprinkler Systems

25-17.....Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

101-15....Life Safety Code

- 170-15.....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide
- E. VA Fire Protection Design Manual (Seventh Ed.)

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 - Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
 - 4. Plastic piping shall not be permitted.
 - 5. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 SPRINKLERS

- A. All sprinklers shall be FM approved quick response. Provide FM approved quick response sprinklers in all areas as indicated on the plans.
- B. Temperature Ratings: In accordance with NFPA 13 and as indicated on the plans.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 0 inches above

finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.3 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

A. Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.4 WALL, FLOOR AND CEILING PLATES

A. Provide chrome plated steel escutcheon plates.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in X-Ray rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- F. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in

accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.

- G. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- H. Painting of Pipe: Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler. Exposed sprinkler piping shall be painted with two coats of gloss red enamel to match existing.
- Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- J. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least 21 days prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. AI: Analog Input
 - 5. AISI: American Iron and Steel Institute
 - 6. AO: Analog Output
 - 7. AWG: American Wire Gauge
 - 8. BACnet: Building Automation and Control Network
 - 9. BAg: Silver-Copper-Zinc Brazing Alloy
 - 10. BAS: Building Automation System
 - 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 12. BSG: Borosilicate Glass Pipe
 - 13. CDA: Copper Development Association
 - 14. C: Celsius
 - 15. CLR: Color
 - 16. CO: Carbon Monoxide
 - 17. COR: Contracting Officer's Representative
 - 18. CPVC: Chlorinated Polyvinyl Chloride
 - 19. CR: Chloroprene
 - 20. CRS: Corrosion Resistant Steel
 - 21. CWP: Cold Working Pressure
 - 22. CxA: Commissioning Agent
 - 23. db(A): Decibels (A weighted)
 - 24. DDC: Direct Digital Control
 - 25. DI: Digital Input
 - 26. DISS: Diameter Index Safety System
 - 27. DO: Digital Output
 - 28. DVD: Digital Video Disc

- 29. DN: Diameter Nominal
- 30. DWV: Drainage, Waste and Vent
- 31. ECC: Engineering Control Center
- 32. EPDM: Ethylene Propylene Diene Monomer
- 33. EPT: Ethylene Propylene Terpolymer
- 34. ETO: Ethylene Oxide
- 35. F: Fahrenheit
- 36. FAR: Federal Acquisition Regulations
- 37. FD: Floor Drain
- 38. FED: Federal
- 39. FG: Fiberglass
- 40. FNPT: Female National Pipe Thread
- 41. FPM: Fluoroelastomer Polymer
- 42. GPM: Gallons Per Minute
- 43. HDPE: High Density Polyethylene
- 44. Hg: Mercury
- 45. HOA: Hands-Off-Automatic
- 46. HP: Horsepower
- 47. HVE: High Volume Evacuation
- 48. ID: Inside Diameter
- 49. IPS: Iron Pipe Size
- 50. Kg: Kilogram
- 51. kPa: Kilopascal
- 52. lb: Pound
- 53. L/s: Liters Per Second
- 54. L/min: Liters Per Minute
- 55. MAWP: Maximum Allowable Working Pressure
- 56. MAX: Maximum
- 57. MED: Medical
- 58. m: Meter
- 59. MFG: Manufacturer
- 60. mg: Milligram
- 61. mg/L: Milligrams per Liter
- 62. ml: Milliliter
- 63. mm: Millimeter
- 64. MIN: Minimum
- 65. NF: Oil Free Dry (Nitrogen)
- 66. NPTF: National Pipe Thread Female

- 67. NPS: Nominal Pipe Size
- 68. NPT: Nominal Pipe Thread
- 69. OD: Outside Diameter
- 70. OSD: Open Sight Drain
- 71. OS&Y: Outside Stem and Yoke
- 72. OXY: Oxygen
- 73. PBPU: Prefabricated Bedside Patient Units
- 74. PH: Power of Hydrogen
- 75. PLC: Programmable Logic Controllers
- 76. PP: Polypropylene
- 77. PPM: Parts per Million
- 78. PSIG: Pounds per Square Inch
- 79. PTFE: Polytetrafluoroethylene
- 80. PVC: Polyvinyl Chloride
- 81. PVDF: Polyvinylidene Fluoride
- 82. RAD: Radians
- 83. RO: Reverse Osmosis
- 84. RPM: Revolutions Per Minute
- 85. RTRP: Reinforced Thermosetting Resin Pipe
- 86. SCFM: Standard Cubic Feet Per Minute
- 87. SDI: Silt Density Index
- 88. SPEC: Specification
- 89. SPS: Sterile Processing Services
- 90. STD: Standard
- 91. SUS: Saybolt Universal Second
- 92. SWP: Steam Working Pressure
- 93. TEFC: Totally Enclosed Fan-Cooled
- 94. TFE: Tetrafluoroethylene
- 95. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 96. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 97. T/P: Temperature and Pressure
- 98. USDA: U.S. Department of Agriculture
- 99. V: Volt
- 100. VAC: Vacuum
- 101. VA: Veterans Administration
- 102. VAMC: Veterans Administration Medical Center
- 103. VAC: Voltage in Alternating Current
- 104. WAGD: Waste Anesthesia Gas Disposal

105.WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 05 50 00, METAL FABRICATIONS.
- F. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- G. Section 07 84 00, FIRESTOPPING.
- H. Section 07 92 00, JOINT SEALANTS.
- I. Section 09 91 00, PAINTING.
- J. Section 22 07 11, PLUMBING INSULATION.
- K. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- M. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- N. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code -BPVC Section IX-2013....Welding, Brazing, and Fusing Qualifications B31.1-2012.....Power Piping
- C. American Society for Testing and Materials (ASTM): A36/A36M-2012.....Standard Specification for Carbon Structural Steel A575-96(R2013)el....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E84-2013a....Standard Test Method for Surface Burning Characteristics of Building Materials E119-2012a....Standard Test Methods for Fire Tests of Building Construction and Materials F1760-01(R2011)....Standard Specification for Coextruded Poly(Vinyl Chloride) (PVC) Non-Pressure Plastic Pipe Having Reprocessed-Recycled Content

22 05 11 - 4

D. International Code Council, (ICC): IBC-2012.....International Building Code IPC-2012.....International Plumbing Code E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2009.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation SP-69-2003.....Pipe Hangers and Supports - Selection and Application F. Military Specifications (MIL): P-21035B..... Galvanizing Repair (Metric) G. National Electrical Manufacturers Association (NEMA): MG 1-2011.....Motors and Generators H. National Fire Protection Association (NFPA): 51B-2014..... Standard for Fire Prevention During Welding, Cutting and Other Hot Work 54-2012.....National Fuel Gas Code 70-2014.....National Electrical Code (NEC) I. NSF International (NSF): 5-2012......Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment 14-2012.....Plastic Piping System Components and Related Materials 61-2012.....Drinking Water System Components - Health Effects 372-2011.....Drinking Water System Components - Lead Content J. Department of Veterans Affairs (VA): PG-18-10.....Plumbing Design Manual PG-18-13-2011.....Barrier Free Design Guide 1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.

- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements and will fit the space available.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Installing Contractor shall provide lists of previous installations for selected items of equipment. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- I. Coordination Drawings: Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8 inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of

equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, controls, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.

- 1. Mechanical equipment rooms.
- 2. Interstitial space.
- 3. Hangers, inserts, supports, and bracing.
- 4. Pipe sleeves.
- 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- J. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment. Include complete list indicating all components of the systems with diagrams of the internal wiring for each item of equipment.
 - 2. Include listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided. The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
 - Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These

organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos shall not be used.
- 9. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more

information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - 1. All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution.
 - 3. Complete layout drawings shall be required by Paragraph I, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
 - 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
 - 5. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or additional time to the Government.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.

- F. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- G. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
 - 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
 - Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.
- B. Material or equipment containing a weighted average of greater than0.25 percent lead shall not be used in any potable water system

intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.

- C. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- D. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
 - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
 - D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
 - E. Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct contractor where frames shall be mounted.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling or access door.

2.9 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.11 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- B. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- C. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- D. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING.
- E. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2

inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.

- G. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp. //Spring Supports (Expansion and contraction of vertical piping):
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - 2) Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator. //

- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gage) minimum.
- H. Pre-insulated Calcium Silicate Shields:

horsepower and greater.

- Provide 360 degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
- Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
- Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

2.12 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:

- 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and

set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.13 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

2.14 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.15 ASBESTOS

A. Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
 - Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
 - 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations

and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- L. Many plumbing systems interface with the HVAC control system. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC.
- M. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.
- N. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone

switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.

- O. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are not allowed in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.

- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.

3.5 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VA Medical Center, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

3.6 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.7 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.

- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.8 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.9 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 05 19 METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gages primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B40.100-2013.....Pressure Gauges and Gauge Attachments B40.200-2008.....Thermometers, Direct Reading and Remote Reading
- C. American Water Works Association (AWWA):

C700-2009..... Standard for Cold Water Meters, Displacement Type, Bronze Main Case

C701-2012.....Cold Water Meters-Turbine Type, for Customer Service

C702-2010..... Cold Water Meters - Compound Type

C706-2010.....Direct-Reading, Remote-Registration Systems for Cold-Water Meters

- D. Institute of Electrical and Electronics Engineers (IEEE): C2-2012.....National Electrical Safety Code (NESC)
- E. International Code Council (ICC): IPC-2012.....International Plumbing Code
- F. National Fire Protection Association (NFPA): 70-2011.....National Electrical Code (NEC)

G. NSF International (NSF): 61-2012..... Drinking Water System Components - Health Effects

372-2011.....Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAGES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1.Pressure Gages.
 - 2. Thermometers.3. Product certificates for each type of gage.
- D. Operations and Maintenance manual shall include:
 - 1. System Description.
 - 2. Major assembly block diagrams.
 - 3. Troubleshooting and preventive maintenance guidelines.
 - 4. Spare parts information.
- E. Shop Drawings shall include the following: One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit copies of complete operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder per the requirements of Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. A list of

recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 PRESSURE GAGES FOR WATER

- A. ASME B40.100 all metal case 115 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1380 kPa (0 to 200 psig) gage.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.

2.2 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 175 mm (7 inches) high, 4 degrees C to 100 degrees C (40 degrees F to 212 degrees F). Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Direct mounted pressure gages shall be installed in piping tees with pressure gage located on pipe at the most readable position.
- B. Valves and snubbers shall be installed in piping for each pressure gage.
- C. Test plugs shall be installed on the inlet and outlet pipes of all heat exchangers or water heaters serving more than one plumbing fixture.
- D. Pressure gages shall be installed where indicated on the drawings.
- E. Thermometers shall be installed where indicated on the drawings.
- F. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A126-2004(R2009).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes A536-1984(R2009).....Standard Specification for Ductile Iron Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B584-2013.....Standard Specification for Copper Alloy Sand Castings for General Applications C. International Code Council (ICC): IPC-2012.....International Plumbing Code D. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2008.....Standard Marking Systems for Valves, Fittings, Flanges and Unions SP-67-2011.....Butterfly Valves

09-01-20

```
SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded
                        Ends
  SP-71-2011.....Gray Iron Swing Check Valves, Flanged and
                        Threaded Ends
  SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves
  SP-85-2011.....Gray Iron Globe & Angle Valves, Flanged and
                        Threaded Ends
  SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder
                        Joint, Grooved and Flared Ends
E. National Environmental Balancing Bureau (NEBB):
  7th Edition 2005
                        Procedural Standards for Testing, Adjusting,
                        Balancing of Environmental Systems
F. NSF International (NSF):
  61-2012.....Drinking Water System Components - Health
                        Effects
  372-2011.....Drinking Water System Components - Lead Content
```

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
- D. Test and Balance reports for balancing valves.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 4. Piping diagrams of thermostatic mixing valves to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set ball and plug valves open to minimize exposure of functional surfaces.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large values. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.
- E. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP

rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.

2.3 BALANCING VALVES

A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.

2.4 CHECK VALVES

A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.

2.3 THERMOSTATIC MIXING VALVES

- A. Water Temperature Limiting Devices:
 - 1. Application: Single plumbing fixture point-of-use such as sinks or lavatories.
 - 2. Standard: ASSE 1070.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
 - 5. Connections: Threaded union, compression or soldered inlets and outlet.
 - Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Check values shall be installed for proper direction of flow and as follows:
 - Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- F. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.3 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- C. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
- B. Definitions:
 - 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
 - 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, and pipe basements are not considered finished areas.
 - 7. FSK: Foil-scrim-Kraft facing.
 - Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
 - 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
 - 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.

13. HWR: Hot water recirculating.

- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.

17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- F. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014......Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011.....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2007 (R2013).....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014).....Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping, and Vessel Lagging Adjunct to C450.....Compilation of Tables that Provide Recommended Dimensions for Prefab and Field Thermal Insulating Covers, etc. C533-2013..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

09-01-19

C534/C534M-2014	Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-2015	Standard Specification for Mineral Fiber Pipe
	Insulation
C552-2014	Standard Specification for Cellular Glass
	Thermal Insulation
C553-2013	Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C591-2013	Standard Specification for Unfaced Preformed
	Rigid Cellular Polyisocyanurate Thermal
	Insulation
C680-2014	Standard Practice for Estimate of the Heat Gain
	or Loss and the Surface Temperatures of
	Insulated Flat, Cylindrical, and Spherical
	Systems by Use of Computer Programs
C612-2014	Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126-2014	Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136-2012	Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
C1710-2011	Standard Guide for Installation of Flexible
	Closed Cell Preformed Insulation in Tube and
	Sheet Form
D1668/D1668M-1997a (2014	4)e1 Standard Specification for Glass Fabrics
	(Woven and Treated) for Roofing and
	Waterproofing
E84-2015a	Standard Test Method for Surface Burning
	Characteristics of Building Materials
E2231-2015	Standard Practice for Specimen Preparation and
	Mounting of Pipe and Duct Insulation to Assess
	Surface Burning Characteristics

- C. Federal Specifications (Fed. Spec.): L-P-535E-1979.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass F. National Fire Protection Association (NFPA): 90A-2015.....Standard for the Installation of Air-Conditioning and Ventilating Systems G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013) Standard for Test for Surface Burning Characteristics of Building Materials 1887-2004 (R2013).....Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics
- H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; http://.www.pipeinsulation.net

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be // in electronic version on compact disc or DVD // inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version //___// provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

- A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.
- PART 2 PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m³ (nominal 1 pcf), k = 0.045 (0.31) // Class B-5, Density 32 kg/m³ (nominal 2 pcf), k = 0.04 (0.27) // at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F).
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.3 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inchpounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all

exterior piping as well as on interior piping conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inchpounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- F. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.5 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)		
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)	
Up through 125 (5)	150 (6) long	
150 (6)	150 (6) long	

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.9 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.10 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.

- I. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- M. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids below ambient air temperature.
- N. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- O. Provide PVC jackets over insulation as follows:
 - Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

- A. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- B. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory

jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impreganted glass fabric, bituminous mastic and outside protective plastic film.

a. 75 mm (3 inches) thick for hot water piping.

- b. As scheduled at the end of this section for chilled water piping.
- c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
- d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
- f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- g. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.

3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.

C. Flexible Elastomeric Cellular Thermal Insulation:

- Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
- 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive.

Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.

- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

3.2 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal 1	Pipe Size M	illimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1 ¹ / ₂ - 3)	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(4-15 degrees C (40-60 degrees F) (Domestic Cold Water)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)

- - - E N D - - -

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- H.Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- I.Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

```
B. American Society of Mechanical Engineers (ASME):
  A13.1-2007 (R2013).....Scheme for Identification of Piping Systems
  B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150
                         and 300
  B16.9-2012......Factory-Made Wrought Buttwelding Fittings
  B16.11-2011.....Forged Fittings, Socket-Welding and Threaded
  B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings
  B16.15-2013 .....Cast Copper Alloy Threaded Fittings: Classes
                         125 and 250
  B16.18-2012.....Cast Copper Alloy Solder Joint Pressure
                         Fittings
  B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint
                         Pressure Fittings
  B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged
                         Fittings: Classes 150, 300, 600, 900, 1500, and
                         2500
```

B16.51-2013.....Copper and Copper Alloy Press-Connect Fittings ASME Boiler and Pressure Vessel Code -BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications C. American Society of Sanitary Engineers (ASSE): 1010-2004..... Performance Requirements for Water Hammer Arresters D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A269/A269M-2014e1.....Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A403/A403M-2014.....Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-2008 (R2014).....Standard Specification for Solder Metal B43-2014..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube

	B584-2014Standard Specification for Copper Alloy Sand
	Castings for General Applications
	B687-1999 (R2011)Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
	C919-2012Standard Practice for Use of Sealants in
	Acoustical Applications
	D1785-2012 Standard Specification for Poly (Vinyl
	Chloride) (PVC) Plastic Pipe, Schedules 40, 80,
	and 120
	D2000-2012 Standard Classification System for Rubber
	Products in Automotive Applications
	D2564-2012 Standard Specification for Solvent Cements for
	Poly (Vinyl Chloride) (PVC) Plastic Piping
	Systems
	D2657-2007Standard Practice for Heat Fusion Joining of
	Polyolefin Pipe and Fittings
	D2855-1996 (R2010)Standard Practice for Making Solvent-Cemented
	Joints with Poly (Vinyl Chloride) (PVC) Pipe
	and Fittings
	D4101-2014Standard Specification for Polypropylene
	Injection and Extrusion Materials
	E1120-2008 Standard Specification for Liquid Chlorine
	E1229-2008 Standard Specification for Calcium Hypochlorite
	F2389-2010Standard Specification for Pressure-rated
	Polypropylene (PP) Piping Systems
	F2620-2013Standard Practice for Heat Fusion Joining of
	Polyethylene Pipe and Fittings
	F2769-2014Standard Specification for Polyethylene of
	Raised Temperature (PE-RT) Plastic Hot and
	Cold-Water Tubing and Distribution Systems
Ε.	American Water Works Association (AWWA):
	C110-2012 Fittings
	C151-2009Ductile Iron Pipe, Centrifugally Cast
	C153-2011Ductile-Iron Compact Fittings
	C203-2008Coal-Tar Protective Coatings and Linings for
	Steel Water Pipelines - Enamel and Tape - Hot
	Applied

	C213-2007	usion-Bonded Epoxy Coating for the Interior		
	ē	nd Exterior of Steel Water Pipelines		
	C651-2014	isinfecting Water Mains		
F.	American Welding Society	(AWS):		
	A5.8M/A5.8-2011-AMD1S	pecification for Filler Metals for Brazing and		
	E	raze Welding		
G.	International Code Counci	l (ICC):		
	IPC-2012	nternational Plumbing Code		
Н.	A. Manufacturers Specification Society (MSS):			
	SP-58-2009Pipe Hangers and Supports - Materials, Desig			
	Ν	anufacture, Selection, Application, and		
	I	nstallation		
	SP-72-2010aE	all Valves with Flanged or Butt-Welding Ends		
	f	or General Service		
	SP-110-2010	all Valves Threaded, Socket-Welding, Solder		
	-	oint, Grooved and Flared Ends		
I.	NSF International (NSF):			
	14-2015	lastics Piping System Components and Related		
	Ν	aterials		
	61-2014a	rinking Water System Components - Health		
	E	ffects		
	372-2011	rinking Water System Components - Lead Content		
J.	. Plumbing and Drainage Institute (PDI):			
	PDI-WH 201-2010	ater Hammer Arrestors		
К.	Department of Veterans Af	fairs:		
	Н-18-8-2013	eismic Design Handbook		
1.4 ST	UBMITTALS			
A.	Submittals, including num	ber of required copies, shall be submitted in		
	accordance with Section (1 33 23, SHOP DRAWINGS, PRODUCT DATA, AND		

- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

1. All items listed in Part 2 - Products.

SAMPLES.

- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 SPARE PARTS

A. For mechanical press-connect fittings, provide tools required for each pipe size used at the facility.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be // in electronic version on compact disc or DVD // inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include

troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version //___// provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM

B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.

- 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical pressconnect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.
- 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- E. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.3 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.4 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.5 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1120.
- B. Liquid Chlorine: ASTM E1229.

2.6 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.
 - 4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc

chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.

- c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.
 - Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
 - 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
 - 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based

on the criteria from the manufacturer regarding their restraint design.

- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING.
 Completely fill and seal clearances between raceways and openings with the firestopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
 - c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain values at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - 2. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect

branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS: Sealant products.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- K. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- L. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A13.1-2007.....Scheme for the Identification of Piping Systems A112.36.2M-1991(R 2012).Cleanouts A112.6.3-2001 (R2007)...Standard for Floor and Trench Drains B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings B16.4-2011....Standard for Grey Iron Threaded Fittings Classes 125 and 250 B16.15-2013.....Cast Copper Alloy Threaded Fittings, Classes 125 and 250

09-01-20

```
B16.18-2012.....Cast Copper Alloy Solder Joint Pressure
                         Fittings
  B16.21-2011......Nonmetallic Flat Gaskets for Pipe Flanges
  B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint
                         Pressure Fittings
  B16.23-2011.....Cast Copper Alloy Solder Joint Drainage
                         Fittings: DWV
  B16.24-2001 (R2006)....Cast Copper Alloy Pipe Flanges and Flanged
                         Fittings
  B16.29-2012.....Wrought Copper and Wrought Copper Alloy Solder-
                         Joint Drainage Fittings: DWV
  B16.39-2009.....Malleable Iron Threaded Pipe Unions Classes
                         150, 250, and 300
  B18.2.1-2012......Square, Hex, Heavy Hex, and Askew Head Bolts
                         and Hex, Heavy Hex, Hex Flange, Lobed Head, and
                         Lag Screws (Inch Series)
C. American Society of Sanitary Engineers (ASSE):
  1001-2008.....Performance Requirements for Atmospheric Type
                         Vacuum Breakers
  1018-2001.....Performance Requirements for Trap Seal Primer
                        Valves - Potable Water Supplied
  1044-2001..... Performance Requirements for Trap Seal Primer
                         Devices - Drainage Types and Electronic Design
                         Types
  1079-2012.....Performance Requirements for Dielectric Pipe
                         Unions
D. American Society for Testing and Materials (ASTM):
  A53/A53M-2012.....Standard Specification for Pipe, Steel, Black
                         And Hot-Dipped, Zinc-coated, Welded and
                         Seamless
  A74-2013a.....Standard Specification for Cast Iron Soil Pipe
                         and Fittings
  A888-2013a.....Standard Specification for Hubless Cast Iron
                         Soil Pipe and Fittings for Sanitary and Storm
                         Drain, Waste, and Vent Piping Applications
  B32-2008..... Standard Specification for Solder Metal
  B43-2009..... Standard Specification for Seamless Red Brass
                         Pipe, Standard Sizes
```

В75-2011	.Standard Specification for Seamless Copper Tube
B88-2009	.Standard Specification for Seamless Copper
	Water Tube
в306-2013	.Standard Specification for Copper Drainage Tube
	(DWV)
B584-2013	.Standard Specification for Copper Alloy Sand
	Castings for General Applications
B687-1999 (R 2011)	.Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
B813-2010	.Standard Specification for Liquid and Paste
	Fluxes for Soldering of Copper and Copper Alloy
	Tube
B828-2002 (R 2010)	.Standard Practice for Making Capillary Joints
	by Soldering of Copper and Copper Alloy Tube
	and Fittings
C564-2012	.Standard Specification for Rubber Gaskets for
	Cast Iron Soil Pipe and Fittings
D1785-2012	.Standard Specification for Poly(Vinyl Chloride)
	(PVC) Plastic Pipe, Schedules 40, 80, and 120
D2321-2011	.Standard Practice for Underground Installation
	of Thermoplastic Pipe for Sewers and Other
	Gravity-Flow Applications
D2564-2012	.Standard Specification for Solvent Cements for
	Poly(Vinyl Chloride) (PVC) Plastic Piping
	Systems
D2665-2012	.Standard Specification for Poly(Vinyl Chloride)
	(PVC) Plastic Drain, Waste, and Vent Pipe and
	Fittings
D2855-1996 (R 2010)	.Standard Practice for Making Solvent-Cemented
	Joints with Poly(Vinyl Chloride) (PVC) Pipe and
	Fittings
D5926-2011	.Standard Specification for Poly(Vinyl Chloride)
	(PVC) Gaskets for Drain, Waste, and Vent (DWV),
	Sewer, Sanitary, and Storm Plumbing Systems
F402-2005 (R 2012)	.Standard Practice for Safe Handling of Solvent
	Cements, Primers, and Cleaners Used for Joining
	Thermoplastic Pipe and Fittings

09-01-20

F477-2010.....Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe F1545-1997 (R 2009).....Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges E. Cast Iron Soil Pipe Institute (CISPI): 2006..... Cast Iron Soil Pipe and Fittings Handbook 301-2012......Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012..... Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. Copper Development Association, Inc. (CDA): A4015.....Copper Tube Handbook G. International Code Council (ICC): IPC-2012.....International Plumbing Code H. Manufacturers Standardization Society (MSS): SP-123-2013.....Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube I. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC) J. Plumbing and Drainage Institute (PDI): WH-201 (R 2010) Water Hammer Arrestors Standard K. Underwriters' Laboratories, Inc. (UL): 508-99 (R2013) Standard For Industrial Control Equipment 1.4 SUBMITTALS A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.

C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

1. Piping.

- •
- 2. Pipe Fittings.
- 3. Traps.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them on Auto-Cad version //___// provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Interior waste and vent piping above grade.
 - Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.

- Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
- 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Polyvinyl Chloride (PVC)
 - Polyvinyl chloride (PVC) pipe and fittings are permitted where the waste temperature is below 60 degrees C (140 degrees F).
 - PVC piping and fittings shall NOT be used for the following applications:
 - a. Waste collected from steam condensate drains.
 - b. Spaces such as mechanical equipment rooms, kitchens, Sterile Processing Services, sterilizer areas, and areas designated for sleep.
 - c. Vertical waste and soil stacks serving more than two floors.
 - d. Exposed in mechanical equipment rooms.
 - e. Exposed inside of ceiling return plenums.
 - 3. Polyvinyl chloride sanitary waste, drain, and vent pipe and fittings shall be solid core sewer piping conforming to ASTM D2665, sewer and drain series with ends for solvent cemented joints.
 - 4. Fittings: PVC fittings shall be solvent welded socket type using solvent cement conforming to ASTM D2564.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to //ASME B16.15// //ASTM D2665//.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - 4. Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials

specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- For PVC soil pipes, the sleeve material shall be elastomeric seal or PVC, conforming to ASTM F477 or ASTM D5926.
 - 3. For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe.

B. Type B (FD-B) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type B floor drain shall be constructed of galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with secondary strainer in bottom for large debris. The grate shall be 175 mm (7 inches) minimum.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.

Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

- I. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. Aboveground PVC piping shall be installed according to ASTM D2665. Underground PVC piping shall be installed according to ASTM D2321.
- L. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.

- 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. For PVC piping, solvent cement joints shall be used for joints. All surfaces shall be cleaned and dry prior to applying the primer and solvent cement. Installation practices shall comply with ASTM F402. The joint shall conform to ASTM D2855 and ASTM D2665 appendixes.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. The maximum spacing for plastic pipe shall be 1.22 m (4 feet).

- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.

K. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
 - E. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
 - F. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
 - G. Section 10 21 13, TOILET COMPARTMENTS: Through bolts.
 - H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - I. Section 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME): A112.6.1M-1997 (R2012)..Supports for Off-the-Floor Plumbing Fixtures

for Public Use

A112.19.1-2013.....Enameled Cast Iron and Enameled Steel Plumbing Fixtures

A112.19.2-2013.....Ceramic Plumbing Fixtures

A112.19.3-2008.....Stainless Steel Plumbing Fixtures

C. American Society for Testing and Materials (ASTM):

A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes

B584-2008.....Standard Specification for Copper Alloy Sand Castings for General Applications

- D. CSA Group: B45.4-2008 (R2013).....Stainless Steel Plumbing Fixtures
- E. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-2006......Metal Finishes Manual
- F. American Society of Sanitary Engineering (ASSE): 1016-2011.....Automatic Compensating Valves for Individual Showers and Tub/Shower Combinations
- G. NSF International (NSF):
 14-2013.....Plastics Piping System Components and Related
 Materials
 61-2013.....Drinking Water System Components Health
 Effects

372-2011.....Drinking Water System Components - Lead Content

- H. American with Disabilities Act (A.D.A)
- I. International Code Council (ICC):
 IPC-2015.....International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.
- //E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.//
- //F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.//

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be // in electronic version on compact disc or DVD // inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD version //___// provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.
 - 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.

2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.5 LAMINAR FLOW CONTROL DEVICE

A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow

22 40 00 - 4

control restrictor and have vandal resistant housing. Aerators are

prohibited.

- B. Flow Control Restrictor:
 - Capable of restricting flow from 32 ml/s to 95 ml/s (0.5 gpm to 1.5 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 174 ml/s to 190 ml/s (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.
 - Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psig and 80 psig).
 - Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.6 CARRIERS

B. ASME A112.6.1M, lavatory, concealed arm support All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.

2.7 WATER CLOSETS

- A. (P-1A) Water Closet (Wall Hung, ASME A112.19.2) office and industrial, elongated bowl, siphon jet 4.8 L (1.28 gallons) per flush, wall outlet. Handicapped water closet shall have seat set 450 mm (18 inches) above finished floor.
 - Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.
 - 2. Fittings and Accessories: Gaskets-neoprene; bolts with chromium plated caps nuts and washers and carrier.
 - 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, non-hold open ADA approved side oscillating handle, (1 inch) screwdriver back check angle stop with vandal resistant cap, adjustable tailpiece, a high back pressure vacuum breaker, spud coupling for 40 mm (1-1/2 inches) top spud, wall and spud flanges, solid-ring pipe support, and sweat solder adapter with cover tube and set screw wall flange. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM

alloy classification for semi-red brass. Seat bumpers shall be integral part of flush valve. Set centerline of inlet 292 mm (11-1/2 inches above seat.

2.8 LAVATORIES

- A. (P-3A) Lavatory (Sensor Control, Gooseneck Spout, ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) minimum apron, first quality vitreous china with punching for gooseneck spout. Set rim 864 mm (34 inches) above finished floor.
 - Faucet: Solid cast brass construction, chrome plated, gooseneck spout with outlet 102 mm to 127 mm (4 inches to 5 inches) above rim. Electronic sensor operated, 102 mm (4 inches) center set mounting, self powering electronic module and inline filter. Provide laminar flow control device. Breaking the light beam shall activate the water flow. Flow shall stop when user moves away from light beam.
 - 2. Drain: Cast or wrought brass with flat grid strainer with offset tailpiece, brass, chrome plated.
 - 3. Stops: Angle type. See paragraph "Stops".
 - 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 17 gage tubing extension to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.
 - 5. Provide cover for exposed piping, drain, stops and trap per A.D.A.

2.9 SINKS

- A. Dimensions for sinks and laundry tubs are specified, length by width and depth.
- B. (P-6A) Sink (CRS, Single Compartment, Counter Top ASME A112.19.2) selfrimming, back faucet ledge, approximately 19 inches by 19 inches by 6.5 inches deep. Shall be minimum of 1.3 mm thick (18 gauge) CRS. Corners and edges shall be well rounded:
 - Faucet: Solid brass construction, 1.5 gpm laminar flow deck mounted combination faucet with Monel or ceramic seats, removable replacement unit containing all parts subject to ware, swivel gooseneck spout with approximately 203 mm (8 inches) reach with spout outlet 152 mm (6 inches above deck and // 102 mm (4 inches) wrist blades. Faucet shall be polished chrome plated.
 - 2. Drain: Drain plug with cup strainer, stainless steel.

- 3. Trap: Cast copper alloy 38 mm (1 1/2 inches) P-trap with cleanout plug. Provide wall connection and escutcheon.
- 4. Provide cover for exposed piping, drain, stops and trap per A.D.A.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.
- C. Through Bolts: For free standing marble and metal stud partitions refer to Section 10 21 13, TOILET COMPARTMENTS.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- I. Aerators are prohibited on lavatories and sinks.
- J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
- 1. Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
- 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
- 1. ac: Alternating Current
- 2. ACR: Air Conditioning and Refrigeration
- 3. AI: Analog Input
- 4. AISI: American Iron and Steel Institute
- 5. AO: Analog Output
- 6. ASJ: All Service Jacket
- 7. AWG: American Wire Gauge
- 8. BACnet: Building Automation and Control Networking Protocol
- 9. BAg: Silver-Copper-Zinc Brazing Alloy
- 10. BAS: Building Automation System
- 11. BCuP: Silver-Copper-Phosphorus Brazing Alloy
- 12. bhp: Brake Horsepower
- 13. Btu: British Thermal Unit
- 14. Btu/h: British Thermal Unit Per Hour
- 15. CDA: Copper Development Association
- 16. C: Celsius
- 17. CD: Compact Disk
- 18. CFM: Cubic Foot Per Minute
- 19. CH: Chilled Water Supply
- 20. CHR: Chilled Water Return
- 21. CLR: Color
- 22. CO: Carbon Monoxide
- 23. COR: Contracting Officer's Representative
- 24. CPD: Condensate Pump Discharge
- 25. CPM: Cycles Per Minute

- 26. CPVC: Chlorinated Polyvinyl Chloride
- 27. CRS: Corrosion Resistant Steel
- 28. CTPD: Condensate Transfer Pump Discharge
- 29. CTPS: Condensate Transfer Pump Suction
- 30. CW: Cold Water
- 31. CWP: Cold Working Pressure
- 32. CxA: Commissioning Agent
- 33. dB: Decibels
- 34. dB(A): Decibels (A weighted)
- 35. DDC: Direct Digital Control
- 36. DI: Digital Input
- 37. DO: Digital Output
- 38. DVD: Digital Video Disc
- 39. DN: Diameter Nominal
- 40. DWV: Drainage, Waste and Vent
- 41. EPDM: Ethylene Propylene Diene Monomer
- 42. EPT: Ethylene Propylene Terpolymer
- 43. ETO: Ethylene Oxide
- 44. F: Fahrenheit
- 45. FAR: Federal Acquisition Regulations
- 46. FD: Floor Drain
- 47. FED: Federal
- 48. FG: Fiberglass
- 49. FGR: Flue Gas Recirculation
- 50. FOS: Fuel Oil Supply
- 51. FOR: Fuel Oil Return
- 52. FSK: Foil-Scrim-Kraft facing
- 53. FWPD: Feedwater Pump Discharge
- 54. FWPS: Feedwater Pump Suction
- 55. GC: Chilled Glycol Water Supply
- 56. GCR: Chilled Glycol Water Return
- 57. GH: Hot Glycol Water Heating Supply
- 58. GHR: Hot Glycol Water Heating Return
- 59. gpm: Gallons Per Minute
- 60. HDPE: High Density Polyethylene
- 61. Hg: Mercury
- 62. HOA: Hands-Off-Automatic
- 63. hp: Horsepower

64. HPS: High Pressure Steam (414 kPa (60 psig) and above) 65. HPR: High Pressure Steam Condensate Return 66. HW: Hot Water 67. HWH: Hot Water Heating Supply 68. HWHR: Hot Water Heating Return 69. Hz: Hertz 70. ID: Inside Diameter 71. IPS: Iron Pipe Size 72. kg: Kilogram 73. klb: 1000 lb 74. kPa: Kilopascal 75. lb: Pound 76. lb/hr: Pounds Per Hour 77. L/s: Liters Per Second 78. L/min: Liters Per Minute 79. LPS: Low Pressure Steam (103 kPa (15 psig) and below) 80. LPR: Low Pressure Steam Condensate Gravity Return 81. MAWP: Maximum Allowable Working Pressure 82. MAX: Maximum 83. MBtu/h: 1000 Btu/h 84. MBtu: 1000 Btu 85. MED: Medical 86. m: Meter 87. MFG: Manufacturer 88. mg: Milligram 89. mg/L: Milligrams Per Liter 90. MIN: Minimum 91. MJ: Megajoules 92. ml: Milliliter 93. mm: Millimeter 94. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig)) 95. MPR: Medium Pressure Steam Condensate Return 96. MW: Megawatt 97. NC: Normally Closed 98. NF: Oil Free Dry (Nitrogen) 99. Nm: Newton Meter

100. NO: Normally Open

101. NOx: Nitrous Oxide 102. NPT: National Pipe Thread 103. NPS: Nominal Pipe Size 104. OD: Outside Diameter 105. OSD: Open Sight Drain 106. OS&Y: Outside Stem and Yoke 107. PC: Pumped Condensate 108. PID: Proportional-Integral-Differential 109. PLC: Programmable Logic Controllers 110. PP: Polypropylene 111. PPE: Personal Protection Equipment 112. ppb: Parts Per Billion 113. ppm: Parts Per Million 114. PRV: Pressure Reducing Valve \ 115. PSIA: Pounds Per Square Inch Absolute 116. psig: Pounds Per Square Inch Gauge 117. PTFE: Polytetrafluoroethylene 118. PVC: Polyvinyl Chloride 119. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 120. PVDF: Polyvinylidene Fluoride 121. rad: Radians 122. RH: Relative Humidity 123. RO: Reverse Osmosis 124. rms: Root Mean Square 125. RPM: Revolutions Per Minute 126. RS: Refrigerant Suction 127. RTD: Resistance Temperature Detectors 128. RTRF: Reinforced Thermosetting Resin Fittings 129. RTRP: Reinforced Thermosetting Resin Pipe 130. SCFM: Standard Cubic Feet Per Minute 131. SPEC: Specification 132. SPS: Sterile Processing Services 133. STD: Standard 134. SDR: Standard Dimension Ratio 135. SUS: Saybolt Universal Second 136.SW: Soft water 137. SWP: Steam Working Pressure 138. TAB: Testing, Adjusting, and Balancing

- 139. TDH: Total Dynamic Head 140. TEFC: Totally Enclosed Fan-Cooled 141. TFE: Tetrafluoroethylene 142. THERM: 100,000 Btu 143. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire 144. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire 145. T/P: Temperature and Pressure 146. USDA: U.S. Department of Agriculture 147.V: Volt 148. VAC: Vacuum 149. VA: Veterans Administration 150. VAC: Voltage in Alternating Current 151. VA CFM: VA Construction & Facilities Management 152. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service 153. VAMC: Veterans Administration Medical Center 154. VHA OCAMES: Veterans Health Administration - Office of Capital Asset Management Engineering and Support 155. VR: Vacuum condensate return 156. WCB: Wrought Carbon Steel, Grade B 157. WG: Water Gauge or Water Column 158. WOG: Water, Oil, Gas 1.2 RELATED WORK A. Section 01 00 00, GENERAL REQUIREMENTS. B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS E. Section 03 30 00, CAST-IN-PLACE CONCRETE. F. Section 05 31 00, STEEL DECKING. G. Section 05 36 00, COMPOSITE METAL DECKING. H. Section 05 50 00, METAL FABRICATIONS.
 - I. Section 07 84 00, FIRESTOPPING.
 - J. Section 07 92 00, JOINT SEALANTS.
 - K. Section 09 91 00, PAINTING.
 - L. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
 - M. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
 - N. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

O. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

P. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.

Q. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern. B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans C. American Society of Mechanical Engineers (ASME): B31.1-2014.....Power Piping B31.9-2014.....Building Services Piping ASME Boiler and Pressure Vessel Code: BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications D. American Society for Testing and Materials (ASTM): A36/A36M-2014.....Standard Specification for Carbon Structural Steel A575-1996(R2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades E. Association for Rubber Products Manufacturers (ARPM): IP-20-2015......Specifications for Drives Using Classical V-Belts and Sheaves IP-21-2009..... Specifications for Drives Using Double-V (Hexagonal) Belts IP-24-2010..... Specifications for Drives Using Synchronous Belts IP-27-2015..... Specifications for Drives Using Curvilinear Toothed Synchronous Belts F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.: SP-58-2009.....Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation SP-127-2014a.....Bracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application

G. Military Specifications (MIL):

MIL-P-21035B-2003.....Paint High Zinc Dust Content, Galvanizing

Repair (Metric)

H. National Fire Protection Association (NFPA):

70-2014.....National Electrical Code (NEC)

101-2015.....Life Safety Code

I. Department of Veterans Affairs (VA):

PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- D. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- G. Coordination/Shop Drawings:
- 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
- 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
- 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- In addition, for HVAC systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Interstitial space.
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.
 - e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- H. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.

- 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
- 2. Submit electric motor data and variable speed drive data with the driven equipment.
- 3. Equipment and materials identification.
- 4. Fire-stopping materials.
- 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
- 6. Wall, floor, and ceiling plates.
- I. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
 - J. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.

1.5 QUALITY ASSURANCE

A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.

- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Products Criteria:
- 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.
- 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

- Use of asbestos products or equipment or materials containing asbestos is prohibited.
- D. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.
- E. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
- Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
- 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
- 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- F. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- G. Execution (Installation, Construction) Quality:
- Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution.

Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
- 3. Complete coordination/shop drawings shall be required in accordance with Paragraph, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- H. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- I. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.

- 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
- 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- 6. Protect plastic piping and tanks from ultraviolet light (sunlight).

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be //in electronic version on CD or DVD// inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built

or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along

with manpower levels. All equipment and materials must be onsite and verified with plan 5days prior to the shutdown or it will need to be rescheduled.

- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- E. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- All components of an assembled unit need not be products of same manufacturer.
- Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
- HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS and Section 23 36 00, AIR TERMNAL UNITS.
- 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Typed or printed plastic coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.

- Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.
- E. Ceiling Grid Labels:
- 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
- 2. Custom print labels with above ceiling HVAC equipment numbers.

2.4 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.5 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- B. Attachment to Concrete Building Construction:
- 1. Concrete insert: MSS SP-58, Type 18.
- 2. Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- C. Attachment to Steel Building Construction:
- Welded attachment: MSS SP-58, Type 22. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- D. Attachment to existing structure: Support from existing floor/roof frame.
- E. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles

shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.

- F. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
- 1. Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- G. Supports for Piping Systems:
- Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.

- For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- H. Pre-insulated Calcium Silicate Shields:
- Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
- 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
- 3. Shield thickness shall match the pipe insulation.
- 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
- 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.6 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
- 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.

- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.7 DUCT PENETRATIONS

A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter. B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.8 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.9 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.10 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
- Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
- 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- 3. Do not penetrate membrane waterproofing.

- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.
- H. Protection and Cleaning:
- Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
- Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).
- N. Inaccessible Equipment:
- Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
- 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Paragraph, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.

C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
- Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
- 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
- The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
- 1. Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping.

Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.

- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 150 mm (6 inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.

- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
- Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
- 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.

- g. Copper, brass, aluminum, stainless steel and bronze surfaces.
- h. Valve stems and rotating shafts.
- i. Pressure gauges and thermometers.
- j. Glass.
- k. Nameplates.
- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
 - a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
 - b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.7 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.8 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. //The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.//
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.

E. of the specification will be tested as part of a larger system.

3.10 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 38, "Testing, Adjusting and Balancing" of 2011 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes chilled water, heating hot water, and glycol-water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- E. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION:

- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC
- G. Section 23 31 00, HVAC DUCTS AND CASINGS
- H. Section 23 36 00, AIR TERMINAL UNITS:

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by

the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and
 - schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 38, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "HVAC Applications", Chapter 38, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.

- a. Air terminal units (maximum values): Minus 2 percent to plus 10 percent.
- b. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- c. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the Resident Engineer) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - 1. Design Review Report within 60 days for design-build projects.
 - Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.

E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.

Testing, Adjusting, and Balancing and Chapter 48, Sound and Vibration Control

C. Associated Air Balance Council (AABC): 2002......AABC National Standards for Total System

Balance

D. National Environmental Balancing Bureau (NEBB):

7th Edition 2005Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

- 2nd Edition 2006Procedural Standards for the Measurement of Sound and Vibration
- 3rd Edition 2009Procedural Standards for Whole Building Systems Commissioning of New Construction
- E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2002HVAC SYSTEMS Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
 - B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
 - C. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 30 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets.
 - Artificially load air filters by partial blanking to produce air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC Section 23 05 10
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.

- 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include coils:
 - 1.
 - 2. Adjust flow rates for equipment. Set coils to values on equipment submittals, if different from values on contract drawings.
 - 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer. The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

- - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Ductwork and piping above ceilings and in chases,.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical//, Boiler Plant// and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F)//; Boiler Plant breechings and stack temperature range 150-370 degrees C(300-700 degrees F) and piping media and equipment 32 to 230 degrees C(90 to 450 degrees F)//.
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.

41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

B.Section 07 84 00, FIRESTOPPING.

- C.Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E.Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

//4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics. //

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal

insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):
 L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
 C. Military Specifications (Mil. Spec.):
 MIL-A-3316C (2)-90....Adhesives, Fire-Resistant, Thermal Insulation
 MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation
 MIL-C-19565C (1)-88....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier
 MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread,

Glass and Wire-Reinforced Glass

- D. American Society for Testing and Materials (ASTM): A167-99(2004).....Standard Specification for Stainless and
 - Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate
 - C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation
 - C449-07..... Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
 - C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

02-01-20

	C534-08	.Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-07	.Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-09c	.Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Ε.	National Fire Protection	n Association (NFPA):
	90A-09	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-08	.Standard s for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-09	Life Safety Code
	251-06	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials

255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, // Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) // Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) // at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.3 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics				
ITEMS	TYPE I	TYPE II		
Temperature, maximum degrees C	649 (1200)	927 (1700)		
(degrees F)				
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)		
Thermal conductivity:				
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078		
mean temperature of 93 degrees C	(0.41)	(0.540)		
(200 degrees F)				
Surface burning characteristics:				
Flame spread Index, Maximum	0	0		
Smoke Density index, Maximum	0	0		

2.4 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity areas. The vapor barrier jacket shall

consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inchpounds) for exterior or exposed locations or where the insulation is subject to damage.

- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems// and circular breeching and stacks//: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- 2.5 PIPE COVERING PROTECTION SADDLES
 - A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
Up through 125 (5)	150 (6) long			
150 (6)	150 (6) long			
200 (8), 250 (10), 300 (12)	225 (9) long			

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
350 (14), 400 (16)	300 (12) long			
450 through 600 (18 through 24)	350 (14) long			

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.6 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.7 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.8 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.

- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.9 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.10 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and

exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).

- D. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- E. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- F. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- G. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- H. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- I. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. // The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting.// Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- J. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions

d. Fire partitions

- K. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(1inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- L. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature.
- M. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

- A. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.

- b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- C. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.

- 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - e. Underground insulation shall be inspected and approved by the Resident Engineer as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
 - f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.
- D. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply

it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.

- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- E. Calcium Silicate:
 - Minimum thickness in millimeter (inches) specified in the schedule at the end of this section for piping other than in boiler plant. See paragraphs 3.3 through 3.7 for Boiler Plant Applications.
 - 2. Engine Exhaust Insulation for Emergency Generator and Diesel Driven Fire Pump: Type II, Class D, 65 mm (2 1/2 inch) nominal thickness. Cover exhaust completely from engine through roof or wall construction, including muffler. Secure with 16 AWG galvanized annealed wire or 0.38 x 12 mm 0.015 x 1/2 IN wide galvanized bands on 300 mm 12 IN maximum centers. Anchor wire and bands to welded pins, clips or angles. Apply 25 mm 1 IN hex galvanized wire over insulation. Fill voids with 6 mm 1/4 IN insulating cement.
 - 5. MRI Quench Vent Insulation: Type I, class D, 150 mm (6 inch) nominal thickness.

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ ₄)	38 - 75 (1½ - 3)	100 (4) and Above
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping	38 (1.5)	38 (1.5)		

	only)				
4-16 degrees C	Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Glass Closed- Cell	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
4-16 degrees C	Polyiso-	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	cyanurate Closed-Cell	(1.5)			
(CH, CHR, GC, GCR	Rigid				
and RS for DX	(Exterior Locations				
refrigeration)	only)				
	······································				

- - - E N D - - -

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide (a) direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, and an Engineering Control Center. Provide a remote user using a standard web browser to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. The direct-digital control system(s) shall be native BACnet. All new workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new workstations, controller, devices and components shall be accessible using a Web browser interface and shall communicate exclusively using the ASHRAE Standard 135 BACnet communications protocol without the use of gateways, unless otherwise allowed by this Section of the technical specifications, specifically shown on the design drawings and specifically requested otherwise by the VA.
 - a. If used, gateways shall support the ASHRAE Standard 135 BACnet communications protocol.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance,

Warranty, specified services and items required for complete and fully functional Controls Systems.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include the following:
 - 1. Control valves.
 - 2. Sensor wells and sockets in piping.
 - 3. Terminal unit controllers.
- C. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the particulars of the products. These products include the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.
 - 2. Terminal units' velocity sensors
 - 3. Room pressure monitors. These controls, if not native BACnet, will require a BACnet Gateway.
- D. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
------------------	---------	---------	--------------------------	---------------

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	N/A
Controllers for terminal units	23 09 23	23	23 09 23	N/A
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A

This facility's existing direct-digital control system is manufactured by Johnson Controls. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.

- E. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the

technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's area control through an Ethernet connection provided by the Control System Integrator.

3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system shall include one portable operator terminal - laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.

Item/Task	Section 23 09 23 contactor	Control system integrator	VA
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels and equipment	X		
Point addressing: all hardware and software points including setpoint, calculated point, data point(analog/ binary), and reset schedule point	X		
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications	Х		
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices	Х		
LAN connections to ECC		Х	
IP addresses			Х
Overall system verification		Х	
Controller and LAN system verification	Х		

4. Responsibility Table:

I The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted by the VA.

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 31 00, HVAC Ducts and Casings.

- C. Section 23 36 00, Air Terminal Units.
- D. Section 26 05 11, Requirements for Electrical Installations.
- F. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- G. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- H. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- I. Section 26 09 23, Lighting Controls.
- J. Section 26 22 21, Specialty Transformers.
- K. Section 26 27 26, Wiring Devices.
- L. Section 26 29 11, Motor Starters.
- M. Section 27 15 00, Communications Horizontal Cabling
- N. Section 28 31 00, Fire Detection and Alarm.

1.2 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ARCNET: ANSI/ATA 878.1 Attached Resource Computer Network. ARCNET is a deterministic LAN technology; meaning it's possible to determine the maximum delay before a device is able to transmit a message.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: A Data Communication Protocol for Building Automation and Control Networks , ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data over and services over a network.
- E. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- F. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may sue different LAN technologies.
- G. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- H. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.

- I. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- J. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- K. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- L. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- M. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- N. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- O. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- P. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- Q. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- R. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- S. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- T. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, AnnexL. Standard device profiles include BACnet Operator Workstations (B-

OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.

- U. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- V. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- W. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- X. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- Y. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Z. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- AA. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- BB. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.

- CC. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- DD. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- EE. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- FF. GIF: Abbreviation of Graphic interchange format.
- GG. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- HH. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- II. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- JJ. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- KK. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- LL. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- MM. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.

- NN. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It is not an acceptable LAN option for VA health-care facilities. It uses twisted-pair wiring for relatively low speed and low cost communication.
- 00. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- PP. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- QQ. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- RR. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- SS. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- TT. Operating system (OS): Software, which controls the execution of computer application programs.
- UU. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- VV. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- WW. Peer-to-Peer: A networking architecture that treats all network stations as equal partners- any device can initiate and respond to communication with other devices.
- XX. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- YY. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- ZZ. Repeater: A network component that connects two or more physical segments at the physical layer.

- AAA. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- BBB. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- CCC. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be

involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disqualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.
 - 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
 - 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
 - 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The

Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.

- 7. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- 8. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Reported Accuracy
±0.5°C (±1°F)
±0.5°C [±1°F]
±1% of reading
±10% of reading
±5% of reading

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	$\pm 10\%$ of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.

- Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit and all control panels.
- 12. Scaled plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but are the responsibility of the contractor administered by this Section of the technical specifications.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.

- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to Resident Engineer prior to final inspection.

1.8 INSTRUCTIONS

A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL

REQUIREMENTS, and as noted below. Contractor shall also video tape instruction sessions noted below.

- First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE):

Standard 135-10.....BACNET Building Automation and Control Networks

C. American Society of Mechanical Engineers (ASME):

B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-08.....Standard Specification for Solder Metal B88-09....Standard Specifications for Seamless Copper Water Tube B88M-09....Standard Specification for Seamless Copper Water Tube (Metric) B280-08....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-03....Standard Specification for Polyethylene (PE) Plastic Tubing

- E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2001 Part 15: Radio Frequency Devices.
- F. Institute of Electrical and Electronic Engineers (IEEE):

802.3-11.....Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications

G. National Fire Protection Association (NFPA):

70-11.....National Electric Code 90A-09.....Standard for Installation of Air-Conditioning and Ventilation Systems

H. Underwriter Laboratories Inc (UL):

94-10......Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-10.....Access Control System Units 486A/486B-10.....Wire Connectors 555S-11.....Standard for Smoke Dampers 916-10.....Energy Management Equipment 1076-10.....Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

- The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - 2. The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.// They may also utilize digital wireless technologies as appropriate to the application and if approved by the VA.//

- 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
 - 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
 - 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar. These server(s) shall utilize IT industry standard data base platforms which utilize a database declarative language designed for managing data in relational database management systems (RDBMS) such as SQL.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135-2008, BACnet.
 - The Data link / physical layer protocol (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Project drawings indicate remote buildings or sites to be connected by a nominal 56,000 baud modem over voice-grade telephone lines. In each remote location a modem and field device connection shall allow communication with each controller on the internetwork as specified in Paragraph D.
- D. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internetwork controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- E. System shall be expandable to at least twice the required input and output objects with additional controllers, associated devices, and wiring. Expansion shall not require operator interface hardware additions or software revisions.
- F. ECCs and Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 ENGINEERING CONTROL CENTER (ECC)

- A. The ECC shall reside on a high-speed network with controllers as shown on system drawings. The ECC and each standard browser connected to server shall be able to access all system information.
- B. ECC and controllers shall communicate using BACnet protocol. ECC and control network backbone shall communicate using ISO 8802-3 (Ethernet) Data Link/Physical layer protocol and BACnet/IP addressing as specified in ASHRAE/ANSI 135-2008, BACnet Annex J.
- C. Hardware: ECC shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.
 - ECC shall be commercial standard with supporting 32- or 64-bit hardware (as required by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 4GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, and 16 speed high density DVD-RW+/- optical drive.
 - a. The hard drive shall be at the minimum 1 TB 7200 rpm SATA hard drive with 16 MB cache, and shall have sufficient memory to store:
 - 1) All required operator workstation software
 - A DDC database at least twice the size of the delivered system database
 - One year of trend data based on the points specified to be trended at their specified trend intervals.
 - b. Real-time clock:
 - 1) Accuracy: Plus or minus 1 minute per month.
 - Time Keeping Format: 24-hour time format including seconds, minutes, hours, date, day, and month; automatic reset by software.
 - 3) Clock shall function for one year without power.
 - Provide automatic time correction once every 24 hours by synchronizing clock with the Time Service Department of the U.S. Naval Observatory.
 - c. Serial ports: Four USB ports and two RS-232-F serial ports for general use, with additional ports as required. Data transmission rates shall be selectable under program control.

- d. Parallel port: Enhanced.
- e. Sound card: For playback and recording of digital WAV sound files associated with audible warning and alarm functions.
- f. Color monitor: PC compatible, not less than 22 inches, LCD type, with a minimum resolution of 1280 by 1024 pixels, non-interlaced, and a maximum dot pitch of 0.28 mm.
- g. Keyboard: Minimum of 64 characters, standard ASCII character set based on ANSI INCITS 154.
- h. Mouse: Standard, compatible with installed software.
- i. Removable disk storage: Include the following, each with appropriate controller:
 - Minimum 1 TB removable hard disk, maximum average access time of 10 ms.
- j. Network interface card (NIC): integrated 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector.
- Cable modem: 42.88 MBit/s, DOCSIS 2.0 Certified, also backwards compatible with DOCSIS 1.1/1.0 standards. Provide Ethernet or USB connectivity.
- 3. Optical modem: full duplex link, for use on 10 GBase-R single-mode and multi-mode fiber with a XENPAK module.
- 4. Auto-dial modem: 56,600 bps, full duplex for asynchronous communications. With error detection, auto answer/autodial, and call-in-progress detection. Modem shall comply with requirements in ITU-T v.34, ITU-T v.42, ITU-T v.42 Appendix VI for error correction, and ITU-T v.42 BIS for data compression standards; and shall be suitable for operating on unconditioned voice-grade telephone lines complying with 47 CFR 68.
- 5. Audible Alarm: Manufacturer's standard.
- 6. Printers:
 - a. Provide a dedicated, minimum resolution 600 dpi, color laser printer, connected to the ECC through a USB interface.
 - If a network printer is used instead of this dedicated printer, it shall have a 100Base-T interface with an RJ45 connection and shall have a firmware print spooler compatible with the Operating System print spooler.
 - 2) RAM: 512 MB, minimum.

- Printing Speed: Minimum twenty six pages per minute (color); minimum 30 pages per minute (black/white).
- Paper Handling: Automatic sheet feeder with 250-sheet x 8.5 inch x 11 inch paper cassette and with automatic feed.
- b. Provide a dedicated black/white tractor-feed dot matrix printer for status/alarm message printing, minimum 10 characters per inch, minimum 160 characters per second, connected to the ECC through a USB interface.
 - Paper: One box of 2000 sheets of 8-1/2x11 multi-fold type printer paper.
- 7. RS-232 ASCII Interface
 - a. ASCII interface shall allow RS-232 connections to be made between a meter or circuit monitor operating as the host PC and any equipment that will accept RS-232 ASCII command strings, such as local display panels, dial-up modems, and alarm transmitters.
 - b. Pager System Interface: Alarms shall be able to activate a pager system with customized message for each input alarm.
 - c. Alarm System Interface: RS-232 output shall be capable of transmitting alarms from other monitoring and alarm systems to workstation software.
 - d. RS-232 output shall be capable of connection to a pager interface that can be used to call a paging system or service and send a signal to a portable pager. System shall allow an individual alphanumeric message per alarm input to be sent to paging system. This interface shall support both numeric and alphanumeric pagers.
 - e. Cables: provide Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.

1) NFPA 70, Type CMP.

- 2) Flame Resistance: NFPA 262, Flame Test.
- 8. Self-contained uninterruptible power supply (UPS):
 - a. Size: Provide a minimum of six hours of operation of ECC equipment, including two hours of alarm printer operation.
 - b. Batteries: Sealed, valve regulated, recombinant, lead calcium.

- c. Accessories:
 - 1) Transient voltage suppression.
 - 2) Input-harmonics reduction.
 - 3) Rectifier/charger.
 - 4) Battery disconnect device.
 - 5) Static bypass transfer switch.
 - 6) Internal maintenance bypass/isolation switch.
 - 7) External maintenance bypass/isolation switch.
 - 8) Output isolation transformer.
 - 9) Remote UPS monitoring.
 - 10) Battery monitoring.
 - 11) Remote battery monitoring.
- D. ECC Software:
 - Provide for automatic system database save and restore on the ECC's hard disk a copy of the current database of each Controller. This database shall be updated whenever a change is made in any system panel. In the event of a database loss in a building management panel, the ECC shall automatically restore the database for that panel. This capability may be disabled by the operator.
 - 2. Provide for manual database save and restore. An operator with proper clearance shall be able to save the database from any system panel. The operator also shall be able to clear a panel database and manually initiate a download of a specified database to any panel in the system.
 - 3. Provide a method of configuring the system. This shall allow for future system changes or additions by users with proper clearance.
 - 4. Operating System. Furnish a concurrent multi-tasking operating system. The operating system also shall support the use of other common software applications. Acceptable operating systems are Windows XP, Windows System 7, Linux, and UNIX.
 - 5. System Graphics. The operator workstation software shall be graphically oriented. The system shall allow display of up to 10 graphic screens at once for comparison and monitoring of system status. Provide a method for the operator to easily move between graphic displays and change the size and location of graphic displays on the screen. The system graphics shall be able to be modified while on-line. An operator with the proper password level shall be able to add, delete, or change dynamic objects on a

graphic. Dynamic objects shall include analog and binary values, dynamic text, static text, and animation files. Graphics shall have the ability to show animation by shifting image files based on the status of the object.

- 6. Custom Graphics. Custom graphic files shall be created with the use of a graphics generation package furnished with the system. The graphics generation package shall be a graphically based system that uses the mouse to create and modify graphics that are saved in industry standard formats such as PCX, TIFF, and GEM. The graphics generation package also shall provide the capability of capturing or converting graphics from other programs such as Designer or AutoCAD.
- 7. Graphics Library. Furnish a complete library of standard HVAC equipment graphics such as chillers, boilers, air handlers, terminals, fan coils, and unit ventilators. This library also shall include standard symbols for other equipment including fans, pumps, coils, valves, piping, dampers, and ductwork. The library shall be furnished in a file format compatible with the graphics generation package program.
- 8. The Controls Systems Operator Interfaces shall be user friendly, readily understood and shall make maximum use of colors, graphics, icons, embedded images, animation, text based information and data visualization techniques to enhance and simplify the use and understanding of the displays by authorized users at the ECC. The operating system shall be Windows XP or better, and shall support the third party software.
- 9. Provide graphical user software, which shall minimize the use of keyboard through the use of the mouse and "point and click" approach to menu selection.
- 10. The software shall provide a multi-tasking type environment that will allow the user to run several applications simultaneously. The mouse or Alt-Tab keys shall be used to quickly select and switch between multiple applications. The operator shall be able automatically export data to and work in Microsoft Word, Excel, and other Windows based software programs, while concurrently on-line system alarms and monitoring information.
- 11. On-Line Help. Provide a context-sensitive, on-line help system to assist the operator in operating and editing the system. On-line help shall be available for all applications and shall provide the

relevant data for that particular screen. Additional help information shall be available through the use of hypertext.

- 12. User access shall be protected by a flexible and Owner re-definable software-based password access protection. Password protection shall be multi-level and partition able to accommodate the varied access requirements of the different user groups to which individual users may be assigned. Provide the means to define unique access privileges for each individual authorized user. Provide the means to on-line manage password access control under the control of a project specific Master Password. Provide an audit trail of all user activity on the Controls Systems including all actions and changes.
- 13. The system shall be completely field-programmable from the common operator's keyboard thus allowing hard disk storage of all data automatically. All programs for the CUs shall be able to be downloaded from the hard disk. The software shall provide the following functionality as a minimum:
 - Point database editing, storage and downloading of controller databases.
 - b. Scheduling and override of building environmental control systems.
 - c. Collection and analysis of historical data.
 - d. Alarm reporting, routing, messaging, and acknowledgement.
 - e. Definition and construction of dynamic color graphic displays.
 - f. Real-time graphical viewing and control of environment.
 - g. Scheduling trend reports.
 - h. Program editing.
 - i. Operating activity log and system security.
 - j. Transfer data to third party software.
- 14. Provide functionality such that using the least amount of steps to initiate the desired event may perform any of the following simultaneously:
 - a. Dynamic color graphics and graphic control.
 - b. Alarm management.
 - c. Event scheduling.
 - d. Dynamic trend definition and presentation.
 - e. Program and database editing.
 - f. Each operator shall be required to log on to the system with a user name and password to view, edit or delete the data. System

security shall be selectable for each operator, and the password shall be able to restrict the operator's access for viewing and changing the system programs. Each operator shall automatically be logged off the system if no keyboard or mouse activity is detected for a selected time.

- 15. Graphic Displays:
 - a. The workstation shall allow the operator to access various system schematics and floor plans via a graphical penetration scheme, menu selection, or text based commands. Graphic software shall permit the importing of AutoCAD or scanned pictures in the industry standard format (such as PCX, BMP, GIF, and JPEG) for use in the system.
 - b. System Graphics shall be project specific and schematically correct for each system. (ie: coils, fans, dampers located per equipment supplied with project.) Standard system graphics that do not match equipment or system configurations are not acceptable. Operator shall have capability to manually operate the entire system from each graphic screen at the ECC. Each system graphic shall include a button/tab to a display of the applicable sequence of operation.
 - c. Dynamic temperature values, humidity values, flow rates, and status indication shall be shown in their locations and shall automatically update to represent current conditions without operator intervention and without pre-defined screen refresh values.
 - d. Color shall be used to indicate status and change in status of the equipment. The state colors shall be user definable.
 - e. A clipart library of HVAC equipment, such as chillers, boilers, air handling units, fans, terminal units, pumps, coils, standard ductwork, piping, valves and laboratory symbols shall be provided in the system. The operator shall have the ability to add custom symbols to the clipart library.
 - f. A dynamic display of the site-specific architecture showing status of the controllers, the ECC and network shall be provided.
 - g. The windowing environment of the workstation shall allow the user to simultaneously view several applications at a time to analyze total building operation or to allow the display of graphic associated with an alarm to be viewed without interrupting work

in progress. The graphic system software shall also have the capability to split screen, half portion of the screen with graphical representation and the other half with sequence of operation of the same HVAC system.

- 16. Trend reports shall be generated on demand or pre-defined schedule and directed to monitor display, printers or disk. As a minimum, the system shall allow the operator to easily obtain the following types of reports:
 - a. A general list of all selected points in the network.
 - b. List of all points in the alarm.
 - c. List of all points in the override status.
 - d. List of all disabled points.
 - e. List of all points currently locked out.
 - f. List of user accounts and password access levels.
 - g. List of weekly schedules.
 - h. List of holiday programming.
 - i. List of limits and dead bands.
 - j. Custom reports.
 - k. System diagnostic reports, including, list of digital controllers on the network.
 - 1. List of programs.
- 17. ASHRAE Standard 147 Report: Provide a daily report that shows the operating condition of each chiller as recommended by ASHRAE Standard 147. At a minimum, this report shall include:
 - a. Chilled water (or other secondary coolant) inlet and outlet temperature
 - b. Chilled water (or other secondary coolant) flow
 - c. Chilled water (or other secondary coolant) inlet and outlet pressures
 - d. Evaporator refrigerant pressure and temperature
 - e. Condenser refrigerant pressure and liquid temperature
 - f. Condenser water inlet and outlet temperatures
 - g. Condenser water flow
 - h. Refrigerant levels
 - i. Oil pressure and temperature
 - j. Oil level
 - k. Compressor refrigerant discharge temperature
 - 1. Compressor refrigerant suction temperature

- m. Addition of refrigerant
- n. Addition of oil
- o. Vibration levels or observation that vibration is not excessive
- p. Motor amperes per phase
- q. Motor volts per phase
- r. PPM refrigerant monitor level
- s. Purge exhaust time or discharge count
- t. Ambient temperature (dry-bulb and wet-bulb)
- u. Date and time logged
- 18. Electrical, Gas, and Weather Reports
 - a. Electrical Meter Report: Provide a monthly report showing the daily electrical consumption and peak electrical demand with time and date stamp for each building meter.
 - b. Provide an annual (12-month) summary report showing the monthly electrical consumption and peak demand with time and date stamp for each meter.
 - c. Gas Meter Report: Provide a monthly report showing the daily natural gas consumption for each meter. Provide an annual (12month) report that shows the monthly consumption for each meter.
 - d. Weather Data Report: Provide a monthly report showing the daily minimum, maximum, and average outdoor air temperature, as well as the number of heating and cooling degree-days for each day. Provide an annual (12-month) report showing the minimum, maximum, and average outdoor air temperature for the month, as well as the number of heating and cooling degree-days for the month.
- 19. Scheduling and Override:
 - a. Provide override access through menu selection from the graphical interface and through a function key.
 - b. Provide a calendar type format for time-of-day scheduling and overrides of building control systems. Schedules reside in the ECC. The digital controllers shall ensure equipment time scheduling when the ECC is off-line. The ECC shall not be required to execute time scheduling. Provide the following spreadsheet graphics as a minimum:
 - 1) Weekly schedules.
 - 2) Zone schedules, minimum of 100 zones.
 - 3) Scheduling up to 365 days in advance.
 - 4) Scheduled reports to print at workstation.

- 20. Collection and Analysis of Historical Data:
 - a. Provide trending capabilities that will allow the operator to monitor and store records of system activity over an extended period of time. Points may be trended automatically on time based intervals or change of value, both of which shall be user definable. The trend interval could be five (5) minutes to 120 hours. Trend data may be stored on hard disk for future diagnostic and reporting. Additionally trend data may be archived to network drives or removable disk media for off-site retrieval.
 - b. Reports may be customized to include individual points or predefined groups of at least six points. Provide additional functionality to allow pre-defined groups of up to 250 trended points to be easily accessible by other industry standard word processing and spreadsheet packages. The reports shall be time and date stamped and shall contain a report title and the name of the facility.
 - c. System shall have the set up to generate spreadsheet reports to track energy usage and cost based on weekly or monthly interval, equipment run times, equipment efficiency, and/or building environmental conditions.
 - d. Provide additional functionality that will allow the operator to view real time trend data on trend graph displays. A minimum of 20 points may be graphed regardless of whether they have been predefined for trending. In addition, the user may pause the graph and take snapshots of the screens to be stored on the workstation disk for future reference and trend analysis. Exact point values may be viewed and the graph may be printed. Operator shall be able to command points directly on the trend plot by double clicking on the point.
 - 21. Alarm Management:
 - a. Alarm routing shall allow the operator to send alarm notification to selected printers or operator workstation based on time of day, alarm severity, or point type.
 - b. Alarm notification shall be provided via two alarm icons, to distinguish between routine, maintenance type alarms and critical alarms. The critical alarms shall display on the screen at the time of its occurrence, while others shall display by clicking on their icon.

- c. Alarm display shall list the alarms with highest priority at the top of the display. The alarm display shall provide selector buttons for display of the associated point graphic and message in English language. The operator shall be able to sort out the alarms.
- d. Alarm messages shall be customized for each point to display detailed instructions to the operator regarding actions to take in the event of an alarm.
- e. An operator with proper security level access may acknowledge and clear the alarm. All that have not been cleared shall be archived at workstation disk.
- 22. Remote Communications: The system shall have the ability to dial out in the event of an alarm. Receivers shall include operator workstations, e-mail addresses, and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself.
- 23. System Configuration:
 - a. Network control strategies shall not be restricted to a single digital controller, but shall be able to include data from all other network devices to allow the development of global control strategies.
 - b. Provide automatic backup and restore of all digital controller databases on the workstation hard disk. In addition to all backup data, all databases shall be performed while the workstation is on-line without disturbing other system operations.

2.5 PORTABLE OPERATOR'S TERMINAL (POT)

- A. Provide a portable operator's terminal (POT) that shall be capable of accessing all system data. POT may be connected to any point on the system network or may be connected directly to any controller for programming, setup, and troubleshooting. POT shall communicate using BACnet protocol. POT may be connected to any point on the system network or it may be connected directly to controllers using the BACnet PTP (Point-To-Point) Data Link/ Physical layer protocol. The terminal shall use the Read (Initiate) and Write (Execute) BACnet Services. POT shall be an IBM-compatible notebook-style PC including all software and hardware required.
- B. Hardware: POT shall conform to the BACnet Advanced Workstation (B-AWS) Profile and shall be BTL-Listed as a B-AWS device.

- 1. POT shall be commercial standard with supporting 32- or 64-bit hardware (as limited by the direct-digital control system software) and software enterprise server. Internet Explorer v6.0 SP1 or higher, Windows Script Hosting version 5.6 or higher, Windows Message Queuing, Windows Internet Information Services (IIS) v5.0 or higher, minimum 2.8 GHz processor, minimum 500 GB 7200 rpm SATA hard drive with 16 MB cache, minimum 2GB DDR3 SDRAM (minimum 1333 Mhz) memory, 512 MB video card, minimum 16 inch (diagonal) screen, 10-100-1000 Base-TX Ethernet NIC with an RJ45 connector or a 100Base-FX Ethernet NIC with an SC/ST connector, 56,600 bps modem, an ASCII RS-232 interface, and a 16 speed high density DVD-RW+/- optical drive.
- C. Software: POT shall include software equal to the software on the ECC.

2.6 BACNET PROTOCOL ANALYZER

A. For ease of troubleshooting and maintenance, provide a BACnet protocol analyzer. Provide its associated fittings, cables and appurtenances, for connection to the communications network. The BACnet protocol analyzer shall be able to, at a minimum: capture and store to a file all data traffic on all network levels; measure bandwidth usage; filter out (ignore) selected traffic.

2.7 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building

B. Device Instances

1. BACnet allows 4194305 unique device instances per BACnet internet
work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where

a. FFF and N are as above and

b. DD = 00-99, this allows up to 100 devices per network.

- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.8 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available of the Devices through links in the BTL website.
 - 1. BACnet Building Controllers, historically referred to as NACs, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed

as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.

- BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile, and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
- BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile, and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile, and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile, and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.9 CONTROLLERS

- A.General. Provide an adequate number of BTL-Listed B-BC building controllers and an adequate number of BTL-Listed B-AAC advanced application controllers to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. The controller shall have sufficient memory to support its operating system, database, and programming requirements.
 - The building controller shall share data with the ECC and the other networked building controllers. The advanced application controller shall share data with its building controller and the other networked advanced application controllers.
 - 3. The operating system of the controller shall manage the input and output communication signals to allow distributed controllers to share real and virtual object information and allow for central monitoring and alarms.
 - 4. Controllers that perform scheduling shall have a real-time clock.
 - 5. The controller shall continually check the status of its processor and memory circuits. If an abnormal operation is detected, the controller shall:
 - a. assume a predetermined failure mode, and

- b. generate an alarm notification.
- 6. The controller shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute and Initiate) and Write (Execute and Initiate) Property services.
- 7. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. The controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal.
- 8. Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
- 9. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 10. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 11. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.

- a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
- Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of ASC power consumption and shall be of the fused or current limiting type.
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in

output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.

SPEC WRITER NOTE: Edit out the following programs that are not applicable to the project. Add new programs to the list, if required.

a. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- b.Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- c.Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.10 SPECIAL CONTROLLERS

- A. Laboratory rooms and the hoods in those rooms shall be controlled to allow for a constant flow of conditioned air into the room, general exhaust from the room, and exhaust through the hood while maintaining proper space pressurization.
- B. Room Differential Pressure Controller: The differential pressure in laboratory rooms shall be maintained by controlling the quantity of air exhausted from or supplied to the room. A sensor-controller shall measure and control the velocity of air flowing into or out of the room through a sampling tube installed in the wall separating the room from the adjacent space, and display the value on its monitor. The sensor-controller shall meet the following as a minimum:

 Operating range: -0.25 to +0.25 inches of water column

- 2. Resolution: 5 percent of reading
- 3. Accuracy: +/- 10 percent of reading +/- 0.005 inches of water column
- 4. Analog output: 0-10 VDC or 4-20 ma
- 5. Operating temperature range: 32°F-120°F

2.11 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - c. Space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - 2) Psychiatric patient room sensor: sensor shall be flush with wall, shall not include an override switch, numerical temperature display on sensor cover, shall not include a communication port and shall not allow in-space User set-point adjustment. Setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Provide a stainless steel cover plate with an insulated back and security screws.

- d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
- e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
- f. Wire: Twisted, shielded-pair cable.
- g. Output Signal: 4-20 ma.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. 4-20 ma continuous output signal.
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 ma output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- E. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.12 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.

- Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00.

Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.13 THERMOSTATS AND HUMIDISTATS

- A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have // polished or brushed aluminum // satin chrome // manufacturer's recommendation // finish, setpoint range and temperature display and external adjustment:
 - 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.14 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
 - Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
 - 4. Bearing shall be nylon, bronze sleeve or ball type.
 - 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
 - Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.

- Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
- Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
- 5. Flow characteristics:
 - a. Three way modulating valves shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating values shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.
- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel.
 Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow

for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.

a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.

2.15 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.

C. Air Flow Measuring Station -- Electronic Thermal Type:

- 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be

encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.

- 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
 - b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
 - c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered // 120 VAC // 24 VAC // and shall have the capability to transmit signals of 0-5 VDC, 0-10 VCD or 4-20 ma for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
 - c. Electronics Panel shall have the capability to digitally display airflow in // CFM // LPS // and temperature in // degrees F // degrees C // . The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal may be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
 - d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.

- 4) Temperature analog output scaling from -45° C to 70° C (-50° F to 160° F).
- 5) Analog output resolution (full scale output) of 0.025%.
- e. All readings shall be in // I.P. // S.I. // units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The probe sensor density shall be as follows:

Probe Sensor Density	
Area (sq.ft.)	Qty. Sensors
<=1	2
>1 to <4	4
4 to <8	6
8 to <12	8
12 to <16	12
>=16	16

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the true input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - For systems with multiple major trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and CU shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus

integral (PI) (automatic reset) and where required shall also include derivative mode.

- 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually-reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal and static pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.
- F. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
 - 2. The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to Resident Engineer for resolution before proceeding for installation.

- Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
- Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
- Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plum.
- A. Electrical Wiring Installation:
 - All wiring cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Section 26 05 21. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, Communications Horizontal Cabling.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.

- a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
- b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.

- e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
- f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.

- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
 - Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc.
 Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is

to perform a complete validation of all aspects of the controls and instrumentation system.

- B. Validation
 - 1. Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.
 - 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect or VA's representative on random samples of equipment as dictated by the Architect or VA's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.
 - 3. Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.

- b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
- c. Demonstrate the software ability to edit the control program offline.
- d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
- e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate EMS performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration
 with database.

- Demonstrate on-line user guide, and help function and mail facility.
- j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.
- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:1. Chilled water, heating hot water, and drain piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC//.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- H. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

B. American Society of Mechanical Engineers (ASME):

B1.20.1-2013.....Pipe Threads, General Purpose (Inch)

B16.3-2011......Malleable Iron Threaded Fittings: Classes 150 and 300

B16.4-2011.....Gray Iron Threaded Fittings: (Classes 125 and 250)

B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2012.....Factory Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded

02-01-20

B16.18-2012.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.24-2011.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.39-2014.....Malleable Iron Threaded Pipe Unions: Classes 150, 250, and 300 B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code: BPVC Section VIII-2015.. Rules for Construction of Pressure Vessels C. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2015.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-2004 (R2014).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-2014e1.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A307-2014.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A536-1984 (R2014).....Standard Specification for Ductile Iron Castings B62-2015..... Standard Specification for Composition Bronze or Ounce Metal Castings B88-2014.....Standard Specification for Seamless Copper Water Tube

F439-2013.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-2015.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 D. American Welding Society (AWS): B2.1/B2.1M-2014.....Standard for Welding Procedure and Performance Specification E. Expansion Joint Manufacturer's Association, Inc. (EJMA): EJMA.....Expansion Joint Manufacturer's Association Standards, Tenth Edition F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-2011.....Butterfly Valves SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2011.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-2010.....Gray Iron and Ductile Iron In-line, Spring-Loaded, Center-Guided Check Valves G. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2007....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights,

materials, applications, standard compliance, model numbers, size, and capacity.

- 1. Pipe and equipment supports.
- 2. Pipe and tubing, with specification, class or type, and schedule.
- Pipe fittings, including miscellaneous adapters and special fittings.
- 4. Flanges, gaskets and bolting.
- 5. Couplings and fittings.
- 6. Valves of all types.
- 7. Strainers.
- 8. Flexible connectors for water service.
- 9. Pipe alignment guides.
- 10. Expansion joints.
- 11. Expansion compensators.
- 12. All specified hydronic system components.
- 13. Water flow measuring devices.
- 14. Gauges.
- 15. Thermometers and test wells.
- D. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.

3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one-year old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Heating Hot Water, and Glycol-Water and Vent Piping:1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn.
 - 3. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall

ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.

- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves //or dielectric nipples// may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for values 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at //2758 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
- E. Water Flow Balancing Valves: For flow regulation and shut-off.Valves shall be line size rather than reduced to control valve size.
- F. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure

fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:

- Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
- 2. Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
- 3. Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
- Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.

2.8 STRAINERS

- A. Y Type.
 - Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.

2.9 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.10 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve

cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.

- B. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.11 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two-degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - Chilled Water and Glycol-Water: 0 to 38 degrees C (32 to 100 degrees F).
 - 2. Hot Water and Glycol-Water: 38 to 93 degrees C (100 to 200 degrees F).

2.12 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment

and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly values with the value open as recommended by the manufacturer to prevent binding of the disc in the seat.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - Water treatment pot feeders and condenser water treatment systems.

- 2. Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.4 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.
- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where deadend debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.6 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. Adjust red set hand on pressure gauges to normal working pressure.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3.Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. //During this period perform monthly tests of the cooling tower for Legionella pneumophila and submit reports stating Legionella bacteria count per millimeter. These tests shall be conducted in a certified laboratory and not by a technician in the field. Minimum service during construction/start-up shall be 6 hours.
- E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Chemical treatment for open loop systems, including installation and operating instructions.
 - 4. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2008.....National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02 (2008) ... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.
- C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.

- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.

2.3 GLYCOL-WATER SYSTEM

A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- D. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.

- E. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- F. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- G. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air and return air.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- D. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- E. Air Flow Terminal Units: Section 23 36 00, AIR TERMINAL UNITS.
- F. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.

E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - 7. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.
 - 10 Details and design analysis of alternate or optional duct systems.
 - 11 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11 - Common Work Results for HVAC and Steam Generation.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society of Civil Engineers (ASCE): ASCE7-05......Minimum Design Loads for Buildings and Other Structures C. American Society for Testing and Materials (ASTM): A167-99(2009) Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-09.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-09a.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-07.....for Aluminum and Aluminum-Alloy Sheet and Plate C1071-05e1.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material) E84-09a.....Standard Test Method for Surface Burning Characteristics of Building Materials D. National Fire Protection Association (NFPA): 90A-09.....Standard for the Installation of Air Conditioning and Ventilating Systems 96-08..... Control and Fire Protection of Commercial Cooking Operations E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 2nd Edition - 2005.....HVAC Duct Construction Standards, Metal and Flexible 1st Edition - 1985.....HVAC Air Duct Leakage Test Manual 6th Edition - 2003.....Fibrous Glass Duct Construction Standards F. Underwriters Laboratories, Inc. (UL): 181-08......Factory-Made Air Ducts and Air Connectors 555-06Standard for Fire Dampers 555S-06Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- C.Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding

with corrosion resistant aluminum paint or galvanized repair compound.

- Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
- Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.
- E. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- F. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- G. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in

insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.

- For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
- For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.5 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.6 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.
 - 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
 - 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
 - 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.

- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.
- E. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- F. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- G. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- H. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. //Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the Resident Engineer on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.
- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

A. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:

1. Diffusers, registers, grilles and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-84.....Certification, Rating, and Test Manual 4th

Edition

- C. American Society of Civil Engineers (ASCE):
 - ASCE7-05......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):

A167-99 (2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip

B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

E. National Fire Protection Association (NFPA):

90A-09.....Standard for the Installation of Air

Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL): 181-08.....UL Standard for Safety Factory-Made Air Ducts and Connectors

PART 2 - PRODUCTS

2.1 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Aluminum
 - 2. Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, louver, fully adjustable pattern: Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Louver face type: Square or rectangular, removable core for 1, 2,3, or 4 way directional pattern. Provide equalizing or control grid and opposed blade damper.
- D. Return and Exhaust Registers and Grilles:
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 degrees, approximately 30 mm (1-1/4 inch) margin.
 - Egg Crate Grilles: Aluminum or Painted Steel 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION $% \left({{\left[{{{\rm{ST}}} \right]}} \right)$

- - - E N D - - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- D. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render

satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its

entirety to ensure compliance with safety requirements and approved work plan.

- 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
- 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings: 1. Nominal system voltage.

- Equipment/bus name, date prepared, and manufacturer name and address.
- 3. Arc flash boundary.
- 4. Available arc flash incident energy and the corresponding working distance.
- 5. Minimum arc rating of clothing.
- 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.

- 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.

b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only. B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-14..... Thermoset-Insulated Wires and Cables 83-14..... Thermoplastic-Insulated Wires and Cables 467-13.....Grounding and Bonding Equipment 486A-486B-13.....Wire Connectors 486C-13.....Splicing Wire Connectors 486D-15.....Sealed Wire Connector Systems 486E-15......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and

Branch Circuit Cables

514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:

- 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
- 2. No. 8 AWG and larger: Stranded.
- 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
- 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

5. Conductors shall be color-coded as follows:

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.

- 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
- The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.

B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pullboxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with non-metallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.

K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.

SPEC WRITER NOTE: Each separate system shall have a dedicated power supply circuit.

B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.

- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.8 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COTR.

3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 - B1-13..... Standard Specification for Hard-Drawn Copper Wire

B3-13.....Standard Specification for Soft or Annealed Copper Wire

- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- - Ground Impedance, and Earth Surface Potentials
 - of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)

70E-15.....National Electrical Safety Code

- 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL):

44-14Thermoset-Insulated Wires and Cables 83-14Thermoplastic-Insulated Wires and Cables 467-13Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No.10 AWG and smaller shall be bare solid copper. Bonding conductors

shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.

- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
 - Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- H. Raised Floors: Provide bonding for all raised floor components as shown on the drawings.
- I. Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together

with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:

- a. Size and location of main feeders.
- b. Size and location of panels and pull-boxes.
- c. Layout of required conduit penetrations through structural elements.
- d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of

Cold-Formed Steel Structural Members

C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13.....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing)

01-01-18

	FB2.20-14Selection and Installation Guidelines for
	Fittings for use with Flexible Electrical
	Conduit and Cable
	TC-2-13Electrical Polyvinyl Chloride (PVC) Tubing and
	Conduit
	TC-3-13PVC Fittings for Use with Rigid PVC Conduit and
	Tubing
D.	National Fire Protection Association (NFPA):
	70-17National Electrical Code (NEC)
Е.	Underwriters Laboratories, Inc. (UL):
	1-05Flexible Metal Conduit
	5-16 and Fittings
	6-07 Steel Rigid Metal Conduit - Steel
	50-15 Enclosures for Electrical Equipment
	360-13Ciquid-Tight Flexible Steel Conduit
	467-13 Grounding and Bonding Equipment
	514A-13Metallic Outlet Boxes
	514B-12Conduit, Tubing, and Cable Fittings
	514C-14Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
	651-11Schedule 40 and 80 Rigid PVC Conduit and
	Fittings
	651A-11
	Conduit
	797-07Electrical Metallic Tubing
	1242-14Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 13 mm (0.5inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.

- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding

- d. Indent-type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 5. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 6. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.

- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:

- In complete mechanically and electrically continuous runs before pulling in cables or wires.
- Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.

 Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 3. Connect recessed lighting fixtures to conduit runs with maximum 1.8 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at

least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT.Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.7 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.8 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.

- 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.

- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 36 WIREWAYS FOR RADIOLOGY EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies furnishing, installing, and connecting of wireway systems for radiology equipment.
- B. Radiology equipment and cables will be furnished by the Government.

1.2 RELATED WORK

- A. Section 13 49 00, RADIATION PROTECTION: Requirements for lead radiation shielding.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- D. Section 26 05 39, UNDERFLOOR RACEWAYS FOR ELECTRICAL SYSTEMS: Underfloor raceway systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Provide manufacturer's cut sheets for all components of wireway system. Clearly present sufficient information to demonstrate compliance with drawings and specifications.
 - b. Provide drawings showing locations and layout of complete wireway system. Show size and location of wireway components, feeders, panels and pullboxes, ductwork and equipment provided by other trades, and radiology equipment items. Carefully coordinate with radiology equipment manufacturer's drawings.
 - c. Shop drawing approval is required by the radiology equipment manufacturer's technical representative prior to fabrication and installation of the wireway system.

- Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - a. Certification that the materials are in accordance with drawings and specifications.
 - b. Certification that the complete wireway system has been properly installed.
 - c. Certification by the contractor that the radiology equipment manufacturer's representative has approved the complete wireway system.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-18.....Health Care Facilities
- C. Underwriters Laboratories, Inc. (UL): 884-16Underfloor Raceways and Fittings

PART 2 - PRODUCTS

2.1 GENERAL

- A. Factory fabricate, assemble, and fit.
- B. Material shall be steel.
- C. Size shall beas required per the Radiology Equipment vendor's installation instructions and site-specific drawings.
- D. Coordinate dimensions of the straight lengths, elbows, junction boxes, and other components.
- E. Hot-dipped galvanized steel connections joiner plates on floor and ceiling cable wireway.
- F. Wireway Bushings:
 - 1. Cast aluminum.
 - 2. Install where required by the radiology equipment manufacturer.
 - 3. Split ring-type bushed nipples for cables.
 - 4. Smooth edges of openings in the wireways for the bushings.
- G. Provide chase nipples, dividers, elbows, tees, conduit entry fittings, and other accessories, fittings, and components, to render a complete wireway system installation.

- H. Protect cables at their egress from the wireways by mechanically securing them with fittings to the wireways.
- I. Provide 45 degrees sweep elbow at every 90 degrees change in direction.Elbows shall have partitions.
- J. Where gasketed openings are required in floor wall or ceiling wireways, provide split covers with fastening devices on both sides of the cover.

2.2 FLOOR WIREWAY

- A. Wireways recessed in the floors or surface-mounted on the floors shall be watertight in accordance with UL 884.
- B. Sides and bottoms shall be 2 mm (0.0747-inch), minimum thickness.
- C. Covers shall be 6 mm (0.25-inch), minimum thickness. Covers shall be bare, carpet-insert, or tile-insert to match the floor covering.
- D. Wireway covers shall be fully gasketed with screw fasteners.

2.3 WALL WIREWAY

- A. Wall wireway shall be recessed in walls or surface-mounted on walls.
- B. Provide flange-mounted covers with screw fasteners for flush-mounted installation.
- C. Provide surface-mounted covers with screw fasteners for surface-mounted installations.
- D. Sides, bottoms, and covers shall be 2 mm (0.0747-inch) minimum thickness.

2.4 CEILING WIREWAY

- A. Wireway shall be mounted above finished ceiling.
- B. Provide covers with screw fasteners.
- C. Sides, bottoms, and covers shall be 2 mm (0.0747-inch) minimum thickness.

PART 3 - EXECUTION

3.1 SYSTEM INSTALLATION

- A. Provide wireways, barriers, boxes, and related components for a complete installation of the wireway system shown on drawings as required by the NEC, NFPA 99, and the radiology equipment manufacturer's shop drawings. Government will furnish the services of a radiology equipment manufacturer's representative to technically supervise the installation, connection, adjustment, and testing of the radiology equipment.
- B. Coordinate the wireway system with the floor, wall, and ceiling structural supports for the radiology equipment, locations of the

radiology equipment and its auxiliaries, and with the lead shielding installed in walls, floor and ceiling.

- Prior to fabrication of the raceway system, obtain approval of wireway system shop drawings.
- Install wireway system with a minimum of bends in the shortest practical distance considering equipment and building layout. Individual wireway runs shall not exceed the radiology equipment manufacturer's specified maximum distances.
- 3. Wireways, boxes, and related components recessed into or penetrating through lead-shielded walls, floors, and ceilings:
 - a. Line or clad surfaces of the boxes and related components with the equivalent thickness of lead shielding installed for the room, except the removable cover.
 - b. Line or clad wireway surfaces with the equivalent thickness of lead shielding shown for the room.
 - c. Overlap the lead shielding on wireways, boxes, and related components with the lead shielding for walls, floors, and ceilings by not less than 25 mm (1 inch).
 - d. Arrange the installations such that radiation within the rooms will not penetrate the wireway paths through the lead-shielded walls, floors, and ceilings.
- C. Ceiling Wireway shall be supported with steel channels and hanger rods anchored from the structural slab above and as shown on structural drawings.
- D. Equipment Grounding Conductors:
 - Install a continuous equipment grounding conductor in each wireway, from the source electrical equipment to the load served. The conductor shall be green insulated copper and sized as shown on drawings.
 - 2. Bond all of the equipment grounding conductors in each enclosure.
 - 3. Trough-type wireway sections shall be made electrically continuous by short bonding jumpers between adjacent sections. Jumpers shall be exothermically bonded to each raceway section. Jumpers shall be sized per radiology equipment manufacturer's requirements.
 - Provide a minimum of one 3 M (10 feet) equipment grounding conductor pigtail at each box or junction point where an item of equipment is connected.

- E. Where conductors of different types share a common wireway compartment, install protective barriers between the power cables, the power-limited conductors, and medical systems conductors.
- F. Install cables and conductors. Provide 3 M (10 feet) pigtails for cables and conductors at all connection points to radiology equipment. Cables and conductors shall be tagged and identified at each end.
- G. Fit and preserve fill-in pieces of floor covering for the wireways. Install the fill-in pieces after the cables and conductors have been installed in the wireways.
- H. In existing facilities where it is not feasible to install a complete wireway system as required by radiology equipment manufacturer:
 - Replace certain sections of the wireway system with metal conduit runs. Quantity, size, and location of the conduit runs shall be approved by the radiology equipment manufacturer and COR.
 - Installation of conduit runs shall meet requirements of Section 26
 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
 - Holes in floors, walls, and ceilings for conduit penetrations shall be lined with equivalent thickness of curved or offset lead sleeves, caulked and flanged to provide effective radiation shielding.

- - - E N D - - -

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Interface of lighting controls with HVAC control systems.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- F. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- G. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA):
 - C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
 - ICS-6-16.....Standard for Industrial Controls and Systems Enclosures
- C. National Fire Protection Association (NFPA):

70-17..... National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (UL):
 - 20-10.....Standard for General-Use Snap Switches
 - 98-16..... Enclosed and Dead-Front Switches
 - 773-16.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

773A-16.....Nonindustrial Photoelectric Switches for Lighting Control 916-15....Standard for Energy Management Equipment Systems 917-06.....Clock Operated Switches 924-16....Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.6 SKYLIGHT PHOTOELECTRIC SENSORS

- A. Solid-state, light-level sensor; housed in a threaded, plastic fitting for mounting under skylight; with separate relay unit.
 - Sensor Output: Contacts rated to operate the associated relay, complying with UL 773A. Sensor shall be powered from the relay unit.
 - 2. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 3. Monitoring Range: 10,800 to 108,000 lx (1000 to 10,000 fc), with an adjustment for turn-on and turn-off levels.
 - 4. Time Delay: Adjustable from 5 to 300 seconds, with deadband adjustment.
 - 5. Indicator: Two LEDs to indicate the beginning of on-off cycles.

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.

- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.2 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data

sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
- 2) Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - PB 1-11.....Panelboards
 - 250-14.....Enclosures for Electrical Equipment (1,000V

Maximum)

- D. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC)
 - 70E-18.....Standard for Electrical Safety in the Workplace
- E. Underwriters Laboratories, Inc. (UL):
 - 50-15..... Enclosures for Electrical Equipment
 - 67-09.....Panelboards
 - 489-16..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.

- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.

5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

- 1. Hinged "door-in-door" type.
- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x..
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - 7. An operating handle which indicates closed, tripped, and open positions.

- 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.

f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015).....General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
 - 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16.....Surface Metal Raceways and Fittings
 - 20-10.....General-Use Snap Switches
 - 231-16.....Power Outlets
 - 467-13.....Grounding and Bonding Equipment
 - 498-17.....Attachment Plugs and Receptacles
 - 943-16.....Ground-Fault Circuit-Interrupters
 - 1449-14.....Surge Protective Devices

1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivoryin color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to

the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivoryin color unless otherwise specified or shown on the drawings.
 - 1. Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control shall be ivoryin color unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the NEC and as shown as on the drawings.

- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.

- c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- d. Test GFCI receptacles.
- Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-12.....Low Voltage Cartridge Fuses

KS 1-13......Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)

D. National Fire Protection Association (NFPA):

70-17.....National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL):

98-16..... Enclosed and Dead-Front Switches

- 248 1-11.....Low Voltage Fuses
- 489-13..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Feeders: Class RK1, fast acting/.

2.2 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.

- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- C. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA): LM-79-08.....Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-15.....Measuring Lumen Maintenance of LED Light

Sources

LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995).....Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15..... International Building Code H. National Electrical Manufacturer's Association (NEMA): C78.376-14.....Chromaticity of Fluorescent Lamps C82.1-04(R2015)..... Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02(R2016).....Method of Measurement of Fluorescent Lamp Ballasts C82.4-17.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-17..... Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL 9-11.....Dimming of T8 Fluorescent Lighting Systems SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17....Lampholders 542-05.....Fluorescent Lamp Starters Locations 924-16..... Emergency Lighting and Power Equipment 935-01......Fluorescent-Lamp Ballasts 1029-94......High-Intensity-Discharge Lamp Ballasts 1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts 1598-08....Luminaires 1574-04.....Track Lighting Systems 2108-15.....Low-Voltage Lighting Systems

8750-15.....Light Emitting Diode (LED) Light Sources for

Use in Lighting Products

SPEC WRITER NOTE: Delete between // ---- // if not applicable to project. Also delete any other item or paragraph not applicable to the section and renumber the paragraphs.

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- E. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- F. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish

shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.

- Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- G. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.

2.2 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - 4. LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Troffers:
 - 1. LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.//
- E. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- F. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- H. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.

- b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
- 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COTR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

А	Ampere	
AC	Alternating Current	
AE	Architect and Engineer	
AFF	Above Finished Floor	
AHJ	Authority Having Jurisdiction	
ANSI	American National Standards Institute	
AWG	American Wire Gauge (refer to STP and UTP)	
AWS	Advanced Wireless Services	
BCT Bonding Conductor for Telecommunications (also		
	Telecommunications Bonding Conductor (TBC))	
BDA	Bi-Directional Amplifier	
BICSI	Building Industry Consulting Service International	
BIM	Building Information Modeling	
BOM	Bill of Materials	
BTU	British Thermal Units	
BUCR	Back-up Computer Room	
BTS	Base Transceiver Station	
CAD	AutoCAD	
CBOPC Community Based Out Patient Clinic		

CBC	Coupled Bonding Conductor	
CBOC	Community Based Out Patient Clinic (refer to CBOPC,	
	OPC, VAMC)	
CCS TIP's Cross Connection System (refer to VCCS and		
	HCCS)	
CFE	Contractor Furnished Equipment	
CFM	US Department of Veterans Affairs Office of	
	Construction and Facilities Management	
CFR	Consolidated Federal Regulations	
CIO	Communication Information Officer (Facility, VISN or	
	Region)	
Cm	Centimeters	
CO	Central Office	
COR	Contracting Officer Representative	
CPU	Central Processing Unit	
CSU	Customer Service Unit	
CUP	Conditional Use Permit(s) - Federal/GSA for VA	
dB	Decibel	
dBm	Decibel Measured	
dBmV	Decibel per milli-Volt	
DC	Direct Current	
DEA	United States Drug Enforcement Administration	
DSU	Data Service Unit	
EBC	Equipment Bonding Conductor	
ECC	Engineering Control Center (refer to DCR, EMCR)	
EDGE	Enhanced Data (Rates) for GSM Evolution	
EDM	Electrical Design Manual	
EMCR	Emergency Management Control Room (refer to DCR, ECC)	
EMI	Electromagnetic Interference (refer to RFI)	
EMS	Emergency Medical Service	
EMT	Electrical Metallic Tubing or thin wall conduit	
ENTR Utilities Entrance Location (refer to DEMARC,		
	LEC)	

EPBX	Electronic Digital Private Branch Exchange	
ESR	Vendor's Engineering Service Report	
FA	Fire Alarm	
FAR	Federal Acquisition Regulations in Chapter 1 of Titl	
	48 of Code of Federal Regulations	
FMS	VA's Headquarters or Medical Center Facility's	
	Management Service	
FR	Frequency (refer to RF)	
FTS	Federal Telephone Service	
GFE	Government Furnished Equipment	
GPS	Global Positioning System	
GRC	Galvanized Rigid Metal Conduit	
GSM	Global System (Station) for Mobile	
HCCS	TIP's Horizontal Cross Connection System (refer to	
	CCS & VCCS)	
HDPE	High Density Polyethylene Conduit	
HDTV	Advanced Television Standards Committee High-	
	Definition Digital Television	
HEC	Head End Cabinets(refer to HEIC, PA)	
HEIC	Head End Interface Cabinets(refer to HEC, PA)	
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)	
HSPA	High Speed Packet Access	
HZ	Hertz	
IBT	Intersystem Bonding Termination (NEC 250.94)	
IC	Intercom	
ICRA	Infectious Control Risk Assessment	
IDEN	Integrated Digital Enhanced Network	
IDC	Insulation Displacement Contact	
IDF	Intermediate Distribution Frame	
ILSM	Interim Life Safety Measures	
IMC	Rigid Intermediate Steel Conduit	
IRM	Department of Veterans Affairs Office of Information	
	Resources Management	

LEDLight Emitting DiodeLEDLight Emitting DiodeLMRLand Mobile RadioLTELong Term Evolution, or 4G Standard for Wireless Data Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NRCNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse Stations	ISDN	Integrated Services Digital Network		
LANLocal Area NetworkLBSLocation Based Services, Leased Based SystemsLECLocal Exchange Carrier (refer to DEMARC, PBX & POTS)LEDLight Emitting DiodeLMRLand Mobile RadioLTELong Term Evolution, or 4G Standard for Wireless Data Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCRMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10° Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NRCNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	ISM	Industrial, Scientific, Medical		
LBS Location Based Services, Leased Based Systems LEC Local Exchange Carrier (refer to DEMARC, PBX & POTS) LED Light Emitting Diode LMR Land Mobile Radio LTE Long Term Evolution, or 4G Standard for Wireless Data Communications Technology M Meter MAS Medical Administration Service MATV Master Antenna Television MCR Main Computer Room MCCR Main Computer Operators Room MDF Main Distribution Frame MH Manholes or Maintenance Holes MHz Megaherts (10 ⁶ Hz) mm Millimeter MOU Memorandum of Understanding MW Microwave (RF Band, Equipment or Services) NID Network Interface Device (refer to DEMARC) NEC National Electric Code NOR Network Operations Room NRTL OSHA Nationally Recognized Testing Laboratory NS Nurse Stations NTIA U.S. Department of Commerce National Telecommunications and Information Administration OEM Original Equipment Manufacturer OI&T Office of Information and Technology OPC VA'S Outpatient Clinic (refer to CEOC, VAMC) OSH Department of Veterans Affairs Office of Occupational	IWS	Intra-Building Wireless System		
LECLocal Exchange Carrier (refer to DEMARC, PBX & POTS)LEDLight Emitting DiodeLMRLand Mobile RadioLTELong Term Evolution, or 4G Standard for Wireless Data Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10° Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	LAN	Local Area Network		
LEDLight Emitting DiodeLMRLand Mobile RadioLTELong Term Evolution, or 4G Standard for Wireless Data Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NRECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	LBS			
LMRLand Mobile RadioLTELong Term Evolution, or 4G Standard for Wireless Data Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NRRNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CEOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	LEC			
LTELong Term Evolution, or 4G Standard for Wireless Data Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NRCNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	LED			
Communications TechnologyMMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCRMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10° Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	LMR			
MMeterMASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	LTE	Long Term Evolution, or 4G Standard for Wireless Data		
MASMedical Administration ServiceMATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational		Communications Technology		
MATVMaster Antenna TelevisionMCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	М	Meter		
MCRMain Computer RoomMCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10° Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MAS	Medical Administration Service		
MCORMain Computer Operators RoomMDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MATV	Master Antenna Television		
MDFMain Distribution FrameMHManholes or Maintenance HolesMHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MCR	Main Computer Room		
MHManholes or Maintenance HolesMHzMegaherts (106 Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MCOR	Main Computer Operators Room		
MHzMegaherts (10 ⁶ Hz)mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MDF	Main Distribution Frame		
mmMillimeterMOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MH	Manholes or Maintenance Holes		
MOUMemorandum of UnderstandingMWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MHz	Megaherts (10 ⁶ Hz)		
MWMicrowave (RF Band, Equipment or Services)NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	mm	Millimeter		
NIDNetwork Interface Device (refer to DEMARC)NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MOU	Memorandum of Understanding		
NECNational Electric CodeNORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	MW	Microwave (RF Band, Equipment or Services)		
NORNetwork Operations RoomNRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	NID	Network Interface Device (refer to DEMARC)		
NRTLOSHA Nationally Recognized Testing LaboratoryNSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	NEC	National Electric Code		
NSNurse StationsNTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	NOR	Network Operations Room		
NTIAU.S. Department of Commerce National Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	NRTL	OSHA Nationally Recognized Testing Laboratory		
Telecommunications and Information AdministrationOEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	NS	Nurse Stations		
OEMOriginal Equipment ManufacturerOI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	NTIA U.S. Department of Commerce National			
OI&TOffice of Information and TechnologyOPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational		Telecommunications and Information Administration		
OPCVA's Outpatient Clinic (refer to CBOC, VAMC)OSHDepartment of Veterans Affairs Office of Occupational	OEM	Original Equipment Manufacturer		
OSH Department of Veterans Affairs Office of Occupational	OI&T	Office of Information and Technology		
	OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)		
Safety and Health	OSH	Department of Veterans Affairs Office of Occupational		
		Safety and Health		

OSHA	United States Department of Labor Occupational Safety	
	and Health Administration	
OTDR	Optical Time-Domain Reflectometer	
PA	Public Address System (refer to HE, HEIC, RPEC)	
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)	
PCR	Police Control Room (refer to SPCC, could be	
designated SCC)		
PCS	Personal Communications Service (refer to UPCS)	
PE	Professional Engineer	
PM	Project Manager	
PoE	Power over Ethernet	
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,	
	PBX)	
PSTN	Public Switched Telephone Network	
PSRAS	Public Safety Radio Amplification Systems	
PTS	Pay Telephone Station	
PVC	Poly-Vinyl Chloride	
PWR	Power (in Watts)	
RAN	Radio Access Network	
RBB	Rack Bonding Busbar	
RE	Resident Engineer or Senior Resident Engineer	
RF	Radio Frequency (refer to FR)	
RFI	Radio Frequency Interference (refer to EMI)	
RFID	RF Identification (Equipment, System or Personnel)	
RMC	Rigid Metal Conduit	
RMU	Rack Mounting Unit	
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,	
	PA)	
RTLS	Real Time Location Service or System	
RUS	Rural Utilities Service	
SCC	Security Control Console (refer to PCR, SPCC)	
SMCS	Spectrum Management and Communications Security	
	(COMSEC)	

SFO	Solicitation for Offers	
SME	Subject Matter Experts (refer to AHJ)	
SMR	Specialized Mobile Radio	
SMS	Security Management System	
SNMP	Simple Network Management Protocol	
SPCC	Security Police Control Center (refer to PCR, SMS)	
STP	Shielded Balanced Twisted Pair (refer to UTP)	
STR	Stacked Telecommunications Room	
TAC	VA's Technology Acquisition Center, Austin, Texas	
TCO	Telecommunications Outlet	
TER	Telephone Equipment Room	
TGB	Telecommunications Grounding Busbar (also Secondary	
	Bonding Busbar (SBB))	
TIP	Telecommunications Infrastructure Plant	
TMGB	Telecommunications Main Grounding Busbar (also	
	Primary Bonding Busbar (PBB))	
TMS	Traffic Management System	
TOR	Telephone Operators Room	
TP	Balanced Twisted Pair (refer to STP and UTP)	
TR	Telecommunications Room (refer to STR)	
TWP	Twisted Pair	
UHF	Ultra High Frequency (Radio)	
UMTS	Universal Mobile Telecommunications System	
UPCS	Unlicensed Personal Communications Service (refer to	
	PCS)	
UPS	Uninterruptible Power Supply	
USC	United States Code	
UTP Unshielded Balanced Twisted Pair (refer to TP and		
	STP)	
UV	Ultraviolet	
V	Volts	
VAAR	Veterans Affairs Acquisition Regulation	
VACO	Veterans Affairs Central Office	

VAMC	VA Medical Center (refer to CBOC, OPC, VACO)	
VCCS	TIP's Vertical Cross Connection System (refer to CCS	
	and HCCS)	
VHF	Very High Frequency (Radio)	
VISN	Veterans Integrated Services Network (refers to	
	geographical region)	
VSWR	Voltage Standing Wave Radio	
W	Watts	
WEB	World Electronic Broadcast	
WiMAX	Worldwide Interoperability (for MW Access)	
WI-FI	Wireless Fidelity	
WMTS	Wireless Medical Telemetry Service	
WSP	Wireless Service Providers	

B. Definitions:

- Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.

- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- 9. Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected

equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.

- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.

- 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
- 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to

http://www.cfm.va.gov/TIL/cPro.asp:

1. Federal Communications Commission, (FCC) CFR, Title 47:

- Part 15 Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions and Equipment Locations Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration Chapter XXIII National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book'- Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
- 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design RUS Bull 1751F-815 Electrical Protection of Outside Plants, RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4) RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2) RUS Bull 345-50 Trunk Carrier Systems (PE-60) RUS Bull 345-65 Shield Bonding Connectors (PE-65) RUS Bull 345-72 Filled Splice Closures (PE-74) RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80)

3.	US Department of Commerce/National Institute of Standards			
	Technology,(NIST):			
	FIPS PUB 1-1	Telecommunications Information Exchange		
	FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)		
		Circuit Terminating Equipment for operation		
		with Packet Switched Networks, or Between Two		
		DTEs, by Dedicated Circuit		
	FIPS PUB 140/2	Telecommunications Information Security		
		Algorithms		
	FIPS PUB 143	General Purpose 37 Position Interface between		
		DTE and Data Circuit Terminating Equipment		
	FIPS 160/2	Electronic Data Interchange (EDI),		
	FIPS 175	Federal Building Standard for		
		Telecommunications Pathway and Spaces		
	FIPS 191	Guideline for the Analysis of Local Area		
		Network Security		
	FIPS 197	Advanced Encryption Standard (AES)		
	FIPS 199	Standards for Security Categorization of		
		Federal Information and Information Systems		
4. US Department of Defense, (DoD):		ense, (DoD):		
	MIL-STD-188-110	Interoperability and Performance Standards for		
		Data Modems		
	MIL-STD-188-114	Electrical Characteristics of Digital Interface		
		Circuits		
	MIL-STD-188-115	Communications Timing and Synchronizations		
		Subsystems		
	MIL-C-28883	Advanced Narrowband Digital Voice Terminals		
	MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,		

- Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2) 5. US Department of Health and Human Services:
- The Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy, Security and Breach Notification Rules
- 6. US Department of Justice:2010 Americans with Disabilities Act Standards for Accessible Design (ADAAD).

- 7. US Department of Labor, (DoL) Public Law 426-62 CFR, Title 29, Part 1910, Chapter XVII - Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standards): Subpart 7 Approved NRTLs; obtain a copy at <u>https://www.osha.gov/dts/otpca/nrtl/nrtllist.ht</u> <u>ml</u> Subpart 35 Compliance with NFPA 101, Life Safety Code Subpart 36 Design and Construction Requirements for Exit Routes Subpart 268 Telecommunications
 - Subpart 305 Wiring Methods, Components, and Equipment for General Use Subpart 508 Americans with Disabilities Act Accessibility Guidelines; technical requirement for accessibility to buildings and facilities by
- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA): AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.

individuals with disabilities

- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.

- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.

C. NRTL Standards: Refer to https://www.osha.gov/lawsregs/regulations/standardnumber/1926

- 1. Canadian Standards Association (CSA); same tests as presented by UL
- Communications Certifications Laboratory (CEL); same tests as presented by UL.
- 3. Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
- 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components

96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests

	1685-2007	Vertical Tray Fire Protection and Smoke Release
		Test for Electrical and Fiber Optic Cables
	1861-2012	Communication Circuit Accessories
	1863-2013	Standard for Safety, communications Circuits
		Accessories
	1865-2007	Standard for Safety for Vertical-Tray Fire
		Protection and Smoke-Release Test for
		Electrical and Optical-Fiber Cables
	2024-2011	Standard for Optical Fiber Raceways
	2024-2014	Standard for Cable Routing Assemblies and
		Communications Raceways
	2196-2001	Standard for Test of Fire Resistive Cable
	60950-1 ed. 2-2014	Information Technology Equipment Safety
D. In	dustry Standards:	
1.	Advanced Television	Systems Committee (ATSC):
	A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
		Digital Television System
	A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
		RF/Transmission System Characteristics
	A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
		Service Multiplex and Transport System
		Characteristics
	A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
		2 Video System Characteristics
	A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
		Audio System Characteristics
	A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
		Enhanced AC-3 Audio System Characteristics
2.	American Institute o	f Architects (AIA): 2006 Guidelines for Design &
	Construction of Heal	th Care Facilities.
3.	American Society of	Mechanical Engineers (ASME):
	A17.1 (2013)	Safety Code for Elevators and Escalators
		Includes Requirements for Elevators,
		Escalators, Dumbwaiters, Moving Walks, Material
		Lifts, and Dumbwaiters with Automatic Transfer
		Devices
	17.3 (2011)	Safety Code for Existing Elevators and
		Escalators

	17.4 (2009)	Guide for Emergency Personnel
	17.5 (2011)	Elevator and Escalator Electrical Equipment
4.	American Society for	Testing and Materials (ASTM):
	B1 (2001)	Standard Specification for Hard-Drawn Copper
		Wire
	B8 (2004)	Standard Specification for Concentric-Lay-
		Stranded Copper Conductors, Hard, Medium-Hard,
		or Soft
	D1557 (2012)	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)
	D2301 (2004)	Standard Specification for Vinyl Chloride
		Plastic Pressure Sensitive Electrical
		Insulating Tape
	B258-02 (2008)	Standard Specification for Standard Nominal
		Diameters and Cross-Sectional Areas of AWG
		Sizes of Solid Round Wires Used as Electrical
		Conductors
	D709-01(2007)	Standard Specification for Laminated
		Thermosetting Materials
	D4566 (2008)	Standard Test Methods for Electrical
		Performance Properties of Insulations and
		Jackets for Telecommunications Wire and Cable
5. American Telephone and Telegraph Corporation (AT&T) - Obtain		nd Telegraph Corporation (AT&T) - Obtain
	following AT&T Public	cations at https://ebiznet.sbc.com/sbcnebs/
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
		Environmental, and Physical Design Requirements
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
		Requirements
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and
		Removal Requirements - Cable Racks and Raceways
	ATT-TP-76306 (2009)	Electrostatic Discharge Control
	ATT-TP-76400 (2012)	Detail Engineering Requirements
	ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and
		Installation Requirements
	ATT-TP-76405 (2011)	Technical Requirements for Supplemental Cooling
		Systems in Network Equipment Environments

	ATT-TP-76416 (2011)	Grounding and Bonding Requirements for Network
		Facilities
	ATT-TP-76440 (2005)	Ethernet Specification
	ATT-TP-76450 (2013)	Common Systems Equipment Interconnection
		Standards for AT&T Network Equipment Spaces
	ATT-TP-76461 (2008)	Fiber Optic Cleaning
	ATT-TP-76900 (2010)	AT&T Installation Testing Requirement
	ATT-TP-76911 (1999)	AT&T LEC Technical Publication Notice
6.	British Standards In	stitution (BSI):
	BS EN 50109-2	Hand Crimping Tools - Tools for The Crimp
		Termination of Electric Cables and Wires for
		Low Frequency and Radio Frequency Applications
		- All Parts & Sections. October 1997
7.	Building Industry Con	nsulting Service International(BICSI):
	ANSI/BICSI 002-2011	Data Center Design and Implementation Best
		Practices
	ANSI/BICSI 004-2012	Information Technology Systems Design and
		Implementation Best Practices for Healthcare
		Institutions and Facilities
	ANSI/NECA/BICSI	
	568-2006	Standard for Installing Commercial Building
		Telecommunications Cabling
	NECA/BICSI 607-2011	Standard for Telecommunications Bonding and
		Grounding Planning and Installation Methods for
		Commercial Buildings
	ANSI/BICSI 005-2013	Electronic Safety and Security (ESS) System
		Design and Implementation Best Practices
8.	Electronic Components	s Assemblies and Materials Association,(ECA).
	ECA EIA/RS-270 (1973)Tools, Crimping, Solderless Wiring Devices -
		Recommended Procedures for User Certification
	EIA/ECA 310-E (2005)	Cabinets, and Associated Equipment
9.	Facility Guidelines	Institute: 2010 Guidelines for Design and
	Construction of Heal	th Care Facilities.
10.	Insulated Cable Engin	neers Association (ICEA):
	ANSI/ICEA	
	S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-
		Pair Indoor Cables for Use in Communications
		Wiring Systems

27 05 11 - 17

11

09-01-19

ANSI/ICEA	
S-84-608-2010	Telecommunications Cable, Filled Polyolefin
	Insulated Copper Conductor, S-87-640(2011)
	Optical Fiber Outside Plant Communications
	Cable
ANSI/ICEA	
S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
	Twisted-Pair Indoor Cable for Use in General
	Purpose and LAN Communication Wiring Systems
S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
	Polyolefin Insulated, Copper Conductors
S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
	Insulated, Copper Conductors
ICEA S-102-700	
(2004)	Category 6 Individually Unshielded Twisted Pair
	Indoor Cables (With or Without an Overall
	Shield) for use in Communications Wiring
	Systems Technical Requirements
Institute of Electri	cal and Electronics Engineers (IEEE):
ISSN 0739-5175	March-April 2008 Engineering in Medicine and
	Biology Magazine, IEEE (Volume: 27, Issue:2)
	Medical Grade-Mission Critical-Wireless
	Networks
IEEE C2-2012	National Electrical Safety Code (NESC)
C62.41.2-2002/	
Cor 1-2012 IEEE	Recommended Practice on Characterization of
	Surges in Low-Voltage (1000 V and Less) AC
	Power Circuits 4)
C62.45-2002	IEEE Recommended Practice on Surge Testing for
	Equipment Connected to Low-Voltage (1000 V and
	Less) AC Power Circuits
81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
	Impedance, and Earth Surface Potentials of a
	Grounding System
100-1992	IEEE the New IEEE Standards Dictionary of
	Electrical and Electronics Terms
602-2007	IEEE Recommended Practice for Electric Systems
	in Health Care Facilities

09-01-19

	1100-2005	IEEE Recommended Practice for Powering and
		Grounding Electronic Equipment
12.	International Code C	ouncil:
	AC193 (2014)	Mechanical Anchors in Concrete Elements
13.	International Organi	zation for Standardization (ISO):
	ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and
		Computing Technology in Healthcare Facilities -
		Recommendations for Electromagnetic
		Compatibility (Management of Unintentional
		Electromagnetic Interference) with Medical
		Devices
14.	National Electrical	Manufacturers Association (NEMA):
	NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V
		Maximum)
	ANSI C62.61 (1993)	American National Standard for Gas Tube Surge
		Arresters on Wire Line Telephone Circuits
	ANSI/NEMA FB 1 (2012)Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing EMT)
		and Cable
	ANSI/NEMA OS 1 (2009)Sheet-Steel Outlet Boxes, Device Boxes, Covers,
		and Box Supports
		and box bupperes
	NEMA SB 19 (R2007)	
	NEMA SB 19 (R2007) TC 3 (2004)	
		NEMA Installation Guide for Nurse Call Systems
		NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with
15.	TC 3 (2004) NEMA VE 2 (2006)	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing
15.	TC 3 (2004) NEMA VE 2 (2006)	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA):
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC)
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code Standard for the Fire Protection of Information
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013 75-2013	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code Standard for the Fire Protection of Information Technological Equipment
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013 75-2013	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code Standard for the Fire Protection of Information Technological Equipment Recommended Practice for the Fire Protection of
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013 75-2013 76-2012	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code Standard for the Fire Protection of Information Technological Equipment Recommended Practice for the Fire Protection of Telecommunications Facilities Recommended Practice on Static Electricity Standard for the Installation of Air
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013 75-2013 76-2012 77-2014	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code Standard for the Fire Protection of Information Technological Equipment Recommended Practice for the Fire Protection of Telecommunications Facilities Recommended Practice on Static Electricity
15.	TC 3 (2004) NEMA VE 2 (2006) National Fire Protec 70E-2015 70-2014 72-2013 75-2013 76-2012 77-2014	NEMA Installation Guide for Nurse Call Systems Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing Cable Tray Installation Guidelines tion Association (NFPA): Standard for Electrical Safety in the Workplace National Electrical Code (NEC) National Fire Alarm Code Standard for the Fire Protection of Information Technological Equipment Recommended Practice for the Fire Protection of Telecommunications Facilities Recommended Practice on Static Electricity Standard for the Installation of Air

	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2006	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protecti	ve Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Society of Cable Tel	ecommunications Engineers (SCTE):
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
		Distribution Coaxial Cable
18.	Telecommunications I	ndustry Association (TIA):
	TIA-120 Series	Telecommunications Land Mobile communications
		(APCO/Project 25) (January 2014)
	TIA TSB-140	Additional Guidelines for Field-Testing Length,
		Loss and Polarity of Optical Fiber Cabling
		Systems (2004)
	TIA-155	Guidelines for the Assessment and Mitigation of
		Installed Category 6 Cabling to Support
		10GBASE-T (2010)
	TIA TSB-162-A	Telecommunications Cabling Guidelines for
		Wireless Access Points (2013)
	TIA-222-G	Structural Standard for Antenna Supporting
		Structures and Antennas (2014)
	TIA/EIA-423-B	Electrical Characteristics of Unbalanced
		Voltage Digital Interface Circuits (2012)
	TIA-455-C	General Requirements for Standard Test
		Procedures for Optical Fibers, Cables,
		Transducers, Sensors, Connecting and
		Terminating Devices, and other Fiber Optic
		Components (August 2014)

09-01-19

TIA-455-53-A	FOTP-53 Attenuation by Substitution
	Measurements for Multimode Graded-Index Optical
	Fibers in Fiber Assemblies (Long Length)
	(September 2001)
TIA-455-61-A	FOTP-61 Measurement of Fiber of Cable
	Attenuation Using an OTDR (July 2003)
TIA-472D000-B	Fiber Optic Communications Cable for Outside
	Plant Use (July 2007)
ANSI/TIA-492-B	62.5-μ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4

	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)
TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
 - 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
 - 6. General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13,SUSTAINABLE DESIGN REQUIREMENTS.
 - 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
 - Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
 - General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
 - 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
 - 13. Wiring devices: Section 26 27 26, WIRING DEVICES.

- 14. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
- 15. Lightning protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- 16. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 17. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 19. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 20. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 21. Detection and screening systems: Section 28 13 53, SECURITY ACCESS DETECTION.
- 22. Intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions: Section 28 16 11, INTRUSION DETECTION EQUIPMENT AND SYSTEMS.
- 23. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 25. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.
- 26. Emergency Call telephones, intercom systems, with blue strobe light and equipment: Section 28 52 31, SECURITY EMERGENCY CALL/DURESS ALARM/COMMUNICATIONS SYSTEM AND EQUIPMENT.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - Movement of materials: Unload materials and equipment delivered to site.
 - Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 4. Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work.
 - 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
 - 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.

- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - 1. Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).

- d. Volt-Ohm meter.
- e. Digital camera.
- 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
 - Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
 - 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- 1. Prepare a manual for each system and equipment specified.
- 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
- 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
- 4. Furnish remaining manuals prior to final completion.
- 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
- Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
- 7. Provide a Table of Contents and assemble files to conform to Table of Contents.
- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make

these drawings available for examination during construction meetings or field inspections.

- 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
- 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
- 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .dwg formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.

- One coupling, bushing and termination fitting for each type of conduit.
- 3. Samples of each hanger, clamp and supports for conduit and pathways.
- 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.

- d. Constituent parts which are similar must be product of a single manufacturer.
- 4. Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract

adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

A. Comply with FAR clause 52.246-21

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless

2.3 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.4 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.
 - 1.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.

- Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
- Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
- Install sleeves through floors watertight and extend minimum 50.8 mm
 (2 inches) above floor surface.
- Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.

- a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
- b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.

- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - 2. Remove and replace defective work.
 - 3. Remove and replace non-conforming work.
- B. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- C. Protect adjacent installations during cutting and patching operations.
- D. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- E. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that

require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.

- COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
- Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - 1. Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for // T568B // T568A // pin assignments and cabling connections are in compliance with TIA standards.
 - Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
 - Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
 - 8. Review cable tray, conduit and path/wire way installation practice.
 - 9. OEM and contractor to perform:

- a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
- b. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- 13. Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
 - 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:

- a. TR interconnections.
- b. System interfaces in locations listed herein.
- c. Each general floor areas.
- d. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- I. Acceptance Test:
 - Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
 - Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
 - 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - 1) FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - 3) EMS Representatives: Police, Sherriff, City, County or State representatives.
 - Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.

- Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
- Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
- If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
 - Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
 - 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.

- c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - 1. If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- I. Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence

of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes
 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Ground Rods:

- Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - 2. Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- B. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- C. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- D. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.
- E. Ground Resistance:
 - Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
 - Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
 - Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (1-1/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
 - Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
 - 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
 - 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.

- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.
 - 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.

- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - 1) Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 3) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- 6. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 7. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 8. Expansion and Deflection Couplings:

- a. Conform to UL 467 and UL 514B.
- b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
- c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 9. Rigid Aluminum Fittings:
 - a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
 - f. Provide OEM approved fittings.
- 10. Wireway Fittings: As recommended by wireway OEM.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.

- 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
- 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Flexible Nonmetallic Communications Raceway (Innerduct) and Fittings:
 - 1. General: Provide UL 910 listed plenum, riser, and general purpose corrugated pliable communications raceway for optical fiber cables and communications cable applications; select in accordance with provisions of NEC Articles 770 and 800.
 - Provide Communications Raceway with a factory installed 567 kg (1250 lb.) tensile pre-lubricated pull tape.
 - 3. Use only metallic straps, hangers and fittings to support raceway from building structure. Cable ties are not permitted for securing raceway to building structure.
 - 4. Provide fittings to be installed in spaces used for environmental air made of materials that do not exceed flammability, smoke generation, ignitibility, and toxicity requirements of environmental air space.
 - 5. Size: Metric Designator 53 (trade size 2) or smaller.
 - Outside Plant: Plenum-rated where each interduct is 75 mm (3 inches) and larger.
 - 7. Inside Plant: Listed and marked for installation in plenum airspaces and minimum 25 mm (1 inch) inside diameter.
 - 8. Plenum: Non-metallic communications raceway.
 - a. Constructed of low smoke emission, flame retardant PVC with corrugated construction.
 - b. UL 94 V-O rating for flame spreading limitation.
 - 9. Provide innerduct reel lengths as necessary to ensure ducts are continuous; one piece runs from ENTR to MH; MH to MH; DEMARC to MCR/TER; TR to TR. Innerduct connectors are not permitted between rooms.
 - 10. Provide pulling accessories used for innerduct including but not limited to, inner duct lubricants, spreaders, applicators, grips, swivels, harnesses, and line missiles (blown air) compatible with materials being pulled.
- H. Outlet Boxes:

- Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
- 2. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- I. Weatherproof Outlet Boxes: Surface mount two gang, 67 mm (2-5/8 inches) deep weatherproof cast aluminum with powder coated finish internal threads on hubs 19 mm (3/4 inch) minimum.
- PART 3 EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit
Nurse Call	27 52 23	Complete Conduit
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Miscellaneous Medical Systems	27 52 41	Complete Conduit
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code
Physical Access Control System	28 13 00	Conduit to Cable Tray Partitioned Cable Tray
Physical Access Control System and Database Management	28 13 16	Conduit to Cable Tray Partitioned Cable Tray
Security Access Detection	28 13 53	Complete Conduit

System	Specification Section	Installed Method
Intrusion Detection System	28 16 00	Conduit to Cable Tray, Partitioned Cable Tray
Video Surveillance	28 23 00	Complete Conduit
Fire Detection and Alarm	28 31 00	Complete Conduit

- B. Penetrations:
 - 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - 1) Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
 - d. Waterproofing at Floor, Exterior Wall, and Roof Conduit Penetrations:
 - Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill. Provide a minimum 1-1/4 inch conduit for workstation voice-data outlets to accommodate 4 data cables.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.

- Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
- 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
- Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.

- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 18. Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.

- d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
- e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - Rigid steel, or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:

- Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
- Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
 - 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
 - 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
 - Bolts supported only by plaster or gypsum wallboard are not acceptable.

- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

I. Box Installation:

- 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- J. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - 4. Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Centerhere-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
 - 2. Pre-acceptance Certification: Submit in accordance with test procedures.
 - Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
 - Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.

C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
 - 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.
- C. System Performance: Provide complete system to meet or exceed TIA Category 6A requirements.

- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)
 - 3. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and videotele communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's

responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.

- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
- 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels, .
 - b. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
 - c. In TR's, which are only served by a UTP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.
- 3. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6A requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 250 MHz .
 - c. Provide four pair 0.326 mm2 (22 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 6A Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
 - f.
- B. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic, coaxial and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.

- Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- C. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - 2. Splitting of pairs within a cable between different jacks is not permitted.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacksmounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - 2. Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.
 - 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.

B. Outlet Connection Cables:

- 1. Voice (Telephone):
 - a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Voice Grade.
 - 3) Connector: RJ-11/45 compatible male on each end.

- 4) Size: Minimum 24 AWG.
- 5) Color Coding: Required, telephone industry standard.
- 2. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Data grade Category 6A .
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.

C. System Connectors:

- Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 µA.
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- D. Conduit and Signal Ducts:
 - 1. Conduit:
 - a. Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).

- c. Provide separate conduit and signal ducts for each cable type installation.
- d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
- e. Maximum 40 percent conduit fill for cable installation.
- 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 3. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.

D. Labeling:

- Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
- 2. Print lettering of labels with laser printers; handwritten labels are not acceptable.
- 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".

4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

- A. Interim Inspection:
 - 1. Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
 - 2. Check each item of installed equipment to ensure appropriate NRTL label.
 - Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for to match the local VA standard pin assignments and cabling connections comply with TIA standards.
 - Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
 - 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
 - 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
 - 7. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
 - 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.

- 3. Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.
 - Test utilizing approved test equipment to certify proof of performance.
 - 4. Verify that total system meets the requirements of this section.
 - 5. Include expected duration oftest time, with notification of the acceptance test.
- D. Verification Tests:
 - Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
- E. Performance Testing:
 - Perform Category 6tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- F. Total System Acceptance Test: Perform verification tests for UTP cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.

- Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
- 3. Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - B. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 28 05 13

CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- H. Solid-Bottom or Nonventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal side rails, and a bottom without ventilation openings.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COTR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following:
 - a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable trays.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - 4. Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.

в.	American Society of Testing Material (ASTM):
	D2301-04 Chloride
	Plastic Pressure Sensitive Electrical
	Insulating Tape
C.	Federal Specifications (Fed. Spec.):
	A-A-59544-08Cable and Wire, Electrical (Power, Fixed
	Installation)
D.	National Fire Protection Association (NFPA):
	70-11National Electrical Code (NEC)
Е.	Underwriters Laboratories, Inc. (UL):
	44-05 And Cables
	83-08 Wires and Cables
	467-07 Electrical Grounding and Bonding Equipment
	486A-03 Wire Connectors and Soldering Lugs for Use with
	Copper Conductors
	486C-04Splicing Wire Connectors
	486D-05 Systems for
	Underground Use or in Damp or Wet Locations
	486E-00 Equipment Wiring Terminals for Use with
	Aluminum and/or Copper Conductors
	493-07 Fhermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
	514B-04Fittings for Cable and Conduit

```
1479-03.....Fire Tests of Through-Penetration Fire Stops//
```

1.7 DELIVERY, STORAGE, AND HANDLING

A. Test cables upon receipt at Project site.

3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

A. General: All cabling locations shall be in conduit systems as outlined in Division 27 Raceways and Boxes for Communications Systems unless a waiver is granted in writing or an exception is noted on the construction drawings.

- C. Conduit and Boxes: Comply with requirements in Division 27 Section "Conduits and Backboxes for Communications Systems."[Flexible metal conduit shall not be used.]
 - Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, Category 6.
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG [; or MPP, CMP, MPR, CMR, MP, or MPG].
 - b. Communications, Plenum Rated: Type CMP complying with NFPA 262.

2.3 UTP CABLE HARDWARE

A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.

2.4 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.

- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.5 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, -limited cable, concealed in building finishescomplying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

2.6 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, size as recommended by system manufacturer.
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.

2.7 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.8 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.9 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.10 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."

28 05 13 - 6

- 3. Install 110-style IDC termination hardware unless otherwise indicated.
- Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
- 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
- Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
 - b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - c. Use ropes made of nonmetallic material for pulling feeders.
 - d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/COTR.
 - e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - 1. Splices and terminations shall be mechanically and electrically secure.
 - 2. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- K. Optical Fiber Cable Installation:
 - 1. Comply with TIA/EIA-568-B.3.
 - 2. Cable shall be terminated on connecting hardware that is rack or cabinet mounted.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- M. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.

- 2. Install cabling after the flooring system has been installed in raised floor areas.
- 3. Coil cable [72 inches (1830 mm)] <Insert size> long shall be neatly coiled not less than [12 inches (300 mm)] <Insert size> in diameter below each feed point.
- N. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 - 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
 - Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).

 Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.
 - 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.

- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - 4. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:

- Multimode Link Measurements: Test at 850 or 1300 nm in 1 direction according to TIA/EIA-526-14-A, Method B, One Reference Jumper.
- 2) Attenuation test results for links shall be less than 2.0 dB. Attenuation test results shall be less than that calculated according to equation in TIA/EIA-568-B.1.
- 5. Coaxial Cable Tests: Comply with requirements in Division 27 Section "Master Antenna Television System."
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.

I. RNC: Rigid nonmetallic conduit.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing

FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

C. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

- D. Underwriters Laboratories, Inc. (UL):
 - 1-05.....Flexible Metal Conduit
 - 5-04..... and Fittings
 - 6-07.....Rigid Metal Conduit
 - 50-07..... Enclosures for Electrical Equipment
 - 360-09.....Liquid-Tight Flexible Steel Conduit
 - 467-07.....Grounding and Bonding Equipment
 - 514A-04.....Metallic Outlet Boxes
 - 514B-04.....Fittings for Cable and Conduit

514C-02.....Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers

651-05.....Schedule 40 and 80 Rigid PVC Conduit

651A-07.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing

1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.

- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- G. Direct burial plastic conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - 3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium

plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.

- 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
- 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.
 - Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- F. Direct burial plastic conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 2. As recommended by the conduit manufacturer.
- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.

- 3. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
- 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Sheet metal boxes: Galvanized steel, except where otherwise shown.
- E. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown.

2.9 WARNING TAPE

A. Standard, 4-Mil polyethylene 76 mm (3 inches) wide tape non-detectable type, red with black letters, and imprinted with "CAUTION BURIED ELECTRONIC SAFETY AND SECURITY CABLE BELOW".

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, "JOINT SEALANTS".

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically continuous.
 - 6. Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling

supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).

- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.

- 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - 3. Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:

- 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of

- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.

- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
3⁄4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated extension of the existing system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COTR or his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building(s) shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.

1.2 SCOPE

A. A fully addressable fire alarm system as an extension of an existing addressable fire alarm systemshall be designed and installed in

28 31 00 - 1

10-11

wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style4 in accordance with NFPA 72. Individual signaling line circuits

shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.

6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 08 71 00 DOOR HARDWARE. For combination Closer-Holders.

1.4 SUBMITTALS

A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

B. Drawings:

- Prepare drawings using a computer aided drafting (AutoCAD) or similar program such as Revit and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
- 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety

interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files . As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.

- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major

equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.

- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices as well as all reused existing equipment connected to the fire alarm system. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.

- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA COTR or his authorized representative.
- G. Emergency Service:
 - 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the COTR or his authorized representative.
 - 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
 - 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
 - 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency call-

back hours is based on actual time spent on site and does not include travel time.

H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition NFPA 14Standard for the Installation of Standpipes and Hose Systems, 2010 edition NFPA 20Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition NFPA 70.....National Electrical Code (NEC), 2010 edition
 - NFPA 72.....National Fire Alarm Code, 2010 edition NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011

E. American National Standards Institute (ANSI):

S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008

F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. Existing addressable equipment may be reused only where indicated on the drawings. All new addressable equipment and components shall be the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33, CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as recommended by the manufacturer of the addressable fire alarm system to extend an existing non-addressable system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - 2. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for

junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.

- 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.6 ALARM NOTIFICATION APPLIANCES

- A. Bells:
 - Shall be electric, single-stroke or vibrating, heavy-duty, under-dome, solenoid type.
 - Unless otherwise shown on the drawings, shall be 6 inches (150 mm) diameter and have a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on outlet boxes.
- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.
- C Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.

3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.

2.7 ALARM INITIATING DEVICES

Α.

A. Smoke Detectors:

- Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
- Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

PART 3 - EXECUTION

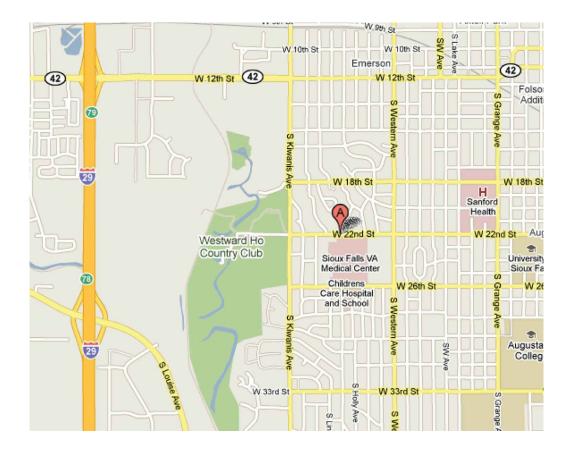
3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
 - F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
 - G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
 - H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below

ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.

- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.

3.2 TESTS


- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.3 FINAL INSPECTION AND ACCEPTANCE

A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.

B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

- - END - -

VICINITY MAP

ABBREVIATIONS

A.F.F. ABV.	ABOVE FINISHED FLOOR ABOVE	EXIST. EXT.	EXISTING EXTERIOR	PERP.or⊥ PL.or₽	PERPENDICULAR PLATE
ACT	ACOUSTICAL CEILING TILE	FIN.	FINISH	PLYWD.	PLYWOOD
ADD.	ADDITION or ADDENDUM	FL.	FLOOR	PREFAB.	PREFABRICATED
ALUM.	ALUMINUM	FP	FIRE PROOF	PWR.	POWER
ANL	ANNEALED	FTG.	FOOTING	QTY.	QUANTITY
4	ANGLE	GALV.	GALVANIZED	RAD.	RADIUS
	BOTTOM OF	GL	GLASS	R.O.	ROUGH OPENING
B.O.		GLB	GLUE LAMINATED BEAM	REF.	REFERENCE
B.O.F.	BOTTOM OF FOOTING	GYP.	GYPSUM		
B.U. BLDG	BUILT UP BUILDING	GYP. BD.	GYPSUM BOARD	REQ'D.	REQUIRED
BLUG BLK.	BLOCK	HOR.	HORIZONTAL	REV. SST	REVISION STAINLESS STEE
BLK. BLKG.	BLOCKING	I.D.	INSIDE DIAMETER	SH	SHEET
BLKU. BM.	BEAM	IG	ISOLATED GROUND	SHT'G.	SHEATHING
BR	BRASS	INSUL.	INSULATION	SIM.	SIMILAR
BRZ	BRONZE	INT.	INTERIOR	SPECS	SPECIFICATIONS
C.D.	CONSTRUCTION DOCUMENTS	JST.	JOIST	STD.	STANDARD
CL or ũ	CENTERLINE	LAM	LAMINATE	STL.	STEEL
CLG.	CEILING	LIN.	LINEAR	SUSP.	SUSPENDED
COL.	COLUMN	LVL	LAMINATED VENEER LUMBER	T.O.B.	TOP OF BEAM
CONC.	CONCRETE	MAT'L	MATERIAL	T.O.J.	TOP OF JOIST
CONT.	CONTINUOUS	MAX.	MAXIMUM	T.O.M.	TOP OF MASONR
CU	COPPER	MECH.	MECHANICAL	T.0.S.	TOP OF SLAB
DIA.orØ	DIAMETER	MFG.	MANUFACTURING	T.O.W.	TOP OF WALL
DIAG.	DIAGONAL	MFR.	MANUFACTURER	TH.	THRESHOLD
DIM.	DIMENSION	MIN.	MINIMUM	THD.	THREADED
DN.	DOWN	MISC.	MISCELLANEOUS	TYP.	TYPICAL
EQ.	EQUAL	NO.	NUMBER	V.I.F.	VERIFY IN FIELD
EQUIP.	EQUIPMENT	0.C.	ON CENTER	VERT.	VERTICAL
EXH.	EXHAUST	0.D.	OUTSIDE DIAMETER	WD.	WOOD

RF ENCLOSURE INSTALLATION FOR:

Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105

PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T

CONSTRUCTION DRAWINGS - REV A

PROJECT AUTHORIZATION

- APPROVED
- □ APPROVED AS NOTED
- □ REVISE AND RESUBMIT

DATE	
SIGNATURE	
JOB TITLE	

NOTES

SHEET INDEX

DRAWING NO.	DESCRIPTION	THIS DRAWING PACKAGE REPRESENTS IMEDCO AMERICA'S IN CONTRACT REQUIREMENTS OF THE ABOVE SAID PROJECT. P
9003.CS	COVER SHEET	METHODS OF CONSTRUCTION, AND EXISTING CONDITIONS MU ON THE SHOP DRAWINGS BY THE ARCHITECT/CUSTOMER. N
9003.IS1	INFORMATION SHEET	LTD. HAS RECEIVED SIGNED DRAWINGS FROM THE ARCHITED
9003.S1	STRUCTURAL - TOP VIEW	HAVE BEEN APPROVED FOR FABRICATION. APPROVAL DELA DELAYS.
9003.S2	STRUCTURAL - VIEW "A"	ANY MODIFICATIONS IN ACCORDANCE WITH APPROVED SHOP
9003.S3	STRUCTURAL – VIEW "B"	REMADE AND SHIPPED TO THE JOB SITE ONLY AT CUSTOMI CHANGE ORDER COVERING THE ADDITIONAL EXPENSE.
9003.S4	STRUCTURAL – VIEW "C"	
9003.S5	STRUCTURAL - VIEW "D"	CONTRACTOR TO PROVIDE UNFINISHED STRUCTURAL ' ARRIVAL TO INSURE PROPER "FIT" AND INSTALLATIO
9003.A1	POSITION MAGNET	
9003.A2	INTERIOR FINISH - VIEW "A"	IMEDCO CAN DELIVER SHIELD EIGHT (8) WEEKS FOLLO INSTALLTION BY IMEDCO WILL REQUIRE APPROX. FOU
9003.A3	INTERIOR FINISH - VIEW "B"	
9003.A4	INTERIOR FINISH - VIEW "C"	IMEDCO PROJECT MANAGER – DWIGHT BIRD TEL. 317 219–3565
9003.A5	INTERIOR FINISH - VIEW "D"	FAX. 317 333-6784
9003.A6	LIGHTING – SUSPENDED CEILING PLAN	CELL 317 507-9230
9003.D1	RF SHIELD DETAILS	EMAIL – dwightb@imedco.net
9003.D2	RF SHIELD DETAILS	ALL RIGHTS RESERVED. ANY REPRODUCTION OR ISSUE TO T PROHIBITED WITHOUT WRITTEN PERMISSION FROM IMEDCO A
9003.D3	MAGNET SPECIFICATIONS	
9003.E1	ELECTRICAL DETAILS	
9003.D5	MAGNETIC SHIELDING DETAILS	

IS IMEDCO AMERICA'S INTERPRETATION OF THE ARCHITECTURAL PLANS AND IBOVE SAID PROJECT. PRIOR TO ANY MANUFACTURE FOR THIS JOB, ALL DIMENSIONS, XISTING CONDITIONS MUST BE CHECKED, REVIEWED AND APPROVED OR CORRECTED RCHITECT/CUSTOMER. NO FABRICATION WILL BE SCHEDULED UNTLI IMEDCO AMERICA, GS FROM THE ARCHITECT/CUSTOMER ACKNOWLEDGING THAT THE SHOP DRAWINGS ATION. APPROVAL DELAYS WILL LIKELY RESULT IN FABRICATION AND DELIVERY

WITH APPROVED SHOP DRAWINGS THAT DOES NOT FIT JOB CONDITIONS WILL BE SITE ONLY AT CUSTOMERS EXPENSE AND ONLY AFTER RECEIPT OF A WRITTEN

SHED STRUCTURAL "ROUGH" OPENINGS AS SHOWN BEFORE IMEDCO T" AND INSTALLATION OF RF CAGE.

HT (8) WEEKS FOLLOWING APPROVAL OF ALL SHOP DRAWINGS. QUIRE APPROX. FOUR (4) WEEKS.

JUCTION OR ISSUE TO THIRD PARTIES IN ANY FORM WHATSOEVER IS STRICTLY ISSION FROM IMEDCO AMERICA, LTD.

*** ***	V D		
	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060 Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net	
DRAWING PACKAGE:	CONSTRUCTION DRAWINGS - REV A		
REV PD CD 	DATE 12.11.09 12.30.09	ITEM	
Drawn By: JW Checked By: CS Drawing Name: COVER SHEET Project No: 9003 Date: JAN.19.2010 Dwg No: Page No: 9003 CS			

Verification of Site Preparations:

Installation of the IMEDCO RF Enclosure will be started only after the customer has confirmed in writing, and two weeks in advance of the installation start date, that the site is ready and in accordance to our drawings. Additionally the following will also need to be verified:

RF Structural Floor:

The foundation slab has a moisture content of no greater than 8% and the floor is flat, level within $\pm 1/16''$ per 3ft. and 1/8'' overall.

Protected Work Environment:

The Scan, Computer, and Operator room must be weatherproofed. This shall include the magnet access opening, cryogen exhaust vent, and any other enclosure penetrations.

The working temperature will be maintained at a minimum of 65 degrees Fahrenheit

All above areas will be finished and clean of debris to prevent damage to the materials.

Electrical Power:

110VAC, 20 Amp and 220VAC, 40 Amp service (for some magnetic shielding designs), single phase power and sufficient lighting must be available within 10 Ft of the area.

Material Delivery Access:

A reasonably close unloading or docking area and delivery route to the construction and assembly area must be provided. The General Contractor shall provide one (1) drywall and one (1) flat cart to assist in the unloading process.

Tool and Material Storage:

The customer shall provide a clean, dry and lockable storage area, minimum 16' x 20' in size, in the vicinity of the scan room. This is to assure proper staging of RF Enclosure materials and tools. Installation tools will arrive up to one (1) week prior to IMEDCO installation, and may remain on-site until magnet delivery.

Installation Schedule:

The installation has to be done without interruption. The General Contractor shall provide two (2) 8' ladders for IMEDCO use during installation.

Interruption and Additional Work:

Any breaks in the installation of additional work not included in our quotation, due to an unfinished site or a site not finished in accordance to our specification will be subject to the following surcharges:

- Hourly rate per man traveling time \$62.50
- \$62.50 Hourly rate per man working time
- \$62.50 Hourly rate per man waiting time
- \$175.00 Daily rate for expenses per man including hotel (Special rates may apply in some metropolitan areas.)

Magnet Delivery:

IMEDCO will return to close and certify RF cage following magnet delivery.

AC WAVEGUIDE ON WALL D RELOCATED

A GRAD. EXH. AND AC EXH. ON WALL C RELOCATED

ACOUSTIC SHIELDING

ITEM	TYPE	STC
DOOR	STANDARD	20
WINDOW	STANDARD	36
CEILING SUPPORT	SELF-SUPPORT	N/A
WALLS	STANDARD	37
CEILING	STANDARD	20

QTY.	A/V	FUNCTION	LINES
2	20A 250VAC/DC	LIGHTING	2
2	20A 250VAC/DC	RECEPTACLES	2
1	20A 250VAC/DC	A.E.	1
4	16A 50VDC	LOW VOLTAGE	1
			•

STC VALUES REPRESENT IMEDCO PROVIDED COMPONENTS AND 5/8" INTERIOR FINISH DRYWALL ONLY. AS TESTED BY THIRD PARTY LABORATORIES. THEY DO NOT REPRESENT THE ADDITION OF PARENT WALLS OR STRUCTURAL CEILING.

DOOR SCHEDULE

ITEM	NOTE
LAMINATE – INSIDE	1573 – FROSTY WHITE
LAMINATE – OUTSIDE	{DETERMINED BY VA}
LOCK TYPE	SBC-D-BOLT

QTY.	SIZE	FUNCTION
1	$\mathbb{A}\left(1^{r}\right)$	SPRINKLER
3	1/2"	MEDIGAS
1	1"	MED RAD

OTHER PENETRATIONS

QTY.	SIZE	FUNCTION
1	Ø8"	QUENCH SETUP PANEL
1	Ø7''	GRADIENT EXHAUST
2	Ø7''	AMBIENT EXPERIENCE
TBD	TBD	02 SENSOR

QTY.

2
1
1
1

REVISION HISTORY:

ADDITIONAL NOTES:

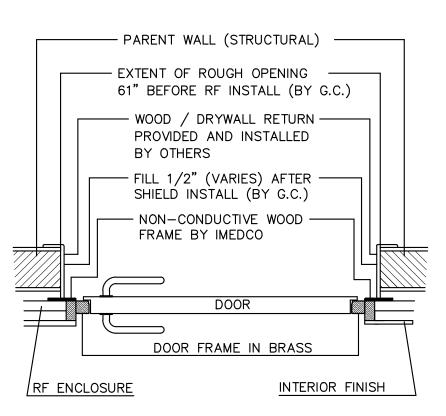
ADDED 1" SPRINKLER SIZE

DOOR LAMINATE TO BE DETERMINED BY THE VA

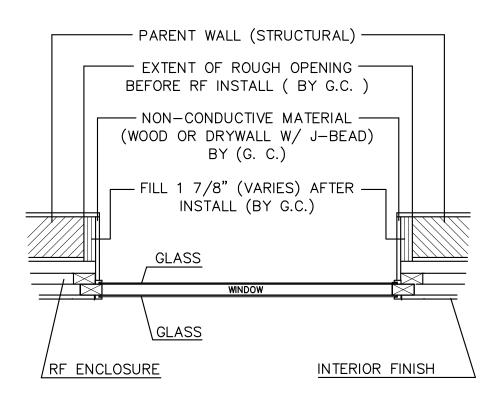
S RF ENCLOSURE HEIGHT CHANGED FROM 8'-8 1/8" TO 8'-4"

ELECTRICAL SCHEDULE

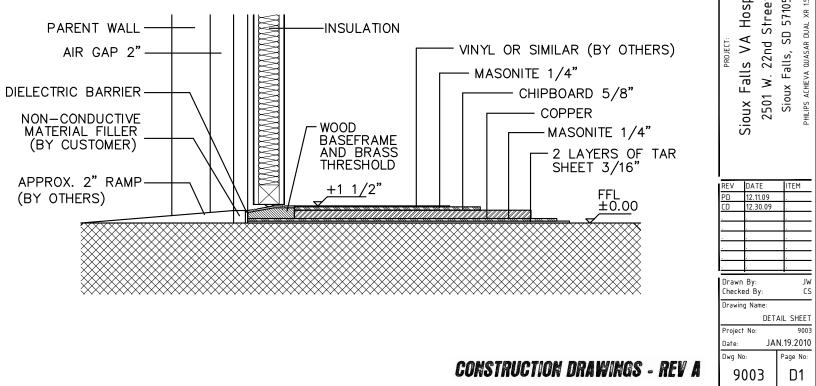
MED GAS / SPRINKLER SCHEDULE


HVAC SCHEDULE

SIZE	FUNCTION
12"x12"	SUPPLY
16"x10"	RETURN
14"x14"	EXHAUST
24"x24"	PRESSURE RELIEF



STANDARD CEILING DETAIL w/A.E.


13⁄4" COPPER 2" RF-CEILING PANEL w/ 2" INSULATION . ₩ A.E. BANDBOARD W" PROFILE പ്പ SUSPENDED CEILING ELECTRICAL CONDUIT 5/8" DRYWALL 1 3/4"x1 3/4" FURRING RF-WALL PANEL w/ 2" INSULATION 2" AIRGAP PARENT WALL $\sim 1/\Lambda$

TYPICAL TECH WINDOW DETAIL

OUT-SWING DOOR / FLOOR DETAIL WITH RAMP

OUT-SWING DOOR DETAIL

AMERICA AMERICA Noblesville, Indiana 46060 Facsimile: 317.773.8508 Web Enclosures and Magnetic Shielding RF Enclosures and Ma 1730 E. Pleasant Street Business: 317.773.8500 its strictly reserve. uction or issue to arties in any form ever is restricted prior permission fr America LTD. All rights Reproduct third part whatsoeve without pi IMEDCO Ar Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105

L TD.

HVAC HONEYCOMB FILTER

100.0-

10.0

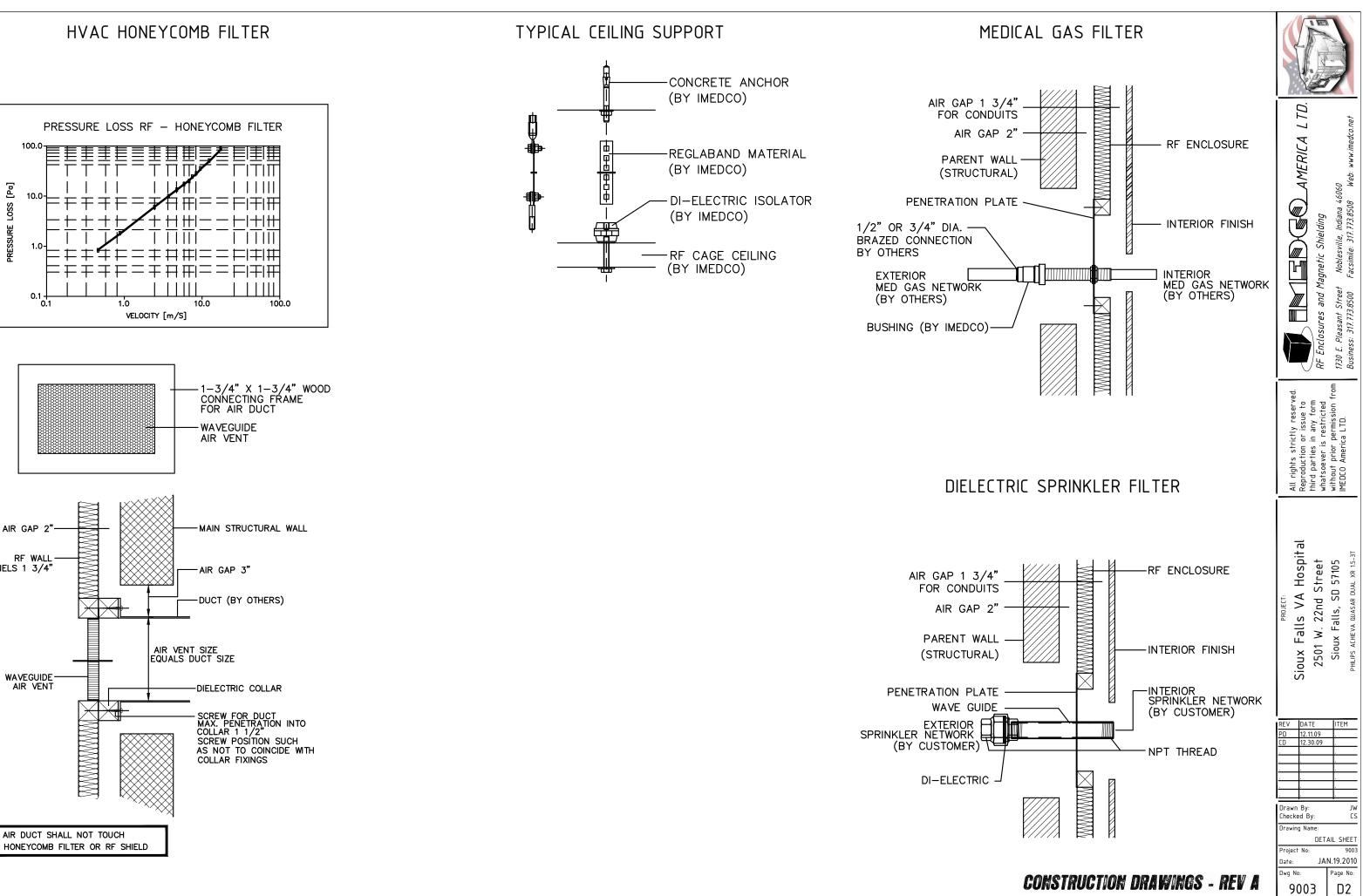
10

0.1

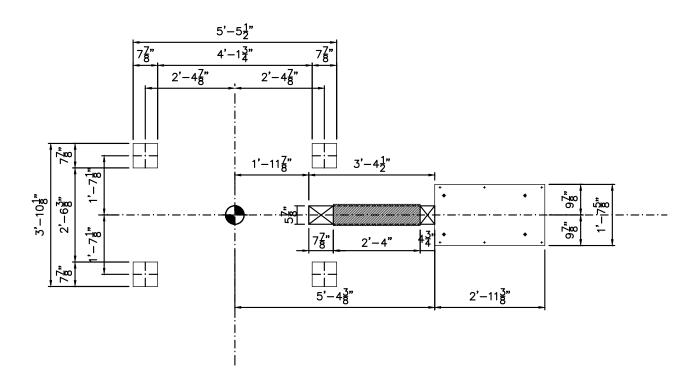
AIR GAP 2

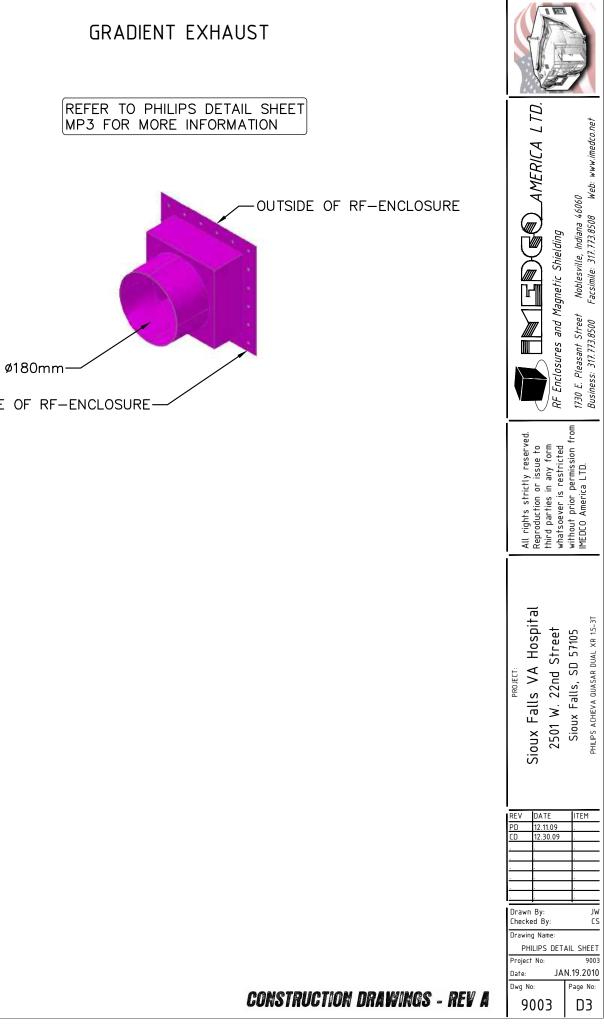
RF WALL PANELS 1 3/4"

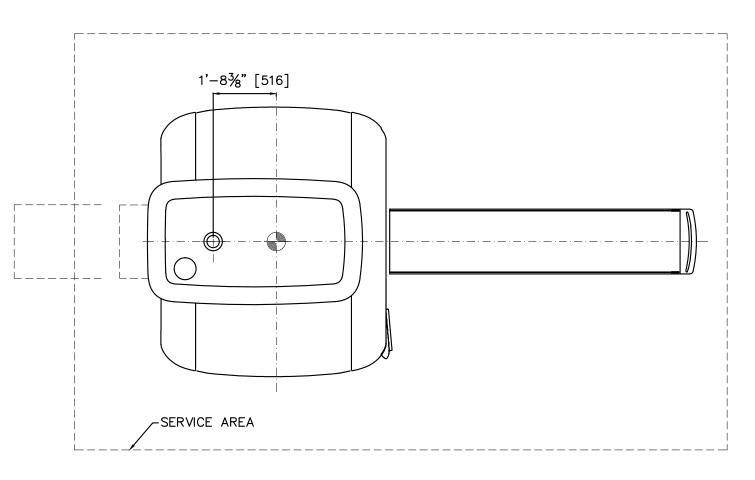
> WAVEGUIDE AIR VENT


0.1

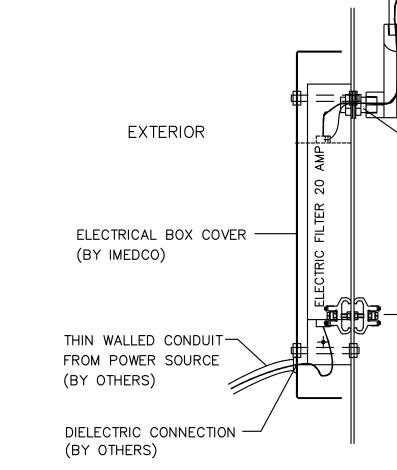
[|-|-

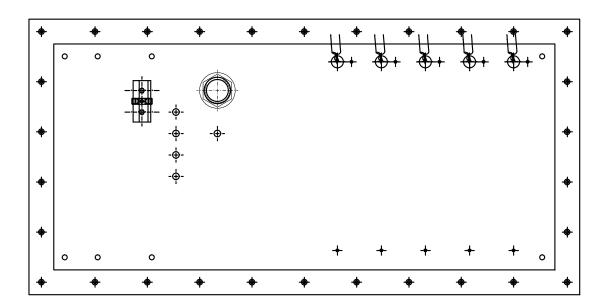

LOSS


RESSURE

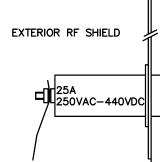

MAGNET FEET POSITION

INSIDE OF RF-ENCLOSURE


PHILIPS ACHIEVA XR 1.5T QUENCH POSITION



IMEDCO PENETRATION PLATE (1000x500)


000 733 795 240 320 480 650 160 400 80 500 ---+ 11 🔶 -452 +\$ 432 0 0 -\$ MEDRAD - AS - AD ŝ . 370 AMP AMP AMP AMP AMP 331 20 20 20 20 20 292 -FIXED PORTION OF FILTER FILTER FILTER FILTER FILTER 253 COVER REMOVABLE . ELECTRIC PORTION OF COVER ELECTRIC ELECTRIC ELECTRIC ELECTRIC + + ++ + 67 0 0 47 ---\$ 0 \cap 935 0 68 875 \sim 77

EXTERIOR ELECTRICAL PENETRATION PANEL

16A 49VAC-100VDC 曰 SIGNAL FILTER

INTERIOR ELECTRICAL PENETRATION PANEL

20A ELECTRICAL FILTER DETAIL

NON-FERROUS CONDUIT TO SWITCHES, OUTLETS, ETC ... (BY OTHERS)

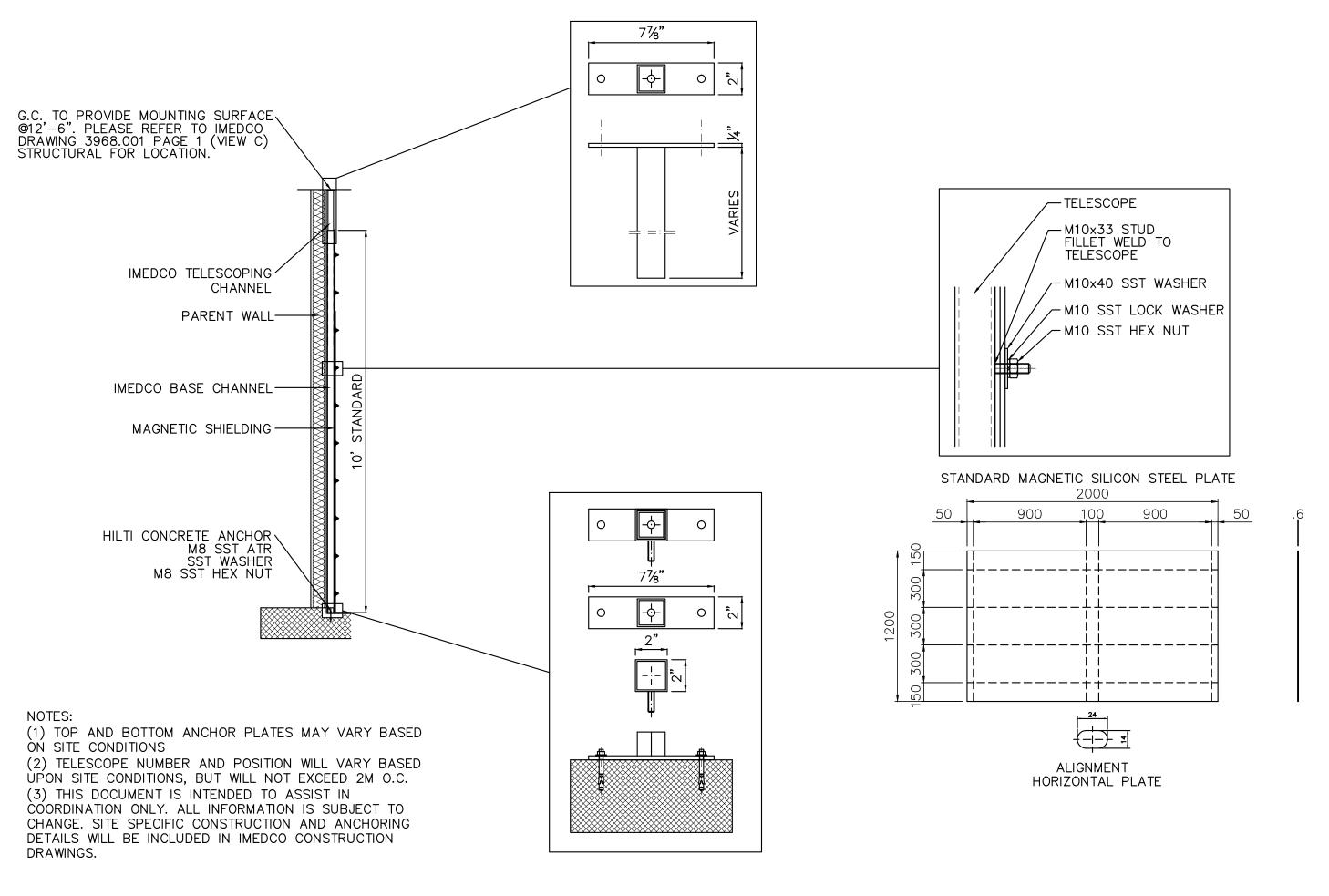
NON-FERROUS CONDUIT BODY (BY OTHERS)

3/4" BRASS THREADED NIPPLE (BY IMEDCO)

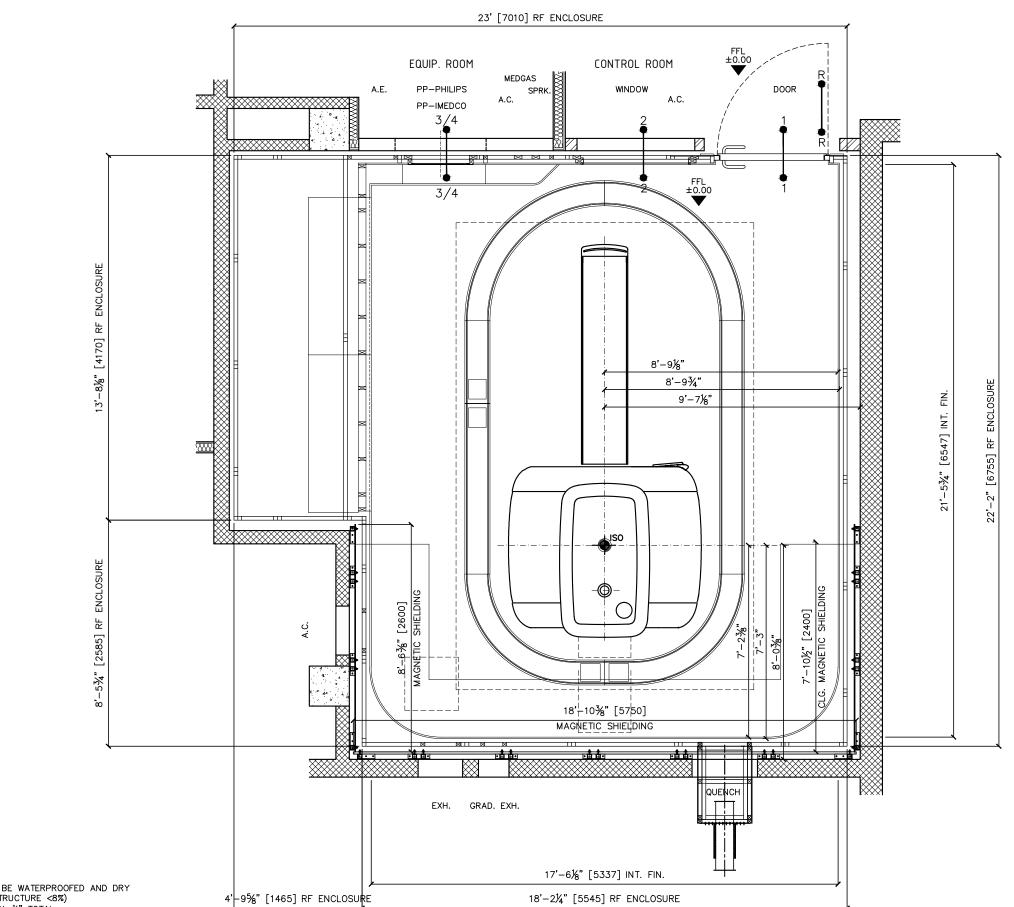
SCAN ROOM INTERIOR

-GROUND BUS BAR

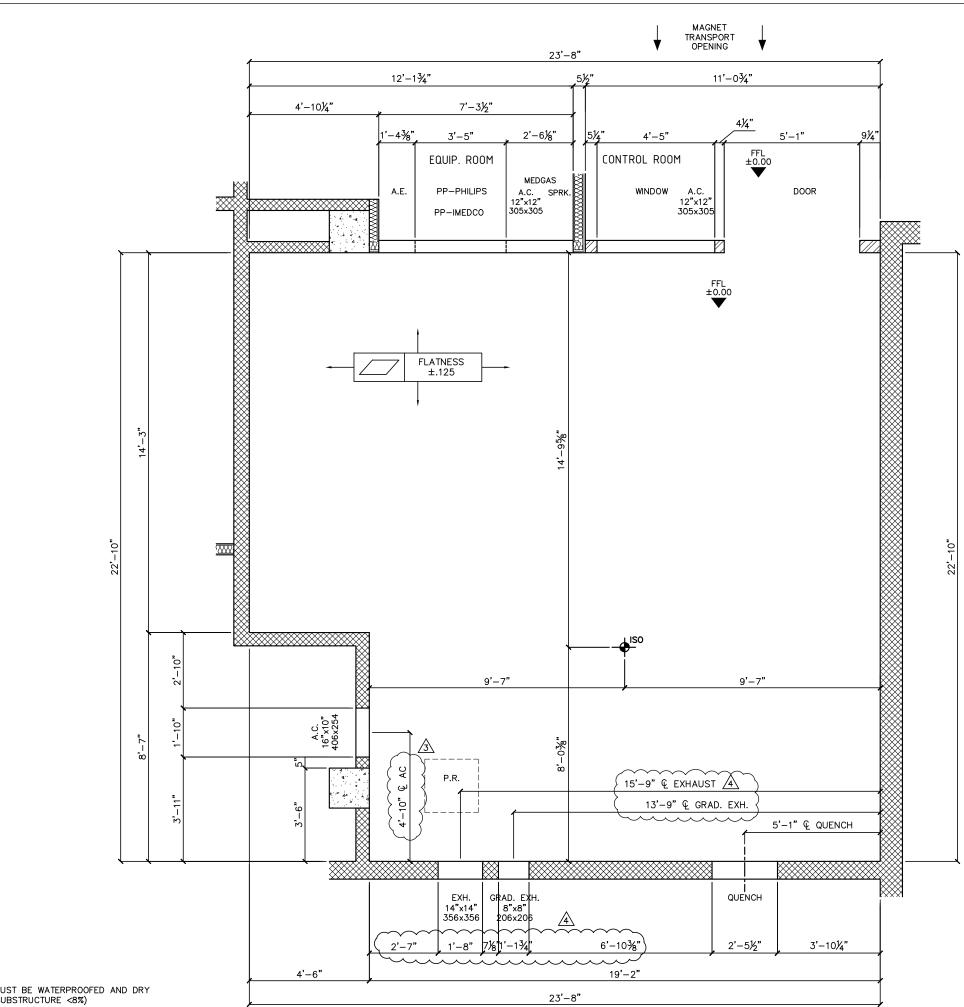
SINGLE LINE FILTER DETAIL



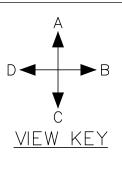
INTERIOR RF SHIELD


Construction	DRAWINGS	a	REV	A
--------------	----------	---	-----	---

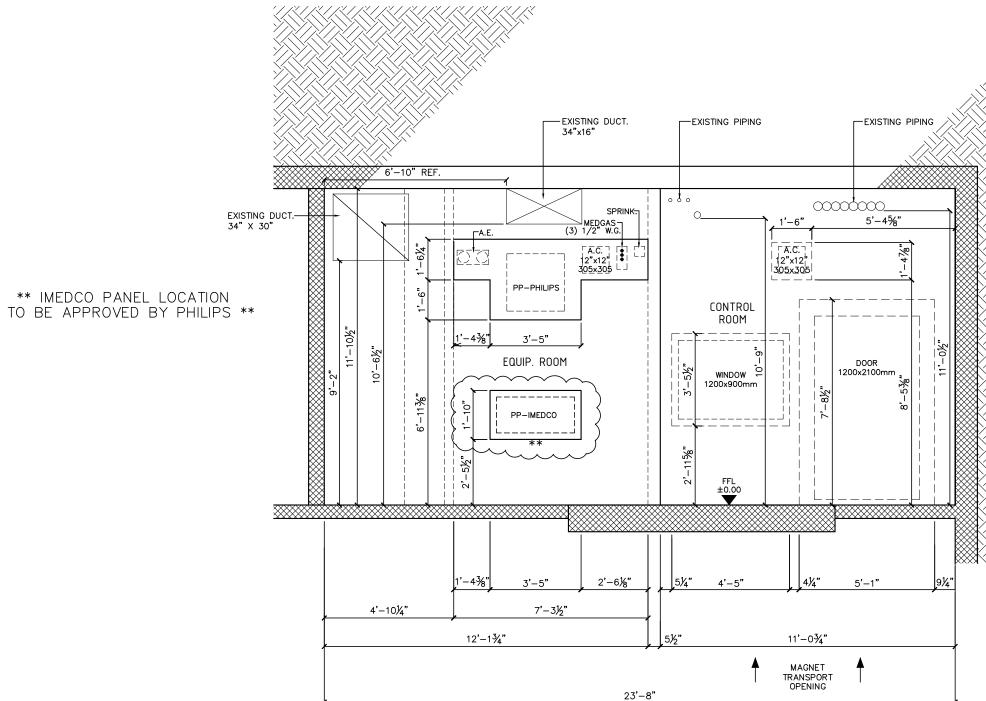
	AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
	All rights strictly reserved. Reproduction or issue to	third parties in any form whatsoever is restricted	Without prior permission from	
PROJECT:	Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
Che Dra Pro Dat	12. 12. 12.	11.09 30.09 30.9 30.09 30.09 30 30 30 30 30 30 5 30 5 30 5 30 5 30	ITE	JW CS 9003 2010



EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN ½" per 3' MAX. ¼" TOTAL.


FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

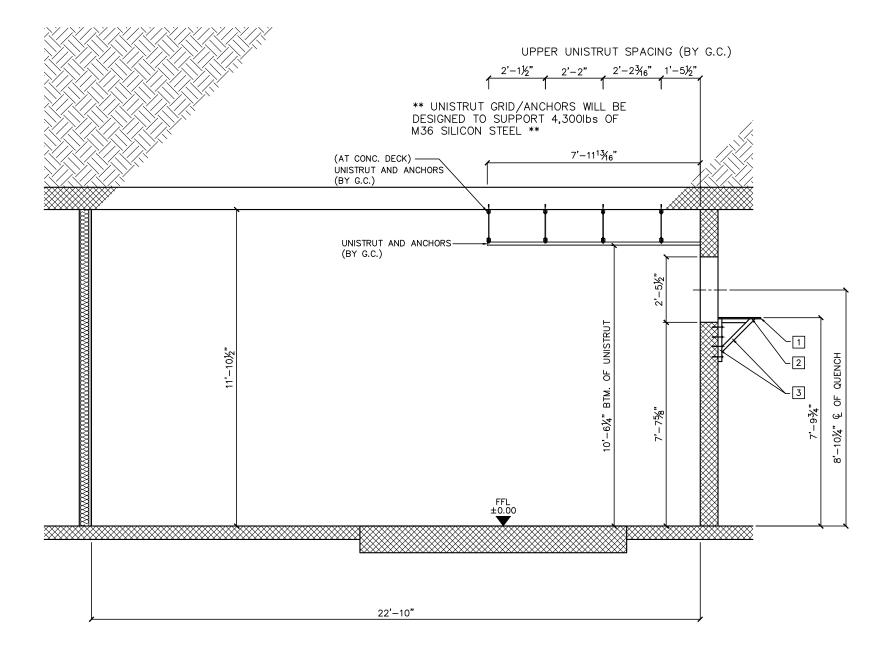
A THE AND AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.nef	
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from		
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T	
REV DA	: 3y: ame: OSITI : JAN	1.29.2 Page	JW CS 9003	



FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING. EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN ½" per 3' MAX. ¼" TOTAL.

	RF Enclosures and	rom 1330 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from IMEDCO America LTD.	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHEVA QUASAR DUAL XR 1.5-3T
	By: Name: TURAL Io: JAN		JW CS 9003 010 No:

VIEW A



FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN 1⁄8" per 3' MAX. 1⁄4" TOTAL.

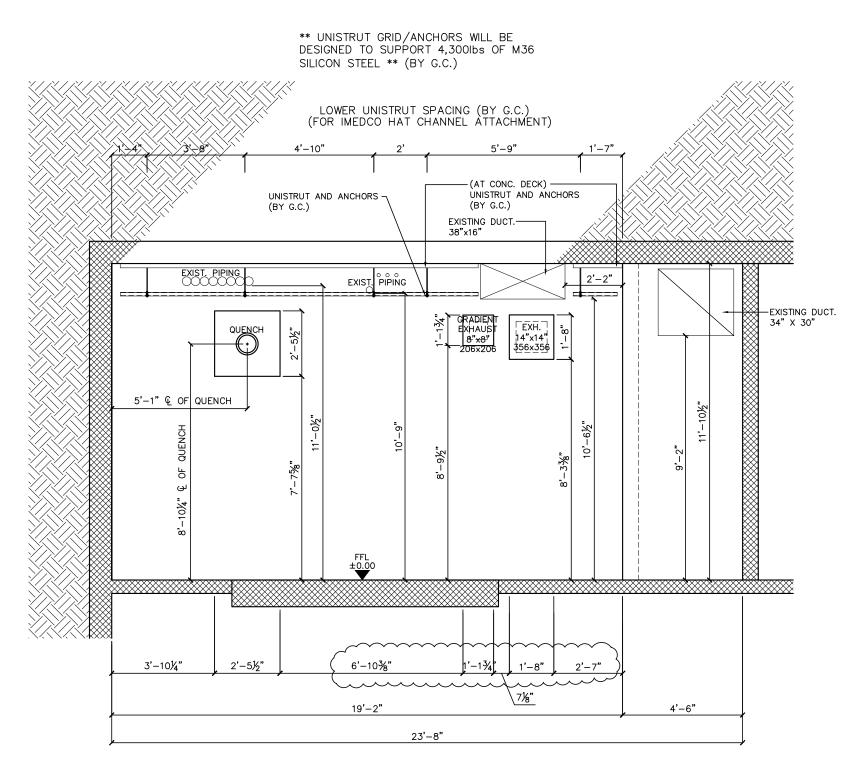
	to to RF Enclosures and Magnetic Shielding 1730 E. Pleasant Street Noblesville, Indiana 46060 Business: 317.173.8500 Facsimie: 317.173.8508 Web: www.imedco.net
	All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted without prior permission from IMEDCO America LTD.
	PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105 PHILIPS ACHEVA QUASAR DUAL XR 15-3T
CONSTRUCTION DRAWINGS - REV A	REV DATE ITEM PD 12.11.09 ID CD 12.30.09 ID D ID ID D ID ID Drawn By: JW CS Drawing Name: STRUCTURAL "A" Project No: 9003 Date: JAN.19.2010 Dwg No: Page No: 9003 S2

VIEW B

FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN 1/8" per 3' MAX. 1/4" TOTAL.

RF Enclosures and Magnetic Shielding 1730 E. Pleasant Street Noblesville, Indiana 4600 Business: 317,773,8500 Facsimile: 317,773,8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted without prior permission from IMEDCO America LTD.
PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105 PHILPS ACHEVA QUASAR DUAL XR 15-31
REV DATE ITEM PD 12.11.09

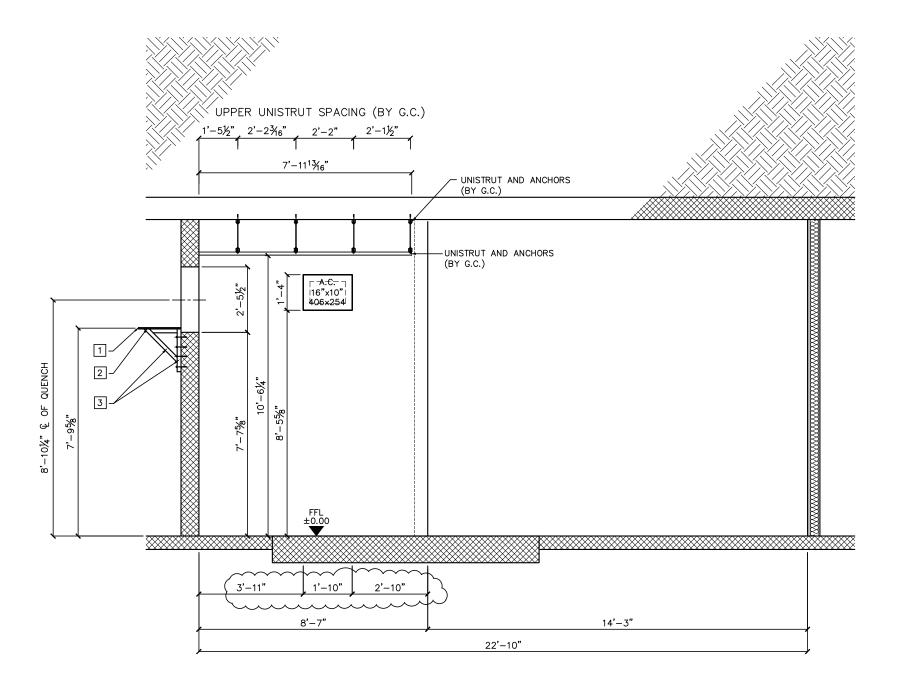

LEGEND

- 1 EPDM (2mm) BY IMEDCO

3 WOOD BRACING (88x44mm) BY IMEDCO

- 2 ½" PLYWOOD (13mm) BY IMEDCO

VIEW C



FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN ½" per 3' MAX. ¼" TOTAL.

AMERICA L TD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060 Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net	
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from IMEDCO America LTD.	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105 Philips achieva quasar dual xr 15-37	
	1.09 10.09 sy: sy: URAL	JW CS JW CS 1.19.2010 Page No: S 4	

VIEW D

FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN ½" per 3' MAX. ¼" TOTAL.

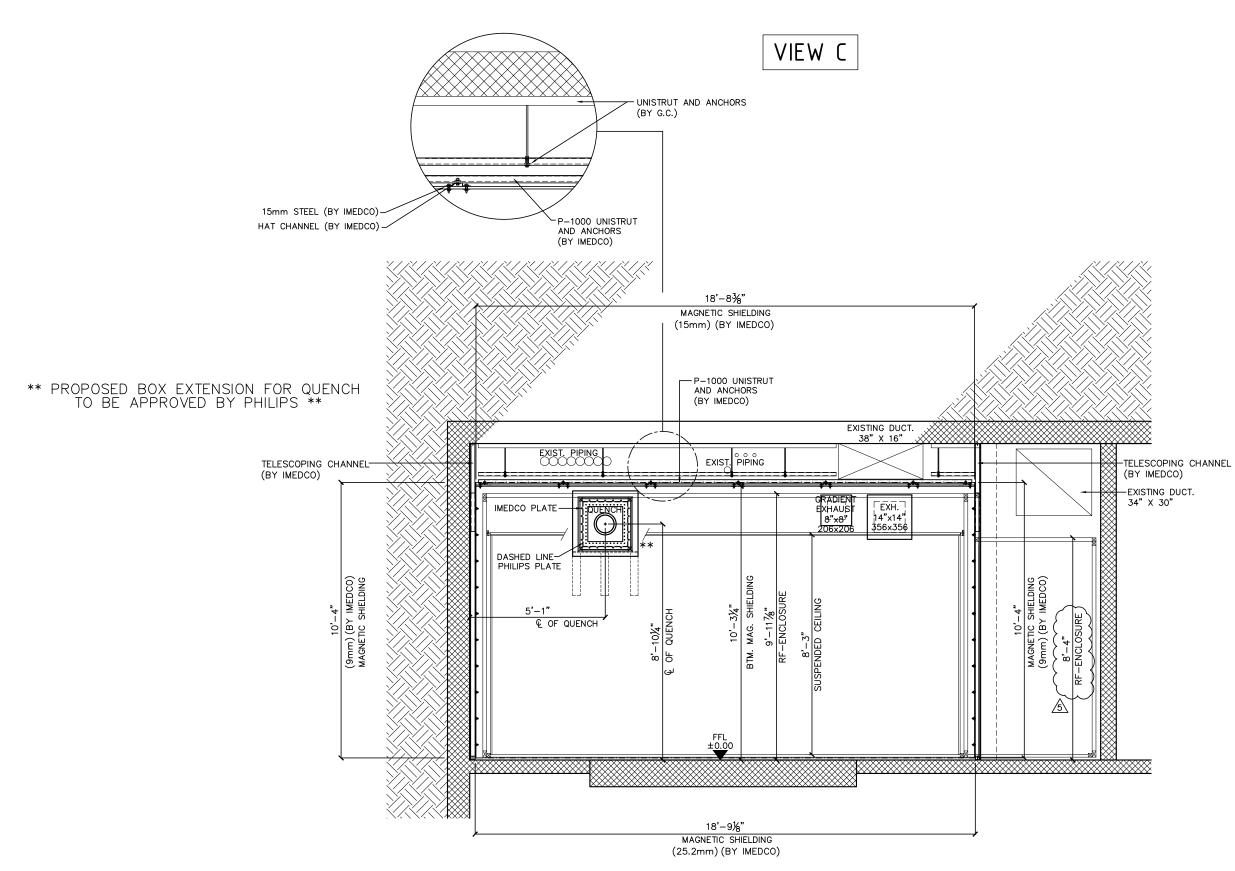
	All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted without prior permission from MEDCO America LTD. <i>RF Enclosures and Magnetic Shielding</i> <i>1730 E. Pleasant Street</i> Noblesville, Indiana 46060 Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
	PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105 PHILIPS ACHEVA QUASAR DUAL XR 15-31
LEGEND 1 EPDM (2mm) BY IMEDCO 2 ½" PLYWOOD (13mm) BY IMEDCO 3 WOOD BRACING (88x44mm) BY IMEDCO	REV DATE ITEM PD 12.11.09 CD 12.30.09 CD 12.30.09 Drawn By: Drawn By: JW Checked By: CS Drawing Name: STRUCTURAL "D" Project No: Date: JAN.19.2010 Dwg No: Page No: 9003 \$\$5\$

VIEW A 000 00000000 SPRINK. 0 (3) 1/2" W.G. STUD WALL-(BY G.C.) ⊢A.E. A.C. 2"x12" | • | 305x305 L J A.C. 12"x12" - 305x305 5 6 HALO HALO PP-PHILIPS MAGNET TRANSPORT OPENING A.E CEILING TILES MAG (SUPPLIED BY PHILIPS & CONTROL INSTALLED BY IMEDCO) ROOM ____ ∕ঌ CEILING 2'-11¾" CLEAR VIEW EQUIP. ROOM DOOR 1200x2100mm 뮏 WINDOW 1200x900mm ENDED RFSC 8'-4" -ENCLO 3'-11¼" 5'-7¾" 3'-0¼" CLEAR VIEW FFL ±0.00 \otimes

FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN ½" per 3' MAX. ¼" TOTAL.

	served. issue to form RF Enclosures and Magnetic Shielding 1330 E. Pleasant Street Noblesville, Indiana 46060 Business: 317.173.8500 Facsimile: 317.773.8508 Web: www.imedco.net
	All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted without prior permission from MEDCO America LTD.
	All rig ANY r AnY r third p whats withou IMEDCC
	PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105 PHILIPS ACHIEVA QUASAR DUAL XR 15-37
5 FURRING (44x44mm) FOR HALO ANCHORING BY IMEDCO	REV DATE ITEM PD 12.11.09 .
6 5/8" (16mm) WD. HALO TEMPLATE BY IMEDCO	CD 12.30.09 Image: Comparison of the com
CONSTRUCTION DRAWINGS - REV A	Dwg No: Page No: 9003 A1

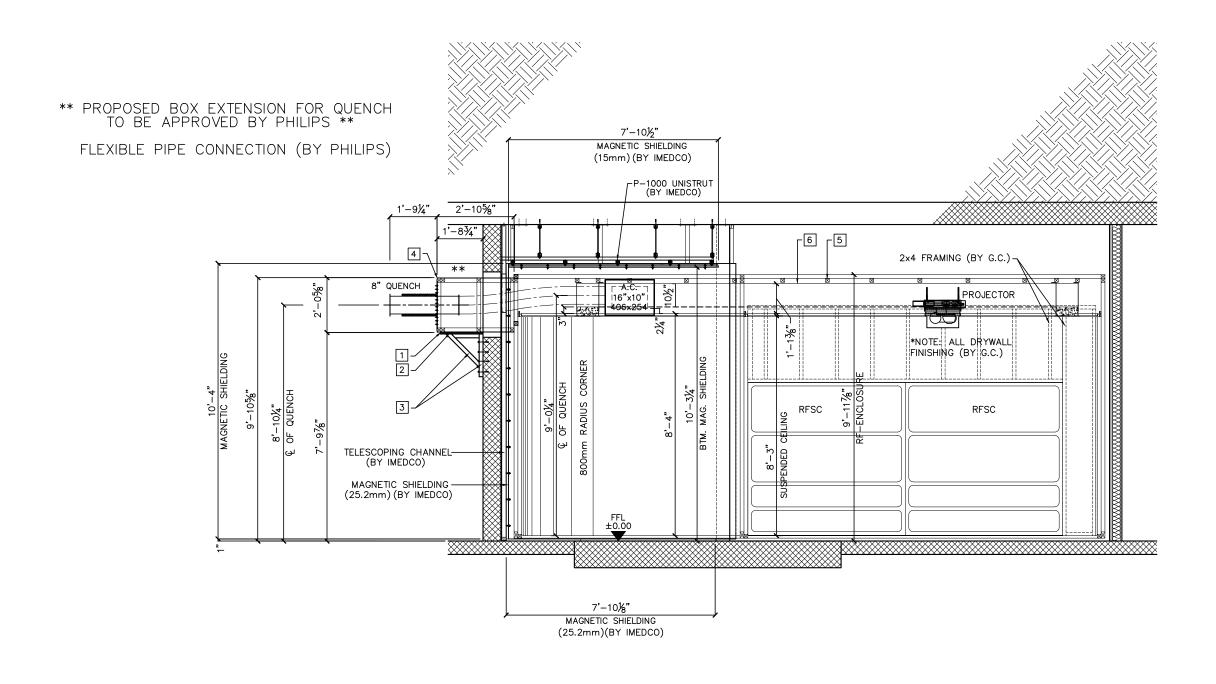

VIEW B ** PROPOSED BO> TO BE APPE FLEXIBLE PIPE 7'-10½" MAGNETIC SHIELDING (15mm) (BY IMEDCO) *** 1'-8¾" ٦ 6 [5] P-1000 UNISTRUT-(BY IMEDCO) 200000 <u>_4</u> ** 8" QUENCH .05% 3 - ____ --'n 1 10'-4" MAGNETIC SHIELDING RADIUS CORNER 2 8'-3" SUSPENDED CEILING 9'-0¼" OF QUENCH 9'-1176" RF-ENCLOSUF 8'-1014" OF QUENCH 9'-105%" -34 - 3 ò -976" MAG Ę TELESCOPING CHANNEL ĥ Ĭ لح) (BY IMEDCO) _ _ -MAGNETIC SHIELDING (25.2mm)(BY IMEDCO) FFL ±0.00 \otimes 7'-10%" MAGNETIC SHIELDING (25.2mm)(BY IMEDCO)

FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN 1/8" per 3' MAX. 1/4" TOTAL.

X EXTENSION FOR QUENCH ROVED BY PHILIPS ** CONNECTION (BY PHILIPS)	RF Enclosures and I	1730 E. Pleasant Street Business: 317.773.8500
	All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted	without prior permission from IMEDCO America LTD.
	PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street	Sioux Falls, SD 57105 Philips achieva quasar dual xr 15-31
 LEGEND EPDM (2mm) BY IMEDCO ½" PLYWOOD (13mm) BY IMEDCO WOOD BRACING (88x44mm) BY IMEDCO WODF (10mm) BY IMEDCO FURRING (44x44mm) FOR HALO ANCHORING BY IMEDCO FURRING (44x44mm) FOR HALO ANCHORING BY IMEDCO 5/8" (16mm) WD. HALO TEMPLATE BY IMEDCO 	REV DATE PD 12.11.09 CD 12.30.09 	9003
CONSTRUCTION DRAWINGS - REV A	I	19.2010 Page No: A2

	Y			
	AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
	All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from	וו ורחרה אווובו ורם בו חי
PR0JECT:	Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
REV PD CD 		1.09		IM JW CS



FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN 1/8" per 3' MAX. 1/4" TOTAL.

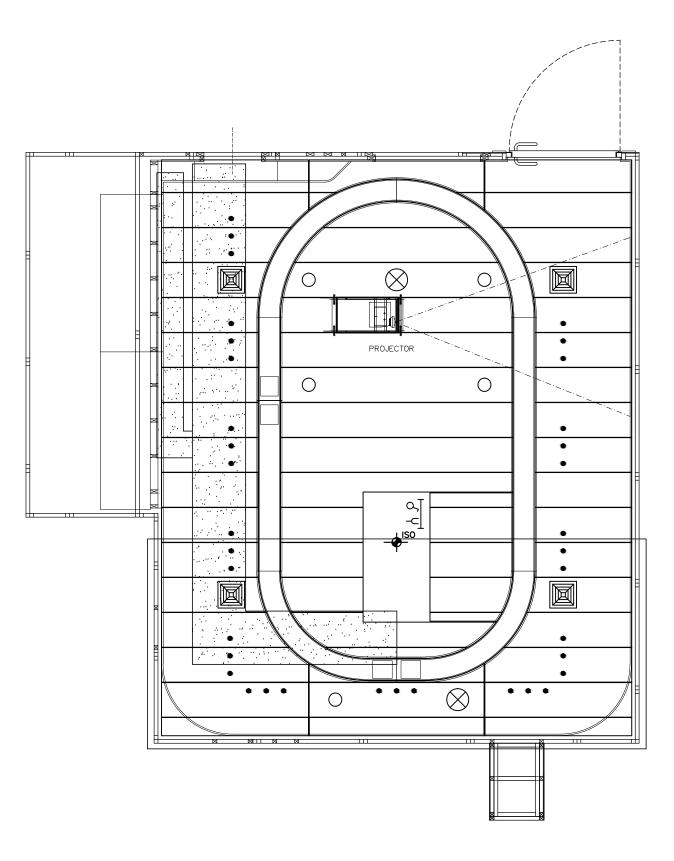
A THE AND AMERICA LTD.	RF Enclosures and Magnetic Shielding 1130 F Ploseshe Streat - Mohlosovilla Indiana 16060	Business: 317.173.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to third parties in any form	whatsoever is restricted without prior permission from	IMEDCO America LTD.
PROJECT: Sioux Falls VA Hospital	2501 W. 22Nd SFreet Sioux Falls, SD 57105	PHILIPS ACHEVA QUASAR DUAL XR 1:5-3T
REV DATE PD 12.110 CD 12.30. 	9.	EM JW
Checked By: Drawing Name INTERIOR Project No: Date: Dwg No: 9003	FINISH JAN.19 Pag	9003 2010.

VIEW D

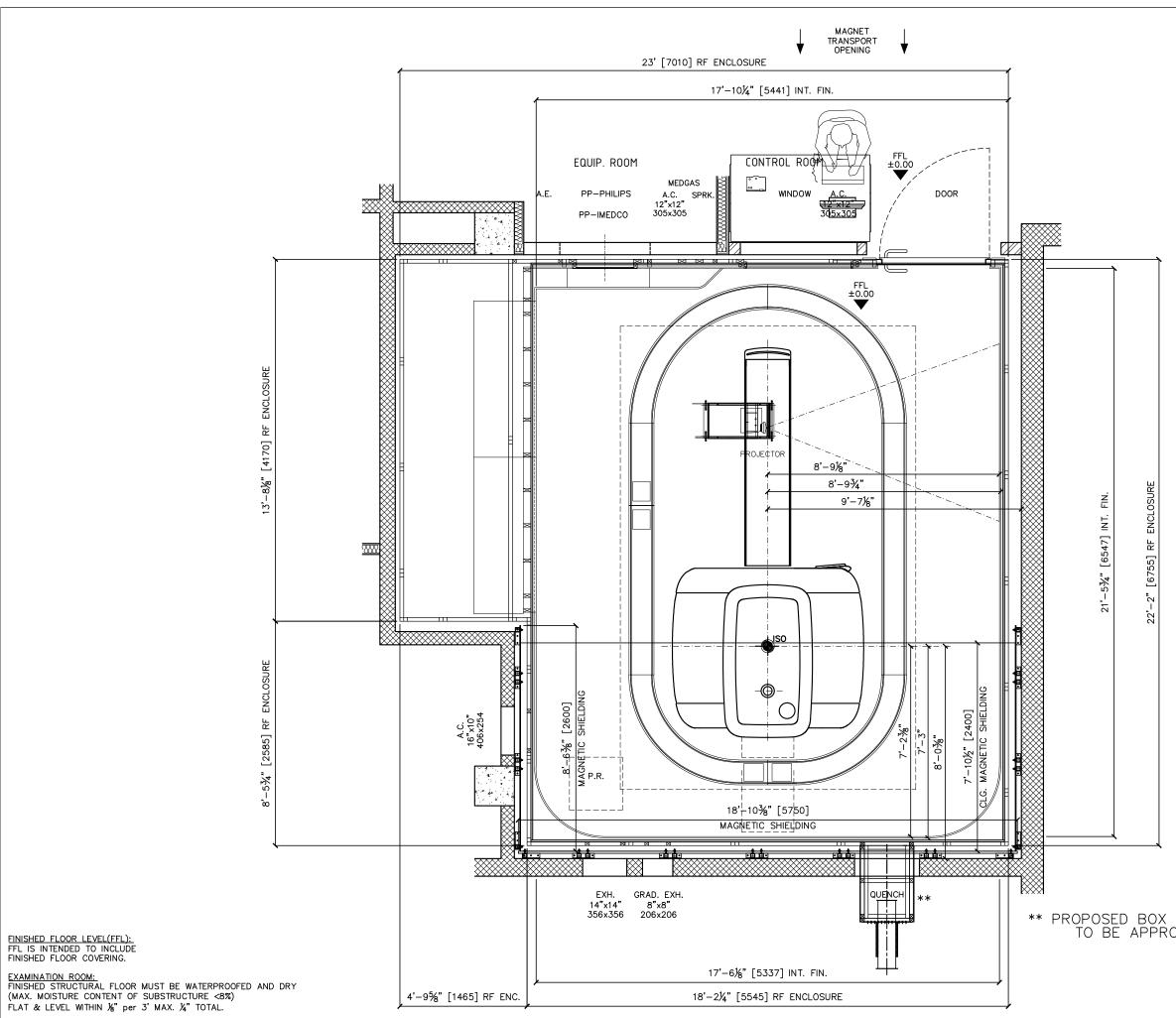

FINISHED FLOOR LEVEL(FFL): FFL IS INTENDED TO INCLUDE FINISHED FLOOR COVERING.

EXAMINATION ROOM: FINISHED STRUCTURAL FLOOR MUST BE WATERPROOFED AND DRY (MAX. MOISTURE CONTENT OF SUBSTRUCTURE <8%) FLAT & LEVEL WITHIN 1/8" per 3' MAX. 1/4" TOTAL.

AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
	1.09 30.09 : : : : : : : : : : : : : : : : : : :	N.19.2 Page	Jw CS "D" 9003

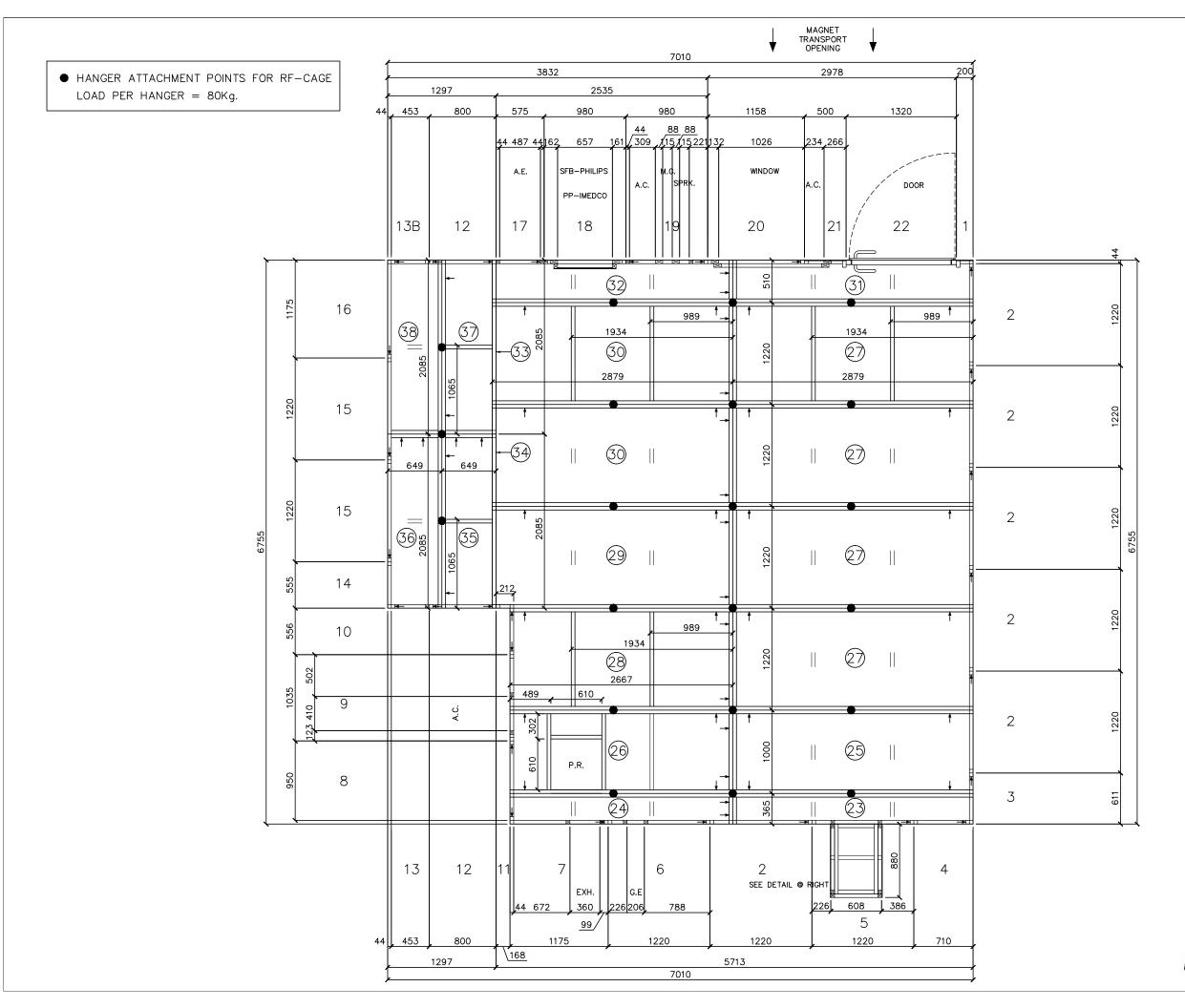

LEGEND

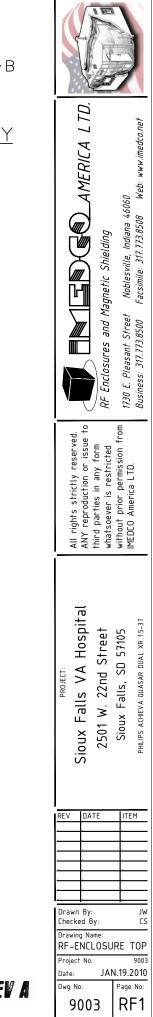
- 1 EPDM (2mm) BY IMEDCO 2 ½" PLYWOOD (13mm) BY IMEDCO 3 WOOD BRACING (88x44mm) BY IMEDCO 4 3%" MDF (10mm) BY IMEDCO
- 5 FURRING (44x44mm) FOR HALO ANCHORING BY IMEDCO
- 6 5/8" (16mm) WD. HALO TEMPLATE BY IMEDCO

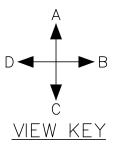


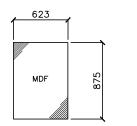
* SPF

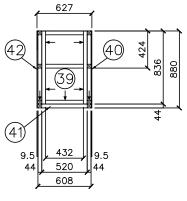
LEGEND SPEAKER SPOT LIGHT SPRINKLER LIGHT J SOCKET OUTLET LIGHT SWITCH	All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted withour prior permission from MEDCO America LTD. RF Enclosures and Magnetic Shielding 130 E. Pleasant Street Noblesville, Indiana 46060 Business: 377.773.8500 Facsimile: 377.773.8500 Web: www.imedco.net
RINKLER HEADS TO BE FIELD LOCATED *	PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street Sioux Falls, SD 57105 PHLIPS ACHIEVA QUASAR DUAL XR 15-31
CONSTRUCTION DRAWINGS - REV A	REV DATE ITEM PD 12,11,09
JUNUINUUNUN DIMPINUU " ILL M	9003 AA661

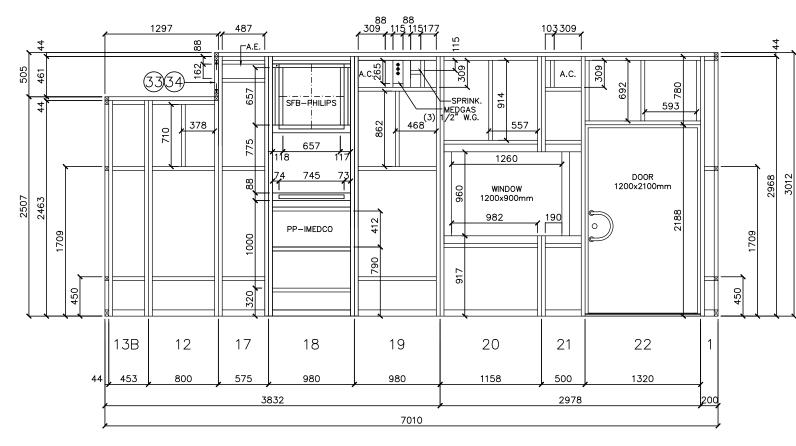

A THE AND AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
	1.09 i0.09 iv: ime: DED JAN	CEILI N.19.2	JW CS 9003 2010 No:



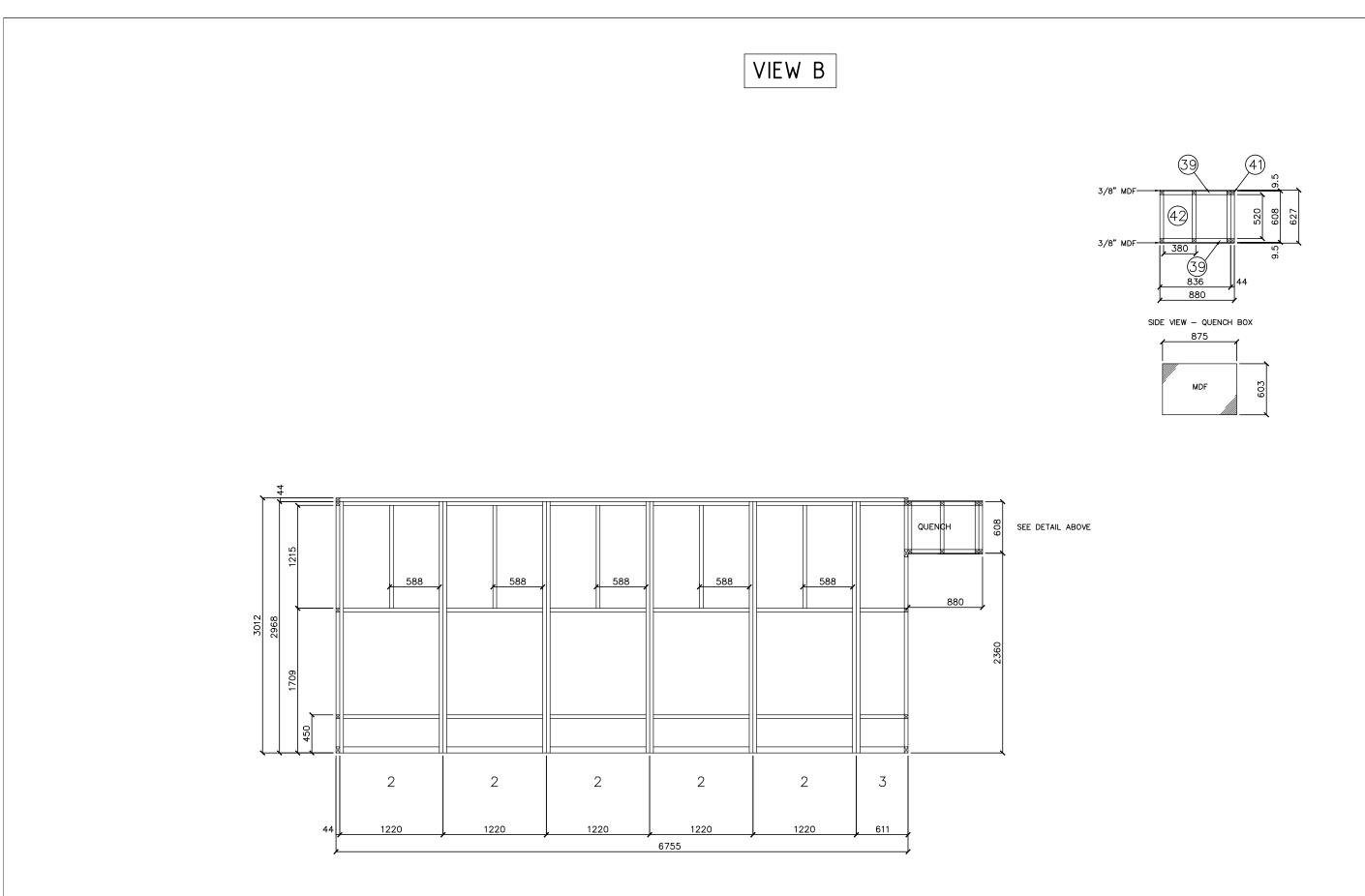

	0
RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060 Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to third parties in any form whatsoever is restricted	without prior permission from IMEDCO America LTD.
PROJECT: Sioux Falls VA Hospital 2501 W. 22nd Street	Sioux Falls, SD 57105 PHILIPS ACHEVA QUASAR DUAL XR 15-37
REV DATE PD 12.11.09 CD 12.30.09 D12.30.0	ITEM J J J J W CS AGNET 9003 V.19.2010 Page No:
9003	Α5


CONSTRUCTION DRAWINGS - REV A

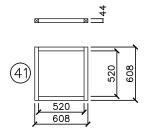

** PROPOSED BOX EXTENSION FOR QUENCH TO BE APPROVED BY PHILIPS **



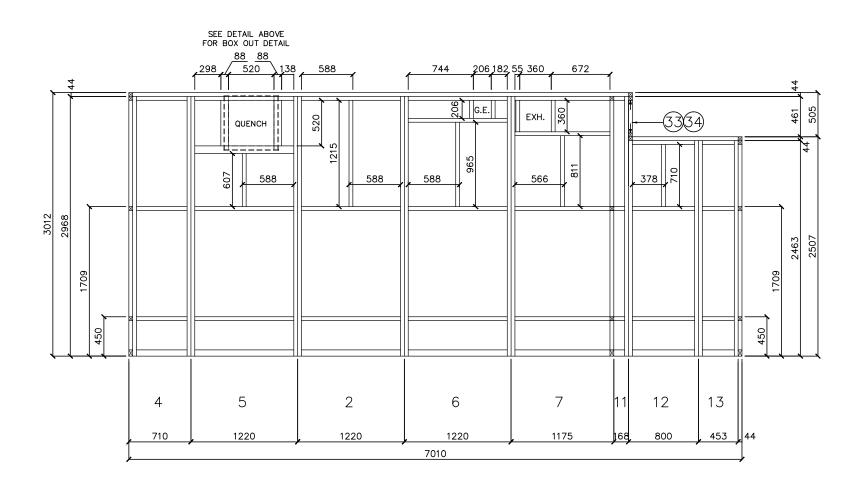
TOP VIEW - QUENCH BOX


VIEW A

MAGNET TRANSPORT OPENING

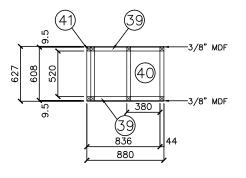

A THE AND AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.nef
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
	1.09 80.00 80.09 80.00 8	N.19.2 Page	JW CS "A" 9003 2010

CEILING PANEL # ALSO NEEDS TO BE REMOVED TO ALLOW MAGNET ACCESS

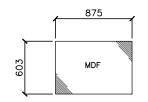


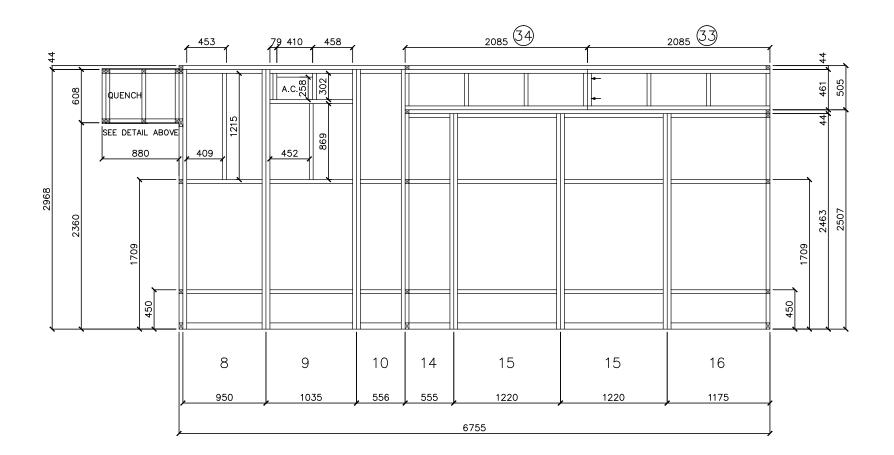
	D.			
	AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
	All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from	
PR0JECT:	Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
Che Dra RF Proj Dat	DA 	: By: ame: LOSU : JA	N.19.2 Page	JW CS 9003 2010

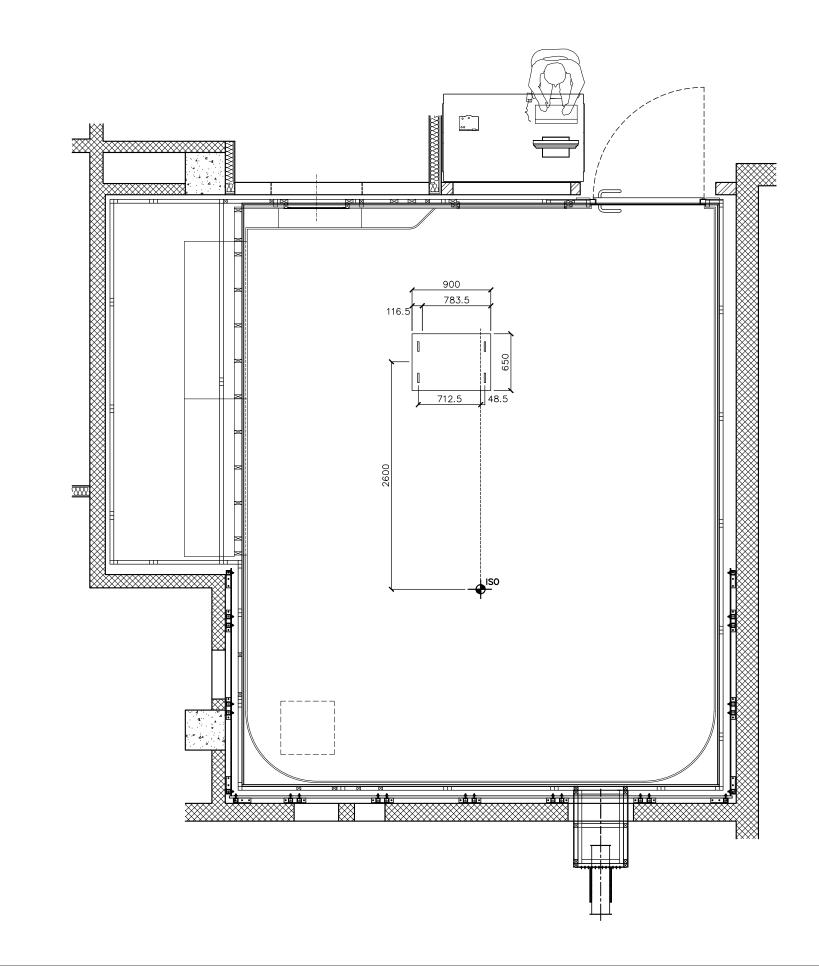
VIEW C



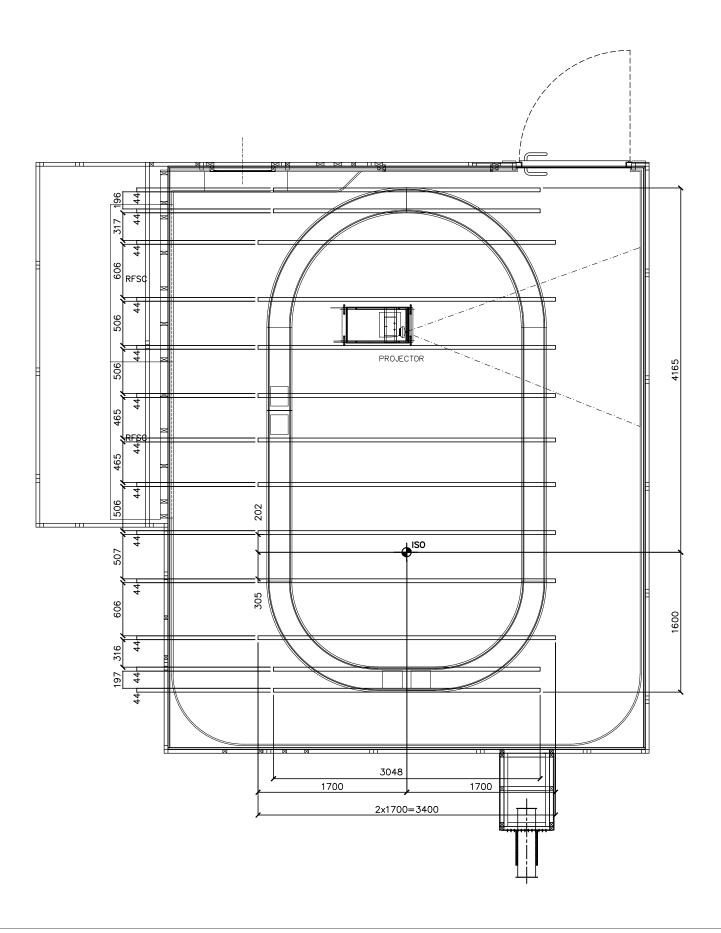
END VIEW - QUENCH BOX

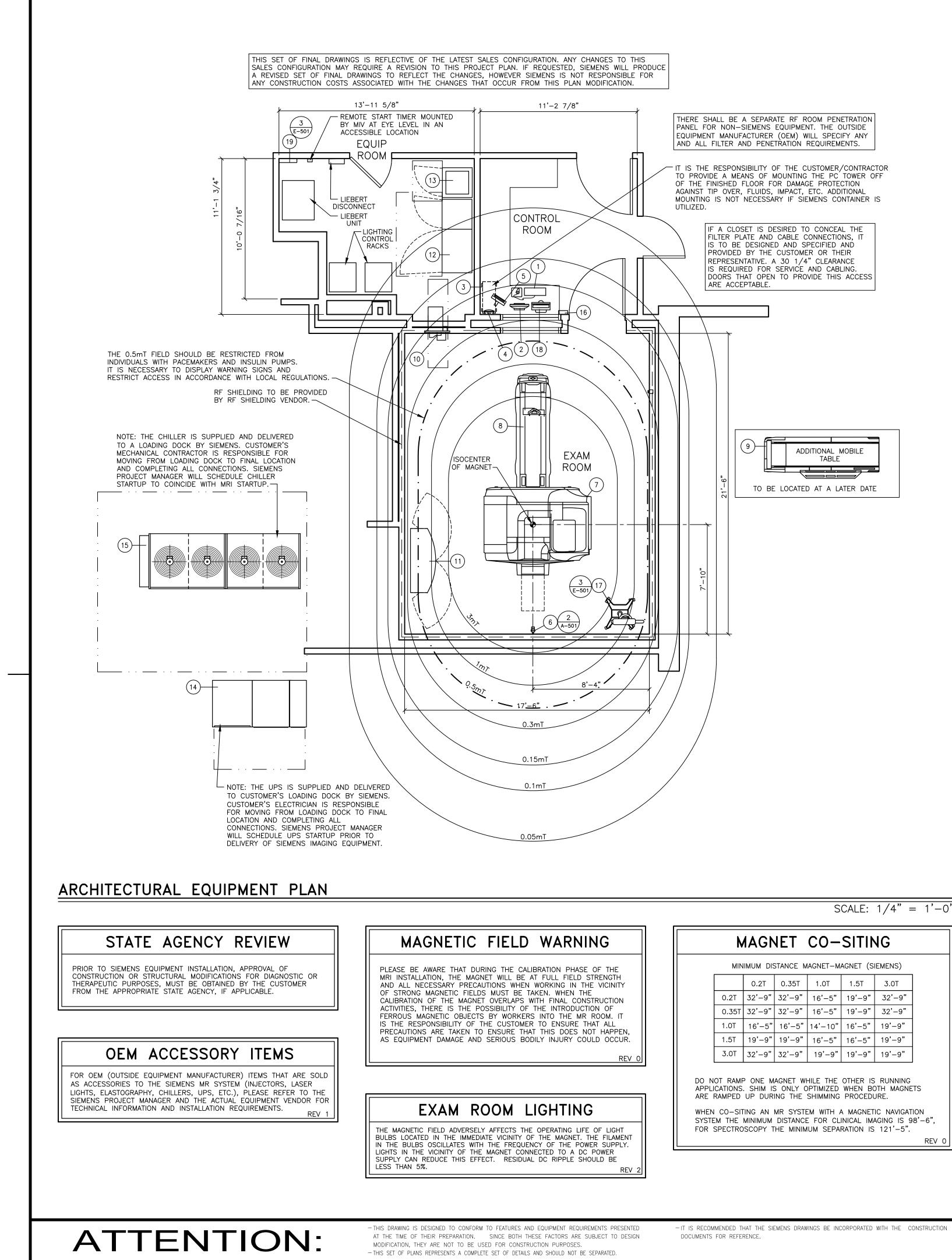



AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
REV DA	: 3y: ame: LOSU : JAN		JW CS (C" 9003 2010 No:



SIDE VIEW - QUENCH BOX




		-	
A THE SOLUTION AMERICA LTD.	RF Enclosures and Magnetic Shielding	1730 E. Pleasant Street Noblesville, Indiana 460	Business: 317,773,8500 Facsimile: 317,773,8508 Web: www.imedco.nef
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from IMEDCO America LTD.	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
REV DA	y: _OSUI _JAN		JW CS D" 9003 010 No:

	RF Enclosures and Mag	from 1730 E. Pleasant Street Noblesville, Indiana 46060	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
Sioux Falls VA Hospital ANY reproduction or issue to	W Image: Signal distribution Image: Signal distribution Image: Signal distribution W M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M	Sioux Falls, SD 57105 without prior permission from MEDIC America I TD	

		5	
A THE SOLUTION AMERICA LTD.	RF Enclosures and Magnetic Shielding	1	Business: 317.773.8500 Facsimile: 317.773.8508 Web: www.imedco.net
All rights strictly reserved. ANY reproduction or issue to	third parties in any form whatsoever is restricted	without prior permission from IMEDCO America LTD.	
PROJECT: Sioux Falls VA Hospital	2501 W. 22nd Street	Sioux Falls, SD 57105	PHILIPS ACHIEVA QUASAR DUAL XR 1.5-3T
	ſE		۲
Drawn By: Checked B Drawing Nai HALO FL Project No: Date: Dwg No: 900	^{me:} IRRIN JAN	.29.2 Page	

EQUIPMENT			LEGE	ND				
NO	DESCRIPTION	SMS	WEIGHT	BTU/HR	DIMEN	NSIONS (INC	CHES)	REMARKS
		SYM	(LBS)	TO AIR	W	D	Н	
	MRC KEYBOARD	\ominus	5		27 1/4	10 1/8	1 3/4	ON CONSOLE/COUNTER
2	COLOR MONITOR FOR MRC	Θ	22	239	18 5/16	16 15/16	4 3/4	ON CONSOLE/COUNTER
3	HOST PC MRC	(RC)	49	2,389	11	27	18 1/8	
4	ALARM BOX	ÆB	2		9	4	9	
5	PATIENT MONITOR	Ø	9		13	8	12 1/2	
6	PATIENT SUPERVISION CAMERA	®	3		3 1/8	6 3/4	6 3/4	WALL MOUNTED
\bigcirc	SOLA MAGNET IN OPERATION	B	8,779	7,506	91	170	86	
8	PATIENT TABLE (MOBILE)	Θ	529		29 1/2	97 1/4	21-41	
9	ADDITIONAL PATIENT TABLE (MOBILE)	Θ	529		29 1/2	97 1/4	21-41	
10	RF-FILTER PLATE	(FI)	287	853	21 5/8	35 1/8	46 1/2	
(1)	SURFACE COIL CART	\$00¢	110		55 1/8	21 1/8	47 5/8	WEIGHT WITHOUT COILS
12	ELECTRONICS CABINET (GPA/EPC CABINET)	(CPA)	3,307	<3,412	61 1/2	26	77 1/2	
13	SEP CABINET	æ	750	<3,412	25 5/8	25 5/8	73 5/8	
14	EATON 93PM 180 KW UPS WITH BATTERY & MAINTENANCE BYPASS	®	6,664	20,523	81	42	74	
(15)	DIMPLEX CHILLER (60kW)	₩C₽)	4,300		138	44	84 1/2	CUST. TO LOCATE/INSTALL
(16)	DIMPLEX STATUS PANEL	¢©۶	0.5	3	6 1/8	1 1/2	3 1/4	WALL MOUNTED IN CONTROL ROOM
17	MRXPERION INJECTOR STAND AND HEAD	(MR)	94		23 3/8	28 3/8	71 7/8	INJECTOR ON STAND
18	MRXPERION ICBC INJECTOR CRU	(RD)	17.6		15 3/4	10 1/4	13 1/2	ON CUSTOMERS COUNTER
(19)	MRXPERION ICBC INJECTOR POWER SUPPLY	€ ®?	6		15 3/8	3 3/8	15 1/2	LOCATED IN EXAM ROOM OUTSIDE 5mT FIELD

PROTECTING THE MAGNETIC FIELD
THE SIEMENS MR SYSTEM UTILIZES A SUPERCONDUCTIVE MAGNET WITH AN EXTREMELY HOMOGENOUS FIELD WITHIN THE MAGNET TO PROVIDE DISTORTION FREE IMAGING. THE PRESENCE OF FERROMAGNETIC MATERIAL WITHIN THE
VICINITY OF THE MAGNET CAN ADVERSELY AFFECT THE UNIFORMITY OF THE USEFUL MAGNETIC FIELD. THIS APPLIES TO STATIONARY FERROUS MATERIAL (STRUCTURAL STEEL) WHICH IS TO BE MINIMIZED. STATIONARY STEEL

COMPENSATION MAY BE ACHIEVED BY MAGNET POSITIONING AND SELECTIVE USE OF SHIMS. DISTORTION CAUSED BY MOVING FERROMAGNETIC OBJECTS (MOTOR VEHICLES, ELEVATORS) IS MORE DIFFICULT TO COMPENSATE AND MAY REQUIRE THE USE OF MAGNETIC SHIELDING. REV 0

MAGN

MAGNETIC FIELDS

VICINITY OF THE MAGNETIC FIELDS ISOCENTER AND FIELD X & Y

3.0mT | 6'—1"

1.0mT | 7'-3" |

0.5mT | 8'–3" |

).15mT | 10'-4"

0.1mT 11'-2"

0.05mT 13'-6"

THE OWNER/USE AND ENSURE TH

NETIC	C FRINGE FIELDS		MAGN	ET SI	TING	REQUIREMENTS	
DS MAY AFFECT THE FUNCTION OF DEVICES IN THE E MAGNET. THESE DEVICES MUST BE OUTSIDE CERTAIN DS. THE DISTANCES LISTED ARE FROM THE MAGNET D DO NOT CONSIDER ANY MAGNETIC ROOM SHIELDING.			IT MUST BE ENSURED THAT THE MAGNET IS LOCATED SO THAT THE STABILITY AND HOMOGENEITY OF THE MAGNETIC FIELD ARE NOT ADVERSELY AFFECTED BY EXTRANEOUS FIELDS AND STATIC DYNAMIC FERROMAGNETIC OBJECTS.				
Z AXIS	DEVICES		X & Y AXES	Z AXIS	SOURCE	OF INTERFERENCE	
9'-2"	SMALL MOTORS, WATCHES, CAMERAS, CREDIT CARDS, MAGNETIC DATA CARRIERS.		4'-2"		FLOOR STEEL REINFORCEMENT<20 LBS./ FT ² IRON BEAMS < 66 LBS./FT.		- 2
	CARDS, MAGNETIC DATA CARRIERS.		16'-1"	19'-1"	MOVING N	METAL UP TO 110 LBS.	ľ
11'-7" COMPUTERS, MAGNETIC DISK DRIVES, OSCILLOSCOPES, PROCESSORS			13'-1"		WATER COOLING UNIT (CHILLER)		
	USCILLUSCOPES, PROCESSORS		17'-5"	21'-4"	MOVING N	METAL UP TO 440 LBS.	
13'–2"	13'-2" CARDIAC PACEMAKERS, X-RAY TUBES,		18'-1"	24'-8"	MOVING N	METAL UP TO 2,000 LBS.	
	INSULIN PUMPS, B/W MONITORS, MAGNETIC DATA CARRIERS (LONG-TERM STORAGE)		20'-5"	29'-7"	ELEVATOR	RS, TRUCKS UP TO 10,000 LBS.	
17'-4"	SIEMENS CT SCANNERS		13'-1"	13'—1"	AC TRANS	SFORMERS LESS THAN 650 KVA	
19'-1"	CRT MONITORS, SIEMENS LINEAR		16'-5"	16'-5"	AC TRANS	SFORMERS LESS THAN 1600 KVA	
13 1	ACCELERATORS		5'-0"	5'-0"	AC CABL	ES, MOTORS LESS THAN 250 AMP	s
22'-8"	X-RAY IMAGE INTENSIFIERS, GAMMA		8'-3"	8'-3"	AC CABLI	ES, MOTORS LESS THAN 1000 AM	PS
CAMERAS, PET/CYCLOTRON, ELECTRON MICROSCOPES, LINEAR ACCELERATORS						O 45° FROM THE Z AXIS, THE BE USED. REDUCTION IS	
	VERIFY THE LOCATION OF THE 0.5mT FIELD MAINTAINED AS A RESTRICTED AREA.		POSSIBLE WIT			BE USED. REDUCTION IS	
		. L					

MAGN	ET SI	TING REQUIREMENTS			
IT MUST BE ENSURED THAT THE MAGNET IS LOCATED SO THAT THE STABILITY AND HOMOGENEITY OF THE MAGNETIC FIELD ARE NOT ADVERSELY AFFECTED BY EXTRANEOUS FIELDS AND STATIC OR DYNAMIC FERROMAGNETIC OBJECTS.					
X & Y AXES	Z AXIS	SOURCE OF INTERFERENCE			
4'-2	2"	FLOOR STEEL REINFORCEMENT<20 LBS./ FT ² IRON BEAMS < 66 LBS./FT.			
16'-1"	19'-1"	MOVING METAL UP TO 110 LBS.			
13'—	1"	WATER COOLING UNIT (CHILLER)			
17'-5"	21'-4"	MOVING METAL UP TO 440 LBS.			
18'-1"	24'-8"	MOVING METAL UP TO 2,000 LBS.			
20'-5"	29'-7"	ELEVATORS, TRUCKS UP TO 10,000 LBS.			
13'-1"	13'-1"	AC TRANSFORMERS LESS THAN 650 KVA			
16'-5"	16'-5"	AC TRANSFORMERS LESS THAN 1600 KVA			
5'-0"	5'-0"	AC CABLES, MOTORS LESS THAN 250 AMPS			
8'-3"	8'–3"	AC CABLES, MOTORS LESS THAN 1000 AMPS			
FOR IRON OBJECTS LOCATED UP TO 45° FROM THE Z AXIS, THE DISTANCES FOR THE Z AXIS MUST BE USED. REDUCTION IS POSSIBLE WITH STEEL SHIELDING.					

PROJECT MILESTONES	
S TO BE COMPLETED BEFORE EQUIPMENT DELIVERY	REFERENCE SHEET
	A-102
MENS SPECIFICATIONS AND ALL BASEPLATES INSTALLED	S-101
ED AND MEETS SIEMENS SPECIFICATIONS	A-502
AND JUNCTION BOXES INSTALLED	E-101
D AND TESTED	M-101
LETED	E-102
ALLED AND TESTED	E-101
G AND CEILING GRIDS INSTALLED IN MAGNET ROOM	A-101
TED ENOUGH TO FACILITATE THE INSTALLATION	A-101
AVAILABLE AND MEETS SIEMENS SPECIFICATIONS	M-101
G AND CEILING GRIDS INSTALLED IN MAGNET ROOM	A-101
, TESTED AND WORKING PER SIEMENS SPECIFICATIONS	M-101
TED AND INSTALLED PER SIEMENS SPECIFICATIONS	M-501
NSTALLED AND IN OPERATION AT THE SHOWN LOCATIONS	E-101
	*

PROJECT MILESTONES						
Pf	PROJECT MILESTONES TO BE COMPLETED BEFORE EQUIPMENT DELIVERY REFERENCE SHEET					
	DELIVERY PATH VERIFIED	A-102				
	FLOOR LEVEL MEETS SIEMENS SPECIFICATIONS AND ALL BASEPLATES INSTALLED	S-101				
	RF ROOM TEST COMPLETED AND MEETS SIEMENS SPECIFICATIONS	A-502				
	ALL RACEWAY, CONDUITS AND JUNCTION BOXES INSTALLED	E-101				
	ALL PLUMBING INSTALLED AND TESTED	M-101				
	POWER SCHEDULE COMPLETED	E-102				
	ALL EPO BUTTONS INSTALLED AND TESTED	E-101				
	MR COMPATIBLE LIGHTING AND CEILING GRIDS INSTALLED IN MAGNET ROOM	A-101				
	CONTROL ROOM COMPLETED ENOUGH TO FACILITATE THE INSTALLATION	A-101				
	CHILLED WATER SUPPLY AVAILABLE AND MEETS SIEMENS SPECIFICATIONS	M-101				
	MR COMPATIBLE LIGHTING AND CEILING GRIDS INSTALLED IN MAGNET ROOM	A-101				
	HVAC SYSTEM COMPLETE, TESTED AND WORKING PER SIEMENS SPECIFICATIONS	M-101				
	QUENCH PIPE CONSTRUCTED AND INSTALLED PER SIEMENS SPECIFICATIONS	M-501				
	ETHERNET CONNECTION INSTALLED AND IN OPERATION AT THE SHOWN LOCATIONS	E-101				

IN ROOM LETED AND MEETS SIEMENS SI EGITORITORS
ALL RACEWAY, CONDUITS AND JUNCTION BOXES INSTALLED
ALL PLUMBING INSTALLED AND TESTED
POWER SCHEDULE COMPLETED
ALL EPO BUTTONS INSTALLED AND TESTED
MR COMPATIBLE LIGHTING AND CEILING GRIDS INSTALLED IN MAGNET ROOM
CONTROL ROOM COMPLETED ENOUGH TO FACILITATE THE INSTALLATION
CHILLED WATER SUPPLY AVAILABLE AND MEETS SIEMENS SPECIFICATIONS
MR COMPATIBLE LIGHTING AND CEILING GRIDS INSTALLED IN MAGNET ROOM
HVAC SYSTEM COMPLETE, TESTED AND WORKING PER SIEMENS SPECIFICATIONS
QUENCH PIPE CONSTRUCTED AND INSTALLED PER SIEMENS SPECIFICATIONS
ETHERNET CONNECTION INSTALLED AND IN OPERATION AT THE SHOWN LOCATIO

	0.2T 0.35T	32'-9" 32'-9"	32'-9" 32'-9"	16'-5" 16'-5"	19'-9" 19'-9"	32'-9" 32'-9"	
	1.0T	16'-5"	16'-5"	14'-10"	16'-5"	19'–9"	
	1.5T	19'-9"	19'–9"	16'–5"	16'-5"	19'–9"	
	3.0T	32'-9"	32'-9"	19'–9"	19'–9"	19'–9"	
APPL	ICATIONS	. SHIM IS	S ONLY C	PTIMIZED	WHEN BO	RUNNING	TS
APPL ARE WHEN SYST	ICATIONS RAMPED N CO-SII EM THE	. SHIM IS UP DUR TING AN MINIMUM	S ONLY C ING THE MR SYSTE DISTANCE	OPTIMIZED SHIMMING EM WITH A E FOR CLI	WHEN BO PROCEDU MAGNET	OTH MAGNE	ION

SCALE: 1/4" = 1'-0'

CEILING	HEIGHTS
---------	---------

EXAM ROOM 7'-11" MINIMUM CONTROL ROOM 6'-11 MINIMUM EQUIPMENT ROOM 7'-3" MINIMUM

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

	7
5	U
RY NG HAT IS INS. EMENS CH	
QUIRED VINGS	
GER. RING Ý FOR	
CODES	
ND	7
RT OF THE AWINGS, ESS	$\left \begin{array}{c} 2 \\ 0 \end{array} \right $
ATION	$\left(\right)$
NS NSE E LECTED,	r l
DE OF DE ARGED LATION	
IANAGER BE UMNS, LER	
E FOR WHICH	
ITH CTRICAL	
REV 0	2
TS	
FRICAL S AND	
S AND G IS WALL	
REV 3	
TES	
R	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right $
E TO REV 0	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $
DATE 11.19	$\left \right\rangle$
	Ζ
SOLA REV 8	
ENS	
∩1	
VI	

PROTECTING THE ENVIRONMENT

PROTECTING THE IMMEDIATE ENVIRONMENT FROM THE EFFECT OF THE MAGNETIC FIELD REQUIRES CONSIDERATION. INFORMATION STORED ON MAGNETIC DATA CARRIERS SUCH AS DISCS, TAPES AND CARDS MAY BE ERASED IF NEAR THE MAGNET. CAUTION WITH REGARD TO HEART PACEMAKERS MUST BE EXERCISED. MOST PACEMAKER UNITS EMPLOY A REED RELAY WHICH MAY CHANGE OPERATING MODE WHEN EXPOSED TO AN EXTERNAL MAGNETIC FIELD. PACEMAKER USERS MUST BE KEPT AT A SPECIFIED DISTANCE FROM THE MAGNET WHICH IS DETERMINED BY THE MAGNET FIELD STRENGTH. REV 0

ARCHITECTURAL NOTES

1) ALL PRELIMINARY EQUIPMENT LAYOUTS SUBMITTED BY SIEMENS HEALTHCARE ARE BASED ON THE RECOMMENDED SPACE NECESSARY FOR THE OPERATION AND SERVICEABILITY OF THE EQUIPMENT BEING PROPOSED. SIEMENS WILL NOT SUBMIT AN EQUIPMENT LAYOUT THAT IS NOT IN THE BEST INTEREST OF BOTH THE CUSTOMER AND SIEMENS. ALL EQUIPMENT LAYOUTS ARE BASED EITHER ON AN ACTUAL SITE SURVEY OR ARCHITECTURAL DRAWINGS SUPPLIED TO SIEMENS. SIEMENS WILL NOT BE RESPONSIBLE FOR ANY ALTERATIONS THAT ENCROACH WITHIN DESIGNATED SAFETY AND SERVICE CLEARANCE ZONES AS INDICATED ON DRAWINGS (I.E.. PIPE CHASES, VENTILATION DUCTS, CASEWORK, AND SOFFITS, ETC.) MADE BY THE CUSTOMER OR REQUIRED BY A CUSTOMER'S ARCHITECTURAL FIRM ONCE PRELIMINARY DRAWINGS HAVE BEEN SUBMITTED AND APPROVED. DO NOT ALTER ANY

SPECIFICATIONS AND/OR DIMENSIONS WITHOUT CONTACTING AND RECEIVING WRITTEN CONFIRMATION FROM SIEMENS PROJECT MANAGER. 2) SIEMENS HEALTHCARE IS NOT AN ARCHITECTURAL OR ENGINEERING FIRM. DRAWINGS SUPPLIED BY SIEMENS ARE NOT CONSTRUCTION DRAWINGS. THEREFORE, THESE DRAWINGS ARE TO BE USED ONLY FOR INFORMATION TO COMPLEMENT ACTUAL CONSTRUCTION DRAWINGS AVAILABLE FROM A CUSTOMER APPOINTED ARCHITECTURAL

REPRESENTATIVE OR A CUSTOMER'S ENGINEERING DESIGN GROUP. THE CUSTOMER'S ARCHITECT AND GENERAL CONTRACTOR SHALL BE ULTIMATELY RESPONSIBLE FOR COMPLIANCE WITH ALL APPLICABLE CODES AND PROFESSIONAL DESIGN REQUIREMENTS INCLUDING OSHA/NEC SAFETY CLEARANCE REQUIREMENTS IN ADDITION TO SIEMENS-REQUIRED SAFETY/SERVICE CLEARANCES SHOWN.

3) THE CUSTOMER IS RESPONSIBLE FOR ALL ROOM AND AREA PREPARATION COSTS, PROFESSIONAL FEES, PERMITS, REPORTS, AND INSPECTION FEES. 4) EQUIPMENT WARRANTIES, EXPRESSED OR IMPLIED ON THE PART OF SIEMENS SHALL BE CONTINGENT UPON STRICT COMPLIANCE WITH THE

ARCHITECTURAL, STRUCTURAL, ELECTRICAL, MECHANICAL AND RECOMMENDATIONS AND REQUIREMENTS CONTAINED IN THESE DRAWINGS, UNLESS SPECIFIED OTHERWISE. 5) ALL DIMENSIONS SHOWN ARE FROM FINISHED SURFACES UNLESS

SPECIFIED OTHERWISE. 6) SIEMENS HEALTHCARE SHALL BE RESPONSIBLE FOR SIEMENS EQUIPMENT INSTALLATION, CALIBRATION, CONNECTION AND INSTALLATION

OF SIEMENS PROVIDED CABLES. THE CUSTOMER/ELECTRICAL CONTRACTOR IS RESPONSIBLE FOR TERMINATIONS OF CUSTOMER/ELECTRICAL CONTRACTOR-SUPPLIED CABLES TO SIEMENS

EQUIPMENT. IN THE EVENT THAT SPECIFIC TRADE RULES OR LICENSE REQUIREMENTS PROHIBIT THIS, THE CUSTOMER SHALL INITIATE THE SERVICES OF APPROVED OTHER CONTRACTORS AND PAY FOR SELECTED, APPROVED PARTIES TO PERFORM THIS WORK WITH SUPERVISION PROVIDED BY SIEMENS. CALIBRATION WHEN ACCOMPLISHED OUTSIDE OF NORMAL INSTALLATION SEQUENCES DUE TO CONTRACTOR OR TRADE RULE ACTIONS OR REQUIREMENTS SHALL BE SUPPORTED BY, CHARGED TO, AND ACCEPTED BY THE CUSTOMER AS AN ADDITIONAL INSTALLATION

EXPENSE. 7) THE CUSTOMER SHALL COORDINATE WITH SIEMENS PROJECT MANAGER THE LOCATIONS AND TRAVEL OF ALL ANCILLARY EQUIPMENT TO BE CEILING OR WALL MOUNTED (I.E.: O.R. LIGHTS, MEDICAL GAS COLUMNS, PHYSIOLOGICAL MONITORING INJECTORS, CRT PLATFORMS, SPRINKLER HEADS, SMOKE DETECTORS, ELECTRICAL OUTLETS, HVAC GRILLES, SPEAKERS, AND GENERAL ROOM LIGHTING, ETC.).

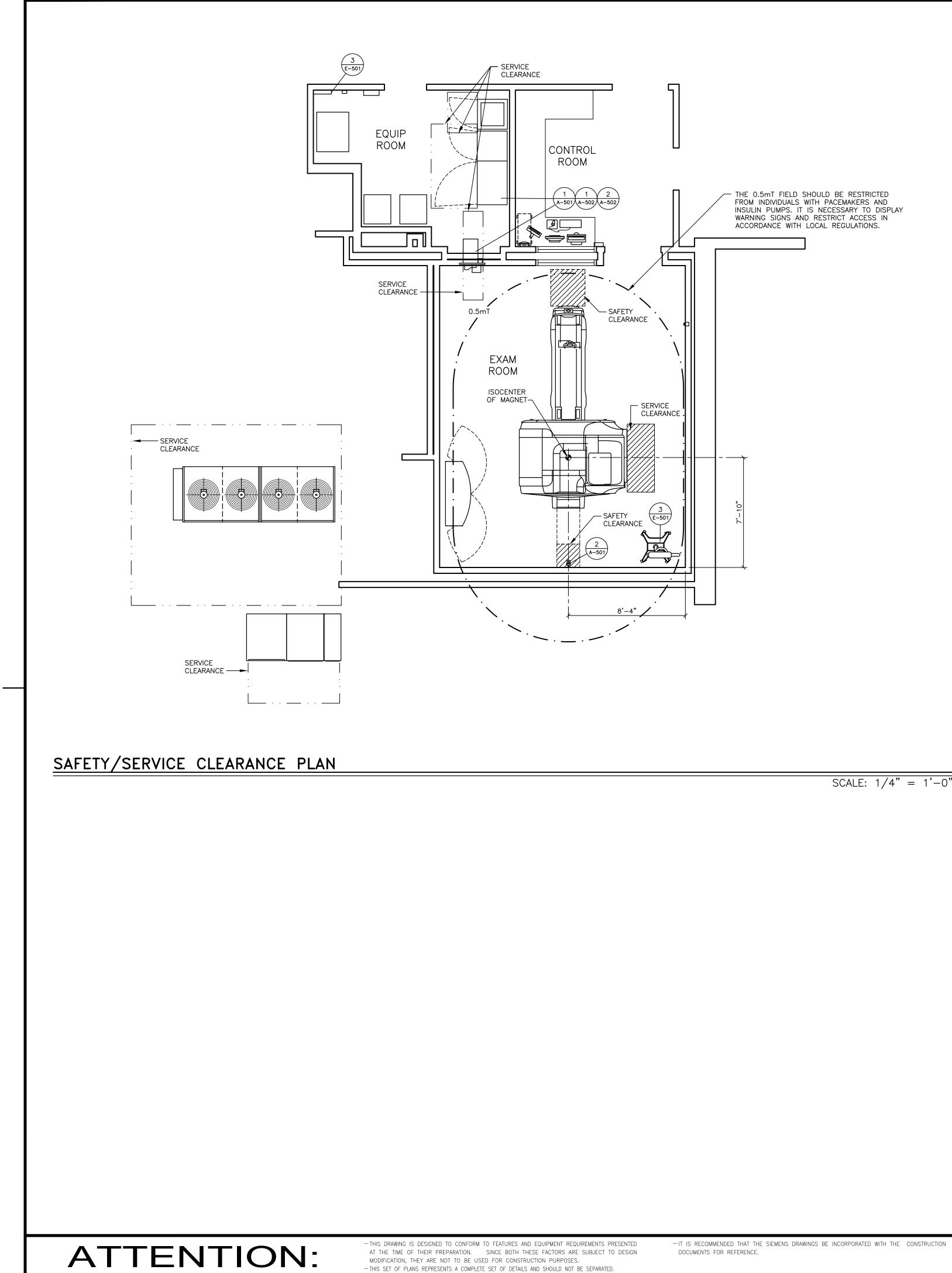
8) THE GENERAL CONTRACTOR/CUSTOMER SHALL BE RESPONSIBLE FOR ALL FINAL PAINT, TOUCH-UP AND ANY COSMETIC OR TRIM WORK WHICH NEEDS TO BE OR IS REQUIRED TO BE COMPLETED AFTER THE INSTALLATION OF THE SIEMENS EQUIPMENT AND ANY ASSOCIATED SUPPORT APPARATUS.

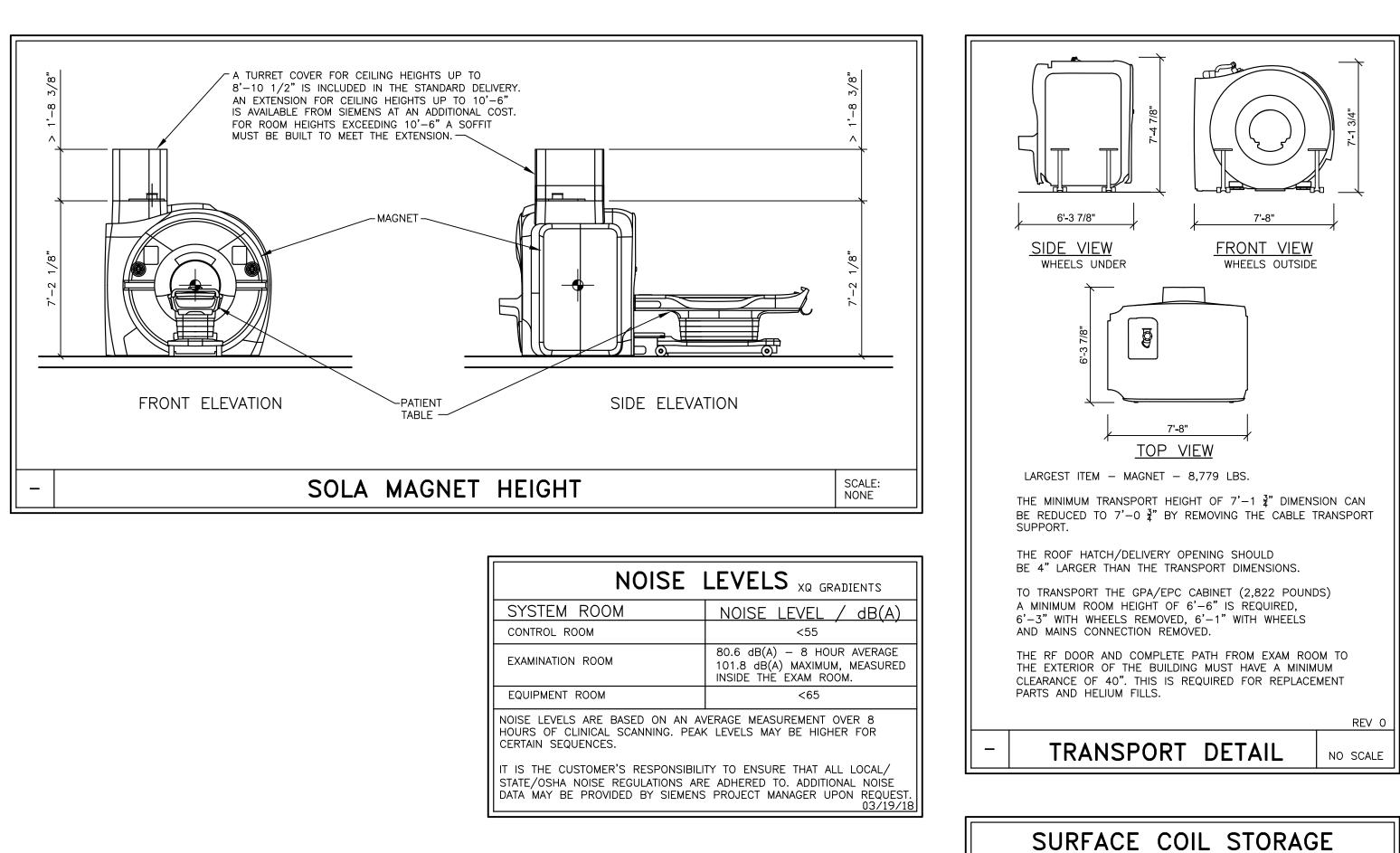
9) CUSTOMER/CONTRACTOR MUST ASSIST SIEMENS INSTALLERS WITH INSTALLATION OF EQUIPMENT ABOVE 14'-O". REFER TO THE ELECTRICAL NOTES ON SIEMENS SHEET E-101 FOR MORE DETAILS.

REV

CONSTRUCTION REQUIREMENTS

THE CUSTOMER/CONTRACTOR IS RESPONSIBLE FOR SUPPLYING AND INSTALLING ALL CONSTRUCTION MATERIALS INCLUDING ELECTRICAL AND MECHANICAL DEVICES REQUIRED BY SIEMENS SPECIFICATIONS AND TO ENSURE THAT THE MATERIAL USED INSIDE THE RF-SHIELDING IS AS FREE OF FERROMAGNETIC PROPERTIES AS POSSIBLE. STEEL WALL STUDS ARE PERMITTED BUT MUST BE SECURED PROPERLY. ANY FERROUS MATERIAL INSIDE THE EXAM ROOM MAY BECOME A PROJECTILE AND CAUSE INJURY TO PEOPLE AND DAMAGE TO EQUIPMENT. FERROUS ITEMS INSIDE THE EXAM ROOM ARE THE LIABILITY OF THE CONTRACTOR AND/OR INSTALLER.


CASEWORK & ACCESSORY NOTES


1) ALL CASEWORK IS EITHER EXISTING OR IS TO BE DESIGNED, DETAILED, FURNISHED AND INSTALLED BY THE CUSTOMER AND/OR CONTRACTOR. FOLLOW DESIGN RECOMMENDATIONS INCLUDED HEREWITH, AS THEY ARE ESSENTIAL FOR THE SUCCESSFUL INSTALLATION & OPERATION OF THE SIEMENS EQUIPMENT.

2) ALL FURNITURE (CHAIRS, ETC.) FOR THE CONTROL ROOM ARE TO BE PROVIDED BY THE CUSTOMER. REV 0

RESOURCE LIST	(SMS USE ONL	.Y)
DESIGNATION	PG NUMBER	DATE
PLANNING GUIDE	M11-010.891.01.03.02	11.19

SCALE: 1/4" = 1'-0"

CEILING	HEIGHTS

EXAM ROOM 7'-11" MINIMUM CONTROL ROOM 6'-11 MINIMUM EQUIPMENT ROOM 7'-3" MINIMUM

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

								REV 8
		PROJECT MANAGEF TEL: (402) 960 VMAIL: FAX: EMAIL: jhajek@cas	EXT:				SIEME	ENS
		SIOUH FALL V						
						SIOUX FALL, SD 57 ⁻ 1 SOLA – XQ GRADIE		
			EPRODUCTION OF LOCK WITHOUT	PROJ	ECT #:		SHEET:	
09/04/20	R101R(B) DATED 08/20/20 APPROVED BY CUSTOMERS FOR FINALS	RESULT IN PROS	ORIZATION WILL SECUTION UNDER OF THE LAW.	2	2002	2989	Λ 1	
DATE	DESCRIPTION	ALL RIGHTS A		SHEET	OF 2 10	DRAWN BY: T.KELLEY		UZ.
-ISSU	E BLOCK-	SCALE: AS NOTED	REF. #: 30233710	DATE:	09/04/20			• —

SURFACE COILS ARE COMPONENTS OF THE MRI SYSTEM THAT ARE ATTACHED TO THE PATIENT TABLE DURING EXAMS. WHEN NOT IN USE COILS SHOULD BE STORED SO THAT THEY ARE FREE FROM DAMAGE.

THE DESIGN OF THE MR EXAM ROOM MUST HAVE AMPLE STORAGE

SPACE TO ACCOMMODATE ANY COILS THAT THE OWNER WILL HAVE. COILS MAY BE SELECTED FROM THE LIST BELOW. STORAGE PROVIDED

POUND

BIOMATRIX HEAD/NECK 20 13 16 3/4 14 5/8 15 1/8

INCHES

3

WEIGHT LENGTH WIDTH HEIGHT

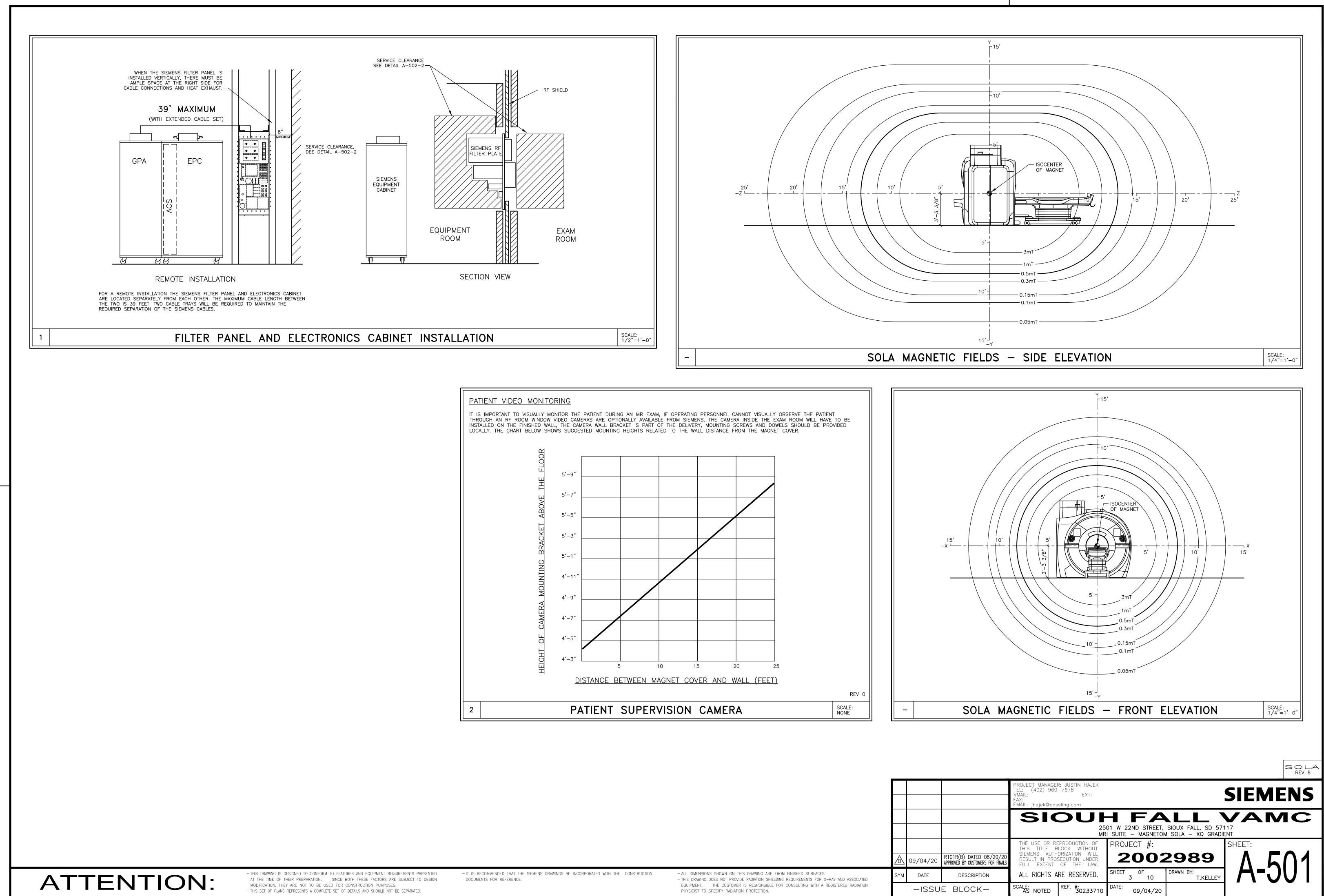
23 47 1/4 19 1/4 3

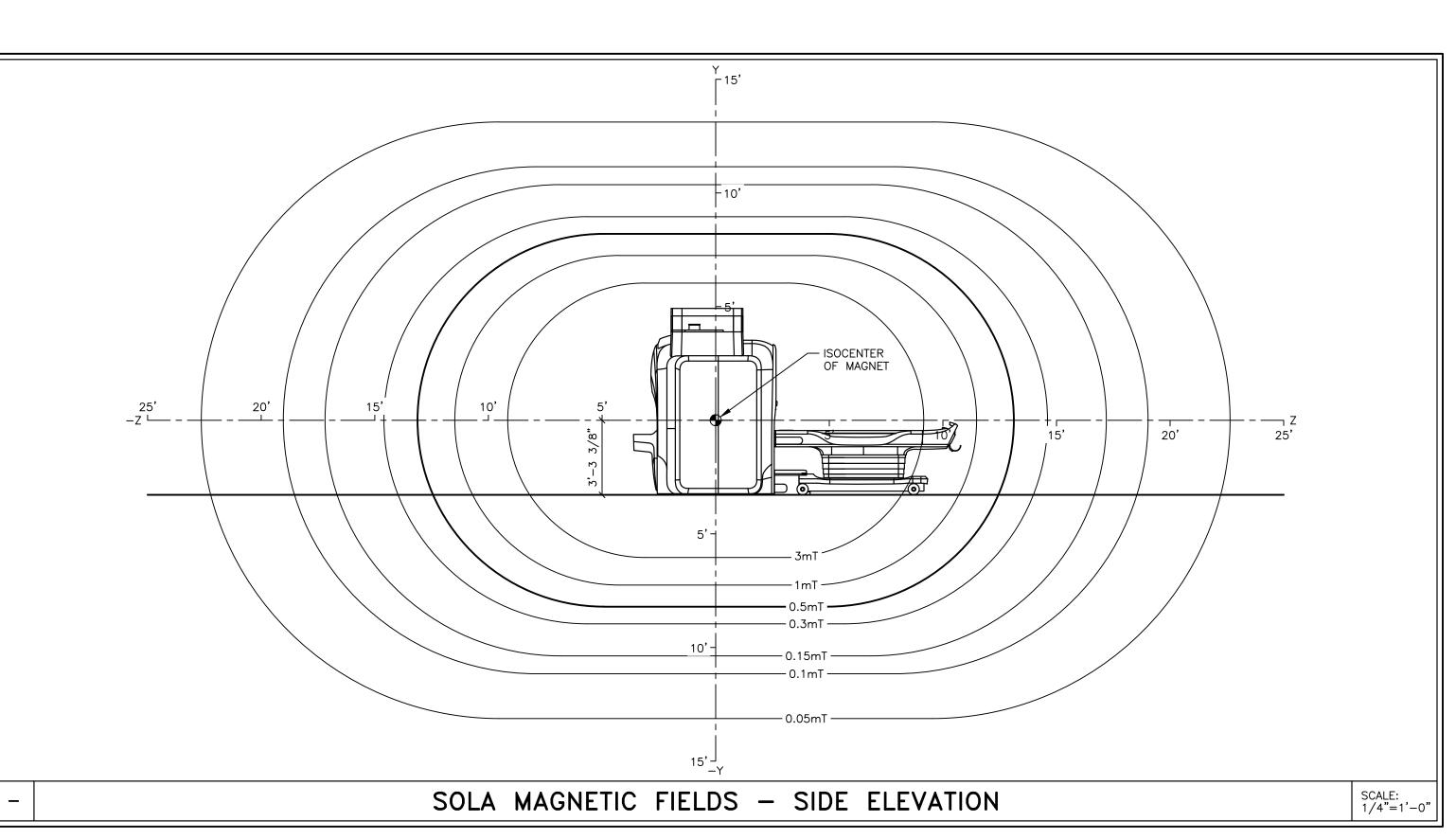
4 | 15 1/8 | 23 1/4 |

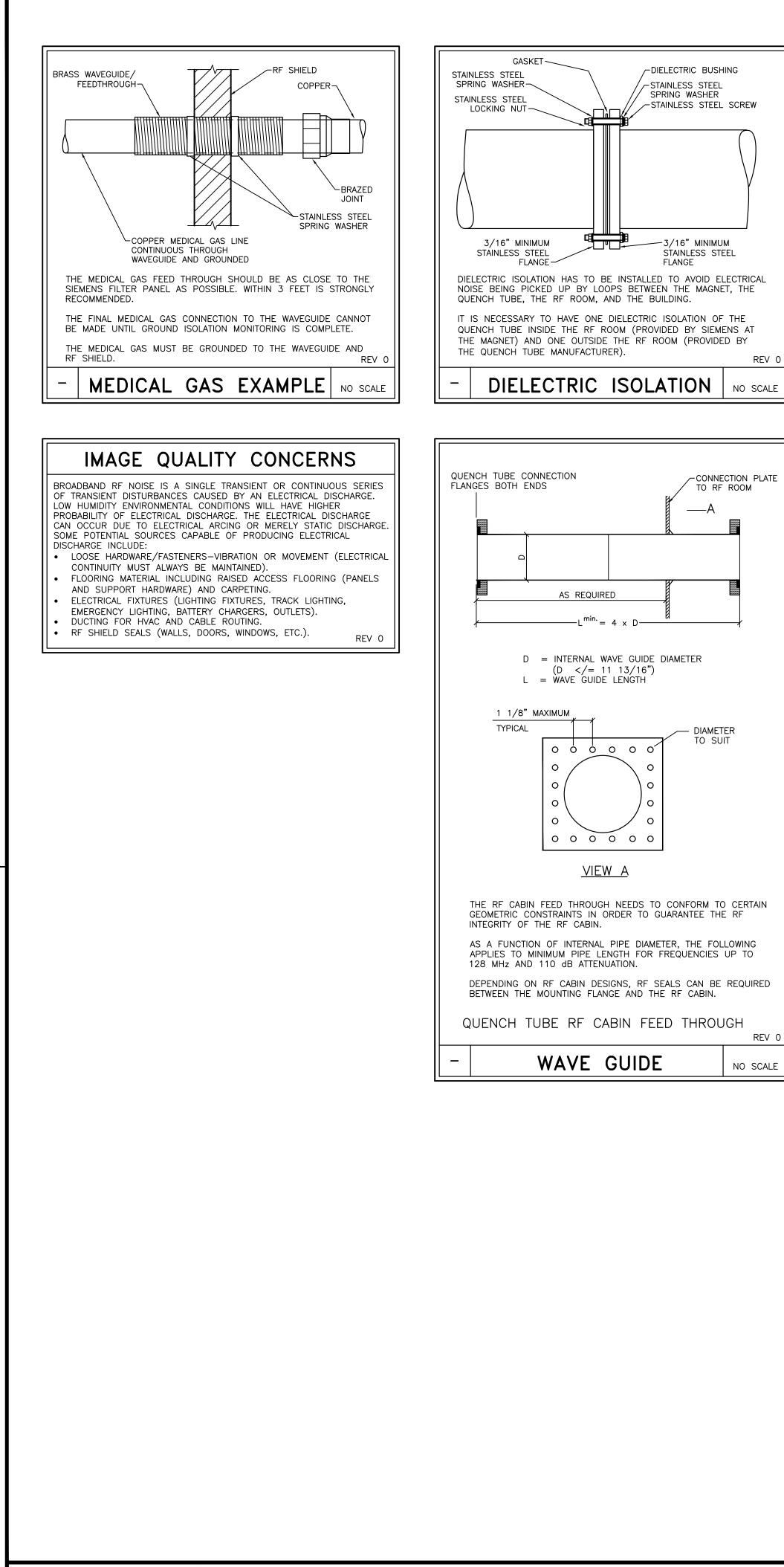
1.2 20 3/8 8 7/8

1 14 3/8 8 7/8

BY CUSTOMER/CONTRACTOR.


COIL NAME


BODY 18


FLEX LARGE 4

FLEX SMALL 4

BIOMATRIX SPINE 32

ATTENTION:

- THIS DRAWING IS DESIGNED TO CONFORM TO FEATURES AND EQUIPMENT REQUIREMENTS PRESENTED AT THE TIME OF THEIR PREPARATION. SINCE BOTH THESE FACTORS ARE SUBJECT TO DESIGN MODIFICATION, THEY ARE NOT TO BE USED FOR CONSTRUCTION PURPOSES. - THIS SET OF PLANS REPRESENTS A COMPLETE SET OF DETAILS AND SHOULD NOT BE SEPARATED.

EXHAUST AND INTAKE RF FILTER PANEL FOR AIR CONDITIONING -QUENCH TUBE EXIT <u>RF DOOR OPENING</u> OPENING IN THE EVENT OF A CATASTROPHIC FAILURE OF THE QUENCH VENT RF WINDOW DURING A QUENCH, PRESSURE BUILT UP MAY PREVENT OPENING A DOOR THAT OPENS INTO THE RF ROOM, PREVENTING EVACUATION FROM LIFE THREATENING CONDITIONS. FOR THIS REASON THE RF DOOR SHOULD OPEN TO THE OUTSIDE OF THE RF ROOM. IF THE DOOR CANNOT OPEN OUT FROM THE RF ROOM, OTHER APPROPRIATE MEANS HAVE TO BE PROVIDED SO THAT THE RF ROOM DOOR IS NOT PREVENTED FROM OPENING DUE TO PRESSURE. IF THE DOOR OPENS INTO THE RF ROOM, A 24"x24" OPENING FOR PRESSURE EQUALIZATION INTO THE RF ROOM MUST BE INSTALLED. THIS IS MANDATORY. THIS IS NOT AN ESCAPE HATCH. THE PURPOSE OF THE OPENING IS TO RELIEVE PRESSURE AND ALLOW THE MAIN DOOR TO BE OPENED SO THAT OCCUPANTS CAN BE EVACUATED. THE OPENINGS WILL HAVE PANELS INSTALLED IN THE RF ROOM OR THE DOOR THAT CAN BE UNLOCKED AND OPENED TO THE OUTSIDE IN CASE OF EMERGENCY. THESE PANELS REQUIRE AN RF SEALED INSTALLATION. AFTER OPENING THE PANEL, THE OUTLET SHOULD MEASURE AT LEAST 24"x24". WHEN USING RECTANGULAR PANELS, SHIELDING -RF ROOM DOOR THE SHORTER SIDE SHOULD MEASURE OF MINIMUM OF 24". OPENING OPENING FOR -DIRECTION TO TO ENSURE UNOBSTRUCTED VENTING, THIS OPENING CANNOT BE PRESSURE THE OUTSIDE SUBDIVIDED. THIS MEANS THAT, FOR EXAMPLE, RF SEALED EQUALIZATION HONEYCOMB GRIDS ARE NOT PERMITTED. SAFETY ASPECTS FOR THE RF ROOM: IT MUST BE POSSIBLE TO LOCK THE RF ROOM (EXAMINATION ROOM) EASY REMOVAL OF THE PANEL BY A PERSON HAS TO BE ENSURED AND A MINIMUM DISTANCE OF 40" TO A FIXED OBJECT MUST BE DOOR FROM THE OUTSIDE. IT MUST ALSO BE POSSIBLE TO OPEN THE MAINTAINED. THE PANEL SHOULD BE INSTALLED IN AN ACCESSIBLE DOOR FROM THE INSIDE WITHOUT A KEY OR ADDITIONAL DEVICE. LOCATION AND ALLOW ESCAPE OF THE LOW DENSITY HELIUM. THE RF DOOR IS AN IMPORTANT COMPONENT FOR GOOD IMAGE AS AN ALTERNATIVE TO AN OUT SWING DOOR. THE STATIONARY QUALITY AS WELL AS SAFETY, THE OWNER/OPERATOR OF THE MR OBSERVATION WINDOW IS REPLACED BY A WINDOW OPENING INTO SYSTEM MUST MAINTAIN THE RF ROOM AS INSTRUCTED BY THE RF THE CONTROL AREA OR THE DOOR IS REPLACED WITH AN RF ROOM MANUFACTURER IN ORDER TO GUARANTEE CORRECT FUNCTION SEALED SLIDING DOOR. IT SHOULD BE ENSURED THAT THE DOOR OF THE RF DOOR. CLOSES IN A WAY THAT ALLOWS IT TO MOVE AWAY FROM THE FRAME IN CASE OF OVERPRESSURE. NO FERROMAGNETIC ITEMS CAN BE BROUGHT INTO THE RF ROOM AFTER THE MAGNET HAS BEEN RAMPED UP TO FIELD. MAGNETIC ITEMS IF THE DOOR OPENS TO THE OUTSIDE, THE OPENING IN THE RF WILL BECOME ATTRACTED TO THE MAGNET WITH NO WARNING AND DUE ROOM IS STILL RECOMMENDED. TO THE HIGH MAGNETIC FIELD, WILL BECOME MISSILES. THE RF ROOM MANUFACTURER CAN PROVIDE YOU WITH ADDITIONAL NOTE: FOR DOORS MOVED BY AN AUXILIARY DRIVES (ELECTRICAL RF SEALED ROOM OPENINGS THAT LEAD DIRECTLY TO THE OUTSIDE. OR PNEUMATIC), MANUAL OPERATION HAS TO BE ENSURED. AN HOWEVER, THESE OPENINGS ARE ALSO CONDUITS FOR NOISE OUTSIDE WINDOW SHOULD BE IN THE VICINITY TO ALLOW VENTING GENERATED OUTSIDE THE RF ROOM. UNOBSTRUCTED FLOW EXHAUSTED GAS TO THE OUTSIDE. THE INTEGRITY OF THE RF THROUGH THIS PIPE MUST BE GUARANTEED. SHIELD MUST BE TESTED AFTER REMODELING. REV (SAFETY INFORMATION - PRESSURE EQUALIZATION SCALE: NONE SHIELDING GENERAL NOTES **RF SHIELDING** 1) THE EXAMINATION AREA MUST BE SHIELDED TO PROVIDE A SIEMENS REQUESTS THAT THE SHIELDING MANUFACTURER(S) REDUCTION OF RADIO FREQUENCY WAVES EMANATING FROM EXTERNAL TRANSMITTERS. THE REQUIRED ATTENUATION IS 90dB IN THE FREQUENCY RANGE OF 15-128 MHz. IF CO-SITING TWO SYSTEMS EACH ROOM SHOULD BE 100 dB.

2) THE RF SHIELD MUST BE TESTED BEFORE AND AFTER MAGNET PLACEMENT IN THE RF ROOM AND AFTER THE SIEMENS RF FILTER PANEL IS INSTALLED. THE RF-SHIELDING MUST BE INSULATED FROM ALL GROUNDS SUCH THAT THE ONLY GROUND IS THE SINGLE POINT GROUND

3) ALL ELECTRICAL LINES INTO THE RF ROOM MUST BE ROUTED THROUGH RF FILTERS (PROVIDED BY RF SHIELDING SUPPLIER). ALL ELECTRICALLY NON-CONDUCTIVE SUPPLY LINES (E.G. FIBER OPTIC CABLES, OR HOSES) INTO THE RF ROOM MUST BE ROUTED THROUGH RF SEALED WAVE GUIDES (PROVIDED BY RF SHIELDING SUPPLIER).

ON THE OUTSIDE OF THE RF-ROOM WALL. RESISTANCE \geq 100 OHMS.

4) FOR PRESSURE EQUALIZATION PURPOSES THE RF DOOR SHOULD OPEN TO THE OUTSIDE OF THE RF ROOM. AS AN ALTERNATIVE A 24"X24" OPENING IN THE RF ROOM FOR PRESSURE EQUALIZATION IS REQUIRED. REV 1

EXAM ROOM INTERIOR NOTES

1) ONLY NON-MAGNETIC MATERIALS ARE TO BE USED AND INSTALLED IN THE RF ROOM. SEE CONSTRUCTION REQUIREMENTS.

2) A SUSPENDED CEILING MUST BE STATICALLY SUSPENDED. NOT SUSPENDED WITH MOVABLE CLAMPS, SPRINGS, ETC.

3) RODS IN SUSPENDED CEILINGS MUST BE INSTALLED SECURELY. GALVANIC CONTENT BETWEEN THE RODS MUST BE GUARANTEED, THEY MUST NOT JUST LIE ON TOP OF ONE ANOTHER. A WIRE JUMPER BETWEEN RODS MAY BE USEFUL.

4) ELECTRICAL WIRING, FOR AMBIENT LIGHTS FOR EXAMPLE, MUST NOT SIMPLY REST ON THE SUSPENDED CEILING, THEY MUST BE FASTENED OR INSIDE A CONDUIT TO PREVENT MOTION.

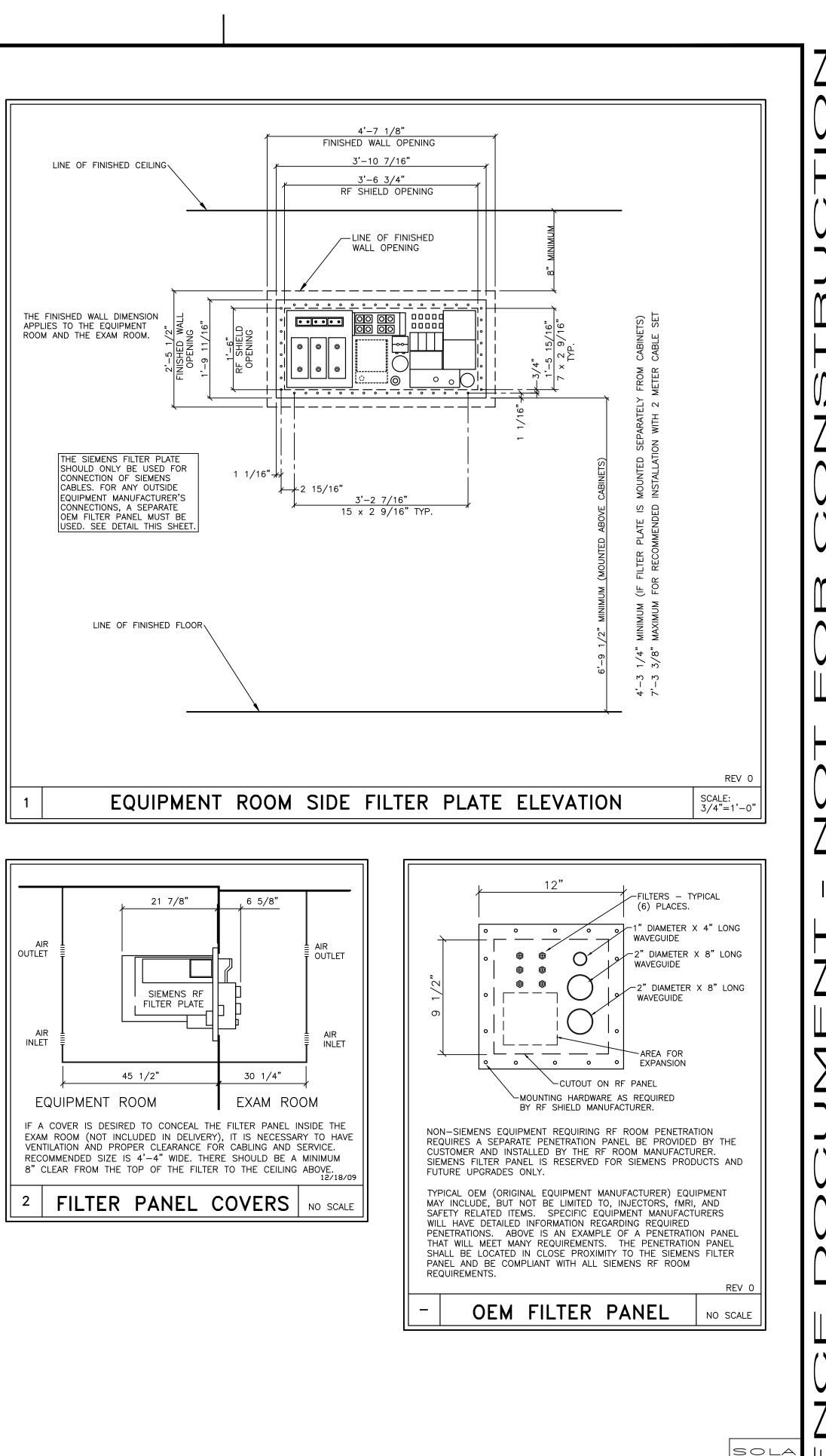
REV

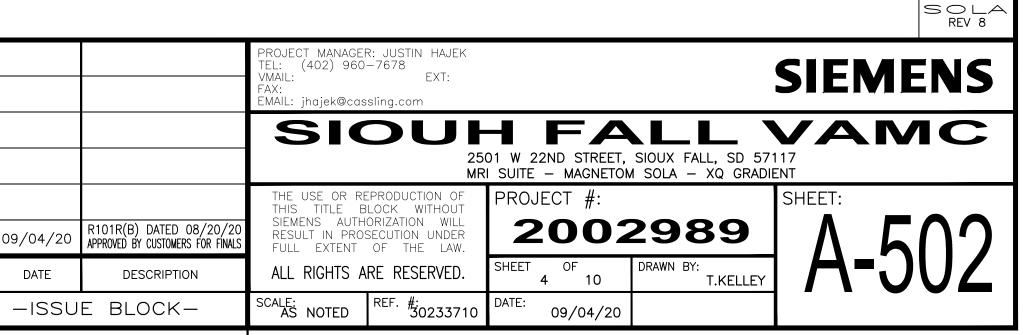
SUBMIT FINAL SHOP DRAWINGS TO SIEMENS FOR REVIEW PRIOR TO THEIR INCLUSION IN CONSTRUCTION DOCUMENTS. SIEMENS SHALL BE COPIED ON ALL FIELD ORDER CHANGES CONCERNING CHANGES IN RF AND MAGNETIC SHIELDING CONDITIONS, CONFIGURATION AND SPECIFICATION. THE RF AND MAGNETIC SHIELDING CONTRACTOR(S) SHALL FURNISH "AS BUILT" SCALED AND DIMENSIONED PLANS REFLECTING ANY AND ALL FIELD ORDER CHANGES PRIOR TO THE COMPLETION OF THE CONSTRUCTION DOCUMENTS.

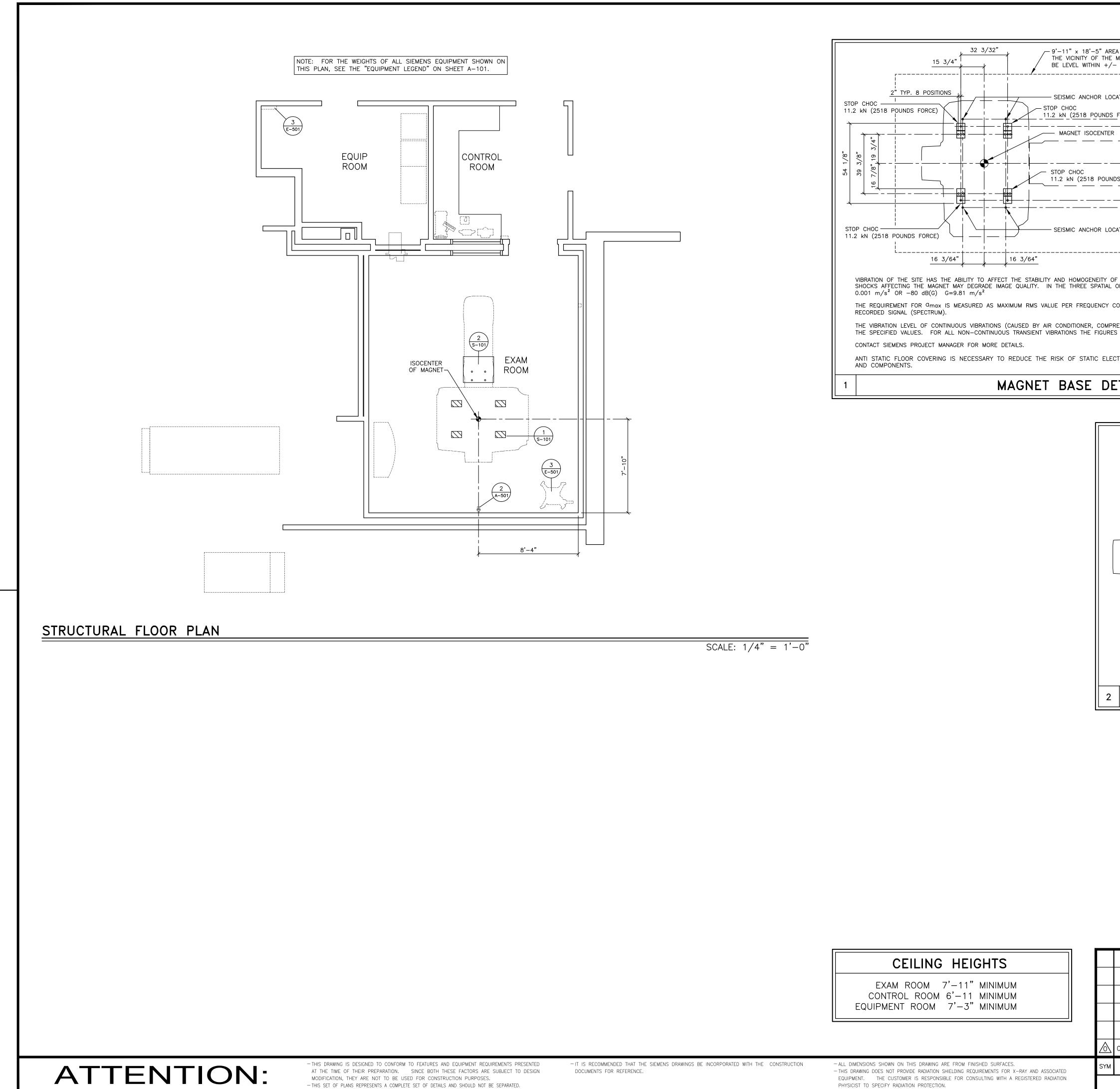
ALL CHANGES TO SIEMENS RECOMMENDED OPENINGS AND PENETRATIONS SHALL BE APPROVED BY THE SIEMENS PROJECT MANAGER PRIOR TO THE COMPLETION OF THE CONSTRUCTION DOCUMENTS.

3) THE SIZE, LOCATION, AND DIMENSIONS OF ANY MAGNETIC SHIELDING REQUIRED HAS BEEN DETERMINED BY SIEMENS. THIS INFORMATION HAS BEEN SUPPLIED TO THE MAGNETIC SHIELDING FABRICATOR TO DESIGN THE STRUCTURAL SUPPORT SYSTEM REQUIRED FOR THE MAGNETIC SHIELDING MATERIAL.

REV 0

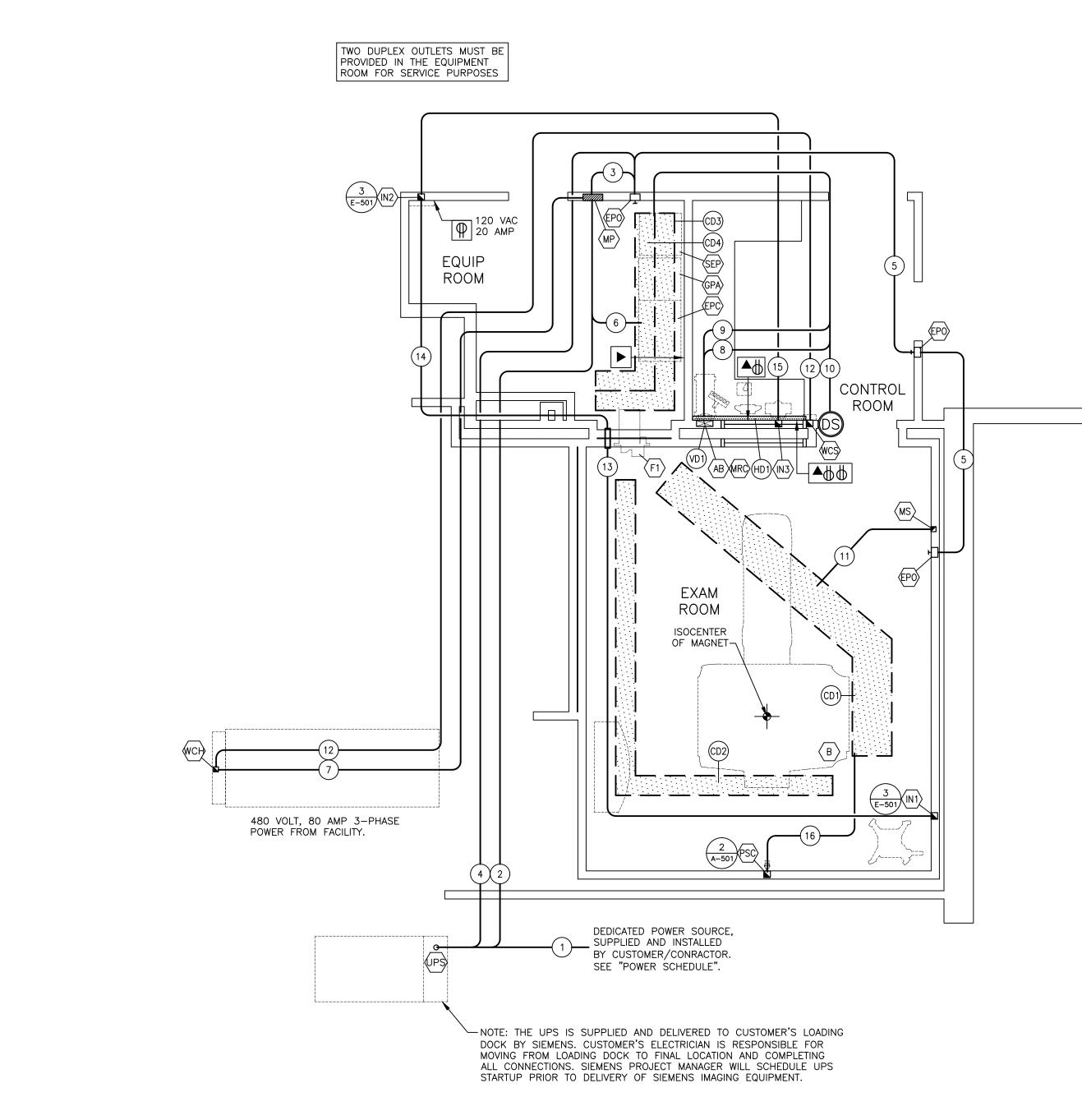

FILTER PLATE GENERAL NOTES


1) STRUCTURAL SUPPORT AND INTEGRATION OF THE SIEMENS SUPPLIED AND INSTALLED FILTER PLATE WITH MAGNETIC AND RF SHIELDING SHALL BE SPECIFIED, DETAILED AND NOTED BY THE RF AND MAGNETIC SHIELDING MANUFACTURER(S) WITH OVERALL COORDINATION WITH SIEMENS SITE SPECIFIC RECOMMENDATIONS TO BE THE RESPONSIBILITY OF THE ARCHITECT OF RECORD.


2) THE FILTER PLATE FRAME, RF FILTER PLATE BLANK, RF GASKET AND MOUNTING HARDWARE FOR THE PURPOSES OF TESTING THE INTEGRITY OF THE RF ENCLOSURE PRIOR TO THE INSTALLATION OF THE SIEMENS SUPPLIED AND INSTALLED RF FILTER PLATE SHALL BE PROVIDED AND INSTALLED BY THE SHIELDING CONTRACTOR(S) UNLESS SPECIFIED OTHERWISE.

REV

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.



CEILING	HEIGHTS

MAGNET SHAL		MASS OF THE FLOOR SHO			UCTURAL I		
· Ж6" 	(COR	23 POUNDS/SQUARE FOOT RESPONDING TO A THICKN "MINIMUM) TO ACHIEVE G	ESS 1 1	STRUCTURAL SUPPORT	ONTRACTOR SHALL FURNIS		
ATIONS	VIBR/ NOISI	ATION AND STRUCTURE-BO E SOUND ISOLATION. THIS COMMENDATION.	RNE S IS 2	2) THE OVERHEAD ST	SIEMENS EQUIPMENT.	TEM SHALL BE FIXED,	
FORCE)		<u>_</u>			SUPPORT MEMBERS SHAL		
		" ⁴ "		ÉVEL, PARALLEL AND	COPLANAR WITH RESPEC	CT TO EACH OTHER, W	
— —		30 3/4) ALL STRUCTURAL S	SUPPORT DETAILS SHOWN AND STANDARD BUILDING		
				NTENDED AS ACTUAL DETAILS AND SUPPOR	CONSTRUCTION DETAILS. T CALCULATIONS SHALL E	ALL CONSTRUCTION BE PREPARED BY A	
DS FORCE)	5 5/8"	3/4"	г т	THE EVENT AN EXISTI	TURAL ENGINEER AT THE NG SUPPORT SYSTEM IS SPONSIBILITY TO VERIFY T	TO BE USED, IT WILL	BE
		30		SYSTEM.	, FRAMES, AND HARDWAR		
		\		AS DETAILED IN THIS DTHERWISE REQUIRED.	DRAWING SET ARE INSTA . ANY DEVIATION FROM T	LLED BY SIEMENS UNI HE PROVIDED MATERIAI	LESS LS
CATIONS				STRUCTURAL ENGINEE	DS MUST BE DESIGNED A R OF RECORD. ALTERNATI ADED ROD, BACKING PLAT	E MOUNTING MATERIAL	
	 			SUPPLIED BY THE CU ASSISTANCE FROM TH	ISTOMER/CONTRACTOR. SI E CUSTOMER/CONTRACTO	EMENS MAY REQUIRE	WHEN
					MOUNTING MATERIALS. RES (I.E. AIR SUPPLY GR	ILLES. AIR RETURN	
	TIC FIELD. THEREFORE EXTE THE BUILDING MUST NOT EX		C F	GRILLES, EXHAUST GR FLUORESCENT LIGHT F	RILLES, SPRINKLER HEADS FIXTURES, INTERCOM SPE/ LL BE INSTALLED FLUSH	AKERS, MEDICAL GAS	
COMPONENT <	0.5Hz IN THE FOURIER TRAN	SFORMATION OF THE	F		PROVIDE FREE AND UNRE		THE
				') THE STRUCTURAL PLAN HAS BEEN COO	PLANNING AS SHOWN ON RDINATED WITH THE EQUI	THE 1/4" STRUCTUR, PMENT LOCATION AS	4L
	AT THE LOCATION OF THE M MULTIPLIED BY 4 (OR 12 d			SHOWN ON THE 1/4" DEVIATIONS FROM THE	' EQUIPMENT LAYOUT PLA E STRUCTURAL PLANNING	N. FOR THIS REASON,	ANY
	RGES THAT MAY DAMAGE SI		ε	3) THE STRUCTURAL	LANNING DEPARTMENT. ENGINEER OF RECORD SH		
DIGCHA	NOLO ITAT MAT DAMAGE SI			ACCORDANCE WITH TH	AIL OF FLOOR, WALL AND HE WEIGHTS, MOMENTS AN LCULATIONS, OR INFORMAT	ND FORCES AS SHOWN	I ON
ETAIL		SCALE: 3/8"=1			ED PER LOCAL GOVERNIN		
]
FOR CAN	AN ALTERNATE METHOD TO BE EMBEDDED INTO THE FLO BASEP	MAGNET ISOCENTER THE TABLE BASE FRAME, 5	FOR MOBILE TABLE PPLIED BY SIEMENS BY CONTRACTOR.	E) Ste No (1) F1 (2) F1 (3) R1 (4) V/ (5) C0	ECTION A—A ECTION THROUGH RF CAB OT TO SCALE. NISHED FLOOR COVERING LOORING, SPECIFIED BY CO F SHIELD BY SHIELDING WA APOR BARRIER ONCRETE FLOOR TABLE	IN FLOOR, DTHERS VENDOR	3
	R101R(B) DATED 08/20/20	THE USE OR REPROL THIS TITLE BLOCK SIEMENS AUTHORIZA	EXT: com 2501 V MRI SU DUCTION OF WITHOUT	v 22ND STREET, 3 ITE – MAGNETOM COJECT #:	SIOUX FALL, SD 571 SOLA – XQ GRADIEI	SHEET:	
09/04/20	APPROVED BY CUSTOMERS FOR FINALS	TEL: (402) 960-767 VMAIL: FAX: EMAIL: jhajek@cassling. SIO THE USE OR REPROE THIS TITLE BLOCK SIEMENS AUTHORIZA RESULT IN PROSECUT FULL EXTENT OF	EXT: Com 2501 V 2501 V 2501 V MRI SU 2501 V MRI SU PR TION WILL TION WILL TION UNDER THE LAW.	V 22ND STREET, S ITE – MAGNETOM OJECT #: 2002 ET OF	SIOUX FALL, SD 571 SOLA – XQ GRADIEN 2989 DRAWN BY:	SHEET:	
DATE	R101R(B) DATED 08/20/20 APPROVED BY CUSTOMERS FOR FINALS DESCRIPTION E BLOCK-	TEL: (402) 960–767 VMAIL: FAX: EMAIL: jhajek@cassling. THE USE OR REPROD THIS TITLE BLOCK SIEMENS AUTHORIZA RESULT IN PROSECUT FULL EXTENT OF ALL RIGHTS ARE F	EXT: Com 2501 V 2501 V 2501 V MRI SU 2501 V MRI SU PR TION WILL TION WILL TION UNDER THE LAW.	22ND STREET, S ITE – MAGNETOM COJECT #: 2002 ET OF 5 10	SIOUX FALL, SD 571 SOLA - XQ GRADIEN		

ELECTRICAL RACEWAY PLAN

	SYMBOLS
	ALL MAY NOT APPLY
	CAUTION OR WARNING
Ĩ	CRITICAL NOTE(S)
ezz	PANEL OR ENCLOSURE BY CUSTOMER/CONTRACTOR
	OPENING IN RACEWAY OR TRENCHDUCT
	PULLBOX IN (FLOOR/WALL/CEILING)
	OPENING IN ACCESS FLOORING
DS	RF DOOR SWITCH – MCMASTER-CARR SUPPLY ROLLER LIMIT SWITCH 7076k14 PROVIDED BY CONTRACTOR, AND MOUNTED AT TOP OF DOOR. COORDINATE WITH SIEMENS PROJECT MANAGER.
Ю	(EPO) EMERGENCY POWER OFF BUTTON
	CEILING DUCT
	SURFACE MOUNTED DUCT
\boxtimes	VERTICAL DUCT
	ETHERNET CONNECTION TO CUSTOMER'S INFORMATION SYSTEMS NETWORK IN AN ACCESSIBLE LOCATION (VERIFY WITH SIEMENS PROJECT MANAGER).
\ominus	110 VOLT, 20 AMP, HOSPITAL GRADE DUPLEX OUTLET LOCATED NEAR THE ETHERNET CONNECTION. REV 2

ATTENTION:

	CONTRACTOR SUPPLIED CABLES						
FROM	VIA	то	DESCRIPTION	REMARKS			
SOURCE	1	UPS	(3) PHASE CONDUCTORS, (1) FULL SIZE EQUIPMENT GROUND WIRE TO BE SIZED BY ELECTRICAL CONTRACTOR/ENGINEER.				
UPS	2	MP	(3) PHASE CONDUCTORS, (1) FULL SIZE EQUIPMENT GROUND WIRE TO BE SIZED BY ELECTRICAL CONTRACTOR/ENGINEER.				
MP	3	EPO	DETERMINED BY ELECTRICAL CONTRACTOR.				
UPS	4	EPO	DETERMINED BY ELECTRICAL CONTRACTOR.				
EPO	5	EPO	DETERMINED BY ELECTRICAL CONTRACTOR.				
MP	6,CD3	EPC	(3) 2/0 AND (1) 2/0 EQUIPMENT GROUND. TO REDUCE EMI (INTERFERENCE) THE POWER CABLES MUST BE SHIELDED. THIS CAN BE ACHIEVED BY USING EMT, WHICH IS CONSIDERED A SHIELDING DEVICE. IF CABLES ARE RUN IN FREE AIR SHIELDED CONDUCTORS MUST BE USED.	LANDED BY ELECTRICAL CONTRACTOR			
MP	7	WCH	(3) PHASE CONDUCTORS, (1) FULL SIZE EQUIPMENT GROUND WIRE TO BE SIZED BY ELECTRICAL CONTRACTOR/ENGINEER.				
WCH	12	WCS	CABLE PROVIDED BY CHILLER MANUFACTURER, PULLED BY ELECTRICIAN				

- THIS DRAWING IS DESIGNED TO CONFORM TO FEATURES AND EQUIPMENT REQUIREMENTS PRESENTED AT THE TIME OF THEIR PREPARATION. SINCE BOTH THESE FACTORS ARE SUBJECT TO DESIGN MODIFICATION, THEY ARE NOT TO BE USED FOR CONSTRUCTION PURPOSES. - THIS SET OF PLANS REPRESENTS A COMPLETE SET OF DETAILS AND SHOULD NOT BE SEPARATED.

ELECTRICAL LEGEND					
SYM	SIZE	DESCRIPTION SUPPLIED AND INSTALLED BY CUSTOMER/CONTRACTOR	REMARKS		
ÆB	3 " ø	OPENING IN FACE OF VERTICAL DUCT 5'-0" ABOVE FINISHED FLOOR IN LOCATION TO BE COORDINATED WITH THE ARCHITECT.	ALARM BOX		
(PC (PA SP	18" × 18"	LOCATION FOR CABLES TO DROP OUT OF BOTTOM OF RACEWAY.	ELECTRONICS CABINETS		
B	AS REQUIRED	LOCATION FOR CABLES TO DROP OUT OF BOTTOM OF RACEWAY.	MAGNET CABLE ACCESS		
Ð		EMERGENCY POWER OFF BUTTONS, MOUNTED WITH CENTERLINE AT 5'-0" ABOVE FINISHED FLOOR. ALL PARTS ARE TO BE NONFERROUS INSIDE THE RF ROOM. EXACT LOCATIONS ARE TO BE VERIFIED WITH THE ARCHITECT OF RECORD.	SEE POWER SCHEDULE, SHEET E-102		
(F1)		SIEMENS RF FILTER PANEL TO BE MOUNTED ON RF SHIELDED WALL	FILTER PANEL		
	AS REQUIRED	NON-FERROUS PULL BOX MOUNTED FLUSH WITH FINISHED WALL MOUNTED 2'-0" ABOVE FINISHED FLOOR. PROVIDE NEATLY FINISHED AND REMOVABLE COVER WITH CABLE EXIT. EXACT LOCATION TO BE COORDINATED WITH THE ARCHITECT.	INJECTOR POWER SUPPLY- MUST BE LOCATED OUTSIDE OF 5mT FIELD		
	AS REQUIRED	PULL BOX MOUNTED FLUSH WITH FINISHED WALL IN EQUIPMENT ROOM, MOUNTED 2'-0" ABOVE FINISHED FLOOR. PROVIDE NEATLY FINISHED AND REMOVABLE COVER WITH CABLE EXIT. EXACT LOCATION TO BE COORDINATED WITH THE ARCHITECT.	INJECTOR POWER SUPPLY		
(N3)	AS REQUIRED	PULL BOX MOUNTED FLUSH WITH FINISHED WALL IN CONTROL AREA, MOUNTED 2'-0" ABOVE FINISHED FLOOR. PROVIDE NEATLY FINISHED AND REMOVABLE COVER WITH CABLE EXIT. EXACT LOCATION TO BE COORDINATED WITH THE ARCHITECT.	INJECTOR CONTROL CONSOLE		
₩P (MAIN PANEL WITH MAIN BREAKER. EXACT LOCATION DETERMINED BY CUSTOMER/CONTRACTOR	SEE POWER SCHEDULE		
	4" × 4"	OPENING IN FACE OF RACEWAY IN SHOWN LOCATION.	HOST COMPUTER		
ARS)	AS REQUIRED	NON-FERROUS SINGLE GANG BOX MOUNTED FLUSH WITH FINISHED WALL MOUNTED 6'-0" ABOVE FINISHED FLOOR. PROVIDE NEATLY FINISHED AND REMOVABLE COVER WITH CABLE EXIT. EXACT LOCATION TO BE COORDINATED WITH THE ARCHITECT.	MAGNET STOP		
(5 0)	AS REQUIRED	PULL BOX MOUNTED FLUSH WITH FINISHED WALL REFER TO HEIGHT CHART A-501-3. THE PULL BOX CAN BE MOUNTED AT APPROXIMATELY 5'-0" ABOVE THE FINISHED FLOOR IN MOST CASES, DEPENDING ON THE DISTANCE FROM THE MAGNET TO THE WALL.	PATIENT SUPERVISION CAMERA		
®		CONDUIT LANDING PLATE ON UPS PER MANUFACTURER'S INFORMATION.	EATON 93PM UPS		
₩CP	AS REQUIRED	PULL BOX MOUNTED ADJACENT TO WATER CHILLER PROVIDED WITH FLEX-TITE CONDUIT FROM PULL BOX TO KNOCK OUT PANEL ON CHILLER. COORDINATE WITH SIEMENS PROJECT MANAGER.	WATER CHILLER		
<u>س</u>	AS REQUIRED	PULL BOX MOUNTED FLUSH WITH FINISHED WALL IN LOCATION COORDINATED WITH SIEMENS PROJECT MANAGER, WIRES ENTER CONTROL PANEL FROM THE BOTTOM.	CHILLER REMOTE CONTROL/ STATUS PANEL		
(11)	24"x4"	ALUMINUM LADDER TRAY, MOUNTED AT HEIGHT COORDINATED WITH SIEMENS PROJECT MANAGER, IN THE EXAM ROOM, MAINTAINING 12" CLEARANCE ABOVE THE TRAY FOR ACCESS. CABLE LADDER IS REQUIRED TO SUPPORT INTERCONNECTING CABLES BETWEEN THE FILTER PANEL AND THE MAGNET. A 15" MINIMUM CLEARANCE IS REQUIRED BETWEEN THE LADDER TRAY AND THE RF FILTER PANEL (F1). WHEN ROUTING ALL RACEWAYS REFER TO DETAIL E-501/2 TAKING CARE SO THAT MAXIMUM CABLE LENGTHS ARE NOT EXCEEDED. DO NOT LOCATE THIS CABLE TRAY ABOVE THE MAGNET.	CABLE TRAY SEE DETAIL E-501/1		
	12"x4"	ALUMINUM LADDER TRAY, MOUNTED AT HEIGHT COORDINATED WITH SIEMENS PROJECT MANAGER IN EXAM ROOM. A 12" SEPARATION BETWEEN CD1 AND CD2 MUST BE MAINTAINED. DO NOT LOCATE THIS CABLE TRAY ABOVE THE MAGNET.	CABLE TRAY SEE DETAIL E-501/1		
(13)	24"x4"	ALUMINUM LADDER TRAY, MOUNTED AT HEIGHT COORDINATED WITH SIEMENS PROJECT MANAGER IN EQUIPMENT ROOM MAINTAINING 12" CLEARANCE ABOVE THE TRAY FOR ACCESS. CABLE LADDER IS REQUIRED TO SUPPORT INTERCONNECTING CABLES BETWEEN THE EQUIPMENT ROOM AND THE RF FILTER PANEL (F1). AN 18" MINIMUM CLEARANCE IS REQUIRED BETWEEN THE LADDER TRAY AND THE FILTER PANEL.	CABLE TRAY SEE DETAIL E-501/1		
(1)4	12 " x4"	ALUMINUM LADDER TRAY, MOUNTED AT HEIGHT COORDINATED WITH SIEMENS PROJECT MANAGER IN EQUIPMENT ROOM. A 12" SEPARATION BETWEEN CD3 AND CD4 MUST BE MAINTAINED.	CABLE TRAY SEE DETAIL E–501/1		
	4" × 2"	HORIZONTAL DUCT SURFACE MOUNTED ON WALL IN CONTROL AREA AT FLOOR LINE AS SHOWN, FINISHED TO MATCH WALLS.			
(10)	10" x 3-1/2"	VERTICAL DUCT MOUNTED FLUSH WITH FINISHED WALL IN CONTROL AREA FROM ABOVE FINISHED CEILING TO FLOOR LINE PROVIDED WITH REMOVABLE FINISHED COVERS.			
1	AS PER NEC	CONDUIT FROM FACILITY POWER TO "UPS	SEE POWER SCHEDULE, SHEET E-102		
2	AS PER NEC	CONDUIT FROM "UPS" TO "MP"	SEE POWER SCHEDULE, SHEET E-102		
3	AS PER NEC	CONDUIT FROM "MP" TO "EPO".	SEE POWER SCHEDULE, SHEET E-102		
4	AS PER NEC	CONDUIT FROM "EPO" TO "UPS	SEE POWER SCHEDULE, SHEET E-102		
5	AS PER NEC	CONDUIT FROM "EPO" TO "EPO" TO BE NON-FERROUS WHEN INSIDE THE RF ROOM. CUSTOMER/CONTRACTOR IS TO PROVIDE RF FILTERS FOR ALL NON-SIEMENS WIRING.	SEE POWER SCHEDULE, SHEET E-102		
6	(1) 2"ø	CONDUIT FROM "MP" TO END AT "CD3" (EPC) VIA FLEX CONDUIT. THERE MUST BE A DIELECTRIC SEPARATION BETWEEN THE CONDUIT AND THE CONNECTION AT THE SIEMENS EPC CABINET.	SEE POWER SCHEDULE, SHEET E-102		
7	(1) 2 " ø	CONDUIT FROM "MP" TO "WCH".			
8	(2) 2 1/2"ø	CONDUIT FROM "VD1" (MRC) TO "CD3" (EPC).	NOT TO EXCEED 54 FT.		
9	(1) 1 1/2 " ø	CONDUIT FROM "VD1" (AB) TO "CD3" (EPC).	NOT TO EXCEED 60 FT.		
10	(1) 1/2 " ø	CONDUIT FROM "DS" TO "CD3" (EPC).	NOT TO EXCEED 60 FT.		
(1)	(1) 3/4 " ø	CONDUIT FROM "MS" TO "CD1" (WIRES TO MAGNET) TO BE NON-FERROUS WHEN INSIDE THE RF ROOM.	NOT TO EXCEED 25 FT.		
(12)	(1) 1 " ø	CONDUIT FROM "WCH" TO "WCS".	NOT TO EXCEED 150 FEET		
(13)	(1) 2 " ø	NON-FERROUS CONDUITS FROM NEAR "F1" TO "IN1" FOR INJECTOR CABLES.	NOT TO EXCEED 40 FEET		
(14)	(1) 2 " ø	CONDUITS FROM NEAR FILTER LOCATION TO "IN2".			
(15)	(1) 2"ø	CONDUIT FROM "IN2" TO "IN3" FOR INJECTOR CABLES.	NOT TO EXCEED 150 FEET		
(16)	(1) 1 " ø	NON-FERROUS CONDUIT FROM "PSC" TO "CD1".			

SCALE: 1/4" = 1'-0'

С	EIL	ING	HE	GH.	ΤS
-					

EXAM ROOM 7'-11" MINIMUM CONTROL ROOM 6'-11 MINIMUM EQUIPMENT ROOM 7'-3'' MINIMUM

- IT IS RECOMMENDED THAT THE SIEMENS DRAWINGS BE INCORPORATED WITH THE CONSTRUCTION DOCUMENTS FOR REFERENCE.

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

ELECTRICAL NOTES

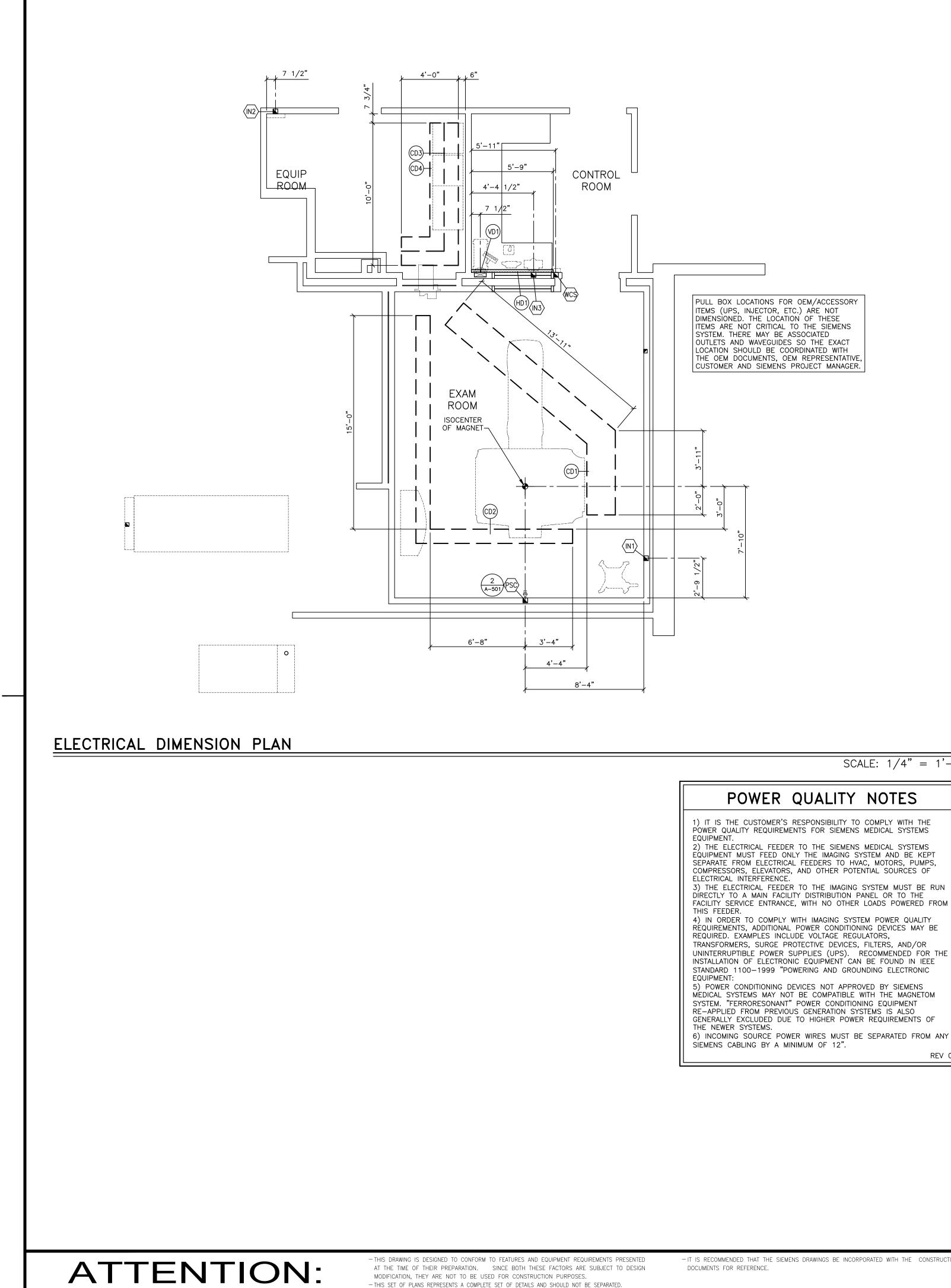
COMPLIANCE: ELECTRICAL WORK SHALL BE IN COMPLIANCE WITH THE NATIONAL ELECTRICAL CODE (NFPA-70), O.S.H.A. REGULATIONS, AS WELL AS APPLICABLE REGULATIONS OF CITY, COUNTY, STATE AND FEDERAL AGENCIES. PROVIDE MATERIALS AND EQUIPMENT THAT COMPLY TO ANSI, IEEE AND NEMA STANDARDS AND ARE U.L. LISTED AND LABELED. THE CUSTOMER'S/CONTRACTOR'S WORK AND ALL EQUIPMENT INSTALLED SHALL COMPLY WITH THE CURRENT EDITION OF NATIONAL ELECTRICAL CODE ADOPTED/ENFORCED BY THE AUTHORITY HAVING JURISDICTION. 2) QUALITY ASSURANCE: THE CONTRACTOR SHALL VERIFY EXISTING CONDITIONS IN THE FIELD TO INSURE THAT THE NEW WORK WILL FIT INTO THE EXISTING STRUCTURE AS SHOWN ON THE DRAWINGS. SHOULD ANY CONDITIONS EXIST OR BE DISCOVERED THAT PREVENT THE INSTALLATION OF WORK AS SHOWN, THE CONTRACTOR SHALL NOTIFY THE OWNER'S REPRESENTATIVE PRIOR TO FABRICATION OF EQUIPMENT, OR THE PERFORMANCE OF ANY WORK THAT MAY BE AFFECTED. DO NOT ALTER DRAWINGS, DIMENSIONS, OR SPECIFICATIONS IN ANY WAY WITHOUT CONTACTING AND RECEIVING WRITTEN CONFIRMATION FROM SIEMENS PROJECT MANAGER. ALL DIMENSIONS ARE FROM FINISHED SURFACES. CONDUIT AND PULL BOXES TO BE INSTALLED BY THE CUSTOMER/CONTRACTOR WITH LOCATIONS BEING FIELD VERIFIED BY SIEMENS PROJECT MANAGER. 3) POWER SUPPLY SOURCE: POWER SUPPLIES FOR SIEMENS HEALTHCARE EQUIPMENT SHALL BE FROM A MEDICAL IMAGING PANEL OR BUILDING SERVICE EQUIPMENT THAT IS A GROUNDED 3 OR 4-WIRE 'WYE' SOURCE PER THE SPECIFIC EQUIPMENT OPERATION REQUIREMENTS. A DEDICATED CIRCUIT SHALL BE PROVIDED THAT IS KEPT ENTIRELY FREE AND INDEPENDENT OF ALL OTHER BUILDING WIRING. NO ELEVATORS, GENERATORS, PUMPS, HVAC OR SIMILAR EQUIPMENT SHALL BE CONNECTED TO THE SAME CIRCUIT OR MEDICAL IMAGING PANEL THAT SERVES THE SIEMENS HEALTHCARE EQUIPMENT. IF THE POWER SUPPLY SOURCE DOES NOT MEET THE SPECIFIC SIEMENS EQUIPMENT POWER REQUIREMENTS, THE CONTRACTOR SHALL PROVIDE THE NECESSARY EQUIPMENT REQUIRED TO ESTABLISH THE POWER SUPPLY IN ACCORDANCE WITH THE REQUIRED POWER SUPPLY PARAMETERS OF THE SIEMENS EQUIPMENT. THE CONTRACTOR SHALL COORDINATE THIS WORK WITH THE CUSTOMER AND/OR UTILITY COMPANY FIELD REPRESENTATIVE. 4) WORK FURNISHED BY CUSTOMER/CONTRACTOR: WORK NOT PROVIDED BY SÍEMENS HEALTHCARE BUT SHOWN ON DRAWINGS TO BE FURNISHED AND INSTALLED BY CUSTOMER/CONTRACTOR INCLUDES, BUT IS NOT LIMITED TO, THE FOLLOWING, UNLESS NOTED OTHERWISE: ELECTRICAL RACEWAYS AND DUCTS, WIRING TROUGHS, PULL BOXES, CONDUITS, CIRCUIT BREAKERS, ACCESS PANELS, EMERGENCY OFF BUTTONS, DOOR SWITCHES, WARNING LIGHTS, WIRING, WIRING DEVICES, CONNECTORS, LIGHTING EQUIPMENT AND GROUNDING.

5) RACEWAY AND CONDUIT NOTES: ALL ITEMS IN THE MAGNET ROOM SHALL BÉ NON-FERROUS. ALL CONDUITS SHALL BE INSTALLED IN COMPLIANCE WITH THE CURRENT ENFORCED EDITION OF THE NATIONAL ELECTRICAL CODE. CONDUIT BODIES SHALL NOT BE USED. WHERE A CONDUIT ENTERS A BOX, FITTING, OR OTHER ENCLOSURE, AN INSULATED THROAT CONNECTOR SHALL BE PROVIDED TO PROTECT THE WIRE FROM ABRASION. ALL CONNECTORS FOR EMT SHALL BE COMPRESSION OR DOUBLE SET SCREW

KEEP RACEWAYS AT LEAST 6 INCHES AWAY FROM PARALLEL RUNS OF FLUES OR STEAM AND HOT WATER PIPES. INSTALL RACEWAY RUNS ABOVE WATER AND STEAM PIPES PROVIDED THAT CABLE RUN DISTANCES ARE MAINTAINED. USE TEMPORARY CLOSURES TO PREVENT FOREIGN MATTER FROM ENTERING RACEWAY.

CONDUIT RUNS ARE SHOWN SCHEMATICALLY. INSTALL CONDUIT WITH A MINIMUM OF BENDS IN THE SHORTEST PRACTICAL DISTANCE CONSIDERING THE BUILDING CONSTRUCTION AND OBSTRUCTIONS, EXCEPT AS OTHERWISE INDICATED. THE CONTRACTOR SHALL MAKE CERTAIN THAT ANY CONDUIT/RACEWAY RUNS CONTAINING SIEMENS HEALTHCARE CABLES DO NOT EXCEED THE SPECIFIED MAXIMUM DISTANCES AS SHOWN ON THE ELECTRICAL DETAILS. LISTED CONDUIT SIZES FOR SIEMENS-SUPPLIED CABLES MUST BE MAINTAINED IN ORDER TO ENABLE THE TOTAL CABLE BUNDLE INCLUDING

CONNECTORS TO BE PULLED THROUGH WITHOUT DAMAGE. PROVIDE ENCLOSED METAL WIRE DUCT RACEWAY SYSTEM WHERE SHOWN ON DRAWINGS WITH DIVIDERS TO SEPARATE THE DUCT INTO TWO OR THREE SEPARATE COMPARTMENTS AS SHOWN ON THE SIEMENS PLANS (FOR POWER AND SIEMENS HEALTHCARE CABLING). DIVIDERS AND CROSSOVER PIECES TO BE PROVIDED AS NECESSARY. THE CABLE TO CABLE AS WELL AS THE CIRCUIT TO CIRCUIT SEPARATION REQUIREMENT WAS EVALUATED DURING THE UL SYSTEM CERTIFICATION OF THE EQUIPMENT. ADDITIONAL SEPARATION OF THE SYSTEM CABLE ASSEMBLIES INTO SEPARATE OR PARTITIONED RACEWAYS, UNLESS OTHERWISE NOTED, IS NOT NECESSARY TO INSURE SEPARATION OF CIRCUITS.


PROVIDE WIRE DUCT/RACEWAY WITH ACCESSIBLE REMOVABLE COVERS. LOCATIONS OF BUILDING MATERIAL OPENINGS (I.E. ACCESS PANELS) TO BE CUT IN FIELD ARE TO BE COORDINATED WITH THE DRAWING REQUIREMENTS AND BUILDING STRUCTURE. THOSE THAT ARE NOT INDICATED OR INTERFERE WITH BUILDING ELEMENTS SHALL BE COORDINATED WITH SIEMENS PROJECT MANAGER. ELECTRICAL PULL BOXES AND RACEWAY COVERS SHALL BE INSTALLED IN A MANNER TO ALLOW ACCESSIBILITY FOR INSTALLATION AND MAINTENANCE. CONTRACTORS MUST PROVIDE PULL STRINGS FOR ALL CONDUIT AND WIRE DUCT/RACEWAY. IN-FLOOR TRENCH DUCT AND FLUSH FLOOR BOXES SHALL BE PROVIDED WITH FULLY GASKETED REMOVABLE COVERS. WHEN JUNCTION BOXES AND WIRE DUCT/RACEWAY ARE MOUNTED HIGHER THAN 14 FEET ABOVE FINISHED FLOOR, THE ELECTRICAL CONTRACTOR SHALL PROVIDE TWO ELECTRICIANS TO HELP THE SIEMENS INSTALL TEAM PULL SIEMENS SUPPLIED CABLES AT CUSTOMER EXPENSE.

WHEN JUNCTION BOXES AND WIRE DUCT/RACEWAY ARE MOUNTED ABOVE A HARD CEILING (I.E. SHEET ROCK), A 24" x 24" ACCESS PANEL IS REQUIRED AT EACH JUNCTION BOX AND WITHIN 2 FEET OF EACH RACEWAY TRANSITION (SUCH AS A 90 DEGREE ELBOW OR TEE) IN DUCT/RACEWAY. THERE MUST BE FREE AND CLEAR ACCESS TO JUNCTION BOXES AND WIRE DUCT/RACEWAY. WHEN ACCESS PANELS ARE LOCATED MORE THAN 3 FEET FROM JUNCTION BOXES AND WIRE DUCT/RACEWAY THE ELECTRICAL CONTRACTOR SHALL PROVIDE TWO ELECTRICIANS TO HELP SIEMENS INSTALL TEAM PULL SIEMENS SUPPLIED CABLES AT CUSTOMER EXPENSE.

6) WIRING: ALL WIRING INSTALLED SHALL BE 600 VOLT CLASS, STRANDED TYPE THHN/THWN-2, SINGLE CONDUCTOR ANNEALED COPPER FOR A MAXIMUM OPERATING TEMPERATURE OF 90° C (194° F). SIZED AS INDICATED INSTALLED IN METAL RACEWAYS. THE CUSTOMER/CONTRACTOR SHALL LEAVE MINIMUM 10 FT. OF WIRE TAILS AT ALL OUTLET POINTS WITH WIRE IDENTIFICATION TAGGED AT BOTH ENDS FOR FINAL CONNECTION BY THE CUSTOMER/ELECTRICAL CONTRACTOR.

7) SHORT CIRCUIT REQUIREMENTS: ALL CIRCUIT BREAKERS SUPPLIED FOR THE SIEMENS EQUIPMENT REQUIREMENTS SHALL BE RATED HIGHER THAN THE SHORT CIRCUIT AVAILABLE AT THE TERMINALS OF THE ELECTRICAL EQUIPMENT AS DETERMINED BY THE ENGINEER OF RECORD, BUT NOT LESS THAN 35,000A RMS SYMMETRICAL AT 480V, 3-PHASE, 60 HERTZ. THE CONTRACTOR SHALL OBTAIN THE CORRECT SHORT CIRCUIT CURRENT RATING OF ALL THE NEW EQUIPMENT FOR INSTALLATION FROM THE ENGINEER OF RECORD.

								REV 8
		PROJECT MANAGEF TEL: (402) 960 VMAIL: FAX: EMAIL: jhajek@cas	-7678 EXT:				SIEME	NS
		SIC	25	01 W 2	2ND STREET,	SIOUX FALL, SD 571 SOLA – XQ GRADIE		IC
09/04/20	R101R(B) DATED 08/20/20 APPROVED BY CUSTOMERS FOR FINALS	THIS TITLE B SIEMENS AUTH	PRODUCTION OF LOCK WITHOUT ORIZATION WILL SECUTION UNDER OF THE LAW.		JECT #:	2989	SHEET:	∩1
DATE	DESCRIPTION		RE RESERVED.	SHEET	OF 6 10	DRAWN BY: T.KELLEY		\mathbf{V}
-ISSU	E BLOCK-	SCALE: AS NOTED	REF. #: 30233710	DATE:	09/04/20		_	

SCALE: 1/4" = 1'-0"

POWER QUALITY NOTES

1) IT IS THE CUSTOMER'S RESPONSIBILITY TO COMPLY WITH THE POWER QUALITY REQUIREMENTS FOR SIEMENS MEDICAL SYSTEMS

2) THE ELECTRICAL FEEDER TO THE SIEMENS MEDICAL SYSTEMS EQUIPMENT MUST FEED ONLY THE IMAGING SYSTEM AND BE KEPT SEPARATE FROM ELECTRICAL FEEDERS TO HVAC, MOTORS, PUMPS, COMPRESSORS, ELEVATORS, AND OTHER POTENTIAL SOURCES OF

3) THE ELECTRICAL FEEDER TO THE IMAGING SYSTEM MUST BE RUN DÍRECTLY TO A MAIN FACILITY DISTRIBUTION PANEL OR TO THE FACILITY SERVICE ENTRANCE, WITH NO OTHER LOADS POWERED FROM

4) IN ORDER TO COMPLY WITH IMAGING SYSTEM POWER QUALITY RÉQUIREMENTS, ADDITIONAL POWER CONDITIONING DEVICES MAY BE REQUIRED. EXAMPLES INCLUDE VOLTAGE REGULATORS, TRANSFORMERS, SURGE PROTECTIVE DEVICES, FILTERS, AND/OR

INSTALLATION OF ELECTRONIC EQUIPMENT CAN BE FOUND IN IEEE STANDARD 1100-1999 "POWERING AND GROUNDING ELECTRONIC

MEDICAL SYSTEMS MAY NOT BE COMPATIBLE WITH THE MAGNETOM SYSTEM. "FERRORESONANT" POWER CONDITIONING EQUIPMENT RE-APPLIED FROM PREVIOUS GENERATION SYSTEMS IS ALSO GENERALLY EXCLUDED DUE TO HIGHER POWER REQUIREMENTS OF 6) INCOMING SOURCE POWER WIRES MUST BE SEPARATED FROM ANY

REV 0

		POWER SCHEDULE		
MUST ELECTI PER N SIEMEI	BE DETERI RICAL ENGI	AND WIRES SIZES 480V, 3 WIRE + GROUND WYE MINED BY THE INEER OF RECORD TO MAINTAIN NCE		
	RF ROOM FILTERS T FURNISHEI INSTALLED SHIELDING CONTRACT EXAM ROO	O BE D AND NOTE #2 BY OR OCB		
ITEM	QTY	DESCRIPTION		
MP	1	MAIN PANEL WITH MAIN BREAKER FLUSH OR SURFACE MOUNTED.		
м	1	MAIN CIRCUIT BREAKER MUST HAVE TRIPPING DEVICE SO WHEN ANY EPO IS PRESSED THE MAIN BREAKER TRIPS.		
		MAIN BREAKER AMPS: SEE POWER REQUIREMENTS		
		VOLTS PHASES NEUTRAL GROUND TOTAL WIRES		
		480 3 0 1 4 (NOTE 1)		
А	1	MAIN BREAKER AMPS: SEE POWER REQUIREMENTS		
		VOLTS PHASES NEUTRAL GROUND TOTAL WIRES		
		480 3 0 1 4 (NOTE 1)		
В	1	MAIN BREAKER AMPS: SEE POWER REQUIREMENTS		
		VOLTSPHASESNEUTRALGROUNDTOTALWIRES4803014 (NOTE 1)		
1) AL NOTE	L WIRES : UNLES	S MUST BE SAME SIZE. S OTHERWISE NOTED ALL BREAKERS WILL BE 80% RATED.		
EPOVARIESNOTE 1 - EPO CIRCUIT #1 MAIN CIRCUIT BREAKER EMERGENCY POWER OFF BUTTON WITH PROTECTIVE COVER THAT PREVENTS ACCIDENTAL ACTIVATION. THE EPO MUST BE OF FAIL-SAFE DESIGN, ALL EPOS TO HAVE MECHANICAL LATCHING MECHANISM. EPO MUST BE RESET BEFORE MAIN BREAKER CAN RESUME OPERATION. CONTACTS AND WIRING CONFIGURATION TO BE DESIGNED BY ELECTRICAL ENGINEER OF RECORD.NOTE 2 - EPO CIRCUIT #2 EPO CONTACTS TO BE NORMALLY CLOSED, WIRED IN SERIES, CONNECTED TO 93PM UPS ONLY.				
		THE EPO'S MUST BE INSTALLED BY A QUALIFIED ELECTRICAL CONTRACTOR ACCORDING TO NATIONAL ELECTRICAL CODE, STATE AND LOCAL REGULATIONS. THE CUSTOMER IS SOLELY RESPONSIBLE FOR THE IMPLEMENTATION OF THE EPOS AND THEIR ASSOCIATED CIRCUITS AND MUST MAKE THE FINAL DETERMINATION CONSIDERING ALL SITE CONDITIONS AND REGULATORY FACTORS.		
		RWISE NOTED, ALL ITEMS LISTED IN THIS SCHEDULE SHALL AND INSTALLED BY CUSTOMER/CONTRACTOR. REV 1		

CEILING HEIGHTS

EXAM ROOM 7'-11" MINIMUM CONTROL ROOM 6'-11 MINIMUM EQUIPMENT ROOM 7'-3'' MINIMUM

\triangle	0
SYM	

- IT IS RECOMMENDED THAT THE SIEMENS DRAWINGS BE INCORPORATED WITH THE CONSTRUCTION

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

POWER REQUIREMEI	NTS
VOLTAGE VARIATION:480 VAC $\pm 10\%$ FOR ALL LINE AND VOLTAGE UNBALANCE: 2% MAXIMUM DIFFERENCE BETWI	
VOLTAGE:	480V – 3 PHASE
FREQUENCY:	60 Hz ± 1.0 Hz
LINE IMPEDANCE:	<140 mOHMS
CONNECTION VALUE	88 kVA
SHORT TIME POWER (LESS THAN 3 SECONDS)	140 kVA
EATON UPS – 93PM	180 kW
EATON UPS INPUT CIRCUIT BREAKER (ICB)	350 A
EATON UPS OUTPUT CIRCUIT BREAKERS (OCB)	300 A
MAIN BREAKER SIZE (M)	250 A
MR SYSTEM BREAKER SIZE (A)	125 A
CHILLER BREAKER SIZE (B)	80 A
ALL BREAKERS ARE RATED AT 80%	

POWER QUALITY

SIEMENS SPECIFICATIONS.

POOR POWER WILL ALTER EQUIPMENT PERFORMANCE IT IS IN THE CUSTOMER'S INTEREST THAT THE ELECTRICAL CONTRACTOR BE RESPONSIBLE FOR TESTING AND VERIFYING THAT THE EQUIPMENT POWER SUPPLY COMPLIES WITH THE

DEMAND AND CAPACITY

1) IF EQUIPMENT UPGRADE IS ANTICIPATED, INSTALLING ELECTRICAL POWER TO MEET THE REQUIREMENTS OF THE HIGHER POWER GRADIENT PACKAGE AT THE TIME OF INITIAL INSTALLATION WILL REDUCE THE COST TO UPGRADE THE ELECTRICAL SYSTEM LATER.

2) RECOMMENDED TRANSFORMER SIZE (SYSTEM WITHOUT UPS) IS BASED ON INDUSTRY STANDARD ISOLATION TRANSFORMER KVA RATINGS. SOURCE IMPEDANCE FEEDING THE MAGNETOM SYSTEM, INCLUDING ANY ISOLATION TRANSFORMERS, MUST MEET EQUIPMENT REQUIREMENTS AS LISTED HERE. SIEMENS RECOMMENDS A TRANSFORMER WITH COPPER WINDINGS, AN ELECTRO-STATIC SHIELD, AND A LOW IMPEDANCE (<3%) TO ENSURE THAT SOURCE IMPEDANCE REQUIREMENTS ARE MET.

3) OVER CURRENT PROTECTION IS SPECIFIED FOR SYSTEMS WITHOUT AN UNINTERRUPTIBLE POWER SUPPLY (UPS). ADDITION OF A UPS REQUIRES A HIGHER CAPACITY MAINS CONNECTION (DEPENDENT UPON UPS MODEL AND SIZE). MAXIMUM FAULT CURRENT IS DEPENDENT UPON THE IMPEDANCE OF THE FACILITY ELECTRICAL SYSTEM. THE CUSTOMER'S ARCHITECT OR ELECTRICAL CONTRACTOR TO SPECIFY AIC RATING OF OVER CURRENT PROTECTION BASED ON FACILITY IMPEDANCE CHARACTERISTICS.

4) MOMENTARY POWER IS BASED ON A MAXIMUM RMS VALUE FOR A PERIOD NOT TO EXCEED FIVE (5) SECONDS, AS DEFINED IN NEC. 517.2. STAND-BY AND AVERAGE CURRENT ARE SUBSTANTIALLY LOWER.

5) THE CONDUCTOR SIZE SHOULD BE SELECTED TO MEET THE VOLTAGE DROP REQUIREMENTS, TAKING INTO CONSIDERATION THE MAINS CAPACITY, RUN LENGTH, AND ANY ADDITIONAL TRANSFORMERS USED TO OBTAIN THE PROPER EQUIPMENT VOLTAGE LEVEL. NEMA STANDARD XR-9-1989 (R1994,R2000) PROVIDES GENERAL GUIDELINES FOR SIZING CONDUCTORS, TRANSFORMERS, AND ELECTRICAL SYSTEMS FOR MEDICAL IMAGING SYSTEMS.

6) LONG-TIME POWER IS BASED ON THE HIGHEST AVERAGE RMS VALUES FOR A PERIOD EXCEEDING 5 MINUTES DURING CLINICAL SYSTEM OPERATION, AS DEFINED IN NEC 517.2.

7) A CIRCUIT BREAKER WITH A HIGH INRUSH RATING (>8x RATED CURRENT) IS REQUIRED TO PERMIT SWITCH-ON OF THE UPS SYSTEM WITHOUT SPURIOUS TRIPPING. CIRCUIT BREAKERS WITH AN ADJUSTABLE MAGNETIC TRIP (SIEMENS FD6 SERIES OR SIMILAR) ARE HIGHLY RECOMMENDED.

REV 1

ELECTRICAL INSTALLATION NOTES

1) INSTALL THE MR SYSTEM CIRCUIT BREAKER IN OR NEAR THE EQUIPMENT ROOM. THE PERMITTED FRINGE FIELD FOR THE PANEL IS UP TO 3mT. IF THE FRINGE FIELDS HAVE HIGHER VALUES, MAGNETIC SHIELDING MUST BE PROVIDED OR THE DISTANCE FROM THE MAGNET MUST BE INCREASED.

2) AN ACCEPTABLE MEANS FOR SWITCHING MAIN POWER ON AND OFF SHOULD BE INSTALLED IN THE MAIN BREAKER PANEL. INSTALL EMERGENCY SHUTDOWN BUTTONS IN EACH ROOM WHERE THERE IS SIEMENS EQUIPMENT.

3) THE ELECTRICAL FEEDER TO THE SIEMENS EQUIPMENT MUST FÉED ONLY THE IMAGING SYSTEM AND BE KEPT SEPARATE FROM ELECTRICAL FEEDERS TO HVAC, MOTORS, PUMPS, COMPRESSORS, ELEVATORS AND OTHER POTENTIAL SOURCES OF ELECTRICAL INTERFERENCE.

4) THE EMERGENCY POWER OFF (EPO) BUTTONS ARE TO BE MUSHROOM TYPE WITH PUSH LOCK AND PULL TO RELEASE.

5) WALL RECEPTACLES MADE OF FERROMAGNETIC MATERIALS ARE NOT PERMITTED IN THE EXAM ROOM. PERIPHERAL UNITS (SUCH AS VENTILATORS) NOT APPROVED FOR USE IN A HIGH MAGNETIC FIELD ENVIRONMENT CAN INFLUENCE THE MAGNETIC FIELD, COMPROMISING IMAGE QUALITY. THE CUSTOMER IS RESPONSIBLE FOR INSTALLATION AND USE OF RECEPTACLES IN THE EXAM ROOM. INSTALLATION OF RECEPTACLES AND THE FILTERS REQUIRED ARE TO BE COORDINATED WITH THE RF SHIELDING SUPPLIER.

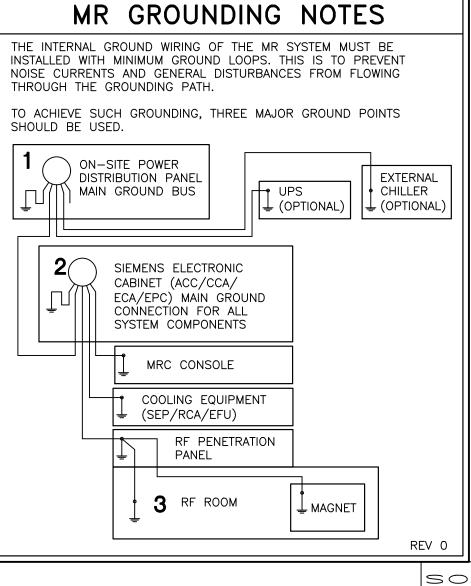
6) THE RF SHIELD MUST BE FITTED WITH A GROUND STUD OR BUS BAR, LOCATED WITHIN 24" OF THE AUXILIARY FILTERS FOR ROOM LIGHTS AND OUTLETS, SUPPLIED AND INSTALLED BY THE RF SHIELD SUPPLIER.

7) IN ORDER TO PREVENT GROUND LOOPS. ALL CUSTOMER OR CUSTOMER/CONTRACTOR SUPPLIED AC POWER ENTERING THE EXAMINATIÓN ROOM (I.E. OUTLETS, EPO, ETC.) SHOULD BE SUPPLIED VIA AN ISOLATION TRANSFORMER. THE ISOLATION TRANSFORMER SECONDARY WINDING GROUND CONDUCTOR SHOULD BE CONNECTED TO THE RF SHIELD GROUND STUD OR BUS BAR.

REV

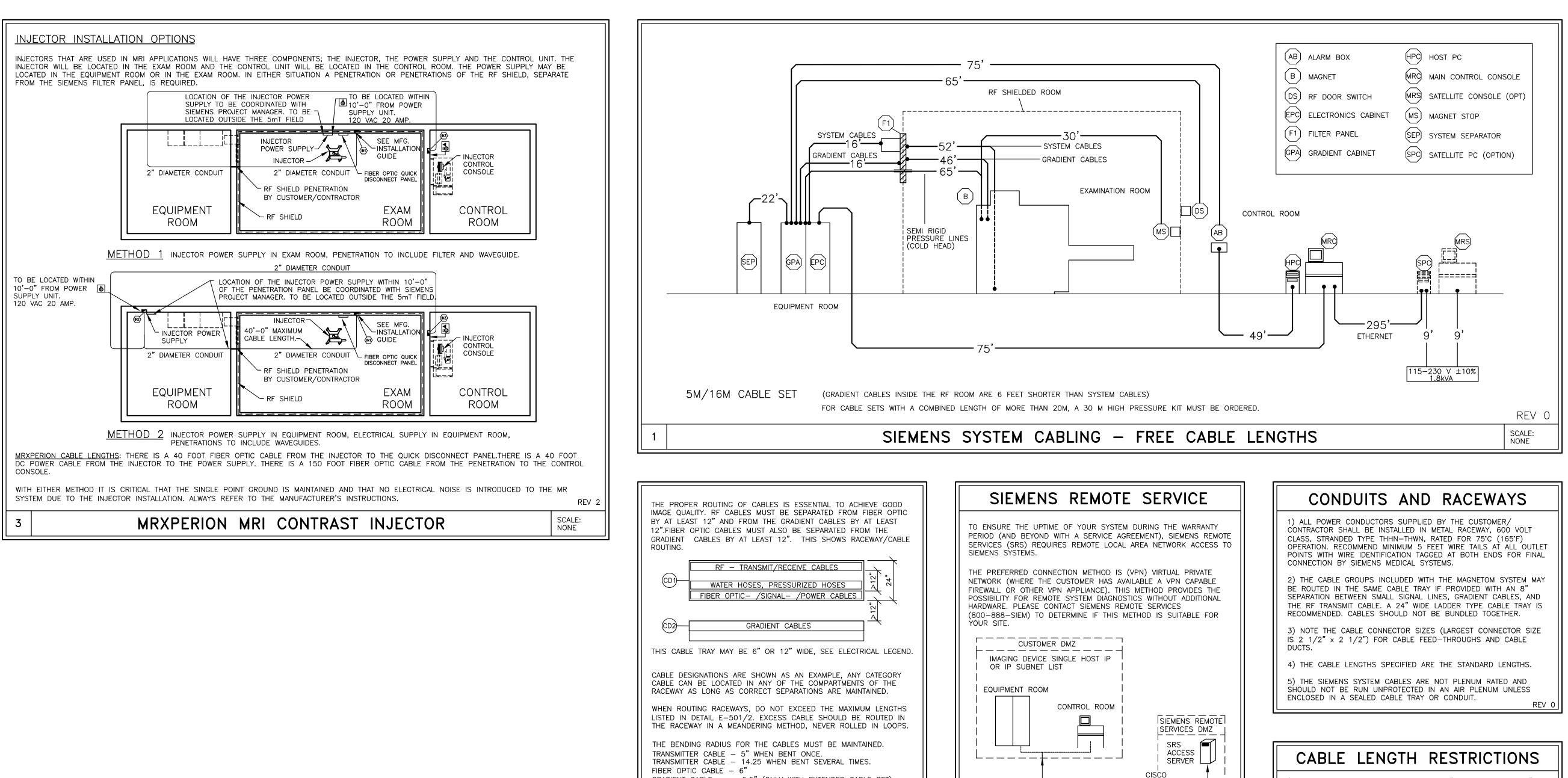
GROUNDING NOTES

EQUIPMENT GROUNDING CONDUCTOR TO COMPLY WITH THE FOLLOWING:


1) SIZE GROUNDING WIRE TO SIEMENS EQUIPMENT PER POWER SCHEDULE REQUIREMENTS. 2) DERIVED FROM THE ELECTRICAL SERVICE, TRANSFORMER

OR MAIN DISTRIBUTION PANEL FEEDING THE SIEMENS EQUIPMENT.

3) RUN IN THE SAME CONDUIT, TROUGH OR RACEWAY AS THE PHASE CONDUCTORS. 4) CONTINUOUS, WITH NO BREAKS OR USE OF CONDUIT,

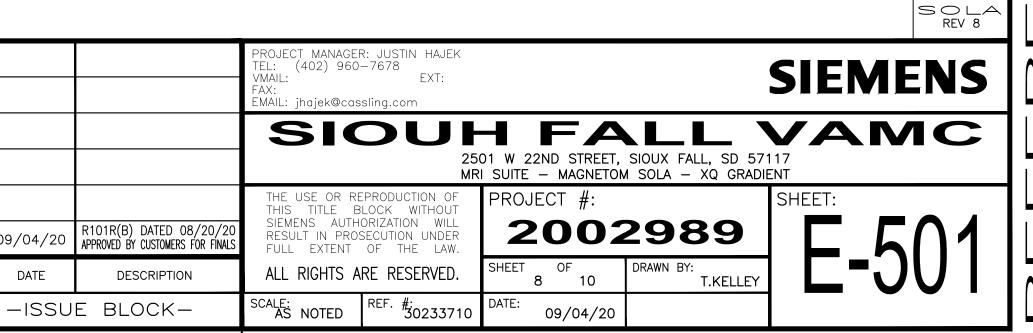

CHASSIS OR EARTH AS THE SOLE GROUNDING PATH. 5) BONDED TO CHASSIS AND/OR CONDUIT IN ACCORDANCE WITH THE NEC REQUIREMENTS. 6) MINIMIZE CONNECTIONS OR TERMINALS TO ENSURE

CONTINUITY OVER THE LIFE OF THE INSTALLATION. 7) AS A NORM, THERE SHOULD NOT BE ANY CURRENT PRESENCE ON THE GROUND CONDUCTOR, BUT IT IS ACCEPTABLE TO HAVE <500mA DURING OPERATION OF THE IMAGING EQUIPMENT.

SOLA

							REV 8
		PROJECT MANAGEF TEL: (402) 960- VMAIL: FAX: EMAIL: jhajek@cas	-7678 EXT:			SIEME	NS
		SIC	25	01 W 22ND STREET,	SIOUX FALL, SD 571 M SOLA – XQ GRADIE		IC
			LOCK WITHOUT	PROJECT #:		SHEET:	
09/04/20	R101R(B) DATED 08/20/20 APPROVED BY CUSTOMERS FOR FINALS	PESHIT IN DROS	DRIZATION WILL SECUTION UNDER OF THE LAW.	2002	2989		N7
DATE	DESCRIPTION	ALL RIGHTS A		SHEET OF 7 10	DRAWN BY: T.KELLEY		υΖΙ
-ISSU	E BLOCK-	SCALE: AS NOTED	REF. <u>#:</u> 30233710	DATE: 09/04/20			

ATTENTION:


- THIS DRAWING IS DESIGNED TO CONFORM TO FEATURES AND EQUIPMENT REQUIREMENTS PRESENTED AT THE TIME OF THEIR PREPARATION. SINCE BOTH THESE FACTORS ARE SUBJECT TO DESIGN MODIFICATION, THEY ARE NOT TO BE USED FOR CONSTRUCTION PURPOSES. - THIS SET OF PLANS REPRESENTS A COMPLETE SET OF DETAILS AND SHOULD NOT BE SEPARATED.

RF - TRANSMIT/RECEIVE CABLES WATER HOSES, PRESSURIZED HOSES FIBER OPTIC- /SIGNAL- /POWER CABLES CD GRADIENT CABLES GRADIENT CABLES MURANDERING AS CORRECT SEPARATIONS ARE MAINTAINED. WHEN ROUTING RACEWAYS, DO NOT EXCEED THE MAXIMUM LENGTHS LISTED IN DETAIL E-501/2. EXCESS CABLE SHOULD BE ROUTED IN THE RACEWAY IN A MEANDERING METHOD, NEVER ROLLED IN LOOPS. THE BENDING RADIUS FOR THE CABLES MUST BE MAINTAINED. TRANSMITTER CABLE - 5" WHEN BENT ONCE. TRANSMITTER CABLE - 55" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION - 2" REV 0	THE PROPER ROUTING OF CABLES IS ESSENTIAL TO ACHIE IMAGE QUALITY. RF CABLES MUST BE SEPARATED FROM FI BY AT LEAST 12" AND FROM THE GRADIENT CABLES BY A 12".FIBER OPTIC CABLES MUST ALSO BE SEPARATED FROM GRADIENT CABLES BY AT LEAST 12". THIS SHOWS RACE ROUTING.	IBER OPTIC T LEAST 1 THE					
THIS CABLE TRAY MAY BE 6" OR 12" WIDE, SEE ELECTRICAL LEGEND. CABLE DESIGNATIONS ARE SHOWN AS AN EXAMPLE, ANY CATEGORY CABLE CAN BE LOCATED IN ANY OF THE COMPARTMENTS OF THE RACEWAY AS LONG AS CORRECT SEPARATIONS ARE MAINTAINED. WHEN ROUTING RACEWAYS, DO NOT EXCEED THE MAXIMUM LENGTHS LISTED IN DETAIL E-501/2. EXCESS CABLE SHOULD BE ROUTED IN THE RACEWAY IN A MEANDERING METHOD, NEVER ROLLED IN LOOPS. THE BENDING RADIUS FOR THE CABLES MUST BE MAINTAINED. TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE – 6" GRADIENT CABLE – 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION – 2" REV 0 CADLE SEDADATION	CD1 WATER HOSES, PRESSURIZED HOSES						
CABLE DESIGNATIONS ARE SHOWN AS AN EXAMPLE, ANY CATEGORY CABLE CAN BE LOCATED IN ANY OF THE COMPARTMENTS OF THE RACEWAY AS LONG AS CORRECT SEPARATIONS ARE MAINTAINED. WHEN ROUTING RACEWAYS, DO NOT EXCEED THE MAXIMUM LENGTHS LISTED IN DETAIL E-501/2. EXCESS CABLE SHOULD BE ROUTED IN THE RACEWAY IN A MEANDERING METHOD, NEVER ROLLED IN LOOPS. THE BENDING RADIUS FOR THE CABLES MUST BE MAINTAINED. TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 6" GRADIENT CABLE – 6" GRADIENT CABLE – 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE – 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION – 2" REV 0	CD2 GRADIENT CABLES						
CABLE CAN BE LOCATED IN ANY OF THE COMPARTMENTS OF THE RACEWAY AS LONG AS CORRECT SEPARATIONS ARE MAINTAINED. WHEN ROUTING RACEWAYS, DO NOT EXCEED THE MAXIMUM LENGTHS LISTED IN DETAIL E-501/2. EXCESS CABLE SHOULD BE ROUTED IN THE RACEWAY IN A MEANDERING METHOD, NEVER ROLLED IN LOOPS. THE BENDING RADIUS FOR THE CABLES MUST BE MAINTAINED. TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 14.25 WHEN BENT SEVERAL TIMES. FIBER OPTIC CABLE – 6" GRADIENT CABLE – 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION – 2" REV 0	THIS CABLE TRAY MAY BE 6" OR 12" WIDE, SEE ELECTRIC	CAL LEGEND.					
LISTED IN DETAIL E-501/2. EXCESS CABLE SHOULD BE ROUTED IN THE RACEWAY IN A MEANDERING METHOD, NEVER ROLLED IN LOOPS. THE BENDING RADIUS FOR THE CABLES MUST BE MAINTAINED. TRANSMITTER CABLE - 5" WHEN BENT ONCE. TRANSMITTER CABLE - 14.25 WHEN BENT SEVERAL TIMES. FIBER OPTIC CABLE - 6" GRADIENT CABLE - 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION - 2" REV 0	CABLE CAN BE LOCATED IN ANY OF THE COMPARTMENTS	OF THE					
TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 14.25 WHEN BENT SEVERAL TIMES. FIBER OPTIC CABLE – 6" GRADIENT CABLE – 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION – 2" REV 0 CARLE SCALE:	LISTED IN DETAIL E-501/2. EXCESS CABLE SHOULD BE F	ROUTED IN					
	TRANSMITTER CABLE – 5" WHEN BENT ONCE. TRANSMITTER CABLE – 14.25 WHEN BENT SEVERAL TIMES. FIBER OPTIC CABLE – 6" GRADIENT CABLE – 5.5" (ONLY WITH EXTENDED CABLE SET) FIBER OPTIC CABLE FOR PATIENT OBSERVATION – 2"						
	2 CABLE SEPARATION						

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

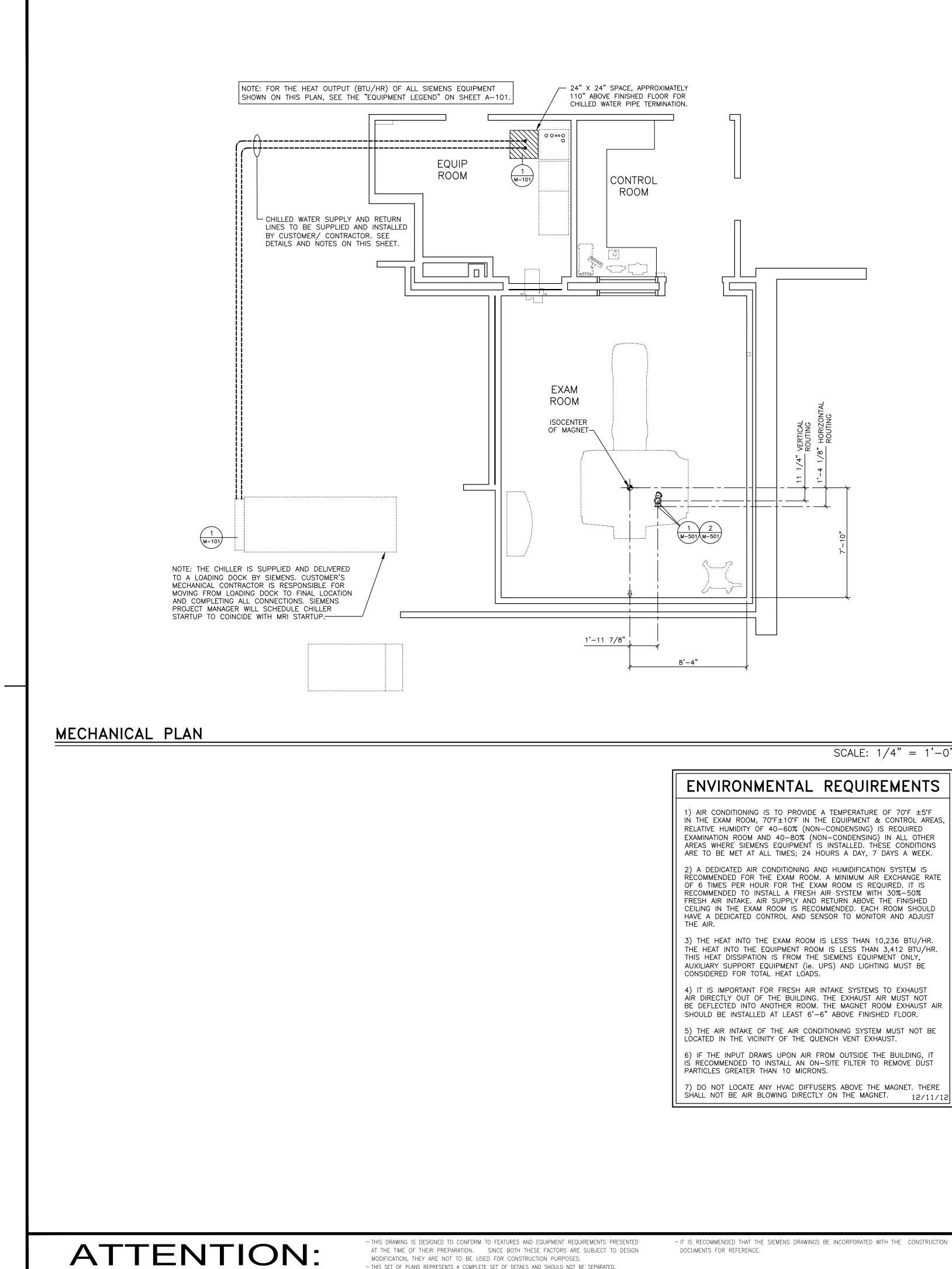
1) THE CABLE SET LENGTH IDENTIFIES THE "FREE CABLE LENGTH". THIS IS THE LENGTH FROM CONNECTION POINT TO CONNECTION POINT. THE CABLE LENGTH IS NOT THE DISTANCE BETWEEN COMPONENTS. 2) THE GRADIENT CABLES INSIDE THE RF SHIELDED ROOM ARE 6'-0" SHORTER THAN THE OTHER SYSTEM CABLES. THIS MEANS THAT IF THE 22' CABLE SET IS SELECTED, THE GRADIENT CABLES WILL BE 16' IN

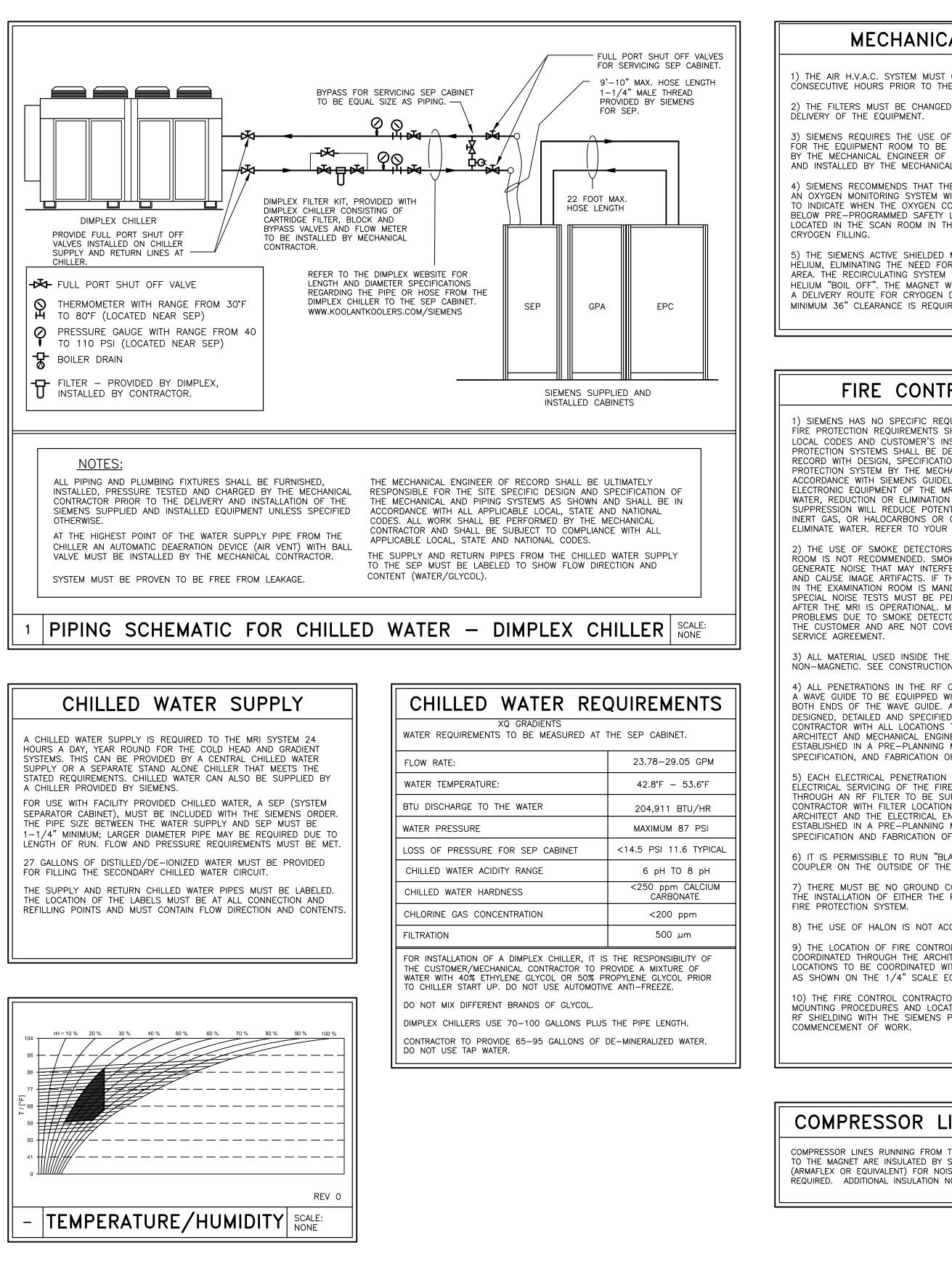
LENGTH. THE GRADIENT CABLES NEED TO GO UP INTO THE CABLE TRAY IN THE CEILING AT THE FILTER PLATE AND DOWN AT THE MAGNET. THESE VERTICAL RUNS MUST BE DEDUCTED FROM THE TOTAL CABLE LENGTH OF 16'. REV 0

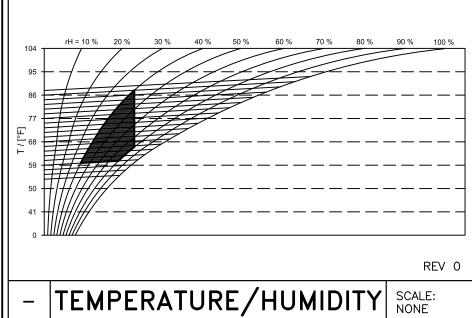
3745

PUBLIC

CUSTOMER


VPN SERVER


INTERNET


ROUTER

FIREWALL

_ _ _ _ _ _ _ _

CEILING HEIGHTS

EXAM ROOM 7'-11'' MINIMUM CONTROL ROOM 6'-11 MINIMUM EQUIPMENT ROOM 7'-3" MINIMUM

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

MECHANICAL NOTES

1) THE AIR H.V.A.C. SYSTEM MUST OPERATE FOR A MINIMUM OF 48 CONSECUTIVE HOURS PRIOR TO THE DELIVERY OF THE EQUIPMENT. 2) THE FILTERS MUST BE CHANGED IMMEDIATELY PRIOR TO THE

3) SIEMENS REQUIRES THE USE OF A DEDICATED H.V.A.C. SYSTEM FOR THE EQUIPMENT ROOM TO BE LOCATED. SIZED AND SPECIFIED BY THE MECHANICAL ENGINEER OF RECORD AND TO BE SUPPLIED AND INSTALLED BY THE MECHANICAL CONTRACTOR.

4) SIEMENS RECOMMENDS THAT THE CUSTOMER PROVIDE AND INSTALL AN OXYGEN MONITORING SYSTEM WITH VISUAL AND AUDIBLE ALARMS TO INDICATE WHEN THE OXYGEN CONTAINED IN AMBIENT AIR FALLS BELOW PRE-PROGRAMMED SAFETY LEVELS WITH THE SENSOR TO BE LOCATED IN THE SCAN ROOM IN THE AREA DESIGNATED FOR

5) THE SIEMENS ACTIVE SHIELDED MAGNET RECIRCULATES LIQUID HELIUM, ELIMINATING THE NEED FOR A DEDICATED CRYOGEN STORAGE AREA. THE RECIRCULATING SYSTEM SIGNIFICANTLY REDUCES THE HELIUM "BOIL OFF". THE MAGNET WILL REQUIRE OCCASIONAL FILLING, A DELIVERY ROUTE FOR CRYOGEN DEWARS MUST BE ESTABLISHED. A MINIMUM 36" CLEARANCE IS REQUIRED.

REV 0

FIRE CONTROL NOTES

1) SIEMENS HAS NO SPECIFIC REQUIREMENT FOR FIRE PROTECTION. FIRE PROTECTION REQUIREMENTS SHALL BE IN ACCORDANCE WITH LOCAL CODES AND CUSTOMER'S INSURANCE REQUIREMENTS. ALL FIRE PROTECTION SYSTEMS SHALL BE DEFINED BY THE ARCHITECT OF RECORD WITH DESIGN, SPECIFICATION AND DETAILING OF THE FIRE PROTECTION SYSTEM BY THE MECHANICAL ENGINEER OF RECORD IN ACCORDANCE WITH SIEMENS GUIDELINES AS STATED HEREIN. THE ELECTRONIC EQUIPMENT OF THE MR SYSTEMS WILL BE DAMAGED BY WATER, REDUCTION OR ELIMINATION OF WATER USED FOR FIRE SUPPRESSION WILL REDUCE POTENTIAL WATER DAMAGE. PRE-ACTION INERT GAS, OR HALOCARBONS OR OTHER METHODS CAN REDUCE OR ELIMINATE WATER. REFER TO YOUR FIRE PROTECTION PROFESSIONAL.

2) THE USE OF SMOKE DETECTORS INSIDE OF THE MR EXAMINATION ROOM IS NOT RECOMMENDED. SMOKE DETECTORS, BY DESIGN, CAN GENERATE NOISE THAT MAY INTERFERE WITH THE MRI EXAMINATION AND CAUSE IMAGE ARTIFACTS. IF THE USE OF A SMOKE DETECTOR IN THE EXAMINATION ROOM IS MANDATED BY LOCAL REQUIREMENTS SPECIAL NOISE TESTS MUST BE PERFORMED BY SIEMENS SERVICE AFTER THE MRI IS OPERATIONAL. MRI EQUIPMENT PERFORMANCE PROBLEMS DUE TO SMOKE DETECTORS ARE THE RESPONSIBILITY OF THE CUSTOMER AND ARE NOT COVERED UNDER WARRANTY OR

3) ALL MATERIAL USED INSIDE THE MAGNET ROOM SHALL BE NON-MAGNETIC. SEE CONSTRUCTION REQUIREMENTS.

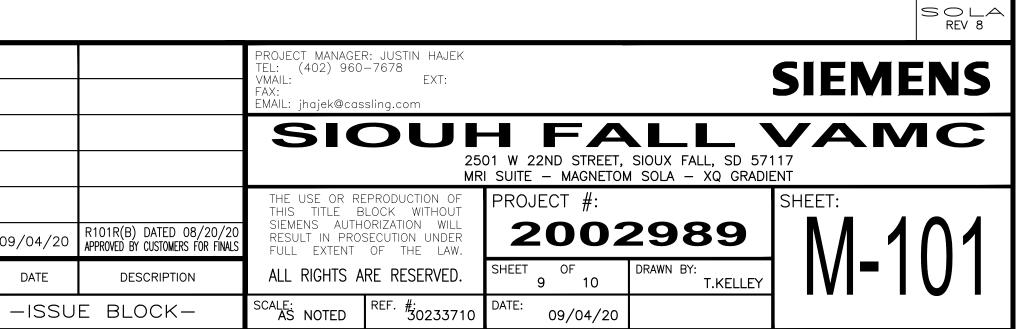
4) ALL PENETRATIONS IN THE RF CABIN/SHIELD SHALL BE THROUGH A WAVE GUIDE TO BE EQUIPPED WITH A DIELECTRIC COUPLER ON BOTH ENDS OF THE WAVE GUIDE. ALL WAVE GUIDES SHALL BE DESIGNED, DETAILED AND SPECIFIED BY THE RF CABIN/SHIELD CONTRACTOR WITH ALL LOCATIONS TO BE DETERMINED BY THE ARCHITECT AND MECHANICAL ENGINEER OF RECORD TO BE ESTABLISHED IN A PRE-PLANNING MEETING PRIOR TO THE DESIGN, SPECIFICATION, AND FABRICATION OF THE RF CABIN/SHIELD.

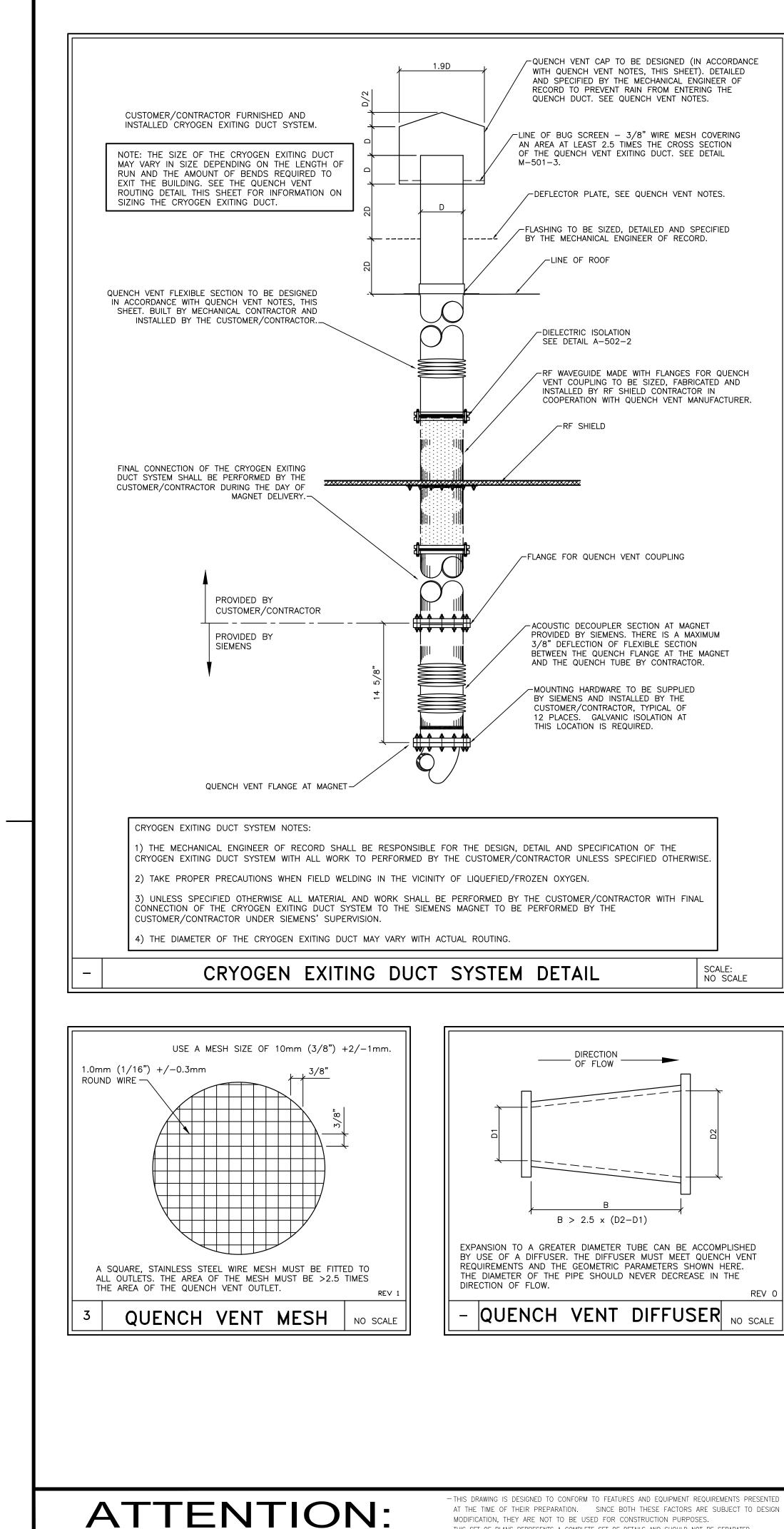
5) EACH ELECTRICAL PENETRATION OF THE RF CABIN/SHIELD FOR ELECTRICAL SERVICING OF THE FIRE PROTECTION SYSTEM SHALL BE THROUGH AN RF FILTER TO BE SUPPLIED BY THE RF SHIELD CONTRACTOR WITH FILTER LOCATIONS TO BE DETERMINED BY THE ARCHITECT AND THE ELECTRICAL ENGINEER OF RECORD TO BE ESTABLISHED IN A PRE-PLANNING MEETING PRIOR TO THE DESIGN, SPECIFICATION AND FABRICATION OF THE RF CABIN/SHIELD.

6) IT IS PERMISSIBLE TO RUN "BLACK PIPE" UP TO THE DIELECTRIC COUPLER ON THE OUTSIDE OF THE RF SHIELD.

7) THERE MUST BE NO GROUND CONNECTIONS MADE DURING THE THE INSTALLATION OF EITHER THE PIPING OR ELECTRICAL FOR THE

8) THE USE OF HALON IS NOT ACCEPTABLE.

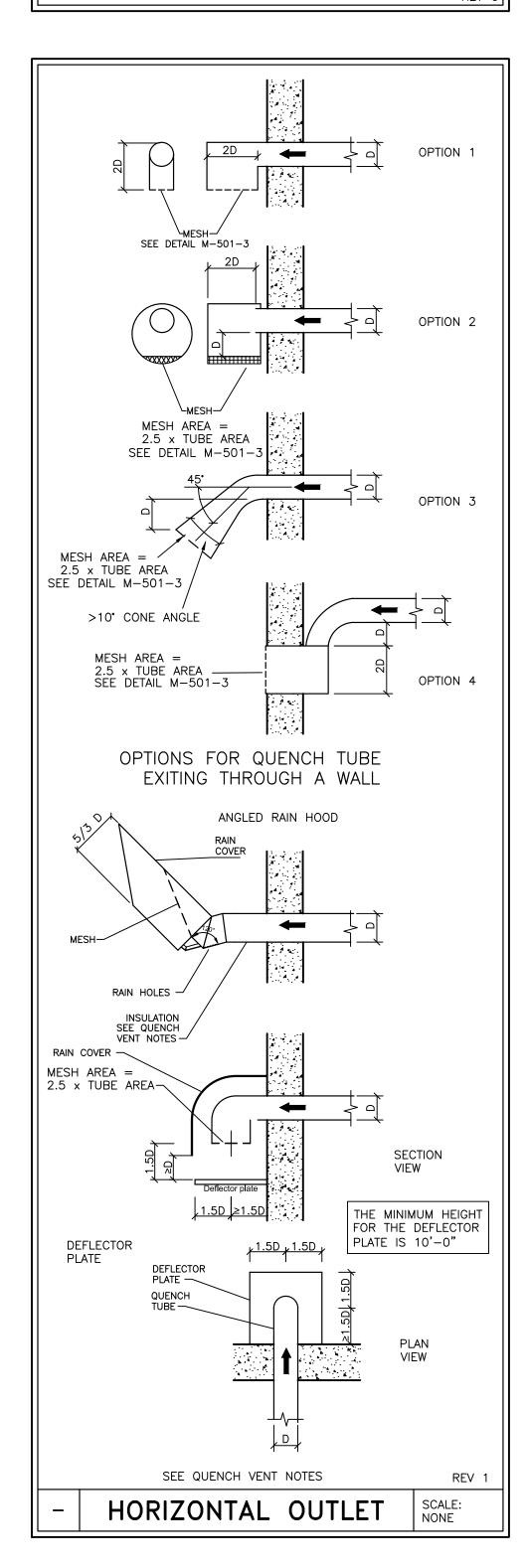

9) THE LOCATION OF FIRE CONTROL SYSTEM COMPONENTS SHALL BE COORDINATED THROUGH THE ARCHITECT OF RECORD WITH ALL LOCATIONS TO BE COORDINATED WITH SIEMENS EQUIPMENT LOCATIONS AS SHOWN ON THE 1/4" SCALE EQUIPMENT LOCATION PLAN.


10) THE FIRE CONTROL CONTRACTOR SHALL VERIFY EQUIPMENT MOUNTING PROCEDURES AND LOCATIONS ON ANY WALLS CONTAINING RF SHIELDING WITH THE SIEMENS PROJECT MANAGER PRIOR TO THE

REV 1

COMPRESSOR LINE INSULATION

COMPRESSOR LINES RUNNING FROM THE COMPRESSOR (OR SEP CABINET) TO THE MAGNET ARE INSULATED BY SIEMENS. ADDITIONAL INSULATION (ARMAFLEX OR EQUIVALENT) FOR NOISE REDUCTION (CHIRPING) MAY BE REQUIRED. ADDITIONAL INSULATION NOT PROVIDED BY SIEMENS.


CRYOGEN NOTES

) "CRYOGENS" IS A TERM USED TO IDENTIFY THE REFRIGERANT USED TO MAKE THE MAGNET "SUPER-CONDUCTING", IN THIS APPLICATION, LIQUID AND GASEOUS HELIUM. SPECIAL CARE MUST BE TAKEN DURING THE TRANSFILLING OF THE MAGNET WITH CRYOGENS AND NORMAL EXHAUST OF CRYOGENS FROM THE SYSTEM. ASIDE FROM THE OBVIOUS DANGER OF FREEZING, HELIUM GAS WILL ALSO DISPLACE TH OXYGEN IN THE ROOM. THE INSTALLATION OF AN APPROVED TOXGARD MONITORING SYSTEM IS RECOMMENDED.

2) THERE SHALL BE A TRANSPORT ROUTE FOR DELIVERY OF CRYOGENS TO THE EXAM ROOM. SPECIAL VESSELS CALLED DEWARS ARE USED TO TRANSPORT HELIUM. A 250 LITER DEWAR WEIGHS 335 POUNDS AND HAS A 32" DIAMETER, A 500 LITER IS 540 POUNDS, AND IS 42" IN DIAMETER.

3) HELIUM GAS CYLINDERS MAY BE USED DURING THE INITIAL FILLING OF HELIUM INTO THE MAGNET. THE FACILITY IN WHICH THESE MAY BE USED NEEDS TO HAVE THE ABILITY TO TEMPORARILY STORE AND SECURE THESE CYLINDERS THAT WILL PREVENT THEM FROM INADVERTENTLY FALLING OVER.

4) OUTSIDE VENTING OF THE HELIUM IS TO BE PROVIDED BY MEANS OF A VENT PIPE OF NON-MAGNETIC MATERIAL CALLED A QUENCH VENT. REV C

QUENCH VENT NOTES

QUENCH VENT DESIGN INSTRUCTIONS

I) IN THE EVENT OF A QUENCH, THE THERMAL ENERGY DISSIPATED CAUSES AN EXTREMELY RAPID BOIL OFF OF THE LIQUID HELIUM. THE SYSTEM MUST BE CAPABLE OF VENTING THE LARGE VOLUME OF GAS GENERATED AT THE APPROXIMATE EXPANSION RATIO OF 1:700 FROM LIQUID AT 4.2°K TO ROOM TEMPERATURE GAS. THE EXHAUST SYSTEM IS CRITICAL FOR THE SAFE OPERATION OF THE MAGNET. THE DATA IN THIS DOCUMENT MUST BE FOLLOWED. SINCE HELIUM VENTED IN A QUENCH IS AN ASPHYXIANT & AN EXTREMELY COLD GAS, THE QUENCH TUBE MUST ALWAYS END AT A POINT WHERE ACCESS BY PEOPLE IS NOT POSSIBLE. QUENCH TUBE PLANNING MUST ONLY BE DONE BY QUALIFIED PERSONNEL. IT IS THE OWNER'S RESPONSIBILITY TO ENSURE THAT THE QUENCH TUBE IS MAINTAINED IN AN OPERABLE STATE.

2) IF THE QUENCH VENT IS NOT CONFIGURED CORRECTLY THERE IS A RISK OF DANGER THAT MAY LEAD TO DEATH OR SERIOUS INJURY AND CAN RESULT IN STRUCTURAL DAMAGE. THE EXHAUST MUST NOT BE VENTED IN AN ENCLOSED SPACE. THE OPERATOR OF THE SYSTEM MUST PREPARE AN EMERGENCY PLAN IN THE EVENT OF A QUENCH. 3) THE QUENCH TUBE CONSISTS OF STRAIGHT, HYDRAULICALLY

SMOOTH SECTIONS, BENDS UP TO 90° AND A DIFFUSER, IF REQUIRED. THE END OF THE TUBE MUST BE PROTECTED FROM RAIN, SNOW, AND FOREIGN OBJECTS. ROUND SECTIONS ONLY, NO SQUARE SECTIONS. 4) THE SIEMENS MAGNET HAS A QUENCH VALVE ASSEMBLY FOR CONNECTION TO THE TUBE LOCATED AT THE TOP LEFT SIDE OF THE MAGNET (SEE MAGNET ELEVATION). THE MECHANICAL CONTRACTOR WILL SUPPLY AND INSTALL A QUENCH VENT TUBE WITH CAP, TO BE NON-MAGNETIC STAINLESS STEEL (>22 GAUGE RECOMMENDED) GRADES AISI304, 309, 316, OR 321 ONLY. THERMAL CONDITIONS MAY CAUSE THE TUBE TO CONTRACT UP TO 3mm/METER SO A STAINLESS STEEL BELLOWS OR FLEXIBLE SECTION MUST BE INSTALLED A MINIMUM OF EVERY 32'-9" NOT TO EXCEED 2% OF THE OVERALL LENGTH. THE QUENCH TUBE MAY ALSO BE MADE OF ALUMINUM, EXTRUDED TUBE ALUMINUM GRADES 6063 AND 6082 ONLY MUST BE USED. ROLLED AND WELDED TUBE FROM SHEET ALUMINUM GRADE 5083 ONLY MUST BE USED. THE WALL SECTIONS OF ALUMINUM TUBE MUST BE A MINIMUM 14 GAUGE. THERMAL CONTRACTION OF 4.5 MM/METER MUST BE CONSIDERED FOR ALUMINUM QUENCH TUBES. THE MOVEMENT OF THE BELLOWS MUST BE RESTRICTED TO PREVENT EXCESSIVE EXPANSION DUE TO PRESSURE. THE WEIGHT OF THE TUBE MUST BE SUPPORTED BY THE BUILDING AND BE FLEXIBLE ENOUGH TO ALLOW MOVEMENT FROM THERMAL CONTRACTION. THE WALL EXIT SHOULD ALSO BE FLEXIBLE.

PRESSURE CALCULATION

5) THE MAXIMUM INTERNAL PRESSURE IS CALCULATED AT 1.45 PSI. THE MAXIMUM PRESSURE SHOULD BE ENGINEERED FOR 6.5 PSI.

6) USE THE QUENCH VENT CALCULATOR PROVIDED BY SIEMENS TO DESIGN A QUENCH VENT THAT MEETS DESIGN REQUIREMENTS FOR DIAMETER, LENGTH, NUMBER OF ELBOWS AND PRESSURE DROP. ALL BENDS MUST BE SMOOTH WALLED AND HAVE A CENTERLINE TO INTERNAL PIPE DIAMETER RATIO OF 1.5 TO 5.0. EXPANSIONS TO PIPE DIAMETER CAN BE DONE WITH A DIFFUSER. ONLY ROUND TUBE SECTIONS MAY BE USED, RECTANGULAR SECTIONS ARE NOT ALLOWED. 7) THERE MUST BE A 12-19 INCH FLEXIBLE SECTION OF PIPE FOR CONNECTION TO THE QUENCH VALVE AT THE MAGNET WITH AN INSIDE DIAMETER GREATER THAN 4" (1.5T) OR 6" (3.0T) AND ABLE TO WITHSTAND 6.5 PSI.

CONNECTING SECTIONS 8) SECTIONS OF THE PIPE CAN ONLY BE JOINED BY WELDING OR BOLTED FLANGES WITH FIBER GASKETS. ROTARY FLANGES ARE PERMITTED, VEE CLAMPED FLANGES MAY NOT BE USED.

QUENCH VENT EXIT) THE PROTECTION AT THE END OF THE TUBE SHALL BE 3/8" WIRE MESH WITH 1/16 INCH WIRES, COVERING AN AREA AT LEAST 2.5 TIMES THE CROSS SECTION AREA OF THE QUENCH PIPE.

10) WHERE THE QUENCH TUBE EXITS THROUGH A FLAT ROOF, THE THE OUTLET MUST BE ABOVE A LEVEL WHERE WATER COULD ENTER IN THE EVENT THAT THE ROOF DRAINS BECOME BLOCKED. IN THE CASE OF A HORIZONTAL EXIT THROUGH A WALL, THE OUTLET SHALL E ANGLED DOWNWARD NOT LESS THAN 1 PIPE DIAMETER TO PREVENT RAIN INGRESS. THE EXIT SHALL BE LOCATED ABOVE THE LEVEL OF DRIFTING SNOW.

11) WHERE THE QUENCH TUBE EXITS VERTICALLY, A RAIN COVER MUST ALSO BE FITTED WITH THE DIAMETER TO BE TWO TIMES THE DIAMETER OF THE QUENCH TUBE. THE CLEARANCE BETWEEN THE RAIN GUARD AND THE MESH SHALL 2 TIMES THE DIAMETER OF THE TUBE. A DEFLECTOR PLATE SHALL BE WELDED TO THE TUBE WHERE IT EXITS THE ROOF TO PREVENT HELIUM FROM RE-ENTERING THE BUILDING. THE DEFLECTOR SHALL BE AT LEAST 3 TIMES THE DIAMETER OF THE QUENCH TUBE AND LOCATED TWO PIPE DIAMETERS ABOVE THE ROOF AND TWO PIPE DIAMETERS BELOW THE RAIN GUARD.

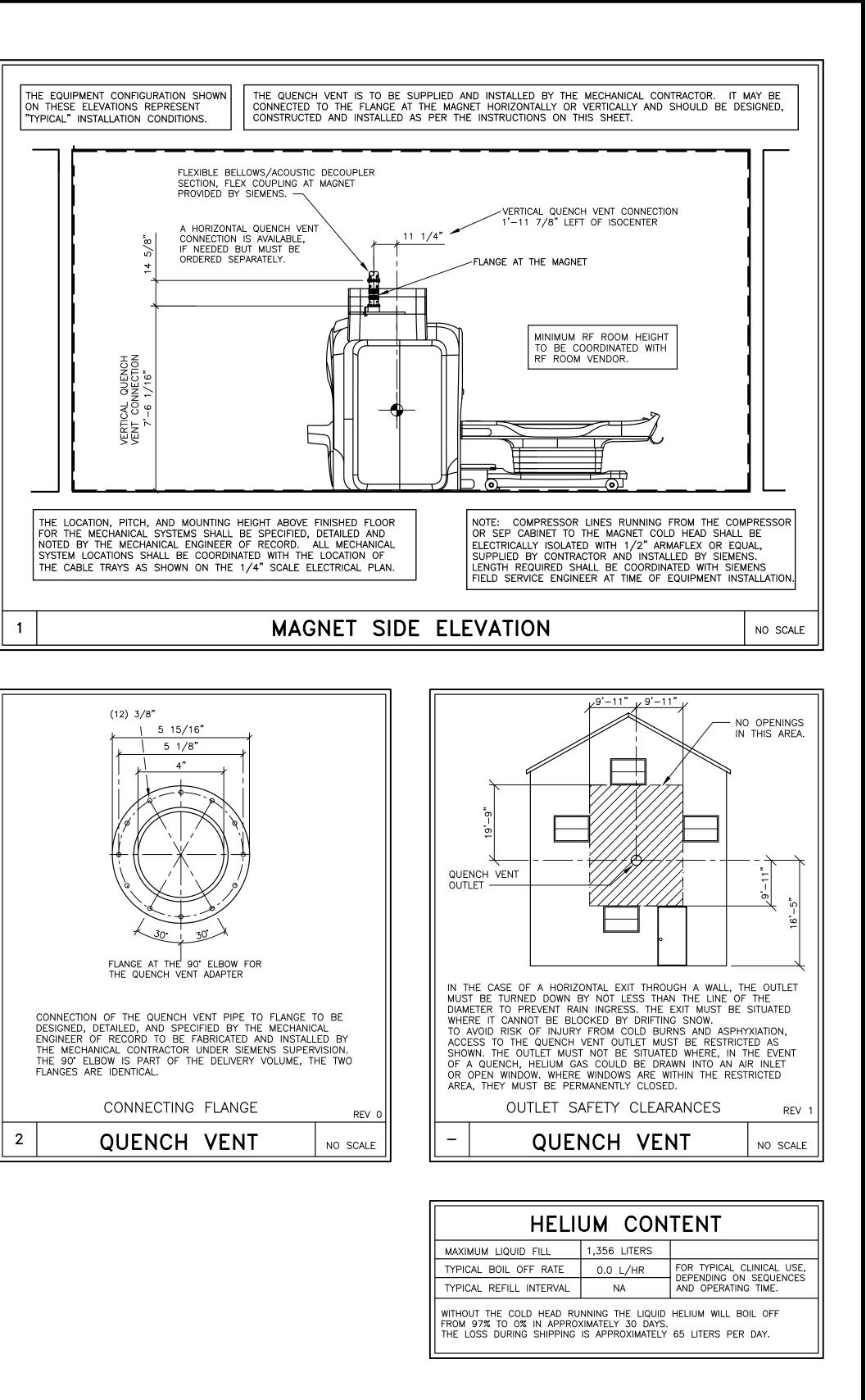
DURING A QUENCH THE HELIUM GAS EXITING THE QUENCH PIPE MAY BE AT TEMPERATURES OF LESS THAN -400°F. DUE TO THIS TEMPERATURE ROOFING MATERIALS OR ITEMS AROUND THE VENT EXIT MAY BE ADVERSELY AFFECTED. CONSIDERATION OF MATERIALS AND ITEMS PLACED NEAR THE VENT EXIT SHOULD BE TAKEN INTO ACCOUNT SO DAMAGE DOES NOT OCCUR

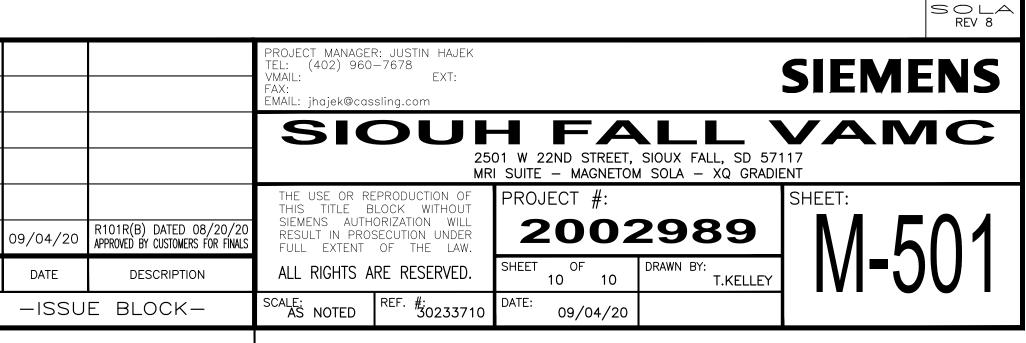
12) WHERE THE QUENCH TUBE EXITS HORIZONTALLY, THE OUTLET MUST CONFORM TO OPTIONS 1-4 OR THE ANGLED RAIN HOOD. THE OUTLET SHOULD NOT BE LOCATED WHERE HELIUM GAS CAN BE DRAWN INTO AN AIR INLET, ENTER AN OPEN WINDOW, OR BLOW DIRECTLY ONTO STRUCTURE OR EQUIPMENT. RESTRICT ACCESS TO WINDOWS AND DOORS TO AVOID INJURY FROM COLD BURNS AND ASPHYXIATION BY 9'-11" ON EACH SIDE, BELOW AND 19'-9" ABOVE, IF THE OUTLET IS POSITIONED TOO LOW A DEFLECTOR PLATE CAN BE USED WITH OPTION 1 AND 3.

WARNING SIGNS AND OUTLET RESTRICTIONS A WARNING SIGN MUST BE FIXED AND VISIBLE NEAR THE QUENCH VENT OUTLET. THE TUBE MUST HAVE A WARNING POSTED ALONG IT'S ENTIRE LENGTH FOR EXTREMELY COLD HELIUM GAS -AUTHORIZED PERSONNEL ONLY.

13) AREAS WITH ACCESS IN THE AREA OF THE OUTLET MUST BE CLÉARLY IDENTIFIED AND FENCED, FOR EXAMPLE, A ROOF OUTLET WITH MAINTENANCE ACCESS.

INSULATION AND GALVANIC SEPARATION 14) THE QUENCH TUBE MUST HAVE MINIMUM 1" INSULATION FOR THE FULL LENGTH. WITHIN THE RF ROOM THERE SHOULD BE A 1" LAYER OF MINERAL FIBER INSULATION WITH A VAPOR BARRIER AND " CLASS O OR CLASS AP ARMAFLEX. OUTDOOR PIPES MUST BE WEATHERPROOF. THE INSULATION MUST NOT TOUCH THE MAGNET COVERS. TO AVOID RF DISTURBANCES THE INSULATION MUST NOT MAKE ELECTRICAL CONTACT WITH THE WAVEGUIDE.


15) GALVANIC SEPARATION MUST BE PROVIDED BETWEEN THE MAGNET, THE QUENCH VENT, THE RF ROOM, AND THE BUILDING, TWO SEPARATIONS ARE REQUIRED USING STAINLESS STEEL BOLTS, INSULATING BUSHES AND LOCKING NUTS. NO OTHER DESIGNS ARE PERMITTED FOR SAFETY.


DOCUMENTATION 16) THE DESIGN AND CONSTRUCTION OF THE QUENCH PIPE MUST BE DOCUMENTED WITH DRAWINGS AND CALCULATIONS THAT ARE KEPT WITH INSTALLATION DOCUMENTS. IT MUST COMPLY WITH THE REQUIREMENTS IN THIS DOCUMENT BEFORE BEING CONNECTED TO THE MAGNET.

REV 6

- THIS SET OF PLANS REPRESENTS A COMPLETE SET OF DETAILS AND SHOULD NOT BE SEPARATED.

- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE FROM FINISHED SURFACES. - THIS DRAWING DOES NOT PROVIDE RADIATION SHIELDING REQUIREMENTS FOR X-RAY AND ASSOCIATED EQUIPMENT. THE CUSTOMER IS RESPONSIBLE FOR CONSULTING WITH A REGISTERED RADIATION PHYSICIST TO SPECIFY RADIATION PROTECTION.

