SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:
 - 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction

and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.

- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all sections of Division 26 are the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the Government through the Project Engineer a minimum of forty five (45)days prior to the manufacturer's performing of the factory tests.
 - 2. When factory tests are successful, contractor shall furnish two (2) copies of the equipment manufacturer's certified test reports to the Project Engineer fourteen (14) days prior to shipment of the

equipment, and not more than ninety (90) days after completion of the factory tests.

3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the Project Engineer
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

A. All electrical work shall comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.

- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment

designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.

1.12 SUBMITTALS

- A. Submit to the Project Engineering accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, VA contract number, VA project number, VA project title, specification number and applicable paragraphs, and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:

- Submit two copies in electronic Adobe PDF format and two copies bound in hardback binder for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
- 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number, VA contract number, VA project number, and VA project title. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
- 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
- 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
 - j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
 - k. Provide all lock out, tag out information for all equipment, including step by step instructions with illustrations, pictures or other visual aids to show procedures for proper Lock out/Tag

out. Provide electronically (Microsoft Word, Adobe PDF, J-PEG etc) in format compatible with current VA software, and in hard copy form.

G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the contractor shall repair or replace the defective materials or equipment, and repeat the tests. Repair, replacement, and retesting shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.

- C. A training schedule shall be developed and submitted by the Contractor and approved by the Project Engineer at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 05 12 ELECTRICAL DEMOLITION

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Electrical demolition.
- B. Construction phasing

PART 2 PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 EXECUTION

3.1 EXAMINATION

- A. Verify field measurements and circuiting arrangements are as shown on the drawings.
- B. Verify that abandoned wiring and equipment serve only abandoned facilities.
- C. Demolition drawings are based on casual field observation and existing record documents.
- D. Report discrepancies to Project Engineer before disturbing existing installation.
- E. Beginning of demolition means installer accepts existing conditions.

3.2 PREPARATION

- A. Disconnect electrical systems in walls, floors, and ceilings to be removed.
- B. Provide temporary wiring and connections to maintain existing systems in service during construction.
- C. Existing Electrical Panels and Equipment: Disable system only to make switchovers and connections. Minimize outage duration.
 - Obtain permission from Owner at least 2 weeks before partially or completely disabling panels and equipment.
 - Make temporary connections to maintain service in areas adjacent to work area.
 - 3. Provide temporary connections to areas that remain in service during construction. All boiler plant, temporary boiler plant, and hospital operations shall remain functional at all times.

3.3 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Remove, relocate, and extend existing installations to accommodate new construction.
- B. Remove abandoned wiring to source of supply.

- C. Remove exposed abandoned conduit, including abandoned conduit above accessible ceiling finishes. Cut conduit flush with walls and floors, and patch surfaces.
- D. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlet boxes which are not removed.
- E. Disconnect and remove abandoned panelboards and distribution equipment.
- F. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.
- G. Disconnect and remove abandoned luminaires. Remove brackets, stems, hangers, and other accessories.
- H. Repair adjacent construction and finishes damaged during demolition and extension work.
- Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.
- J. Install junction boxes in walls, ceilings or floors if required to continue circuiting.
- K. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified.

3.4 CONSTRUCTION PHASING

- A. All work shall be phased to create minimal electrical service disruption to the daily operations of the hospital. Provide temporary connections to branch circuit devices, light fixtures, panelboards, motor starters, MCC's, etc. during switchover operations to keep downtime to any piece of equipment or areas of the building to a minimum.
- B. Switchover work may need to be completed outside of normal work hours to keep disruption to hospital operations minimized.
- C. Phasing schedules are to be submitted to VA Project Engineer at least four weeks prior to any power outages for approval. Outages are to be scheduled at least four weeks prior to the outage date with the VA Project Engineer.

3.5 CLEANING AND REPAIR

A. Clean and repair existing materials and equipment which remain or are to be reused.

3.6 MATERIAL DISPOSAL

A. Material and equipment deemed salvageable by the Owner shall remain the property of Owner. Contractor shall dismantle these items to manageable size and deliver to designated storage area on site. The Owner shall have

26 05 12 - 2

first right of refusal on all material and equipment.

B. All other materials and equipment shall become property of Contractor and must be removed from site and disposed of by approved method.

- - - END - - -

SECTION 26 05 13 MEDIUM-VOLTAGE CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of medium-voltage cables, indicated as cable or cables in this section, and medium-voltage cable splices and terminations.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for medium-voltage cables.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes and ducts for medium-voltage cables.
- E. Section 26 12 19, PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS: Medium-voltage cable terminations for use in pad-mounted, liquid-filled, medium-voltage transformers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Medium-voltage cables shall be thoroughly tested at the factory per NEMA WC 74 to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - 1) Complete electrical ratings.
 - 2) Installation instructions.
 - 2. Certifications:

- a. Factory Test Reports: Submit certified factory production test reports for approval.
- b. Field Test Reports: Submit field test reports for approval.
- c. Compatibility: Submit a certificate from the cable manufacturer that the splices and terminations are approved for use with the cable.
- d. Two weeks prior to final inspection, submit the following.
 - Certification by the manufacturer that the cables, splices, and terminations conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that the cables, splices, and terminations have been properly installed and tested.
 - 3) Certification by the Contractor that each splice and each termination were completely installed in a single continuous work period by a single qualified worker without any overnight interruption.
- 4. Qualified Worker Approval:
 - a. Qualified workers who install and test cables, splices, and terminations shall have not fewer than five years of experience splicing and terminating cables equivalent to those being spliced and terminated, including experience with the materials in the approved splices and terminations.
 - b. Furnish satisfactory proof of such experience for each qualified worker who splices or terminates the cables.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): B3-01 (2007).....Standard Specification for Soft or Annealed Copper Wire
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 48-09......Test Procedures and Requirements for Alternating-Current Cable Terminations Used on Shielded Cables Having Laminated Insulation

12-01-12

		Rated 2.5 kV through 765 kV or Extruded	
		Insulation Rated 2.5 kV through 500 kV	
	386-95	.Separable Insulated Connector Systems for Power	
		Distribution Systems above 600 V	
	400-01	.Guide for Field Testing and Evaluation of the	
		Insulation of Shielded Power Cable Systems	
	400.2-04	.Guide for Field Testing of Shielded Power Cable	
		Systems Using Very Low Frequency (VLF)	
	400.3-06	.Guide for Partial Discharge Testing of Shielded	
		Power Cable Systems in a Field Environment	
	404-00	.Extruded and Laminated Dielectric Shielded	
		Cable Joints Rated 2500 V to 500,000 V	
D.	D. National Electrical Manufacturers Association (NEMA):		
	WC 71-99	.Non-Shielded Cables Rated 2001-5000 Volts for	
		Use in the Distribution of Electric Energy	
	WC 74-06	.5-46 KV Shielded Power Cable for Use in the	
		Transmission and Distribution of Electric	
		Energy	

- E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- F. Underwriters Laboratories (UL):
 1072-06Medium-Voltage Power Cables

1.7 SHIPMENT AND STORAGE

- A. Cable shall be shipped on reels such that it is protected from mechanical injury. Each end of each length of cable shall be hermetically sealed with manufacturer's end caps and securely attached to the reel.
- B. Cable stored and/or cut on site shall have the ends turned down, and sealed with cable manufacturer's standard cable end seals, or fieldinstalled heat-shrink cable end seals.

PART 2 - PRODUCTS

2.1 CABLE

- A. Cable shall be in accordance with the NEC and NEMA WC 71, WC 74, and UL 1072.
- B. Single conductor stranded copper conforming to ASTM B3.
- C. Voltage Rating:

1. 25,000 V cable shall be used on 25,000 V distribution systems.

D. Insulation:

- 1. Insulation level shall be 133%.
- 2. Types of insulation:
 - a. Cable type abbreviation, EPR: Ethylene propylene rubber insulation shall be thermosetting, light and heat stabilized.
- E. Insulation shield shall be semi-conducting. Conductor shield shall be semi-conducting.
- F. Insulation shall be wrapped with copper shielding tape, helicallyapplied over semi-conducting insulation shield.
- G. Heavy duty, overall protective polyvinyl chloride jacket shall enclose every cable. The manufacturer's name, cable type and size, and other pertinent information shall be marked or molded clearly on the overall protective jacket.
- H. Cable temperature ratings for continuous operation, emergency overload operation, and short circuit operation shall be not less than the NEC, NEMA WC 71, or NEMA WC 74 standard for the respective cable.

2.2 SPLICES AND TERMINATIONS

- A. Materials shall be compatible with the cables being spliced and terminated, and shall be suitable for the prevailing environmental conditions.
- B. In locations where moisture might be present, the splices shall be watertight. In manholes and pullboxes, the splices shall be submersible.
- C. Splices:
 - 1. Shall comply with IEEE 404. Include all components required for complete splice, with detailed instructions.
- D. Terminations:
 - 1. Shall comply with IEEE 48. Include shield ground strap for shielded cable terminations.
 - Class 3 terminations for outdoor use: Kit with stress cone and compression-type connector.
 - 3. Load-break terminations for indoor and outdoor use: 200 A loadbreak premolded rubber elbow connectors with bushing inserts, suitable for submersible applications. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.

- Ground metallic cable shields with a device designed for that purpose, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly.
- 5. Provide insulated cable supports to relieve any strain imposed by cable weight or movement. Ground cable supports to the grounding system.

2.3 FIREPROOFING TAPE

A. Fireproofing tape shall be flexible, non-corrosive, self-extinguishing, arcproof, and fireproof intumescent elastomer. Securing tape shall be glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (0.75 inch) wide.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and per manufacturer's instructions.
- B. Cable shall be installed in conduit above grade and duct bank below grade.
- C. All cables of a feeder shall be pulled simultaneously.
- D. Conductors of different systems (e.g., 5kV and 15kV) shall not be installed in the same raceway.
- E. Splice the cables only in manholes and pullboxes.
- F. Ground shields in accordance with Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- G. Cable maximum pull length, maximum pulling tension, and minimum bend radius shall conform with the recommendations of the manufacturer.
- H. Use suitable lubricating compounds on the cables to prevent pulling damage. Provide compounds that are not injurious to the cable jacket and do not harden or become adhesive.
- I. Seal the cable ends prior to pulling, to prevent the entry of moisture or lubricant.

3.2 PROTECTION DURING SPLICING OPERATIONS

A. Blowers shall be provided to force fresh air into manholes where free movement or circulation of air is obstructed. Waterproof protective coverings shall be available on the work site to provide protection against moisture while a splice is being made. Pumps shall be used to keep manholes dry during splicing operations. Under no conditions shall a splice or termination be made that exposes the interior of a cable to

12-01-12

moisture. A manhole ring at least 150 mm (6 inches) above ground shall be used around the manhole entrance to keep surface water from entering the manhole. Unused ducts shall be plugged and water seepage through ducts in use shall be stopped before splicing.

3.3 PULLING CABLES IN DUCTS AND MANHOLES

- A. Cables shall be pulled into ducts with equipment designed for this purpose, including power-driven winches, cable-feeding flexible tube guides, cable grips, pulling eyes, and lubricants. A sufficient number of qualified workers and equipment shall be employed to ensure the careful and proper installation of the cable.
- B. Cable reels shall be set up at the side of the manhole opening and above the duct or hatch level, allowing cables to enter through the opening without reverse bending. Flexible tube guides shall be installed through the opening in a manner that will prevent cables from rubbing on the edges of any structural member.
- C. Cable shall be unreeled from the top of the reel. Pay-out shall be carefully controlled. Cables to be pulled shall be attached through a swivel to the main pulling wire by means of a suitable cable grip and pulling eye.
- D. Woven-wire cable grips shall be used to grip the cable end when pulling small cables and short straight lengths of heavier cables.
- E. Pulling eyes shall be attached to the cable conductors to prevent damage to the cable structure.
- F. Cables shall be liberally coated with a suitable lubricant as they enter the tube guide or duct. Rollers, sheaves, or tube guides around which the cable is pulled shall conform to the minimum bending radius of the cable.
- G. Cables shall be pulled into ducts at a reasonable speed. Cable pulling using a vehicle shall not be permitted. Pulling operations shall be stopped immediately at any indication of binding or obstruction, and shall not be resumed until the potential for damage to the cable is corrected. Sufficient slack shall be provided for free movement of cable due to expansion or contraction.
- H. Splices in manholes shall be firmly supported on cable racks. Cable ends shall overlap at the ends of a section to provide sufficient undamaged cable for splicing.
- I. Cables cut in the field shall have the cut ends immediately sealed to prevent entrance of moisture.

3.4 SPLICES AND TERMINATIONS

- A. Install the materials as recommended by the manufacturer, including precautions pertaining to air temperature and humidity during installation.
- B. Installation shall be accomplished by qualified workers trained to perform medium-voltage equipment installations. Use tools as recommended or provided by the manufacturer. All manufacturer's instructions shall be followed.
- C. Splices in manholes shall be located midway between cable racks on walls of manholes, and supported with cable arms at approximately the same elevation as the enclosing duct.
- D. Where the Government determines that unsatisfactory splices and terminations have been installed, the Contractor shall replace the unsatisfactory splices and terminations with approved material at no additional cost to the Government.

3.5 FIREPROOFING

- A. Cover all cable segments exposed in manholes and pullboxes with fireproofing tape.
- B. Apply the tape in a single layer, wrapped in a half-lap manner, or as recommended by the manufacturer. Extend the tape not less than 25 mm (1 inch) into each duct.
- C. At each end of a taped cable section, secure the fireproof tape in place with glass cloth tape.

3.6 CIRCUIT IDENTIFICATION OF FEEDERS

A. In each manhole and pullbox, install permanent identification tags on each circuit's cables to clearly designate the circuit identification and voltage. The tags shall be the embossed brass type, 40 mm (1.5 inches) in diameter and 40 mils thick. Attach tags with plastic ties. Position the tags so they will be easy to read after the fireproofing tape is installed.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. Include the following visual and electrical inspections.
- B. Test equipment, labor, and technical personnel shall be provided as necessary to perform the acceptance tests. Arrangements shall be made to have tests witnessed by the Project Engineer.
- C. Visual Inspection:
 - 1. Inspect exposed sections of cables for physical damage.

- 2. Inspect shield grounding, cable supports, splices, and terminations.
- 3. Verify that visible cable bends meet manufacturer's minimum bending radius requirement.
- 4. Verify installation of fireproofing tape and identification tags.
- D. Electrical Tests:
 - Acceptance tests shall be performed on new and service-aged cables as specified herein.
 - 2. Test new cable after installation, splices, and terminations have been made, but before connection to equipment and existing cable.
- E. Service-Aged Cable Tests:
 - Maintenance tests shall be performed on service-aged cable interconnected to new cable.
 - After new cable test and connection to an existing cable, test the interconnected cable. Disconnect cable from all equipment that could be damaged by the test.
- F. Insulation-Resistance Test: Test all new and service-aged cables with respect to ground and adjacent conductors.
 - Test data shall include megohm readings and leakage current readings. Cables shall not be energized until insulation-resistance test results have been approved by the Project Engineer. Test voltages and minimum acceptable resistance values shall be:

Voltage Class	Test Voltage	Min. Insulation Resistance
5kV	2,500 VDC	1,000 megohms
15kV	2,500 VDC	5,000 megohms
25kV	5,000 VDC	20,000 megohms
35kV	15,000 VDC	100,000 megohms

- 2. Submit a field test report to the Project Engineer that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and identifies the insulation resistance and leakage current results for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- G. Online Partial Discharge Test: Comply with IEEE 400 and 400.3. Test all new and service-aged cables. Perform tests after cables have passed the insulation-resistance test, and after successful energization.
 - Testing shall use a time or frequency domain detection process, incorporating radio frequency current transformer sensors with a partial discharge detection range of 10 kHz to 300 MHz.

- 2. Submit a field test report to the Project Engineer that describes the identification and location of cables tested, the test equipment used, and the date tests were performed; identifies the persons who performed the tests; and numerically and graphically identifies the magnitude of partial discharge detected for each cable section tested. The report shall provide conclusions and recommendations for corrective action.
- H. Final Acceptance: Final acceptance shall depend upon the satisfactory performance of the cables under test. No cable shall be put into service until all tests are successfully passed, and field test reports have been approved by the Project Engineer.

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

A. Conductors and cables shall be thoroughly tested at the factory per NEMA to ensure that there are no electrical defects. Factory tests shall be certified.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape
 C. National Electrical Manufacturers Association (NEMA):

WC 70-09.....Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-10.....Thermoset-Insulated Wires and Cables 83-08..... Thermoplastic-Insulated Wires and Cables 467-07.....Grounding and Bonding Equipment 486A-486B-03.....Wire Connectors 486C-04.....Splicing Wire Connectors 486D-05.....Sealed Wire Connector Systems 486E-09.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07.....Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables 514B-04.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with NEMA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.

 For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

5. Conductors shall be color-coded as follows:

- 6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the Project Engineer.
- 7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - 1. Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:

- Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper conductors.
- 2. Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
- 3. Splice and insulation shall be product of the same manufacturer.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 22 AWG. Low voltage control wiring (48v and lower) may also utilize cables that include twisted pair conductors within an overall jacket per the equipment manufacturers printed requirements.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install conductors in accordance with the NEC, as specified, and as shown on the drawings.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes and pullboxes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.

- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- No more than three branch circuits shall be installed in any one conduit.
- J. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.5 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.6 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.7 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Project Engineer
 - 3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):

B1-07.....for Hard-Drawn Copper Wire

- B3-07.....Standard Specification for Soft or Annealed Copper Wire
- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-83..... IEEE Guide for Measuring Earth Resistivity,
 - Ground Impedance, and Earth Surface Potentials of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12....National Electrical Safety Code 99-12....Health Care Facilities
 - JJ 12.....
- E. Underwriters Laboratories, Inc. (UL): 44-10Thermoset-Insulated Wires and Cables

83-08 Thermoplastic-Insulated Wires and Cables

467-07Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2.

2.2 GROUND RODS

- A. Steel or copper clad steel, 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install grounding equipment in accordance with the NEC, as shown on the drawings, and as specified herein.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.3 MEDIUM-VOLTAGE EQUIPMENT AND CIRCUITS

- A. Switchgear: Provide a bare grounding electrode conductor from the switchgear ground bus to the grounding electrode system.
- B. Pad-Mounted Transformers:
 - Provide a driven ground rod and bond with a grounding electrode conductor to the transformer grounding pad.
 - 2. Ground the secondary neutral.
- C. Lightning Arresters: Connect lightning arresters to the equipment ground bus or ground rods as applicable.

3.2 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):

- Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
- 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Switchgear, Switchboards, Unit Substations, Panelboards Engine-Generators, Automatic Transfer Switches, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - Exterior: Exterior transformers supplying interior service equipment shall have the neutral grounded at the transformer secondary. Provide a grounding electrode at the transformer.

3.3 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes.

26 05 26 - 5

- 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.

3.4 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.9 LIGHTNING PROTECTION SYSTEM

A. Bond the lightning protection system to the electrical grounding electrode system.

3.10 MAIN ELECTRICAL ROOM GROUNDING

A. Provide ground bus bar and mounting hardware at each main electrical room where incoming feeders are terminated, as shown on the drawings. Connect to pigtail extensions of the building grounding ring, as shown on the drawings.

3.11 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.12 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.
- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.37 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the Project Engineer prior to backfilling. The Contractor shall notify the Project Engineer 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- B. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- C. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Submit the following data for approval:
 - 1) Raceway types and sizes.

- 2) Conduit bodies, connectors and fittings.
- 3) Junction and pull boxes, types and sizes.
- Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C80.1-05.....Electrical Rigid Steel Conduit C80.3-05....Steel Electrical Metal Tubing C80.6-05....Electrical Intermediate Metal Conduit
- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

-05Flexible Metal Conduit
5-11 and Fittings
5-07Clectrical Rigid Metal Conduit - Steel
0-95 Enclosures for Electrical Equipment
860-13Ciquid-Tight Flexible Steel Conduit
67-13 Equipment
14A-13Metallic Outlet Boxes
14B-12Conduit, Tubing, and Cable Fittings
14C-07
and Covers
51-11Schedule 40 and 80 Rigid PVC Conduit and
Fittings
51A-11
Conduit
97-07Tubing

1242-06..... Electrical Intermediate Metal Conduit - Steel E. National Electrical Manufacturers Association (NEMA): TC-2-13..... Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-12.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13......Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing) FB2.20-12.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable F. American Iron and Steel Institute (AISI):

S100-2007.....North American Specification for the Design of Cold-Formed Steel Structural Members

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than (3/4-inch) unless otherwise shown.
- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 3/4 inch.
 - Electrical Metallic Tubing (EMT): Shall conform to UL 797 and ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 3. Use pigmented EMT conduit to identify systems as follows. Conduits shall be factory tinted, not painted in the field.
 - a. Communications (public address, voice/data): Orange.
 - b. HVAC controls: Blue.
 - c. Fire Alarm: Red.
 - Flexible Metal Conduit: Shall conform to UL 1. May only be used upon approval by the Project Engineer on a case by case usage review.
 - 5. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.

- 6. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
- 7. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, ANSI C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
 - 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
 - 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
 - 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
 - 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.

- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - 1. Do not cut through structural elements such as ribs or beams.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by Project Engineer where working space is limited.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, NEMA, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - 2. Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished

walls, floors, and ceilings in finished spaces such as offices, locker rooms, and restrooms. Surface mounted conduit shall be allowed in other unfinished spaces throughout the boiler plant.

- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the Project Engineer.

3.3 CONCEALED WORK INSTALLATION

- A. Above Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors 600 V and Below: EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1.8
 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.
 - 6. Flexible metal conduit may only be used as indicated in paragraph 3 and within existing walls to serve devices that are required to be cut into the surface. VA Project Engineer shall approve the use of flexible metal conduit for this application prior to the installation.

3.4 EXPOSED WORK INSTALLATION

- A. Exposed conduit is permitted in throughout the boiler plant except in finished spaces such as offices, locker rooms, and restrooms.
- B. Conduit for Conductors 600 V and Below: EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

A. Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.6 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.

- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- M. The use of combination type box and conduit hangers similar to 'Caddy' combo box/conduit hangers that utilize wires or rods for support is prohibited. Utilize steel channel that is directly attached to the wall, ceiling structure or other structural elements to support conduits.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.

- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:
 - Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 31 20 00, EARTH MOVING

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and

submit to the Project Engineer for approval prior to construction.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI):
 - Building Code Requirements for Structural Concrete

318-11/318M-11.....Building Code Requirements for Structural

Concrete & Commentary

SP-66-04.....ACI Detailing Manual

- C. American National Standards Institute (ANSI): 77-10......Underground Enclosure Integrity
- D. American Society for Testing and Materials (ASTM):

C478-12.....Standard Specification for Precast Reinforced Concrete Manhole Sections

- C858-10e1.....Underground Precast Concrete Utility Structures C990-09.....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants.
- E. National Electrical Manufacturers Association (NEMA):
 - TC 2-03..... Electrical Polyvinyl Chloride (PVC) Conduit
 - TC 3-04.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing
 - TC 6 & 8-03.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations
 - TC 9-04.....Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation
- F. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
 - 70E-12.....National Electrical Safety Code
- G. Underwriters Laboratories, Inc. (UL):

6-07.....Electrical Rigid Metal Conduit-Steel

- 467-07.....Grounding and Bonding Equipment
- 651-11.....Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

651B-07.....Continuous Length HDPE Conduit

PART 2 - PRODUCTS

2.1 PULLBOXES

- A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 8loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.
- B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom

2.2 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. NEMA TC6 & 8 and TC9 plastic utilities duct UL 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.

2.3 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.5 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install pullboxes level and plumb.
 - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inches) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.

3.2 TRENCHING

- A. Refer to Section 31 20 00, EARTH MOVING for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems. Obtain all required permits and VA issued digging permits prior to beginning work.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 foot) intervals to establish the grade and route of the duct bank.
 - Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.
- F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid

metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the Project Engineer.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - Join and terminate ducts with fittings recommended by the manufacturer.
 - 3. Slope ducts to drain towards pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inch) in 30 M (100 feet).
 - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
 - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
 - 6. Install insulated grounding bushings on the conduit terminations.
 - 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
 - 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
 - 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
 - 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).
 - b. For power and signal services, not less than 150 mm (6 inches).
 - 11. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.

- 12. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 13. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 14. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 15. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 16. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.
 - Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
 - 5. Within 3 M (10 feet) of building wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.

- Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
- 7. Where new ducts and concrete envelopes are to be joined to existing pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between pullboxes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Project Engineer.
- E. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- F. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.

- 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
- 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the Project Engineer at no cost to the Government.
- 4. Mandrel pulls shall be witnessed by the Project Engineer.

---END---

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the individual device up to the utility source and the on-site generator sources.
- D. Include cost for device coordination study and arc flash system study, see Paragraph 1.3 for study preparer requirements.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 13 16, MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES: Mediumvoltage fusible interrupter switches.
- C. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Low-voltage distribution switchboards.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.
- E. Section 26 32 13, ENGINE GENERATORS: Engine generators.
- F. Section 26 36 23, AUTOMATIC TRANSFER SWITCHES: Automatic transfer switches.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by a professional engineer licensed in the state of North Dakota, with minimum five years experience in the preparation of studies of similar type and complexity.
 - 1. Acceptable Study Preparers:
 - a. MBN Engineering, Fargo ND.

b. Include cost of \$6,500 for coordination study by MBN Engineering in the electrical bid.

C. Computer Software for Study Preparation: Use the latest edition of commercially available software utilizing specified methodologies: 1 Acceptable Software: SKM Systems Analysis, INC.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE): 241-90......Recommended Practice Electrical Systems in Commercial Buildings 242-03.....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems 399-97.....Recommended Practice for Industrial and Commercial Power Systems Analysis 1584-02.....Performing Arc-Flash Hazards Calculations 1584A-04.....Performing Arc-Flash Hazards Calculations -Amendment 1 1584B-11....Performing Arc-Flash Hazards Calculations -Amendment 2

C. National Fire Protection Association (NFPA):

70-17..... National Electrical Code (NEC)

70E-18..... Standard for Electrical Safety in the Workplace

99-18.....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagram, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - a. Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.
 - c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
 - d. Voltage at each bus.
 - e. Identification of each bus, matching the identification on the drawings.
 - f. Conduit, conductor, and busway material, size, length, and X/R ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.

- d. Calculated short-circuit current.
- E. Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.
 - d. Applicable circuit breaker or protective relay characteristic curves.
 - e. No-damage, melting, and clearing curves for fuses.
 - f. Transformer in-rush points.
 - Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all

electrical power distribution equipment specified in the project, and as shown on the drawings.

5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Project Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Project Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements. ----- END -----

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data

sheets, wiring diagrams, and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Green Seal (GS):
 GC-12-03.....Occupancy Sensors
- C. National Electrical Manufacturer's Association (NEMA): C136.10-10.....American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-08.....Standard for Industrial Control and Systems General Requirements ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts

DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment

ICS-6-11.....Standard for Industrial Controls and Systems Enclosures

D. National Fire Protection Association (NFPA):

70-14..... National Electrical Code (NEC)

- E. Underwriters Laboratories, Inc. (UL):
 - 20.....Standard for General-Use Snap Switches

773-95..... Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

- 773A-06.....Nonindustrial Photoelectric Switches for Lighting Control

98-04..... Enclosed and Dead-Front Switches

916-07.....Standard for Energy Management Equipment

Systems

917-06.....Clock Operated Switches

924-06..... Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Solid state, with SPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.
 - 1. Light-Level Monitoring Range: 16.14 to 108 lx (1.5 to 10 fc), with adjustable turn-on and turn-off levels.
 - 2. Time Delay: 15-second minimum.
 - 3. Surge Protection: Metal-oxide varistor.
 - Mounting: Twist lock, with base-and-stem mounting or stem-andswivel mounting accessories as required.

2.2 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.

- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 5 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are

in good operating condition and properly performing the intended function in the presence of Project Engineer.

- - - E N D - - -

SECTION 26 12 19 PAD-MOUNTED, LIQUID-FILLED, MEDIUM-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of the pad-mounted, liquid-filled, medium-voltage transformers, indicated as transformers in this section.
- B. Pad mounted transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant and weatherproof with liquid-immersed transformers.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground currents.
- D. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Manholes, pullboxes, and ducts for underground raceway systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Factory Tests shall be required.
- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirement:
 - Transformers shall be thoroughly tested at the factory to ensure that there are no electrical or mechanical defects. Tests shall be conducted as per IEEE Standards. Factory tests shall be certified. The following tests shall be performed:
 - a. Perform insulation-resistance tests, winding-to-winding and each winding-to-ground.
 - b. Perform turns-ratio tests at all tap positions.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, nameplate data, impedance, outline drawing with dimensions and front, top, and side views, weight, mounting details, decibel rating, termination information, temperature rise, no-load and full-load losses, regulation, overcurrent protection, connection diagrams, and accessories.
 - c. Complete nameplate data, including manufacturer's name and catalog number.
 - 2. Manuals:
 - a. When submitting the shop drawings, submit companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts. Maintenance and operating manuals shall be submitted in both hard copy and electronic PDF format on a CD/DVD ROM.
 - Identify terminals on wiring diagrams to facilitate installation, maintenance, and operation.
 - Indicate on wiring diagrams the internal wiring for each piece of equipment and interconnections between the pieces of equipment.
 - Approvals will be based on complete submissions of manuals, together with shop drawings.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Update the manual to include any information necessitated by shop drawing approval.
 - 2) Show all terminal identification.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and recommended maintenance intervals.
 - Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.

26 12 19 - 2

1.6 APPLICABLE PUBLICATIONS

A. Publications	listed below (including amendments, addenda, revisions,
supplements, and errata) form a part of this specification to the	
extent refere	nced. Publications are referenced in the text by
designation o	nly.
B. American Society for Testing and Materials (ASTM):	
D3487-16	Standard Specification for Mineral Insulating
	Oil Used in Electrical Apparatus
C. Institute of Electrical and Electronic Engineers (IEEE):	
48-09	Test Procedures and Requirements for
	Alternating-Current Cable Terminations Used on
	Shielded Cables Having Laminated Insulation
	Rated 2.5kV Through 765kV or Extruded
	Insulation Rated 2.5kV Through 500kV
386-16	Separable Insulated Connector Systems for Power
	Distribution Systems Above 600 V
592-07	Exposed Semiconducting Shields on High-Voltage
	Cable Joints and Separable Connectors
C2-17	National Electrical Safety Code
C37.47-11	Specification for High Voltage (>1000V)
	Distribution Class Current-Limiting Fuses and
	Fuse Disconnecting Switches
C57.12.00-15.	Liquid-Immersed Distribution, Power and
	Regulating Transformers
	Liquid-Immersed Power Transformers
C57.12.25-90.	Pad-Mounted, Compartmental-Type, Self-Cooled,
	Single-Phase Distribution-Transformers with
	Separable Insulated High Voltage Connectors;
	High Voltage, 34500 Grd Y/19920 Volts and
	Below; Low-Voltage 240/120 Volts; 167 kVA and
	Smaller Requirements
	Pad-Mounted Equipment - Enclosure Integrity
C57.12.29-14.	Pad-Mounted Equipment - Enclosure Integrity for
	Coastal Environments
C57.12.34-15.	Pad-Mounted, Compartmental-Type, Self-Cooled,
	Three-Phase Distribution Transformers, 5 MVA
	and Smaller; High Voltage, 34.5 kV Nominal

26 12 19 - 3

System Voltage and Below; Low Voltage, 15kV

Nominal System Voltage and Below

C57.12.90-15.....Test Code for Liquid-Immersed Distribution,

Power, and Regulating Transformers

C62.11-12..... Metal-Oxide Surge Arresters for AC Power

Circuits

- D. International Code Council (ICC):
 IBC-15.....International Building Code
- E. National Electrical Manufacturers Association (NEMA): TR 1-13.....Transformers, Regulators, and Reactors
- F. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- G. Underwriters Laboratories Inc. (UL): 467-13.....Grounding and Bonding Equipment
- H. United States Department of Energy (DOE): 10 CFR Part 431.....Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Transformers shall be in accordance with ASTM, IEEE, NFPA, UL, as shown on the drawings, and as specified herein. Each transformer shall be assembled as an integral unit by a single manufacturer.
- B. Transformers shall be complete, outdoor type, continuous duty, integral assembly, grounded, tamper-resistant, and with liquid-immersed windings.
- C. Ratings shall not be less than shown on the drawings.
- D. Completely fabricate transformers at the factory so that only the external cable connections are required at the project site.
- E. Thoroughly clean, phosphatize, and finish all the metal surfaces at the factory with a rust-resistant primer and dark green enamel finish coat. All surfaces of the transformer that will be in contact with the concrete pad shall be treated with corrosion-resistant compounds and epoxy resin or a rubberized sealing compound.

2.2 COMPARTMENTS

- A. Construction:
 - 1. Enclosures shall be weatherproof and in accordance with IEEE C57.12.28.

- The medium- and low-voltage compartments shall be separated with a steel barrier that extends the full height and depth of the compartments.
- 3. The compartments shall be constructed of sheet steel (gauge to meet ANSI requirements) with bracing and with reinforcing gussets using jig welds to assure rectangular rigidity.
- 4. All bolts, nuts, and washers shall be zinc-plated or cadmium-plated steel.
- 5. Sufficient space shall be provided for equipment, cabling, and terminations within the compartments.
- 6. Affix transformer nameplate permanently within the low-voltage compartment. Voltage and kVA rating, connection configuration, impedance, date of manufacture, and serial number shall be shown on the nameplate.
- B. Doors:
 - Provide a separate door for each compartment with provisions for a single padlock to secure all doors. Provide each compartment door with open-position doorstops and corrosion-resistant tamperproof hinges welded in place. The medium-voltage compartment door shall be mechanically prevented from opening unless the low-voltage compartment door is open.
 - The secondary compartment door shall have a one-piece steel handle and incorporate three-point locking mechanisms.

2.3 BIL RATING

A. 25 kV class equipment shall have a minimum 95 kV BIL rating.

2.4 TRANSFORMER FUSE ASSEMBLY

- A. The primary fuse assembly shall be load-break combination fuse and dry-well fuse holder rated for system voltage, rated for 10 load makes and 10 load breaks, with rated 200 amp load current at 75% power factor, 10,000 symmetrical A close-in on fault duty, and 95 kV BIL. The entire fuse assembly shall be removable through the use of hot stick.
 - The fuses shall be concealed, hot stick removable, 50,000 A symmetrical interrupting, 25 KV class, expulsion, current-limiting primary distribution type, of the size and voltage class as recommended by the manufacturer. The fuses shall operate within the fuse holder as a unit disconnecting means. Fuses shall be in accordance with ANSI C37.47.

2. Transformers shall not have internal "weak link" fuses that require transformer tank cover removal for replacement.

2.5 PRIMARY CONNECTIONS

A. Primary connections shall be 200 A dead-front loadbreak wells and inserts for cable sizes shown on the drawing. Provide 200A bushing well inserts.

2.6 MEDIUM-VOLTAGE SWITCH

- A. Provide a loop-feed operation for the primary connection on the transformer. Provide a four-position configuration arrangement, oilimmersed, gang-operated, rotary, load-break switch. The switch mechanism shall be spring-loaded and the operation shall be independent of operator speed. The switch shall have the following ratings:
 - Continuous current 200 amperes. A built in switch with maximum phase-to-phase 35 kV, maximum phase-to-ground 21.1 kV. Momentary 10,000 amps for 10 cycles symmetrical.
- B. Install surge arresters on the feed through bushings of the loop feed switch.

2.7 MEDIUM-VOLTAGE TERMINATIONS

- A. Terminate the medium-voltage cables in the primary compartment with 200 A loadbreak premolded rubber elbow connectors, suitable for submersible applications. Elbow connectors shall have a semi-conductive shield material covering the housing. The separable connector system shall include the loadbreak elbow, the bushing insert, and the bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Allow sufficient slack in medium-voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
 - B. Ground metallic cable shield with a cable shield grounding adapter, consisting of a solderless connector enclosed in watertight rubber housing covering the entire assembly, bleeder wire, and ground braid.
 - C. Elbow connectors shall be rated as follows:
 - 1. Voltage: 23.9 kV phase-to-phase.
 - 2. BIL: 95 kV.
 - 3. AC withstands: 34 kV, 60 Hz for 1 minute.
 - 4. DC withstands: 65 kV (field test rating).
 - 5. Corona voltage: 11 kV minimum.
 - 6. Continuous current: 200 amperes RMS.
 - 7. Short time current: 10,000 amperes for 12 cycles.

- Fault closure: 10,000 amperes RMS symmetrical for 10 cycles (after 10 loadmake/loadbreak operations at 200 amperes and 25 kV contact voltage).
- 9. Switching: 10 loadmake/loadbreak operations at 200 amperes, 70-80 percent power factor, and 25 kV maximum recovery voltage between contacts.
- D. Interchangeability: The separable connector system shall include the loadbreak elbow, the bushing insert, and bushing well. Separable connectors shall comply with the requirements of IEEE 386, and shall be interchangeable between suppliers. Loadbreak elbow and bushing insert shall be from the same manufacturer.
- E. Allow sufficient slack in high voltage cable, ground, and drain wires to permit elbow connectors to be moved to their respective parking stands.
- F. Provide insulated cable supports to relieve any strain imposed by cable weight or movement.

2.8 LOW-VOLTAGE EQUIPMENT

- A. Mount the low-voltage bushings in the low-voltage compartment.
- B. Tin-plate the low-voltage neutral terminal and isolate from the transformer tank. Provide a removable ground strap sized in accordance with the NEC and connect between the secondary neutral and ground pad.

2.9 TRANSFORMERS

- A. Transformer ratings shall be as shown on drawings. kVA ratings shown on the drawings are for continuous duty without the use of cooling fans. Transformer shall be UL or FM listed.
- B. Temperature rises shall not exceed the NEMA TR 1 of 65 $^\circ$ C (149 $^\circ$ F) by resistance.
- C. Transformer insulating material shall be non-flammable oil in accordance with ASTM D 3487.
 - D. Transformer impedance shall be not less than 4-1/2% for sizes 150 kVA and larger. Impedance shall be as shown on the drawings.
 - E. Sound levels shall conform to NEMA TR 1 standards.
 - F. Primary and Secondary Windings for Three-Phase Transformers:
 - 1. Primary windings shall be delta-connected.
 - Secondary windings shall be wye-connected, except where otherwise indicated on the drawings. Provide isolated neutral bushings for secondary wye-connected transformers.

- 3. Secondary leads shall be brought out through pressure-tight epoxy bushings.
- G. Primary windings shall have four 2-1/2% full-capacity voltage taps; two taps above and two taps below rated voltage.
- H. Core and Coil Assemblies:
 - Cores shall be grain-oriented, non-aging, silicon steel to minimize losses.
 - Core and coil assemblies shall be rigidly braced to withstand the stresses caused by rough handling during shipment, and stresses caused by any possible short-circuit currents.
 - Coils shall be continuous-winding type without splices except for taps. Material shall be copper.
 - 4. Coil and core losses shall be optimum for efficient operation.
 - 5. Primary, secondary, and tap connections shall be brazed or pressure type.
 - 6. Provide end fillers or tie-downs for coil windings.
- The transformer tank, cover, and radiator gauge thickness shall not be less than that required by ANSI.
- J. Accessories:
 - 1. Provide standard NEMA features, accessories, and the following:
 - a. No-load tap changer. Provide warning sign.
 - b. Lifting, pulling, and jacking facilities.
 - c. Globe-type valve for oil filtering and draining, including sampling device.
 - d. Pressure relief valve.
 - e. Liquid level gauge and filling plug.
 - f. A grounding pad in the medium- and low-voltage compartments.
 - g. A diagrammatic nameplate.
 - h. Dial-type liquid thermometer with a maximum reading pointer and an external reset.
 - i. Hot stick. Securely fasten hot stick within low-voltage compartment.
 - j. Surge Arresters Provide elbow type MOV surge arresters on the feed thru side of the primary compartment switch, one for each phase. Ground arresters to grounding pad within the high voltage compartment.
 - The accessories shall be made accessible within the compartments without disassembling trims and covers.

K. Transformers shall meet the energy conservation standards for transformers per the United States Department of Energy 10 CFR Part 431.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install transformers outdoors, as shown on the drawings, in accordance with the NEC, and as recommended by the manufacturer.
- B. Anchor transformers with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Mount transformers on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 12-1/2 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete.
- D. Grounding:
 - Ground each transformer in accordance with the requirements of the NEC. Install ground rods per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS, to maintain a maximum resistance of 5 ohms to ground.
 - Connect the ground rod to the ground pads in the medium- and lowvoltage compartments.
 - 3. Install and connect the cable shield grounding adapter per the manufacturer's instructions. Connect the bleeder wire of the cable shield grounding adapter to the loadbreak or deadbreak elbow grounding point with minimum No. 14 AWG wire, and connect the ground braid to the grounding system with minimum No. 6 AWG bare copper wire. Use soldered or mechanical grounding connectors listed for this purpose.

- E. Labeling
 - Provide a self-adhesive label on the door of the transformer with the transformer name and voltage indicated. Data shall match existing transformer labels at the Fargo VA.
 - Label to have yellow background with black letters. Label size, font size, font type, etc. shall match the existing transformer labels at the Fargo VA.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition. Check for damaged or cracked bushings and liquid leaks.
 - c. Verify that control and alarm settings on temperature indicators are as specified.
 - d. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections, and perform thermographic survey after energization under load.
 - e. Vacuum-clean transformer interior. Clean transformer enclosure exterior.
 - f. Verify correct liquid level in transformer tank.
 - g. Verify correct equipment grounding per the requirements of Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - h. Verify the presence and connection of transformer surge arresters, if provided.
 - i. Verify that the tap-changer is set at rated system voltage.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the transformers are in good operating condition and properly performing the intended function.

3.4 SPARE PARTS

- A. Deliver the following spare parts for the project to the ProjectEngineer two weeks prior to final inspection:1. Six insulated protective caps.
 - 26 12 19 10

 One spare set of medium-voltage fuses for each size and type of fuse used in the project.

3.5 INSTRUCTION

A. The Contractor shall instruct maintenance personnel, for not less than one 2-hour period, on the maintenance and operation of the equipment on the date requested by the Project Engineer.

---END---

SECTION 26 13 16 MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of medium-voltage fusible interrupter switches, indicated as switches in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables and terminations.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Switchgear to be UL listed or 3rd party certified.

1.4 FACTORY TESTS

- A. Switches shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Tests shall be conducted as per UL and ANSI Standards. Factory tests shall be certified. The following tests shall be performed:
 - 1. Verify that fuse sizes and types are in accordance with drawings.
 - Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 3. Verify operation of mechanical interlocks.
 - 4. Confirm correct operation and sequencing of key-type mechanical interlock systems for multiple switches by attempting closure on locked-open devices, and attempting to open locked-closed devices, and making key exchange with devices operated in off-normal positions.
 - 5. Verify correct phase barrier installation.
 - Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

- 7. Exercise all active components.
- Perform an insulation-resistance test, phase to ground, on each bus section, with phases not under test grounded, in accordance with manufacturer's published data.
- B. Furnish four (4) copies of certified manufacturer's factory test reports to the Project Engineer prior to shipment of the switches to ensure that the switches have been successfully tested as specified.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Shop drawings shall be submitted simultaneously with or after the Overcurrent Protective Device Coordination Study.
 - b. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - c. Provide information such as complete electrical ratings, dimensions and approximate design weights, enclosure types, mounting details, materials, required clearances, cable terminations, fuse sizes and class, interrupting ratings, wiring diagrams, front, side and rear elevations, sectional views, safety features, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals to the Project Engineer two weeks prior to the final inspection.
 - 3. Certification: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that switches conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that switches have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American National Standards Institute (ANSI): C37.57-10.....Metal-Enclosed Interrupter Switchgear Assemblies - Conformance Testing C. International Code Council (ICC): IBC-12.....International Building Code D. Institute of Electrical and Electronics Engineers (IEEE): C37.20.3-01.....Metal-Enclosed Interrupter Switchgear Distribution Class Fuses and Fuse Disconnecting Switches C37.48-05.....Guide for Application, Operation and Maintenance of High Voltage Fuses, Distribution Enclosed Single Pole Air Switches, Fuse Disconnecting Switches, and Accessories E. National Electrical Manufacturers Association (NEMA): C37.22-97.....Preferred Ratings and Related Required Capabilities for Indoor AC Medium-Voltage Switches Used in Metal-Enclosed Switchgear F. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 MEDIUM-VOLTAGE FUSIBLE INTERRUPTER SWITCHES

- A. Shall be in accordance with ANSI, IEEE, NEMA, NFPA, as shown on the drawings, and have the following features:
 - Pad mounted, live front air break switch fuse enclosure, three-pole gang-operated, interrupter type, 25 kV, 600 ampere, 110 kV BIL, 3 phase, 60 hertz.
 - 2. Copper blades.
 - 3. Key-type mechanical interlocks for multiple switches shall be provided as shown on the drawings.
 - 4. Intersection barriers for the full length of each section.

- 5. Protective shield to cover the cable connections on the line terminals. Provide dual purpose front and rear barriers to guard against inadvertent contact with live parts when inserted into the gap of an open switch provides isolation from bus and upper contacts. Provide a window panel to allow viewing of the switch position without removing the barriers properly secured.
- 6. Quick-make, quick-break, manual stored-energy type operation mechanism. The mechanism shall enable the switch to close against a fault equal to the momentary rating of the switch without affecting its continuous current carrying or load interrupting ability.
- 7. External manual operating handle with lock-open padlocking provisions.
- 8. When the switches are open, the fuses shall be de-energized.
- 9. Current limiting fuses.
- 10. All barriers shall be 3/16 inch, GPO-3, glass polyester construction.
- 11. Enclosures:
 - a. NEMA 3R type shown on the drawings. Where the types of switch enclosures are not shown, they shall be the NEMA types which are most suitable for the environmental conditions where the switches are being installed. Enclosure shall be 12 gauge galvanneal steel, solidly welded construction with the welds and seams ground smooth.
 - b. Roof to be cross kinked removable roof for added strength and preventing standing moisture.
 - c. Provide lifting plates that are removable with blind mounting holes.
 - d. Doors:
 - Concealed or semi-concealed hinges shall be used to attach doors. Weld hinges to the enclosure and door.
 - A mechanical interlock shall prevent opening the door unless the switch blades are open, and prevent closing the switch if the door is open.
 - Three point door locking mechanism with suitable handles and padlocking provisions.
 - 4) Safety-glass window for viewing the switch blades.
 - 5) Door stops for the open position.
 - e. Finish:

- All metal surfaces shall be thoroughly cleaned, phosphatized, primed and painted at the factory.
- Final finish shall be enamel, lacquer or powder coating.
 Enamel and powder coatings shall be oven baked. Color shall be light gray.
- B. The minimum momentary current rating shall be 40kA.
- C. The minimum short-time 2-second current rating shall be 48 kA.
- D. Provide full length ground bar. Provide with ½"-13 UNC threaded holes and ground bails.

2.3 NAMEPLATES

- A. Provide the following signs and labels:
 - 1. Caution, keep out, high voltage located above the latching device.
 - 2. Warning, 'Secure Doors', located above the latching device.
 - NEMA "Mr. Ouch", danger, on interior of enclosure doors and switch handle covers.
 - Warning, installation and operation, located on the interior of doors.
 - 5. Danger, keep out, high voltage, located on compartment doors.
 - Circuit diagram, located on the interior of enclosure doors and switch handle covers.
 - Switch label on the exterior of the enclosure, yellow with black letters to match existing.
 - 8. Phase identification labels (A,B,C).
 - 9. All labels to be self adhesive, UV resistant type, rated for exterior locations.
 - 10. Labels to match Fargo VA coloring and formatting standards.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install switches in accordance with the NEC, manufacturer's instructions and recommendations, and as shown on the drawings.
- B. Anchor switches with rustproof stainless steel bolts, nuts, and washers not less than 13 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Exterior Location: Mount switches on concrete slab. Unless otherwise indicated, the slab shall be at least 200 mm (8 inches) thick, reinforced with a 150 by 150 mm (6 by 6 inches) No. 6 mesh placed uniformly 100 mm (4 inches) from the top of the slab. Slab shall be

placed on a 150 mm (6 inches) thick, well-compacted gravel base. The top of the concrete slab shall be approximately 100 mm (4 inches) above the finished grade. Edges above grade shall have 15 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 200 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare switches nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Vacuum-clean switch enclosure interior. Clean switch enclosure exterior.
 - e. Verify appropriate anchorage and required area clearances.
 - f. Verify appropriate equipment grounding.
 - g. Verify correct blade alignment, blade penetration, travel stops, and mechanical operation.
 - h. Verify that fuse sizes and types correspond to approved shop drawings.
 - i. Inspect all field-installed bolted electrical connections, verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization under load.
 - j. Exercise all active components.
 - k. Confirm correct operation of mechanical interlocks.
 - 1. Inspect all indicating devices for correct operation.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall show by demonstration in service that switches are in

26 13 16 - 6

good operating condition, and properly performing the intended function.

3.4 SPARE PARTS

- A. Two weeks prior to the final inspection, provide one (1) set of spare fuses for each switch installed on this project.
- 3.5 ONE LINE DIAGRAM AND SEQUENCE OF OPERATION
 - A. At final inspection, an as-built one line diagram shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
 - B. Furnish a written sequence of operation for the switchgear and connected line side/load side electrical distribution equipment. The sequence of operation shall be laminated or mounted under acrylic glass, and installed in a frame mounted in the switchgear room or in the outdoor switchgear enclosure.
 - C. Deliver an additional four copies of the as-built one line diagram and sequence of operation to the Project Engineer.

3.6 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4 hour period for instructing personnel in the operation and maintenance of the switches and related equipment on the date requested by the Project Engineer.

---END---

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of low-voltage dry-type general-purpose transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS ANDCCABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets and wiring diagrams.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the transformers.

- Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- D. National Electrical Manufacturers Association (NEMA): TP1-02.....Guide for Determining Energy Efficiency for

Distribution Transformers

TR1-00...... Transformers, Regulators, and Reactors

- E. Underwriters Laboratories, Inc. (UL): UL 506-08.....Standard for Specialty Transformers UL 1561-11....Dry-Type General Purpose and Power Transformers
- F. United States Department of Energy 10 CFR Part 431.....Energy Efficiency Program for Certain

Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 TRANSFORMERS

- A. Unless otherwise specified, transformers shall be in accordance with NEMA, NEC, UL and as shown on the drawings.
- B. Transformers shall have the following features:

- Self-cooled by natural convection, isolating windings, indoor drytype. Rating and winding connections shall be as shown on the drawings.
- 2. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
- 3. Copper windings.
- 4. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220 °C (428 °F) system with an average maximum rise by resistance of 150 °C (302 °F) in a maximum ambient of 40 °C (104 °F).
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 °C (365 °F) system with an average maximum rise by resistance of 115 °C (239 °F) in a maximum ambient of 40 °C (104 °F).
- 5. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.

6. Certified sound levels, determined in accordance with NEMA, shall not exceed the following:

Transformer Rating	Sound Level Rating
0 – 9 KVA	40 dB
10 - 50 KVA	45 dB
51 - 150 KVA	50 dB
151 - 300 KVA	55 dB
301 - 500 KVA	60 dB

7. If not shown on drawings, nominal impedance shall be as permitted by NEMA.

- 8. Single phase transformers rated 15 kVA through 25 kVA shall have two 5% full capacity taps below normal rated primary voltage. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.
- 9. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 10. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Outdoor enclosures shall be NEMA 3R.
 - c. Temperature rise at hottest spot shall conform to NEMA Standards, and shall not bake and peel off the enclosure paint after the transformer has been placed in service.
 - d. Ventilation openings shall prevent accidental access to live components.
 - e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 11. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated.
- 12. Dimensions and configurations shall conform to the spaces designated for their installations.
- 13. Transformers shall meet the minimum energy efficiency values per NEMA TP1 as listed below:

kVA Rating	Output efficiency (%)
15	97
30	97.5
45	97.7
75	98
112.5	98.2
150	98.3
225	98.5
300	98.6
500	98.7
750	98.8

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Anchor transformers with rustproof bolts, nuts, and washers, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 150 mm (6 inches).
- D. Install transformers on vibration pads designed to suppress transformer noise and vibrations.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
 - d. Perform specific inspections and mechanical tests as recommended by manufacturer.
 - e. Verify correct equipment grounding.
 - f. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition, and properly performing the intended function. ---END---

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of the distribution switchboards.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for Personnel Safety and to provide a low impedance path for possible fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and outlet boxes.
- E. Section 26 43 13, SURGE PROTECTIVE DEVICES

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 FACTORY TESTS

- A. Distribution switchboards shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects. Tests shall be conducted as per NEMA PB 2 and UL 891. Factory tests shall be certified.
- B. The following additional tests shall be performed:
 - Verify that circuit breaker sizes and types correspond to drawings and coordination study.
 - Verify tightness of bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 3. Confirm correct operation and sequencing of electrical and mechanical interlock systems by attempting closure on locked-open devices, and attempting to open locked-closed devices, and making key exchange with devices operated in off-normal positions.
 - 4. Exercise all active components.

- 5. Perform a dielectric withstand voltage test on each bus section, each phase-to-ground with phases not under test grounded, in accordance with manufacturer's published data.
- 6. Perform insulation-resistance tests on control wiring with respect to ground. Applied potential shall be 500 volts dc for 300-volt rated cable and 1000 volts dc for 600-volt rated cable, or as required if solid-state components or control devices cannot tolerate the applied voltage.
- 7. If applicable, verify correct function of control transfer relays located in the switchboard with multiple control power sources.
- 8. Perform phasing checks on double-ended or dual-source switchboards to insure correct bus phasing from each source.
- C. Furnish four (4) copies of certified manufacturer's factory test reports to the Project Engineer prior to shipment of the switchboards to ensure that the switchboards have been successfully tested as specified.

1.5 SUBMITTALS

Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:

- A. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, sectional views, bus work, circuit breaker frame sizes, trip and short-circuit rating, long-time, short-time, instantaneous and ground fault settings, coordinated breaker and fuse curves, accessories, and device nameplate data.
 - 3. Show the size, ampere-rating, number of bars per phase and neutral in each bus run (horizontal and vertical), bus spacing, equipment ground bus, and bus material.
- B. Manuals:
 - Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.

- a. Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
- b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnection between the items of equipment.
- c. Provide a clear and concise description of operation, which gives, in detail, the information required to properly operate the equipment.
- d. Approvals will be based on complete submissions of manuals together with shop drawings.
- 2. Two weeks prior to final inspection, deliver four copies of the final updated maintenance and operating manuals in hard copy and in electronic PDF to the Project Engineer.
- a. The manuals shall be updated to include any information necessitated by shop drawing approval.
- b. Complete "As Installed" wiring and schematic diagrams shall be included which show all items of equipment and their interconnecting wiring.
- c. Show all terminal identification.
- d. Include information for testing, repair, trouble shooting, assembly, disassembly, and recommended maintenance intervals.
- e. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- f. Furnish manuals in loose-leaf binder or manufacturer's standard binder.
- C. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following to the Project Engineer:
 - a. Certification by the Contractor that the assemblies have been properly installed, adjusted and tested, including circuit breakers settings.
 - b. Certified copies of all of the factory design and production tests, field test data sheets and reports for the assemblies.

1.6 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only. A. Institute of Engineering and Electronic Engineers (IEEE): C37.13..... Low Voltage AC Power Circuit Breakers Used in Enclosures C57.13.....Instrument Transformers C62.41.....Surge Voltage in Low Voltage AC Power Circuits C62.45.....Surge Testing for Equipment connected to Low-Voltage AC Power Circuits B. National Electrical Manufacturer's Association (NEMA): PB-2.....Dead-Front Distribution Switchboards. PB-2.1....Instructions for Proper Handling, Installation, Operation, and Maintenance of Switchboards AB-1..... Molded Case Circuit Breakers, Molded Case Switches and Circuit Breaker Enclosures C. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 67....Panelboards 489..... Molded Case Circuit Breakers and Circuit Breakers Enclosures 891.....Dead-Front Switchboards 1283..... Electromagnetic Interference Filters 1449.....Transient Voltage Surge Suppressors

PART 2 - PRODUCTS

2.1 GENERAL

- A. Switchboards shall be in accordance with UL, NEMA, NEC, IEEE, and as shown on the drawings.
- B. Switchboards shall be provided complete, ready for operation including, but not limited to housing, buses, circuit breakers, instruments and related transformers, fuses, and wiring.
- C. Switchboard dimensions shall not exceed the dimensions shown on the drawings.
- D. Manufacturer's nameplate shall include complete ratings of switchboard in addition to the date of manufacture.

2.2 BASIC ARRANGEMENT

- A. Type I: Switchboard shall be front accessible with the following features:
 - 1. Device mounting:
 - a. Main breaker: Individually mounted and draw-out construction.

- b. Feeder breakers: Group fixed mounted.
- 2. Section alignment: As shown on the drawings.
- 3. Accessibility:
 - a. Main section line and load terminals: Front and side.
 - b. Distribution section line and load terminals: Front.
 - c. Through bus connections: Front and end.
- 4. Bolted line and load connections.
- 5. Full height wiring gutter covers for access to wiring terminals.
- 6. Short Circuit Current Rating: 65,000 amperes rms symmetrical, minimum, or as shown on the drawings, whichever is higher.

2.3 HOUSING

- A. Provide a completely enclosed, free standing, steel enclosure not less than the gage required by the ANSI and UL standards. The enclosure is to consist of the required number of vertical sections bolted together to form one metal enclosed rigid switchboard. The sides, top and rear shall be covered with removable screw on sheet steel plates.
- B. Provide ventilating louvers where required to limit the temperature rise of current carrying parts. All openings shall be protected against entrance of falling dirt, water, or foreign matter.
- C. Enclosure shall be thoroughly cleaned, phosphate treated, and primed with rust-inhibiting paint. Final finish coat to be the manufacturers standard gray. Provide a quart of finish paint for touch-up purposes.

2.4 BUSES

- A. General: Buses shall be arranged for 3 phase, 4 wire distribution. Main phase buses (through bus), full size neutral bus, and ground bus shall be full capacity the entire length of the switchboard. Provide for future extensions by means of bolt holes or other approved method. Brace the bus to withstand the available short circuit current at the particular location and as shown on the drawings. No magnetic material shall be used between buses to form a magnetic loop.
- B. Material and Size: Buses and connections shall be hard drawn copper of 98 percent conductivity. Bus temperature rise shall not exceed 65 degrees C (149 degrees F). Section busing shall be sized based on UL and NEMA Switchboard Standards.
- C. Bus Connections: All contact surfaces shall be copper. Provide a minimum of two plated bolts per splice. Where physical bus size permits only one bolt, provide a means other than friction to prevent turning,

twisting or bending. Torque bolts to the manufacturer's recommended values.

- D. Neutral Bus: Provide bare or plated bus and mount on insulated bus supports. Provide neutral disconnect link to permit isolation of neutral bus from the common ground bus and service entrance conductors.
- E. Ground Bus: Provide an uninsulated 6 mm by 50 mm (1/4 inch by 2 inch) copper equipment ground bus bar sized per UL 891 the length of the switchboard and secure at each section.
- F. Main Bonding Jumper: Connect an uninsulated 1/4 inch by 2 inch copper bus between the neutral and ground buses to establish the system common ground point.

2.5 TRANSIENT VOLTAGE SURGE SUPPRESSION

A. Refer to Section 26 43 13, SURGE PROTECTIVE DEVICES.

2.6 NAMEPLATES AND MIMIC BUS

A. Nameplates: For Normal Power system, provide laminated black phenolic resin with white core with 1/2 inch engraved lettered nameplates next to each circuit breaker. For Essential Electrical System, provide laminated red phenolic resin with white core with 1/2 inch engraved lettered nameplates next to each circuit breaker. Nameplates shall indicate equipment served, spaces, or spares in accordance with one line diagram shown on drawings. Nameplates shall be mounted with plated screws on front of breakers or on equipment enclosure next to breakers. Mounting nameplates only with adhesive is not acceptable.

2.7 PROVISION FOR FUTURE

A. Where "provision for", "future", or "space" is noted on drawings, the space shall be equipped with bus connections to the future overcurrent device with suitable insulation and bracing to maintain proper short circuit rating and physical clearance. Provide buses for the ampere rating as shown for the future device.

2.8 BREAKER REMOVAL EQUIPMENT

A. Where draw out circuit breakers are provided, furnish a portable elevating carriage or switchboard permanent top mounted device for installation and removal of the breakers.

2.9 CONTROL WIRING

A. Control wiring shall be 600 volt class B stranded SIS. Install all control wiring complete at the factory adequately bundled and protected. Wiring across hinges and between shipping units shall be Class C stranded. Size in accordance with NEC. Provide control circuit fuses.

2.10 MAIN CIRCUIT BREAKERS

- A. Type I Switchboard: Provide UL listed and labeled insulated case, stored energy, drawout circuit breakers in accordance with NEC and as shown on the drawings. Circuit breakers shall be the solid state adjustable trip type.
 - Trip units shall have field adjustable tripping characteristics as follows:
 - a. Ampere setting (continuous).
 - b. Long time band, both adjustable delay and trip settings.
 - c. Short time trip point.
 - d. Short time delay.
 - e. Instantaneous trip point.
 - 2. Trip settings shall be as indicated on the drawings. Final settings shall be as instructed by the Project Engineer.
 - 3. Breakers, which have same rating, shall be interchangeable with each other.
 - 4. Padlocking: Include provisions for padlocking the breaker in the open position.
 - The tie breaker in the main switchboard shall be stationary mount. The main breaker within the generator switchboard may be stationary mount.
 - 6. Circuit breakers shall be selectively coordinated with all downstream breakers associated with the equipment branches, critical branch and life safety branch to meet NEC article 517 requirements. Shop drawings shall indicate the breakers are selectively coordinated based on the manufacturer tables. List the string of breakers by use of a spreadsheet that are coordinated and highlight in the tables how they meet the requirements. It shall be clear in the shop drawings that the breakers are coordinated.

2.11 FEEDER CIRCUIT BREAKERS

- A. Provide UL listed and labeled molded case circuit breakers, in accordance with the NEC, as shown on the drawings, and as herein specified.
- B. Non-adjustable Trip Molded Case Circuit Breakers:
 - 1. Molded case circuit breakers shall have automatic, trip free, nonadjustable, inverse time, and instantaneous magnetic trips for 100

ampere frame size or less. Magnetic trip shall be adjustable from 3X to 10X for breakers with 600 ampere frame size and higher. Factory setting shall be LOW unless otherwise noted.

- 2. Breaker features shall be as follows:
 - a. A rugged, integral housing of molded insulating material.
 - b. Silver alloy contacts.
 - c. Arc quenchers and phase barriers for each pole.
 - d. Quick-make, quick-break, operating mechanisms.
 - e. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - f. Electrically and mechanically trip free.
 - g. An operating handle which indicates ON, TRIPPED and OFF positions.
 - h. Line and load connections shall be bolted.
 - i. Interrupting rating shall not be less than the maximum short circuit current available at the line.
 - j. An overload on one pole of a multipole breaker shall automatically cause all the poles of the breaker to open.
- C. Adjustable Trip Molded Case Circuit Breakers:
 - Provide molded case, solid state adjustable trip type circuit breakers where shown on the drawings.
 - Trip units shall have field adjustable tripping characteristics as follows:
 - a. Ampere setting (continuous).
 - b. Long time band, both adjustable delay and trip settings.
 - c. Short time trip point.
 - d. Short time delay.
 - e. Instantaneous trip point.
 - 3. Trip settings shall be as indicated on the drawings. Final settings shall be shown on the electrical system protective device study.
 - 4. Breakers, which have same rating, shall be interchangeable with each other.
 - 5. Circuit breakers shall be selectively coordinated with all downstream breakers associated with the equipment branches, critical branch and life safety branch to meet NEC article 517 requirements. Shop drawings shall indicate the breakers are selectively coordinated based on the manufacturer tables. List the string of

breakers by use of a spreadsheet that are coordinated and highlight in the tables how they meet the requirements. It shall be clear in the shop drawings that the breakers are coordinated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install the switchboard in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Anchor switchboard to the slab with plated 1/2 inch minimum anchor bolts, or as recommended by the manufacturer.
- C. Interior Location. Mount switchboard on concrete slab. Unless otherwise indicated, the slab shall be at least 4 inches thick. The top of the concrete slab shall be approximately 4 inches above finished floor. Edges above floor shall have 1/2 inch chamfer. The slab shall be of adequate size to project at least 8 inches beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 3 inches above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:
 - 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Verify appropriate anchorage, required area clearances, and correct alignment.
 - e. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - f. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
 - g. Confirm correct operation and sequencing of electrical and mechanical interlock systems.
 - h. Clean switchboard.

- i. Inspect insulators for evidence of physical damage or contaminated surfaces.
- j. Verify correct shutter installation and operation.
- k. Exercise all active components.
- Verify the correct operation of all sensing devices, alarms, and indicating devices.
- m. If applicable, verify that vents are clear.
- n. If applicable, inspect control power transformers.
- 2. Electrical Tests
 - a. Perform insulation-resistance tests on each bus section.
 - b. Perform overpotential tests.
 - c. Perform insulation-resistance test on control wiring; do not perform this test on wiring connected to solid-state components.
 - d. Perform phasing check on double-ended switchboard to ensure correct bus phasing from each source.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the switchboard is in good operating condition and properly performing the intended function. Circuit breakers shall be tripped by operation of each protective device.

3.4 INSTRUCTION

A. Furnish the services of a factory certified instructor for one 4 hour period for instructing personnel in the operation and maintenance of the switchboard and related equipment on the date requested by the Project Engineer.

3.5 ARC FLASH LABELS

A. Provide ARC flash identification per NFPA 70E and the existing labeling system at the VAMC Fargo. Exact orientation and information required on the labels will be provided to the contractor. Coordinate exact label requirements with the Project Engineer prior to printing the labels.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.

26 24 16 - 1

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards

250-08..... Enclosures for Electrical Equipment (1,000V Maximum)

D. National Fire Protection Association (NFPA):

70-11.....National Electrical Code (NEC)

70E-12.....Standard for Electrical Safety in the Workplace

E. Underwriters Laboratories, Inc. (UL):

50-95.....Enclosures for Electrical Equipment

67-09.....Panelboards

489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.

- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.

- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key for entry. Hand-operated latches are not acceptable. Keyed to match existing panelboards within the facility. Key shall be a Square D NSR251 only.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line

currents), or other accessory devices or functions shall be provided where shown on the drawings.

10. Circuit breakers shall be selectively coordinated with all upstream and downstream breakers associated with the equipment branch, critical branch and life safety branch to meet NEC article 517 requirements. Shop drawings shall indicate the breakers are selectively coordinated through use of a spreadsheet and manufacturer tables.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Project Engineer. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.
- F. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.
- G. Label each panelboard with the system voltage, and feeder sizes as shown on the riser diagram in 1/2 inch block lettering on the inside cover of the cabinet door. Include the words "LIFE SAFETY BRANCH", "CRITICAL BRANCH", or "EQUIPMENT SYSTEM" as applicable and the panel designation in 1/2 inch block letters on the inside of the cabinet doors.
- H. Provide ARC flash identification per NFPA 70E and the existing labeling system at the VAMC Fargo. Exact orientation and information required on the labels will be provided to the contractor. Coordinate label requirements with the Project Engineer prior to printing labels.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, two weeks to final inspection, two companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-12.....Health Care Facilities
- C. National Electrical Manufacturers Association (NEMA):
 WD 1-10.....General Color Requirements for Wiring Devices
 WD 6-08Wiring Devices Dimensional Specifications
- D. Underwriter's Laboratories, Inc. (UL):

5-11....Surface Metal Raceways and Fittings
20-10....General-Use Snap Switches
231-07....Power Outlets
467-07....Grounding and Bonding Equipment
498-07....Attachment Plugs and Receptacles
943-11...Ground-Fault Circuit-Interrupters
1449-07....Surge Protective Devices
1472-96....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
 - 3. All receptacles shall be labeled with the panel name and circuit number. Example: 11N1-5. The labels shall be self-adhesive type with clear background and black lettering, 3/16 inch high text.
- B. Duplex Receptacles: Single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.

- 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
- 4. Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, suitable for mounting in a standard outlet box, with end-oflife indication and provisions to isolate the face due to improper wiring.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
- C. Receptacles; 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivory in color unless otherwise specified or shown on the drawings.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters

2.4 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:

a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.

- Receptacles shall be duplex style, See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
- Unless otherwise shown on drawings, receptacle spacing shall be 600mm (24 inches) on centers.
- Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
- 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
- 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be in accordance with the NEC and as shown as on the drawings.

- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multigang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install at 48" above floor where indicated on the drawings. Install specific-use receptacles at heights shown on the drawings.
- K. Install vertically mounted receptacles with the ground pin up. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label all receptacles and switch plates with the panel name and circuit number serving it. Example: 10S1-5. Labels to be self adhesive type with clear background and black letters, 3/16 inch high letters.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical condition.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.

- c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- d. Test GFCI receptacles.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including

technical data sheets, wiring diagrams, and information for ordering replacement parts.

- 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
- Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
- Elementary schematic diagrams shall be provided for clarity of operation.
- Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-92.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-02....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus
- C. International Code Council (ICC):

IBC-12.....International Building Code

D. National Electrical Manufacturers Association (NEMA): ICS 1-08......Industrial Control and Systems: General

Requirements

ICS 1.1-09.....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-05.....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-05.....Industrial Control and Systems: Terminal Blocks ICS 6-06.....Industrial Control and Systems: Enclosures ICS 7-06.....Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-06......Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems MG 1 Part 31.....Inverter Fed Polyphase Motor Standards E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL): 508A-07..... Industrial Control Panels 508C-07..... Power Conversion Equipment UL 1449-06.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
- 1. Circuit Breakers:
 - Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.
 - b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
 - c. Additional features shall be as follows:

- 1) A rugged, integral housing of molded insulating material.
- 2) Silver alloy contacts.
- 3) Arc quenchers and phase barriers for each pole.
- 4) Quick-make, quick-break, operating mechanisms.
- 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - 4. Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Electronic type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - 5. Electronic overload relays shall utilize internal current transformers and electro-mechanical components. The relays shall have ambient temperature compensation, single-phase protection, manual or automatic reset, and trip classes of 10, 15, 20 and 30. The relay shall provide fault cause indication, including jam/stall, ground fault, phase loss, and overload.

- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.
- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions:
 - 1. Elevation: 1000 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +122°F Minimum -4°F
 - 3. Relative Humidity: 95%
 - 4. VSMC Location: non air conditioned space.
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - 4. Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.

- 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).
 - g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.
- 8. Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- 9. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:

- a. Output frequency (Hz).
- b. Motor speed and status (run, stop, fault).
- c. Output voltage and current.
- 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.
- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.
- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If

tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify Project Engineer before increasing settings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and

operation of the motor controllers, on the dates requested by the Project Engineer.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
- Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-12.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-07.....Low Voltage Cartridge Fuses KS 1-06....Enclosed and Miscellaneous Distribution
 - Equipment Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL): 98-07.....Enclosed and Dead-Front Switches 248-00....Low Voltage Fuses 489-09....Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.

- External operating handle shall indicate open and closed positions, and have lock-open/closed padlocking provisions.
- 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
- 6. Fuse holders for the sizes and types of fuses specified.
- Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
- 8. Ground lugs for each ground conductor.
- 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Feeders: Class RK1, time delay.
- C. Motor Branch Circuits: Class RK1, time delay.
- D. Other Branch Circuits: Class RK1, time delay.
- E. Control Circuits: Class CC, time delay.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

26 29 21 - 3

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Project Engineer.

---END---

SECTION 26 32 13 ENGINE GENERATORS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the medium-voltage engine generators.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
 - C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - D. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables.
 - E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
 - F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
 - G. Section 28 08 00, ELECTRICAL COMMISSIONING.
 - H. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: Requirements for secondary distribution switchboards.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 1 hours maximum of notification.

1.4 FACTORY TESTS

- A. Factory Tests shall be performed in the factory by the equipment manufacturer. Factory Tests shall comply with all Factory Tests requirements stated in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the requirements stated in this section.
- B. Load Test: Shall include two hours while the engine generator is delivering 100% of the specified kW, and four hours while the engine generator is delivering 80% of the specified kW. During this test, record the following data at 20-minute intervals:

Time	Engine RPM	Oil Temperature Out
kW	Water Temperature In	Fuel Pressure

Voltage	Water Temperature Out	Oil Pressure
Amperes	Oil Temperature In	Ambient Temperature

- C. Cold Start Test: Record time required for the engine generator to develop specified voltage, frequency, and kW load from a standstill condition with engine at ambient temperature.
- D. The manufacturer shall furnish fuel, load banks, testing instruments, and all other equipment necessary to perform these tests.

1.5 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Scaled drawings, showing plan views, side views, elevations, and cross-sections.
 - 2. Diagrams:
 - a. Control system diagrams, control sequence diagrams or tables, wiring diagrams, interconnections diagrams (between engine generators, automatic transfer switches, paralleling switchgear, local control cubicles, remote annunciator panels, and fuel storage tanks, as applicable), and other like items.
 - 3. Technical Data:
 - a. Published ratings, catalog cuts, pictures, and manufacturer's specifications for engine generator, governor, voltage regulator, radiator, muffler, dampers, day tank, pumps, fuel tank, batteries and charger, jacket heaters, torsional vibration, remote stop, and control and supervisory equipment.
 - b. Description of operation.
 - c. Short-circuit current capacity and subtransient reactance.
 - d. Sound power level data.
 - 4. Calculations:
 - a. Calculated performance derations appropriate to installed environment.
 - 5. Manuals:
 - a. When submitting the shop drawings, submit complete maintenance and operating manuals, to include the following:1) Technical data sheets.

- 2) Wiring diagrams.
- Include information for testing, repair, troubleshooting, and factory recommended periodic maintenance procedures and frequency.
- Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 6. Test Reports:
 - a. Submit certified factory test reports for approval.
 - b. Submit field test reports two weeks prior to the final inspection.
- 7. Certifications:
 - a. Prior to fabrication of the engine generator, submit the following for approval:
 - A certification in writing that an engine generator of the same model and configuration, with the same bore, stroke, number of cylinders, and equal or higher kW/kVA ratings as the proposed engine generator, has been operating satisfactorily with connected loads of not less than 75% of the specified kW/kVA rating, for not fewer than 2,000 hours without any failure of a crankshaft, camshaft, piston, valve, injector, or governor system.
 - 2) A certification in writing that devices and circuits will be incorporated to protect the voltage regulator and other components of the engine generator during operation at speeds other than the rated RPM while performing maintenance. Submit thorough descriptions of any precautions necessary to protect the voltage regulator and other components of the system during operation of the engine generator at speeds other than the rated RPM.
 - 3) A certification from the engine manufacturer stating that the engine exhaust emissions meet the applicable federal, state, and local regulations and restrictions. At a minimum, this certification shall include emission factors for criteria pollutants including nitrogen oxides, carbon monoxide,

particulate matter, sulfur dioxide, non-methane hydrocarbon, and hazardous air pollutants (HPAs).

- b. Prior to installation of the engine generator at the job site, submit certified factory test data.
- c. Two weeks prior to the final inspection, submit the following.
 - Certification by the manufacturer that the engine generators conform to the requirements of the drawings and specifications.
 - 2) Certification by the Contractor that the engine generators have been properly installed, adjusted, and tested.

1.6 STORAGE AND HANDLING

- A. Engine generators shall withstand shipping and handling stresses in addition to the electrical and mechanical stresses which occur during operation of the system. Protect radiator core with wood sheet.
- B. Store the engine generators on job site.

1.7 JOB CONDITIONS

A. Job conditions shall conform to the arrangements and details shown on the drawings. The dimensions, enclosures, and arrangements of the engine generator system shall permit the operating personnel to safely and conveniently operate and maintain the system in the space designated for installation.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American National Standards Institute (ANSI): C37.50-07.....Low-Voltage AC Power Circuit Breakers Used In Enclosures-Test Procedures C39.1-81 (R1992)Requirements for Electrical Analog Indicating

Instruments

C. American Society of Testing Materials (ASTM):

A53/A53M-10.....Standard Specification for Pipe, Steel, Black, and Hot-Dipped, Zinc Coated Welded and Seamless B88-09....Specification for Seamless Copper Water Tube B88M-11....Specification for Seamless Copper water Tube (Metric) D975-11b.....Diesel Fuel Oils

D. Institute of Electrical and Electronic Engineers (IEEE): C37.13-08..... Low Voltage AC Power Circuit Breakers Used In Enclosures C37.90.1-02.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus E. International Code Council (ICC): IBC-12.....International Building Code F. National Electrical Manufacturers Association (NEMA): ICS 6-06.....Enclosures ICS 4-10.....Application Guideline for Terminal Blocks MG 1-11.....Motor and Generators MG 2-07.....Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators PB 2-11.....Dead-Front Distribution Switchboards Maximum) G. National Fire Protection Association (NFPA): 30-12.....Flammable and Combustible Liquids Code 37-10..... Installations and Use of Stationary Combustion Engine and Gas Turbines 70-11.....National Electrical Code (NEC) 99-12.....Health Care Facilities 110-10.....Standard for Emergency and Standby Power Systems H. Underwriters Laboratories, Inc. (UL): 50-07..... Enclosures for Electrical Equipment 142-06..... Steel Aboveground Tanks for Flammable and Combustible Liquids 467-07.....Grounding and Bonding Equipment 489-09..... Molded-Case Circuit Breakers, Molded-Case Switches and Circuit-Breaker Enclosures 508-99..... Industrial Control Equipment 891-05.....Switchboards 1236-06.....Battery Chargers for Charging Engine-Starter Batteries

2085-97.....Insulated Aboveground Tanks for Flammable and Combustible Liquids

2200-98.....Stationary Engine Generator Assemblies

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. The engine generator system shall be in accordance with NFPA, UL, NEMA and ANSI, and as specified herein.
- B. Provide a factory-assembled, wired (except for field connections), complete, fully automatic engine generator system, as well as all associate equipment and devices intended for the operating, control, monitoring, and remote manual stop functions.
- C. Engine Generator Parameter Schedule:
 - 1. Power Rating: Emergency Standby.
 - 2. Voltage: 277/480/3.
 - 3. Rated Power: 400 KW continuous
 - 4. Power Factor: 0.8 lagging
 - 5. Engine Generator Application: stand-alone
 - 6. Fuel: #2 diesel.
 - 7. Voltage Regulation: + 2% (maximum) (No Load to Full Load) (standalone applications)
 - 8. Phases: 3 Phase, Wye. Each component of the engine generator system shall be capable of operating at 1000 feet above sea level in a ventilated room which will have average ambient air temperature ranging from a minimum of 45°F in winter to maximum of 110°F in summer.
- D. Assemble, connect, and wire the engine generator at the factory so that only the external connections need to be made at the construction site.
- E. Engine Generator Unit shall be factory-painted with manufacturer's primer and standard finishes.
- F. Connections between components of the system shall conform to the recommendations of the manufacturer.
- G. Couplings, shafts, and other moving parts shall be enclosed and guarded. Guards shall be metal, ruggedly constructed, rigidly fastened, and readily removable for convenient servicing of the equipment without disassembling any pipes and fittings.
- H. Engine generator shall have the following features:
 - 1. Factory-mounted on a common, rigid, welded, structural steel base.

- Engine generator shall be statically and dynamically balanced so that the maximum vibration in the horizontal, vertical, and axial directions shall be limited to 0.15 mm (0.0059 inch), with an overall velocity limit of 24 mm/sec (0.866 inch per second) RMS, for all speeds.
- The isolators shall be constrained with restraints capable of withstanding static forces in any direction equal to twice the weight of the supported equipment.
- 4. Shall be capable of operating satisfactorily as specified for not fewer than 10,000 hours between major overhauls.

2.2 ENGINE

- A. The engine shall be coupled directly to a generator.
- B. Minimum four cylinders.
- C. The engine shall be able to start in a 4.5 °C (40 °F) ambient temperature while using No. 2 diesel fuel oil without the use of starting aids such as glow plugs and ether injections.
- D. The engine shall be equipped with electric heater for maintaining the coolant temperature between 32-38 °C (90-100 °F), or as recommended by the manufacturer.
 - Install thermostatic controls, contactors, and circuit breakerprotected circuits for the heaters.
 - 2. The heaters shall operate continuously except while the engine is operating or the water temperature is at the predetermined level.

2.3 GOVERNOR

- A. Isochronous, electronic type.
- B. Steady-state speed band at 60 Hz shall not exceed plus or minus 0.33%.

2.4 LUBRICATION OIL SYSTEM

- A. Pressurized type.
- B. Positive-displacement pump driven by engine crankshaft.
- C. Full-flow strainer and full-flow or by-pass filters.
- D. Filters shall be cleanable or replaceable type and shall remove particles as small as 3 microns without removing the additives in the oil. For by-pass filters, flow shall be diverted without flow interruption.
- E. Extend lube oil sump drain line out through the skid base and terminate it with a drain valve and plug.

2.5 FUEL SYSTEM

A. Shall comply with NFPA 37 and NFPA 30, and have the following features:

- 1. Injection pump(s) and nozzles.
- 2. Plungers shall be carefully lapped for precision fit and shall not require any packing.
- 3. Filters or screens that require periodic cleaning or replacement shall not be permitted in the injection system assemblies.
- Return surplus oil from the injectors to the main storage tank by gravity or a pump.
- 5. Filter System:
 - a. Dual primary filters shall be located between the main fuel oil storage and day tank.
 - b. Secondary filters (engine-mounted) shall be located such that the oil will be thoroughly filtered before it reaches the injection system assemblies.
 - c. Filters shall be cleanable or replaceable type and shall entrap and remove water from oil as recommended by the engine manufacturer.
- B. Day Tank:
 - Each engine generator shall be provided with a welded steel separate self-supporting day tank with double-wall fuel containment.
 - 2. Each day tank shall have capacity to supply fuel to the engine for a 4-hour period at 100% rated load without being refilled, including fuel that is returned to the main fuel storage tank. The calculation of the capacity of each day tank shall incorporate the requirement to stop the supply of fuel into the day tank at 90% of the ultimate volume of the tank.
 - 3. Secure, pipe, and connect the tank adequately for maximum protection from fire hazards, including oil leaks.
 - Incorporate a vent, drain cock, shutoff cocks, and gauge glass. Terminate the vent piping outdoors with mushroom vent cap.
 - 5. Incorporate a float switch on the day tank to control the fuel oil transfer pump and to actuate an alarm in the engine generator control cubicle when the oil level in the tank drops below the level at which the transfer pump should start to refill the tank.
 - a. The float switch contacts controlling the fuel oil transfer pump shall be set to energize the pump when the liquid level in the tank reaches one-third of the total volume of the tank.
 - b. The float switch contacts that actuate the low fuel oil day tank alarm device shall be set to alarm and energize the second fuel

transfer pump when the liquid level in the tank reaches onequarter of the total volume of the tank.

- Day tank and engine supply line elevations shall be below the elevation of the injector return outlet on the engine.
- C. Fuel Transfer Pump Main Storage Tank to Day Tank(s):
 - Electric motor-driven, duplex arrangement, close-coupled, singlestage, positive-displacement type with built-in pressure relief valves. When the fuel is used for cooling components of the fuel injection system, the engine's fuel return line shall be returned to the main storage tank, rather than the day tank.
 - 2. Include a heavy-duty automatic alternator and H-O-A switch to alternate sequence of pumps. Pumps shall be controlled with the float switch on the day tank and H-O-A selector switch such that the day tank will be refilled automatically when the oil level lowers to the low limit for the float switch. The H-O-A selector switches shall enable the pumps to be operated manually at any time.
 - 3. For all engines, the related transfer pump and its electrical and plumbing connections shall be sized to provide a flow rate of at least four times the engine's fuel pumping rate.
 - 4. Provide a manually-operated, rotary-type transfer pump connected in parallel with the electric motor-driven transfer pumps so that oil can be pumped to the day tank while the electric motor-driven pumps are inoperative.
- D. Piping System: Black steel standard weight ASTM A-53 pipe and necessary valves and pressure gauges between:
 - 1. The engine and the day tank as shown on the drawings.
 - The day tank and the supply and return connections at the underground storage tank as shown on the drawings. Connections at the engine shall be made with flexible piping suitable for the fuel furnished.

2.6 COOLING SYSTEM

- A. Liquid-cooled, closed loop, with fin-tube radiator mounted on the engine generator, and integral engine driven circulating pump.
- B. Cooling capacity shall not be less than the cooling requirements of the engine generator and its lubricating oil while operating continuously at 100% of its specified rating.

- C. Water circulating pumps shall be the centrifugal type driven by engine. Incorporate pressure relief devices where required to prevent excessive pressure increase after the engine stops.
- D. Coolant shall be extended-life antifreeze solution, 50% ethylene glycol and 50% soft water, with corrosion inhibitor additive as recommended by the manufacturer.
- E. Fan shall be driven by a totally enclosed electric motor.
- F. Coolant hoses shall be flexible, per manufacturer's recommendation.
- G. Self-contained thermostatic-control valve shall modulate coolant flow to maintain optimum constant coolant temperature, as recommended by the engine manufacturer.
- H. Motor-Operated Dampers:
 - 1. Dampers, which are provided under Section 23 31 00, HVAC DUCTS AND CASINGS, shall be two-position, electric motor-operated.
- Dampers shall open simultaneously with the starting of the diesel engine and shall close simultaneously with the stopping of the diesel engine.
- I. Remote Radiator Enclosure:
 - Shall be rugged, tamperproof assemblies framed with steel channels, angles, and braces. Provide fan shroud, fixed louvers, and bird screens at both air intake and exhaust.
 - Shall be securely bolted together to facilitate future dismantling. Carriage type bolts shall be used with the washers and locknuts on the inside of the enclosures.
 - Door shall be leveled sheet steel attached with concealed or semiconcealed hinges. Include a stop edge around the inside of the door opening and a metal rod stop for 90 degree opening.
 - Anchor the enclosures to concrete bases with bolts, not less than 15 mm (0.5 inch) diameter.
 - 5. Radiator fan motor shall be totally enclosed with guarded direct drive and an adjustable mounting base.
 - 6. Coolant piping shall be as recommended by the manufacturer.

2.7 AIR INTAKE AND EXHAUST SYSTEMS

- A. Air Intake:
 - 1. Provide an engine-mounted air cleaner with replaceable dry filter and dirty filter indicator.
- B. Exhaust System:
 - 1. Exhaust Muffler:

Octave Band Hertz (Mid Frequency)	Minimum db Attenuation (.0002 Microbar Reference)
31	5
63	10
125	27
500	37
1000	31
2000	26
4000	25
8000	26

Shall be critical grade type and capable of the following noise attenuation:

- Pressure drop in the complete exhaust system shall be small enough for satisfactory operation of the engine generator while it is delivering 100% of its specified rating.
- 4. Exhaust pipe size from the engine to the muffler shall be as recommended by the engine manufacturer. Pipe size from muffler to air discharge shall be two pipe sizes larger than engine exhaust pipe.
- 5. Connections at the engine exhaust outlet shall be made with a flexible exhaust pipe. Provide bolted type pipe flanges welded to each end of the flexible section.
- C. Condensate drain at muffler shall be made with schedule 40 black steel pipe through a petcock.
- D. Exhaust Piping and Supports: Black steel pipe, ASTM A-53 standard weight with welded fittings. Spring type hangers, as specified in Section 23 05 51, NOISE AND VIBRATION CONTROL FOR BOILER PLANT, shall support the pipe.
- E. Insulation for Exhaust Pipe and Muffler:
 - 1. Calcium silicate minimum 75 mm (3 inches) thick.
 - 2. Insulation shall be as specified in Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
 - 3. The installed insulation shall be covered with aluminum jacket 0.4 mm (0.016 inch) thick. The jacket is to be held in place by bands of 0.38 mm (0.015 inch) thick by 15 mm (0.5 inch) wide aluminum.
 - 4. Insulation and jacket are not required on flexible exhaust sections.

- F. Roof Sleeves: Pipe sleeves (thimble) shall be Schedule 40 standard weight steel pipe. Flash exhaust pipe thimble through roof with 16 oz soft sheet copper, flanged, and made watertight under roofing and extended up around pipe thimble. The exhaust pipe shall be positioned within the thimble by four 150 mm (6 inches) wide spiders welded to the exhaust pipe.
- G. Vertical exhaust piping shall be provided with a hinged, gravityoperated, self-closing rain cover.

2.8 ENGINE STARTING SYSTEM

- A. The engine starting system shall start the engine at any position of the flywheel.
- B. Electric cranking motor:
 - 1. Shall be engine-mounted.
 - 2. Shall crank the engine via a gear drive.
 - 3. Rating shall be adequate for cranking the cold engine at the voltage provided by the battery system, and at the required RPM during five consecutive starting attempts of 10 seconds cranking each at 10-second intervals, for a total of 50 seconds of actual cranking without damage (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
- C. Batteries shall be lead-acid high discharge rate type.
 - Each battery cell shall have minimum and maximum electrolyte level indicators and a flip-top flame arrestor vent cap.
 - 2. Batteries shall have connector covers for protection against external short circuits.
 - 3. With the charger disconnected, the batteries shall have sufficient capacity so that the total system voltage does not fall below 85% of the nominal system voltage with the following demands: Five consecutive starting attempts of 10 seconds cranking at 10 second intervals for a total of 50 seconds of actual cranking (the fifth starting attempt will be manually initiated upon failure of a complete engine cranking cycle).
 - 4. Battery racks shall be metal with an alkali-resistant finish and thermal insulation, and secured to the floor.
- D. Battery Charger:
 - 1. A current-limiting battery charger, conforming to UL 1236, shall be provided and shall automatically recharge the batteries. The charger shall be capable of an equalize-charging rate for recharging fully

depleted batteries within 24 hours and a floating charge rate for maintaining the batteries at fully charged condition.

2. An ammeter shall be provided to indicate charging rate. A voltmeter shall be provided to indicate charging voltage.

2.9 LUBRICATING OIL HEATER

A. Provide a thermostatically-controlled electric heater to automatically maintain the oil temperature within plus or minus 1.7 $^{\circ}$ C (3 $^{\circ}$ F) of the control temperature.

2.10 JACKET COOLANT HEATER

A. Provide a thermostatically-controlled electric heater mounted in the engine coolant jacketing to automatically maintain the coolant within plus or minus 1.7 °C (3 °F) of the temperature recommended by the engine manufacturer to meet the starting time specified at the minimum winter outdoor temperature.

2.11 GENERATOR

- A. Synchronous, amortisseur windings, bracket-bearing, self-venting, rotating-field type connected directly to the engine.
- B. Lifting lugs designed for convenient connection to and removal from the engine.
- C. Integral poles and spider, or individual poles dove-tailed to the spider.
- D. Designed for sustained short-circuit currents in conformance with NEMA Standards.
- E. Designed for sustained operation at 100% of the RPM specified for the engine generator without damage.
- F. Telephone influence factor shall conform to NEMA MG 1.
- G. Furnished with brushless excitation system or static-exciter-regulator assembly.
- H. Nameplates attached to the generator shall show the manufacturer's name, equipment identification, serial number, voltage ratings, field current ratings, kW/kVA output ratings, power factor rating, time rating, temperature rise ratings, RPM ratings, full load current rating, number of phases and frequency, and date of manufacture.
- I. The grounded (neutral) conductor shall be electrically isolated from equipment ground and terminated in the same junction box as the phase conductors.

2.12 GENERATOR OVERCURRENT AND FAULT PROTECTION

A. Generator circuit breaker shall be molded-case, electronic-trip type, and 100% rated, complying with UL 489. Tripping characteristics shall be adjustable long-time and short-time delay and instantaneous. Provide shunt trip to trip breaker when engine generator is shut down by other protective devices.

2.13 CONTROLS

- A. Shall include Engine Generator Control Cubicle(s).
- B. General:
 - 1. Control equipment shall be in accordance with UL 508, NEMA ICS-4, ICS-6, and ANSI C37.90.1.
 - 2. Panels shall be in accordance with UL 50.
 - 3. Cubicles shall be in accordance with UL 891.
 - Coordinate controls with the automatic transfer switches shown on the drawings so that the systems will operate as specified.
 - 5. Cubicles:
 - a. Code gauge steel: manufacturer's recommended heavy gauge steel with factory primer and light gray finish.
 - b. Doors shall be gasketed, attached with concealed or semiconcealed hinges, and shall have a permanent means of latching in closed position.
 - c. Panels shall be wall-mounted or incorporated in other equipment as indicated on the drawings or as specified.
 - d. Door locks for panels and cubicles shall be keyed identically to operate from a single key.
 - 6. Wiring: Insulated, rated at 600 V.
 - a. Install the wiring in vertical and horizontal runs, neatly harnessed.
 - b. Terminate all external wiring at heavy duty, pressure-type, terminal blocks.
 - 7. The equipment, wiring terminals, and wires shall be clearly and permanently labeled.
 - The appropriate wiring diagrams shall be laminated or mounted under plexiglass within the frame on the inside of the cubicles and panels.
 - 9. All indicating lamps and switches shall be accessible and mounted on the cubicle doors.

- 10. The manufacturer shall coordinate the interconnection and programming of the generator controls with all related equipment, including automatic transfer switches and generator paralleling controls as applicable, specified in other sections.
- C. Engine generator Control Cubicle:
 - 1. Starting and Stopping Controls:
 - a. A three-position, maintained-contact type selector switch with positions marked "AUTOMATIC," "OFF," and "MANUAL." Provide flashing amber light for OFF and MANUAL positions.
 - b. A momentary contact push-button switch with positions marked "MANUAL START" and "MANUAL STOP."
 - c. Selector switch in AUTOMATIC position shall cause the engine to start automatically when a single pole contact in a remote device closes. When the generator's output voltage increases to not less than 90% of its rated voltage, and its frequency increases to not less than 58 Hz, the remote devices shall transfer the load to the generator. An adjustable time delay relay, in the 0 to 15 minute range, shall cause the engine generator to continue operating without any load after completion of the period of operation with load. Upon completion of the additional 0 to 15 minute (adjustable) period, the engine generator shall stop.
 - d. Selector switch in OFF position shall prevent the engine from starting either automatically or manually. Selector switch in MANUAL position shall also cause the engine to start when the manual start push-button is depressed momentarily.
 - e. With selector switch is in MANUAL position, depressing the MANUAL STOP push-button momentarily shall stop the engine after a cooldown period.
 - f. A maintained-contact, red mushroom-head push-button switch marked "EMERGENCY STOP" will cause the engine to stop without a cooldown period, independent of the position of the selector switch.
 - 2. Engine Cranking Controls:
 - a. The cranking cycles shall be controlled by a timer that will be independent of the battery voltage fluctuations.
 - b. The controls shall crank the engine through one complete cranking cycle, consisting of four starting attempts of 10 seconds each with 10 seconds between each attempt.

- c. Total actual cranking time for the complete cranking cycle shall be 40 seconds during a 70-second interval.
- d. Cranking shall terminate when the engine starts so that the starting system will not be damaged. Termination of the cranking shall be controlled by self-contained, speed-sensitive switch. The switch shall prevent re-cranking of the engine until after the engine stops.

e. After the engine has stopped, the cranking control shall reset.

- 3. Supervisory Controls:
 - a. Overcrank:
 - When the cranking control system completes one cranking cycle (four starting attempts), without starting the engine, the OVERCRANK signal light and the audible alarm shall be energized.
 - The cranking control system shall lock-out, and shall require a manual reset.
 - b. Coolant Temperature:
 - When the temperature rises to the predetermined first stage level, the HIGH COOLANT TEMPERATURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the temperature rises to the predetermined second stage level, which shall be low enough to prevent any damage to the engine and high enough to avoid unnecessary engine shutdowns, the HIGH COOLANT TEMPERATURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage temperature settings shall be approximately -12 °C (10 °F).
 - Permanently indicate the temperature settings near the associated signal light.
 - 5) When the coolant temperature drops to below 21 °C (70 °F), the "LOW COOLANT TEMPERATURE" signal light and the audible alarm shall be energized.
 - c. Low Coolant Level: When the coolant level falls below the minimum level recommended by the manufacturer, the LOW COOLANT LEVEL signal light and audible alarm shall be energized.

- d. Lubricating Oil Pressure:
 - When the pressure falls to the predetermined first stage level, the OIL PRESSURE - FIRST STAGE signal light and the audible alarm shall be energized.
 - 2) When the pressure falls to the predetermined second stage level, which shall be high enough to prevent damage to the engine and low enough to avoid unnecessary engine shutdowns, the OIL PRESSURE - SECOND STAGE signal light and the audible alarm shall be energized and the engine shall stop.
 - 3) The difference between the first and second stage pressure settings shall be approximately 15% of the oil pressure.
 - 4) The pressure settings near the associated signal light shall be permanently displayed so that the running oil pressure can be compared to the target (setpoint) value.
- e. Overspeed:
 - When the engine RPM exceeds the maximum RPM recommended by the manufacturer of the engine, the engine shall stop.
 - Simultaneously, the OVERSPEED signal light and the audible alarm shall be energized.
- f. Low Fuel Day Tank:

When the fuel oil level in the day tank decreases to less than the level at which the fuel oil transfer pump should start to refill the tank, the LOW FUEL DAY TANK light and the audible alarm shall be energized.

g. Low Fuel - Main Storage Tank:

When the fuel oil level in the storage tank decreases to less than one-third of total tank capacity, the LOW FUEL-MAIN STORAGE TANK signal light and audible alarm shall be energized.

h. Reset Alarms and Signals:

Overcrank, Coolant Temperature, Coolant Level, Oil Pressure, Overspeed, and Low Fuel signal lights and the associated audible alarms shall require manual reset. A momentary-contact silencing switch and push-button shall silence the audible alarm by using relays or solid state devices to seal in the audible alarm in the de-energized condition. Elimination of the alarm condition shall automatically release the sealed-in circuit for the audible alarm so that it will be automatically energized again when the next alarm condition occurs. The signal lights shall require manual reset after elimination of the condition which caused them to be energized. Install the audible alarm just outside the engine generator room in a location as directed by the Project Engineer. The audible alarm shall be rated for 85 dB at 3 M (10 feet).

- i. Generator Breaker Signal Light:
 - A flashing green light shall be energized when the engine generator circuit breaker is in the OPEN or TRIPPED position.
 - 2) Simultaneously, the audible alarm shall be energized.
- 4. Monitoring Devices:
 - a. Electric type gauges for the cooling water temperatures and lubricating oil pressures. These gauges may be engine mounted with proper vibration isolation.
 - b. A running time indicator, totalizing not fewer than 9,999 hours, and an electric type tachometer.
 - c. A voltmeter, ammeter, frequency meter, kilowatt meter, and manual adjusting knob for the output voltage shall be mounted on the front of the generator control panels.
 - d. Install potential and current transformers as required.
 - e. Visual Indications:
 - 1) OVERCRANK
 - 2) HIGH COOLANT TEMPERATURE FIRST STAGE
 - 3) HIGH COOLANT TEMPERATURE SECOND STAGE
 - 4) LOW COOLANT TEMPERATURE
 - 5) OIL PRESSURE FIRST STAGE
 - 6) OIL PRESSURE SECOND STAGE
 - 7) LOW COOLANT LEVEL
 - 8) GENERATOR BREAKER
 - 9) OVERSPEED
 - 10) LOW FUEL DAY TANK
 - 11) LOW FUEL MAIN STORAGE TANK
 - f. Lamp Test: The LAMP TEST momentary contact switch shall momentarily actuate the alarm buzzer and all the indicating lamps.
- 5. Automatic Voltage Regulator:
 - a. Shall correct voltage fluctuations rapidly and restore the output voltage to the predetermined level with a minimum amount of hunting.

- b. Shall include voltage level rheostat located inside the control cubicle.
- c. Provide a 3-phase automatic voltage regulator immune to waveform distortion.

2.14 REMOTE MANUAL STOP STATION

- A. Shall be provided per NFPA 101, and shall be a red mushroom-head pushbutton switch.
- B. Shall be connected to the main generator control panel to provide emergency shutdown of the generator.
- C. Shall be located outside the room housing the generator.
- D. Shall have permanent label reading "EMERGENCY STOP".

2.15 REMOTE ANNUNCIATOR PANEL

- A. A remote annunciator panel shall be installed at the Engineering Control Center location as shown on the drawings.
- B. The annunciator shall indicate alarm conditions as required by NFPA 99 and 110.
- C. Include control wiring between the remote annunciator panel and the engine generator. Wiring shall be as required by the manufacturer.

2.16 SPARE PARTS

- A. For each engine generator:
 - 1. Six lubricating oil filters.
 - 2. Six primary fuel oil filters.
 - 3. Six secondary fuel oil filters.
 - 4. Six intake air filters.
- B. For each battery charger:
 - 1. Three complete sets of fuses.
- C. For each control panel:
 - 1. Three complete sets of fuses, if applicable.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Remove existing pad in its entirety and provide new concrete pad to accommodate new generator. See drawings for additional details.
- B. Installation of the engine generator shall comply with manufacturer's written instructions and with NFPA 110.
- C. Mounting:

- Support the base of engine generator on vibration isolators, each isolator bolted to the floor (pad), and the generator base bolted to isolator.
- Install sufficient isolators so that the floor (pad) bearing pressure under each isolator is within the floor (pad) loading specification.
- Install equal number of isolators on each side of the engine generator's base.
- Locate isolators for approximately equal load distribution and deflection per isolator. The base of the engine generator shall be drilled at the factory for the isolator bolts.
- 5. Isolators shall be shipped loose with the engine generator.
- 6. All connections between the engine generator and exterior systems, such as fuel lines, electrical connections, and engine exhaust system and air exhaust shroud, shall be flexible.
- D. Balance:
 - The vibration velocity in the horizontal, vertical, and axial directions shall not exceed 16.25 mm (0.65 inch) per second peak at any specific frequency. These limits apply to main structural components such as the engine block and the generator frame at the bearings.
- E. Connect all components of the generator system so that they will continue to be energized during failure of the normal electrical power supply system.
- F. Install piping between engine generator and remote components of cooling, fuel, and exhaust systems.
- G. Flexible connection between radiator and exhaust shroud at the wall damper by mechanical contractor:
 - Install noncombustible flexible connections made of 20-oz neoprene-coated fiberglass fabric approximately 150 mm (6 inches) wide.
 - Crimp and fasten the fabric to the sheet metal with screws 50 mm (2 inches) on center. The fabric shall not be stressed, except by the air pressure.
- I. Exhaust System Insulation:
 - Adhesive and insulation materials shall be applied on clean, dry surfaces from which loose scale and construction debris has been removed by wire brushing.

- Fill all cracks, voids, and joints of applied insulation material with high temperature 1093 °C (2000 °F) insulating cement before applying the outer covering.
- 3. The installation shall be clean and free of debris, thermally and structurally tight without sag, neatly finished at all hangers or other penetrations, and shall provide a smooth finished surface.
- 4. Insulation and jacket shall terminate hard and tight at all anchor points.
- 5. Insulate completely from engine exhaust flexible connection through roof or wall construction, including muffler.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Provide the services of a factory-authorized, factory-trained representative of the engine generator manufacturer to inspect fieldassembled components and equipment installation, and to supervise the field tests.
- B. When the complete engine generator system has been installed and prior to the final inspection, test all components of the system in the presence of the Project Engineer for proper operation of the individual components and the complete system and to eliminate electrical and mechanical defects.
- C. Furnish fuel oil, lubricating oil, anti-freeze liquid, water treatment, rust-inhibitor, and load bank for testing of the engine generator.
- D. Visual Inspection: Visually verify proper installation of engine generator and all components per manufacturer's pre-functional installation checklist.
- E. Field Tests:
 - 1. Perform manufacturer's after-starting checks and inspections.
 - Test the engine generator for six hours of continuous operation as follows:
 - a. Two hours while delivering 100% of the specified kW.
 - b. Four hours while the engine generator is delivering 80% of its specified kW rating.
 - c. If during the 6-hour continuous test, an engine generator failure occurs or the engine generator cannot maintain specified power output, the test(s) are null and void. After repair and/or adjustments, the test(s) shall be repeated at no additional cost to the Government until satisfactory results are attained.
 - 3. Record the following test data at 30-minute intervals:

a. Time of day, as well as reading of running time indicator.

- b. kW.
- c. Voltage on each phase.
- d. Amperes on each phase.
- e. Engine RPM.
- f. Frequency.
- g. Coolant water temperature.
- h. Fuel pressure.
- i. Oil pressure.
- j. Outdoor temperature.
- k. Average ambient temperature in the vicinity of the engine generator.
- Demonstrate that the engine generator will attain proper voltage and frequency within the specified time limit from a cold start after the closing of a single contact.
- 5. Furnish a resistance-type load for the testing of the engine generator. Test loads shall always include adequate resistance to assure stability of the loads and equipment during all of the testing operations. The test load kW rating shall not be less than 100% of the specified kW rating of the engine generator.
- F. Starting System Test:
 - Demonstrate that the batteries and cranking motor are capable of five starting attempts of 10 seconds cranking each at 10-second intervals with the battery charger turned off.
- G. Remote Annunciator Panel and Remote Manual Stop Tests: Simulate conditions to verify proper operation of each visual or audible indication, interconnecting hardware and software, and reset button. Simulate emergency stop of the generator by initiating the remote manual stop station, while the generator is in operation.
- H. Fuel systems shall be flushed and tested per Section 23 10 00, FACILITY FUEL SYSTEMS: Fuel supply and storage requirements.
- I. Automatic Operation Tests:

Test the engine generator and associated automatic transfer switches to demonstrate automatic starting, loading and unloading. The load for this test shall be the actual connected loads. Initiate loss of normal source and verify the specified sequence of operation. Restore the normal power source and verify the specified sequence of operation. Verify resetting of controls to normal.

- J. At the completion of the field tests, fill the main storage tank and day tank with fuel of grade and quality as recommended by the manufacturer of the engine. Fill all engine fluids to levels as recommended by manufacturer.
- K. When any defects are detected during the tests, correct all the deficiencies and repeat all or part of the 6-hour continuous test as requested by the Project Engineer at no additional cost to the Government.
- N. Provide test and inspection results in writing to Project Engineer.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the engine generator(s) and control and annunciation components are in good operating condition and properly performing the intended function.

3.4 INSTRUCTIONS AND FINAL INSPECTIONS

- A. Laminate or mount under acrylic resin a set of operating instructions for the system and install instructions within a frame mounted on the wall near the engine generator at a location per the Project Engineer.
- B. Furnish the services of a competent and factory-trained technician for one 4-hour period for instructions to VA personnel in operation and maintenance of the equipment, on the date requested by the Project Engineer.

---END---

SECTION 26 36 23 AUTOMATIC TRANSFER SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of open-transition automatic transfer switches with bypass isolation, indicated as automatic transfer switches or ATS in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personal safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 08 00, ELECTRICAL COMMISSIONING.
- F. Section 26 32 13, ENGINE-GENERATORS: Requirements for normal and emergency power generation.
- G. Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATION SYSTEMS: Raceways for communications cabling.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. A factory-authorized representative shall be capable of providing emergency maintenance and repairs at the project site within 4 hours maximum of notification.
- C. Automatic transfer switch, bypass/isolation switch, and annunciation control panels shall be products of the same manufacturer.

1.4 FACTORY TESTS

A. ATS shall be thoroughly tested at the factory to assure that there are no electrical or mechanical defects.

- B. Factory Tests shall be in accordance with Paragraph, MANUFACTURED PRODUCTS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Perform visual inspection to verify that each ATS is as specified.
 - Perform mechanical test to verify that ATS sections are free of mechanical defects.
 - Perform insulation resistance test to ensure electrical integrity and continuity of entire system.
 - 4. Perform main switch contact resistance test.
 - 5. Perform electrical tests to verify complete system electrical operation.

1.5 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include voltage rating, continuous current rating, number of phases, withstand and closing rating, dimensions, weights, mounting details, conduit entry provisions, front view, side view, equipment and device arrangement, elementary and interconnection wiring diagrams, factory relay settings, and accessories.
 - c. For automatic transfer switches that are networked together to a common means of annunciation and/or control, submit interconnection diagrams as well as site and building plans, showing connections for normal and emergency sources of power, load, control and annunciation components, and interconnecting communications paths. Equipment locations on the diagrams and plans shall match the site, building, and room designations on the drawings.
 - d. Complete nameplate data, including manufacturer's name and catalog number.
 - e. A copy of the markings that are to appear on the automatic transfer switches when installed.
 - 2. Manuals:

- a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the automatic transfer switches.
 - Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
 - 3) Provide a replacement and spare parts list. Include a list of tools and instruments for testing and maintenance purposes.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Include complete "As Installed" diagrams that indicate all pieces of equipment and their interconnecting wiring.
 - Include complete diagrams of the internal wiring for each piece of equipment, including "As Installed" revisions of the diagrams.
 - The wiring diagrams shall identify the terminals to facilitate installation, maintenance, operation, and testing.
- 3. Certifications:
 - a. When submitting the shop drawings, submit a certified test report from a recognized independent testing laboratory that a representative sample has passed UL 1008 prototype testing.
 - b. Two weeks prior to final inspection, submit the following.
 - 1) Certification by the manufacturer that the ATS conform to the requirements of the drawings and specifications.
 - Certification by the Contractor that transfer switches have been properly installed, adjusted, and tested.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE):

446-95..... Emergency and Standby Power Systems for Industrial and Commercial Applications C37.90.1-12.....Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus C62.41.1-02.....Guide on the Surges Environment in Low-Voltage (1000 V and Less) AC Power Circuits C62.41.2-02.....Recommended Practice on Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits C. International Code Council (ICC): IBC-15..... International Building Code D. National Electrical Manufacturers Association (NEMA): Maximum) ICS 6-06.....Enclosures ICS 4-15.....Application Guideline for Terminal Blocks MG 1-16.....Motors and Generators E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-15.....Health Care Facilities 110-16..... Emergency and Standby Power Systems F. Underwriters Laboratories, Inc. (UL): 50-15..... Enclosures for Electrical Equipment 508-99..... Industrial Control Equipment 891-05.....Switchboards 1008-14.....Transfer Switch Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Automatic transfer switches shall comply with IEEE, NEMA, NFPA, UL, and have the following features:
 - Automatic transfer switches shall be open transition switches, 4pole, draw-out construction, electrically operated, mechanically held open contact type, without integral overcurrent protection. Automatic transfer switches utilizing automatic or non-automatic molded case circuit breakers, insulated case circuit breakers, or power circuit breakers as switching mechanisms are not acceptable.

- 2. Automatic transfer switches shall be completely factory-assembled and wired such that only external circuit connections are required in the field.
- 3. Each automatic transfer switch shall be equipped with an integral bypass/isolation switch.
- 4. Ratings:
 - a. Phases, voltage, continuous current, poles, and withstand and closing ratings shall be as shown on the drawings.
 - b. Transfer switches are to be rated for continuous duty at specified continuous current rating on 60Hz systems.
 - c. Maximum automatic transfer switch rating: 800 A.
- 5. Markings:
 - a. Markings shall be in accordance with UL 1008.
- 6. Tests:
 - a. Automatic transfer switches shall be tested in accordance with UL 1008. The contacts of the transfer switch shall not weld during the performance of withstand and closing tests when used with the upstream overcurrent device and available fault current specified.
- 7. Surge Withstand Test:
 - a. Automatic transfer switches utilizing solid-state devices in sensing, relaying, operating, or communication equipment or circuits shall comply with IEEE C37.90.1.
- 8. Housing:
 - a. Enclose automatic transfer switches in wall- or floor-mounted steel cabinets, with metal gauge not less than No. 14, in accordance with UL 508, or in a switchboard assembly in accordance with UL 891, as shown on the drawings.
 - b. Enclosure shall be constructed so that personnel are protected from energized bypass-isolation components during automatic transfer switch maintenance.
 - c. Automatic transfer switch components shall be removable without disconnecting external source or load power conductors.
 - d. Finish: Cabinets shall be given a phosphate treatment, painted with rust-inhibiting primer, and finish-painted with the manufacturer's standard enamel or lacquer finish.
 - e. Viewing Ports: Provide viewing ports so that contacts may be inspected without disassembly.

- 9. Operating Mechanism:
 - a. Actuated by an electrical operator.
 - b. Electrically and mechanically interlocked so that the main contact cannot be closed simultaneously in either normal and emergency position.
 - c. Normal and emergency main contacts shall be mechanically locked in position by the operating linkage upon completion of transfer. Release of the locking mechanism shall be possible only by normal operating action.
 - d. Contact transfer time shall not exceed six cycles.
 - e. Operating mechanism components and mechanical interlocks shall be insulated or grounded.
- 10. Contacts:
 - a. Main contacts: Silver alloy.
 - b. Neutral contacts: Silver alloy, with same current rating as phase contacts.
 - c. Current carrying capacity of arcing contacts shall not be used in the determination of the automatic transfer switch rating, and shall be separate from the main contacts.
 - d. Main and arcing contacts shall be visible for inspection with cabinet door open and barrier covers removed.
- 11. Manual Operator:
 - a. Capable of operation by one person in either direction under no load.
- 12. Replaceable Parts:
 - a. Include the main and arcing contacts individually or as units, as well as relays, and control devices.
 - b. Automatic transfer switch contacts and accessories shall be replaceable from the front without removing the switch from the cabinet and without removing main conductors.
- 13. Sensing Features:
 - a. Undervoltage Sensing for Each Phase of Normal Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100% of nominal, and dropout voltage is adjustable from 75 to 98% of pickup value. Factory set for pickup at 90% and dropout at 85%.

- b. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals. Adjustable from zero to six seconds, and factory set for one second.
- c. Voltage/Frequency Lockout Relay: Prevent premature transfer to the engine-generator. Pickup voltage shall be adjustable from 85 to 100% of nominal. Factory set for pickup at 90%. Pickup frequency shall be adjustable from 90 to 100% of nominal. Factory set for pickup at 95%.
- d. Time Delay for Retransfer to Normal Source: Adjustable from 0 to 30 minutes, and factory set for 10 minutes to automatically defeat delay on loss of voltage or sustained undervoltage of emergency source, provided normal supply has been restored.
- e. Test Switch: Simulate normal-source failure.
- f. Switch-Position Indication: Indicate source to which load is connected.
- g. Source-Available Indication: Supervise sources via transfer switch normal- and emergency-source sensing circuits.
- h. Normal Power Indication: Indicate "Normal Source Available."
- i. Emergency Power Indication: Indicate "Emergency Source Available."
- j. Transfer Override Control: Overrides automatic retransfer control so that automatic transfer switch shall remain connected to emergency power source regardless of condition of normal source. Control panel shall indicate override status.
- k. Engine Starting Contacts: One isolated and normally closed and one isolated and normally open; rated 5 A at 30 V DC minimum.
- Engine Shutdown Contacts: Time delay adjustable from zero to 15 minutes, and factory set for 5 minutes. Contacts shall initiate shutdown at remote engine-generator controls after retransfer of load to normal source.
- m. Engine-Generator Exerciser: Programmable exerciser starts enginegenerator(s) and transfers load to them from normal source for a preset time, then retransfers and shuts down engine-generator(s) after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods are adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period.

- 14. Controls:
 - a. Controls shall provide indication of switch status and be equipped with alarm diagnostics.
 - b. Controls shall control operation of the automatic transfer switches.
- 15. Factory Wiring: Train and bundle factory wiring and label either by color-code or by numbered/lettered wire markers. Labels shall match those on the shop drawings.
- 16. Annunciation, Control, and Programming Interface Components: Devices for communicating with remote programming devices, annunciators, or control panels shall have open-protocol communication capability matched with remote device.

2.2 SEQUENCE OF OPERATION

- A. The specified voltage decrease in one or more phases of the normal power source shall initiate the transfer sequence. The automatic transfer switch shall start the engine-generator(s) after a specified time delay to permit override of momentary dips in the normal power source.
- B. The automatic transfer switch shall transfer the load from normal to emergency source when the frequency and voltage of the enginegenerator(s) have attained the specified percent of rated value.
- C. Engine Start: A voltage decrease, at any automatic transfer switch, in one or more phases of the normal power source to less than the specified value of normal shall start the engine-generator(s) after a specified time delay.
- D. Transfer to Emergency System Loads: Automatic transfer switches for Emergency System loads shall transfer their loads from normal to emergency source when frequency and voltage of the engine-generator(s) have attained the specified percent of rated value. Only those switches with deficient normal source voltage shall transfer.
- E. Transfer to Equipment Branch Loads: Automatic transfer switches for Equipment Branch loads shall transfer their loads to the enginegenerator on a time-delayed, staggered basis, after the Emergency System switches have transferred. Only those switches with deficient normal source voltage shall transfer.
- F. Retransfer to Normal (All Loads): Automatic transfer switches shall retransfer the load from emergency to normal source upon restoration of normal supply in all phases to the specified percent or more of normal

voltage, and after a specified time delay. Should the emergency source fail during this time, the automatic transfer switches shall immediately transfer to the normal source whenever it becomes available. After restoring to normal source, the engine-generator(s) shall continue to run unloaded for a specified interval before shutdown.

2.3 BYPASS-ISOLATION SWITCH

- A. Provide each automatic transfer switch with two-way bypass-isolation manual type switch. The bypass-isolation switch shall permit load bypass to either normal or emergency power source and complete isolation of the automatic transfer switch, independent of transfer switch position. Bypass and isolation shall be possible under all conditions including when the automatic transfer switch is removed from service.
- B. Operation: The bypass-isolation switch shall have provisions for operation by one person through the movement of a maximum of two handles at a common dead front panel in no more than 15 seconds. Provide a lock, which must energize to unlock the bypass switch, to prevent bypassing to a dead source. Provide means to prevent simultaneous connection between normal and emergency sources.
 - Bypass to normal (or emergency): Operation of bypass handle shall allow direct connection of the load to the normal (or emergency) source, without load interruption or by using a break-before-make design, or provide separate load interrupter contacts to momentarily interrupt the load.
 - Ensure continuity of auxiliary circuits necessary for proper operation of the system.
 - b. A red indicating lamp shall light when the automatic transfer switch is bypassed.
 - c. Bypassing source to source: If the power source is lost while in the bypass position, bypass to the alternate source shall be achievable without re-energization of the automatic transfer switch service and load connections.
 - Isolation: Operation of the isolating handle shall isolate all live power conductors to the automatic transfer switch without interruption of the load.
 - a. Interlocking: Provide interlocking as part of the bypassisolation switch to eliminate personnel-controlled sequence of

operation, and to prevent operation to the isolation position until the bypass function has been completed.

- b. Padlocking: Include provisions to padlock the isolating handle in the isolated position.
- c. Visual verification: The isolation blades shall be visible in the isolated position.
- 3. Testing: It shall be possible to test (normal electrical operation) the automatic transfer switch and engine-generator(s) with the isolation contacts closed and the load bypassed without interruption of power to the load.
- C. Ratings: The electrical capabilities and ratings of the bypassisolation switch shall be compatible with those of the associated automatic transfer switch, including any required additional withstand tests.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install automatic transfer switches and associated remote components in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Anchor automatic transfer switches with rustproof bolts, nuts, and washers not less than 12 mm (1/2 inch) diameter, in accordance with manufacturer's instructions, and as shown on drawings.
- C. Mount automatic transfer switches on concrete slab. Unless otherwise indicated, the slab shall be at least 100 mm (4 inches) thick. The top of the concrete slab shall be approximately 100 mm (4 inches) above finished floor. Edges above floor shall have 12.5 mm (1/2 inch) chamfer. The slab shall be of adequate size to project at least 100 mm (8 inches) beyond the equipment. Provide conduit turnups and cable entrance space required by the equipment to be mounted. Seal voids around conduit openings in slab with water- and oil-resistant caulking or sealant. Cut off and bush conduits 75 mm (3 inches) above slab surface. Concrete work shall be as specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.

3.2 ACCEPTANCE CHECKS AND TESTS

A. An authorized representative of the automatic transfer switch manufacturer shall technically supervise and participate during all of the field adjustments and tests. Major adjustments and field tests shall be witnessed by the Project Engineer. The manufacturer's representative shall certify in writing that the equipment has been installed, adjusted and tested in accordance with the manufacturer's recommendations.

- B. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Confirm correct application of manufacturer's recommended lubricants.
 - d. Verify appropriate anchorage, required area clearances, and correct alignment.
 - e. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method, or performing thermographic survey after energization.
 - f. Verify grounding connections.
 - g. Verify ratings of sensors.
 - h. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - i. Exercise all active components.
 - j. Verify that manual transfer warning signs are properly placed.
 - k. Verify the correct operation of all sensing devices, alarms, and indicating devices.
 - 2. Electrical tests:
 - a. Perform insulation-resistance tests.
 - b. After energizing circuits, demonstrate the interlocking sequence and operational function for each automatic transfer switch at least three times.
 - Test bypass-isolation unit functional modes and related automatic transfer switch operations.
 - Power failure of normal source shall be simulated by opening upstream protective device. This test shall be performed a minimum of five times.
 - 3) Power failure of emergency source with normal source available shall be simulated by opening upstream protective device for emergency source. This test shall be performed a minimum of five times.

- Low phase-to-ground voltage shall be simulated for each phase of normal source.
- 5) Operation and settings shall be verified for specified automatic transfer switch operational feature, such as override time delay, transfer time delay, return time delay, engine shutdown time delay, exerciser, auxiliary contacts, and supplemental features.
- Verify pickup and dropout voltages by data readout or inspection of control settings.
- 7) Verify that bypass and isolation functions perform correctly, including the physical removal of the automatic transfer switch while in bypass mode.
- c. Ground-fault tests: Verify that operation of automatic transfer switches shall not cause nuisance tripping or alarms of ground fault protection on either source.
- d. When any defects are detected, correct the defects and repeat the tests as requested by the Project Engineer at no additional cost to the Government.

3.3 FIELD SETTINGS VERIFICATION

A. The automatic transfer switch settings shall be verified in the field by an authorized representative of the manufacturer.

3.4 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the automatic transfer switches are in good operating condition and properly performing the intended function.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the automatic transfer switches, on the dates requested by the Project Engineer.

---END---

SECTION 26 41 00 FACILITY LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing and installation of a complete UL master labeled lightning protection system.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Penetrations through the roof.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground faults.
- D. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective device installed at the electrical service entrance.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Show locations of air terminals, connections to required metal surfaces, down conductors, and grounding means.
 - c. Show the mounting hardware and materials used to attach air terminals and conductors to the structure.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the lightning protection system conforms to the requirements of the drawings and specifications.

- b. Certification by the Contractor that the lightning protection system has been properly installed and inspected.
- c. Certification that the lightning protection system has been inspected by a UL representative and has been approved by UL without variation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA):

```
70-17.....National Electrical Code (NEC)
780-17....Standard for the Installation of Lightning
Protection Systems
```

C. Underwriters Laboratories, Inc. (UL):

96-16.........Lightning Protection Components 96A-16.......Installation Requirements for Lightning Protection Systems

467-13.....Standard for Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Lightning protection components shall conform to NFPA 780 and UL 96, for use on Class I structures. Aluminum materials are not allowed.
 - 1. Class I conductors: Copper.
 - Class I air terminals: Solid copper, (18 inches) long, not less than 3/8 inch diameter, with sharp bare copper points.
 - 3. Ground rods: Copper-clad steel0.75 in (19 mm) diameter by 3 m (10 feet) long.
 - 5. Ground plates: Solid copper, not less than 20 gauge.
 - 6. Bonding plates: Bronze, 50 square cm (8 square inches).
 - 7. Through roof connectors: Solid copper riser bar, length and type as required to accommodate roof structure and flashing requirements.
 - 8. Down conductor guards: Stiff copper or brass.
 - 9. Anchors and fasteners: Bronze bolt and clamp type shall be used for all applications except for membrane roof. Adhesive type are allowed only for attachment to membrane roof materials, using adhesive that is compatible with the membrane material.

- 10. Connectors: Bronze clamp-type connectors shall be used for roof conductor splices, and the connection of the roof conductor to air terminals and bonding plates. Crimp-type connectors are not allowed.
- 11. Exothermic welds: Exothermic welds shall be used for splicing the roof conductor to the down conductors, splices of the down conductors, and for connection of the down conductors to ground rods, ground plates, and the ground ring.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Coordinate installation with the roofing manufacturer and roofing installer.
- C. Install the conductors as inconspicuously as practical.
- D. Install the down conductors within the concealed cavity of exterior walls where practical. Run the down conductors to the exterior at elevations below the finished grade.
- E. Where down conductors are subject to damage or are accessible near grade, protect with down conductor guards to 2.4 m (8 feet) above grade. Bond down conductors guards to down conductor at both ends.
- F. Make connections of dissimilar metal with bimetallic type fittings to prevent electrolytic action.
- G. Install ground rods and ground plates not less than 600 mm (2 feet) deep and a distance not less than 900 mm (3 feet) nor more than 2.5 m (8 feet) from the nearest point of the structure. Exothermically weld the down conductors to ground rods and ground plates in the presence of the Project Engineer.
- H. Bond down conductors to metal main water piping where applicable.
- I. Bond down conductors to building structural steel.
- J. Connect roof conductors to all metallic projections and equipment above the roof as indicated on the drawings.
- K. Connect exterior metal surfaces, located within 900 mm (3 feet) of the conductors, to the conductors to prevent flashovers.
- L. Maintain horizontal or downward coursing of main conductor and insure that all bends have at least an 200 mm (8 inches) radius and do not exceed 90 degrees.

- M. Conductors shall be rigidly fastened every 900 mm (3 feet) along the roof and down to the building to ground.
- N. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure.
- O. Install air terminal bases, cable holders and other roof-system supporting means without piercing membrane or metal roofs.
- P. Use through-roof connectors for penetration of the roof system. Flashing shall be provided by roofing contractor in accordance with Section 07 60 00, FLASHING AND SHEET METAL.
- Q. Down conductors coursed on or in reinforced concrete columns or on structural steel columns shall be connected to the reinforcing steel or the structural steel member at its upper and lower extremities. In the case of long vertical members an additional connection shall be made at intervals not exceeding 30 M (100 feet).
- R. A counterpoise or ground ring, where shown, shall be of No. 1/0 copper cable having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 600 mm (2 feet) deep at a distance not less than 900 mm (3 feet) nor more than 2.5 M (8 feet) from the nearest point of the structure.
- S. On construction utilizing post tensioning systems to secure precast concrete sections, the post tension rods shall not be used as a path for lightning to ground.
- T. Where shown, use the structural steel framework or reinforcing steel as the down conductor.
 - Weld or bond the non-electrically-continuous sections together and make them electrically continuous.
 - Verify the electrical continuity by measuring the ground resistances to earth at the ground level, at the top of the building or stack, and at intermediate points with a sensitive ohmmeter. Compare the resistance readings.
 - Connect the air terminals together with an exterior conductor connected to the structural steel framework at not more than 18 M (60 feet) intervals.
 - Install ground connections to earth at not more than 18 M (60 feet) intervals around the perimeter of the building.

- 5. Weld or braze bonding plates to cleaned sections of the steel and connect the conductors to the plates.
- 6. Do not pierce the structural steel in any manner. Connections to the structural steel shall conform to UL 96A.
- V. Where the drawings show the new lightning protection system connected to an existing lightning protection system with or without a UL master label, the new portion of the lightning protection system requires UL inspection and a Letter of Findings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Test the ground resistance to earth by standard methods, and conform to the ground resistance requirements specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. A UL representative shall inspect the lightning protection system. Obtain and install a UL numbered master label for each of the lightning protection systems at the location directed by the UL representative.

---END---

SECTION 26 43 13 SURGE PROTECTIVE DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of Type 2 Surge Protective Devices, as defined in NFPA 70, and indicated as SPD in this section.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 24 13, DISTRIBUTION SWITCHBOARDS: For factory-installed or external SPD.
- D. Section 26 24 16, PANELBOARDS: For factory-installed or external SPD.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the SPD conforms to the requirements of the drawings and specifications.

b. Certification by the Contractor that the SPD has been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplement and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. Institute of Engineering and Electronic Engineers (IEEE): IEEE C62.41.2-02.....Characterization of Surges in Low-Voltage (1000 V and Less) AC Power Circuits
 - IEEE C62.45-08.....Surge Testing for Equipment Connected to Low-Voltage (1000 V and Less) AC Power Circuits
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - UL 1283-15..... Electromagnetic Interference Filters
 - UL 1449-14.....Surge Protective Devices

PART 2 - PRODUCTS

2.1 SWITCHGEAR/SWITCHBOARD SPD

- A. General Requirements:
 - 1. Comply with IEEE and UL.
 - Modular design with field-replaceable modules, or non-modular design.
 - 3. Fuses, rated at 200 kA interrupting capacity.
 - 4. Bolted compression lugs for internal wiring.
 - 5. Integral disconnect switch.
 - 6. Redundant suppression circuits.
 - 7. LED indicator lights for power and protection status.
 - Audible alarm, with silencing switch, to indicate when protection has failed.
 - 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
 - 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 240kA per phase.

2.2 PANELBOARD SPD

A. General Requirements:

- 1. Comply with UL 1449 and IEEE C62.41.2.
- Modular design with field-replaceable modules, or non-modular design.
- 3. Fuses, rated at 200 kA interrupting capacity.
- 4. Bolted compression lugs for internal wiring.
- 5. Integral disconnect switch.
- 6. Redundant suppression circuits.
- 7. LED indicator lights for power and protection status.
- Audible alarm, with silencing switch, to indicate when protection has failed.
- 9. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of protection status. Contacts shall reverse on failure of any surge diversion module or on opening of any current-limiting device.
- 10. Four-digit transient-event counter.
- B. Surge Current per Phase: Minimum 120kA per phase.

2.3 ENCLOSURES

A. Enclosures: NEMA 1.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Factory-installed SPD: Switchgear, switchboard, or panelboard manufacturer shall install SPD at the factory.
- C. Field-installed SPD: Contractor shall install SPD with conductors or buses between SPD and points of attachment as short and straight as possible. Do not exceed manufacturer's recommended lead length. Do not bond neutral and ground.
 - Provide a circuit breaker as a dedicated disconnecting means for SPD as shown on drawings.
- D. Do not perform insulation resistance tests on switchgear, switchboards, panelboards, or feeders with the SPD connected. Disconnect SPD before conducting insulation resistance tests, and reconnect SPD immediately after insulation resistance tests are complete.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:

26 43 13 - 3

- a. Compare equipment nameplate data with specifications and approved shop drawings.
- b. Inspect physical, electrical, and mechanical condition.
- c. Verify that disconnecting means and feeder size and maximum length to SPD corresponds to approved shop drawings.
- d. Verifying tightness of accessible bolted electrical connections by calibrated torque-wrench method.
- e. Vacuum-clean enclosure interior. Clean enclosure exterior.
- f. Verify the correct operation of all sensing devices, alarms, and indicating devices.

3.3 FOLLOW-UP VERIFICATION

A. After completion of acceptance checks and tests, the Contractor shall show by demonstration in service that SPD are in good operating condition and properly performing the intended function.

3.4 INSTRUCTION

A. Provide the services of a factory-trained technician for one 2-hour training period for instructing personnel in the maintenance and operation of the SPD, on the date requested by the Project Engineer ---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - f. Energy efficiency data.
 - g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.

- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635-07.....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- C. Environmental Protection Agency (EPA):
 40 CFR 261.....Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society (IES):
 - LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products
 - LM-80-08..... Measuring Lumen Maintenance of LED Light Sources
 - LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature

- F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Surge Voltages in Low Voltage AC Power Circuits
- G. International Code Council (ICC):
 IBC-12.....International Building Code
- H. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 101-12....Life Safety Code
- I. National Electrical Manufacturer's Association (NEMA): SSL-1-10.....Electronic Drivers for LED Devices, Arrays, or

Systems

J. Underwriters Laboratories, Inc. (UL): 844-12.....Luminaires for Use in Hazardous (Classified) Locations 924-12.....Emergency Lighting and Power Equipment 1598-08.....Luminaires 1574-04.....Track Lighting Systems 2108-04.....Low-Voltage Lighting Systems 8750-09.....Light Emitting Diode (LED) Light Sources for Use in Lighting Products

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that

they cannot be accidentally dislodged during normal operation or routine maintenance.

- D. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
- E. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- F. Light Transmitting Components for Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.

2.2 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.

- 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.3 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20 $^{\circ}$ C. (-4 $^{\circ}$ F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.
- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - Hardware for surface mounting fluorescent fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 6 mm (1/4 inch) studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.

- Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
- 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
- d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- 5. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.

- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 6. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 7. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the Project Engineer. Observe for visually

detectable flicker over full dimming range, and replace defective components at no cost to the Government.

b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 27 10 05 COMPUTER NETWORK AND TELEPHONE WIRING SYSTEM

PART 1 - GENERAL

1.1 SECTION INCLUDES

This section includes the furnishing and installation of the following:

- A. Raceway distribution system.
- B. Computer and telephone wiring.
- C. Workstation communications outlets.
- D. Patch Panels.
- E. Premise testing.
- F. Equipment.

1.2 RELATED SECTIONS

- A. Section 26 05 11 Requirements for Electrical Installations
- B. Section 26 05 33 Raceway and Boxes for Electrical Systems
- C. Section 26 27 26 Wiring Devices.

1.3 REFERENCES

- A. ANSI/TIA/EIA 568A B.1, B.2, B3 Commercial Building Telecommunications Cabling Standard.
- B. ANSI/TIA/EIA 569A Commercial Building Standard Telecommunications Pathways and Spaces.
- C. ANSI/TIA/EIA 606 Administration Standard for the Telecommunications Infrastructure of Commercial Buildings.
- D. NFPA 70 National Electrical Code.
- E. BICSI TDMM (Building Industry Consulting Service International, Telecommunications Distribution Methods Manual and Telecommunications Cabling Installation Manual).
- 1.4 PROJECT RECORD DOCUMENTS
 - A. Submit record documents under provisions of Section 26 05 11.
 - B. As-built record drawings to be provided to Owner/Engineer before final payment.

1.5 SHOP DRAWINGS

- A. Submit in accordance with Section 01 33 23.
- B. Submit conductors, jacks, and patch panels.

1.6 SYSTEM DESCRIPTION

- A. Horizontal and workstation pathways conform to ANSI/EIA/TIA 569A, using raceway and patch panels as indicated.
- B. Premise Wiring: Horizontal and workstation complete from communication room to each outlet, using conductors and other equipment as specified.

C. All premise wiring to be of one manufacturer.

1.7 QUALITY ASSURANCE

A. Perform work in accordance with BICSI TDMM and ANSI/EIA/TIA standards.

1.8 QUALIFICATIONS

- A. Installer: Company specializing in installing data communications wiring with minimum of three years project experience and BICSI certified as an installer at start of installation.
- B. Installer: Must submit documentation of qualifications before start of installation.

1.9 REGULATORY REQUIREMENTS

- A. Conform to requirements of NFPA 70 and applicable building codes.
- B. Furnish products listed and classified by Underwriters Laboratories, Inc., as suitable for purpose specified and indicated.

1.10 MAINTENANCE/WARRANTY

- A. Manufacturer shall warranty and provide maintenance service for 15 years minimum on the network system and a lifetime for products used in the system.
- B. Submit documentation stating warranty at project closeout.

1.11 COPPER CONDUCTOR CABLE TESTING

- A. Contractor shall perform and document all conductor tests. Return one copy of testing report to the Engineer and one copy to the Owner.
- B. All Category 6 Enhanced conductors and fiber optic cables shall be tested and certified for ANSI/EIA/TIA, 568A, TSB-67 standards and ANSI/TIA/EIA-TSB-95.
- C. All copper station runs must be tested after final installation and termination. All data cable runs shall be documented with a hard copy printout of the test results. This printout shall be bound and delivered to the Owner prior to final payment.
- D. The Owner requires that the Scope/HP Wirescope 350 Level III, or approved equal tester be utilized for all copper data testing.
- E. The Owner requires that the company/individual testing the cable be manufacturer certified for products provided.

PART 2 - PRODUCTS

2.1 CONDUIT AND OUTLETS

- A. As specified in Section 26 05 33 Conduit Systems.
- B. Conduit Size: Minimum 3/4 inch with larger sizes where noted on drawings.
- C. Four-inch square box with single gang plaster ring.

27 10 05 - 2

2.2 OUTLET COVER PLATES

- A. As specified in Section 26 27 26 Wiring Devices.
- B. Cover Plate: Ivory.

2.3 WORKSTATION COMMUNICATIONS OUTLETS

- A. Connector modules shall be equal to Panduit CJ6X88TGEI to match existing Fargo VAMC standard.
 - 1. ANSI/TIA/EIA-T568B wiring configuration.
 - Category 6 Enhanced (500 MHz) power sum connector. Modular faceplates shall be Panduit Mini-Com Executive Series faceplates.
 - One, two, four and six-port single gang and 10-port double gang faceplates as required. Panduit part numbers CFPE1-IW, CFPE2-IW, CFPE4-IW, CFPE6-IW, and CFPE10IW-2G.
 - Standard Color: Orange for data connectors, ivory for telephone connectors.
 - See drawings for quantity of connector modules and modular faceplates.

2.4 COPPER CONDUCTOR

- A. Manufacturer: Equal to General Genspeed 6000E.
 - 1. Category 6 Enhanced.
 - 2. Four twisted pair non-shielded.
 - 3. 23 gauge solid copper conductors.
 - 4. U.L. listed MPP/CMP.
 - 5. Conductor Resistance: 9.38 ohms/100m nom. @ 20 degrees C.
 - 6. Impedance:
 - a. 100±15 ohms 1-100 MHz.
 - b. 100±22 ohms 101-250 MHz.
 - c. 100±32 ohms 250-500 MHz.
 - 7. ACR based on Power Sum NEXT
 - a. >= 15.8 dB/100m @ 200 MHz.
 - b. >= 10.7 dB/100m @ 250 MHz.
 - 8. Delay Skew <= 35 ns/100m.
 - 9. NVP = 70% speed of light.
 - 10. Plenum rated cable.

2.5 CROSS CONNECTION EQUIPMENT

 Reuse existing Panduit modular patch panels. Provide new device jacks for new cabling.

2.6 COMPUTER CABLE SUPPORT HANGERS

- A. J-hooks shall be equal to Erico Caddy Fastener type CableCat.
 - Erico Caddy Fastener type CableCat Cat21 J-hook shall be used for up to 50 4-pair communication cables.
 - Manufacturer guidelines shall be used for supporting/mounting CableCats.
 - 3. Cable shall be supported at no greater than four-foot intervals.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Support raceways under the provisions of Section 26 05 11.
- B. Install cable from all computer and telephone outlets to rack or backboard.
- C. Install modular outlets at all locations shown on the drawings. Terminate wiring at both ends.
- D. Provide cable supports as required in a neat workmanlike manner.
- E. Color coding of wiring is to be consistent between connector modules and connector blocks.
- F. All cabling shall consist of 4 pair, 1 cable per jack.
- G. Install cable in accordance with manufacturer's instructions and in accordance with ANSI/EIA/TIA 568A standards. Cable maximum bend radius shall not exceed four (4) times the outside cable diameter.
- H. Bridged taps/splices are not allowed as part of the horizontal wiring system.
- I. Each workstation jack shall be provided with its own UTP cable continuous (without splice) from jack to computer rack or telephone backboard.
- K. All vertical/horizontal sleeves shall be sized according to station count passing through each. Sized for maximum 60 percent fill.
- L. Install cable support hooks a maximum of 4'-0" on center above ceiling.
- M. All vertical/horizontal raceways shall be sized according to station count passing through each. Sized for maximum 60 percent fill.
- N. Install a 3/4 inch conduit, minimum from each workstation outlet continuous to the nearest accessible ceiling space, or directly to the data rack as shown on the drawings.
- Terminate all data cabling on data rack patch panels and all telephone cables on 110 blocks on the telephone backboard.
- 3.2 GANGING WORKSTATION JACKS

A. Where indicated, workstation jacks may be ganged under a common one gang wall plate. Where the plans show multiple outlets at one location they may be ganged into one wall plate.

3.3 LABELING

- A. All horizontal cabling shall be labeled at both ends with permanent tag indication from which jack the cable originated.
- B. Machine labels shall be installed on each workstation jack faceplate and at the patch panels.
- C. All labels shall be a machine label in conformance with ANSI/EIA/TIA 606.
- D. Numbering of workstation jacks shall be consistent and match existing Veterans Administration standard.
- E. Labeling to be verified with Engineer and Owner.

3.4 CUTTING, PATCHING AND FINISHING

- A. Perform all cutting, patching and finishing required for installation of electrical work. Restore surfaces to original condition.
- B. Cutting, patching and finishing work is subject to the direction and approval of the Engineer.

- - - E N D - - -

SECTION 27 51 25

PUBLIC ADDRESS SYSTEM

PART 1 GENERAL

1.1 DESCRIPTION OF WORK

A. Provide extensions to the existing QSC Qsys Core Series digital paging system as shown on the drawings and described herein. All material including installation material shall be provided in its entirety whether or not enumerated on the drawings including relays, isolation transformers and termination materials.

1.2 RELATED WORK

A. Section 26 05 33 - Raceway and Boxes for Electrical Systems.

1.3 DESCRIPTION OF SYSTEM

- A. The paging system is to provide audio reproduction of voice announcements via the telephone system and existing campus-wide public address system. The new reproduction devices shown on the drawings shall be connected to the existing system rack located as shown on the drawings.
- B. Interface new door bell and audible alarm system to public address system for audible alarm and door chime signals.
- C. Provide additional zone expander to reconnect the Boiler Plant to an independent speaker zone. Program the existing master control stations in main hospital building to access Boiler Plant from existing paging group numeric entry for all outbuildings, and provide additional numeric code entry for accessing the Boiler Plant on a unique, separate code. All codes to be coordinated with Fargo VA OI&T for available code numbers.

1.4 SHOP DRAWINGS

- A. Submit in accordance with Section 01 33 23.
- B. Clearly indicate dimensions, schematic diagrams, electrical characteristics, electrical connections, power requirements, cabling and conduit size requirements.
- C. Submit a detailed manufacturer's data sheet on all equipment and components to be provided.

1.5 QUALITY ASSURANCE

- A. U.L. listed components.
- B. All components and the system will conform to the minimum applicable standards issued by EIA. All work in conjunction with this installation will meet the provisions of the National Electrical Code and other applicable codes.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Deliver to the job site in standard shipping containers. Leave labels intact.
- B. Store in dry area, protected from the weather. Maintain temperature above freezing.

1.7 INSTALLATION

- A. All system components and cables must be electronically balanced in nature.
- B. All cable must be arranged in a neat and orderly fashion using trimmed tie wraps and must be fasten securely to prevent them from physical damage and to minimize visibility.
- C. Speaker mounting hardware used should be installed as per the manufacturer's recommendations.
- D. The systems should be connected to the paging system and configured to allow paging override for massaging.
- E. Adjust the transformer taps on all new speakers to provide even sound pressure levels in all spaces indicated as having paging coverage.

PART 2 PRODUCTS

2.1 PAGING SYSTEM COMPONENTS

- A. Ceiling Mount Distributed Speaker Recessed Mounted
 - 1. 8" Public Address Speaker:
 - a. 2-way coaxial mounted, 120 degree coverage, 8 inch LF driver with
 3 inch HF driver, with 70 Volt, 16 watt multi-tap transformer. 70
 Hz to 15 kHz frequency response. Sensitivity of 98 dB at 1 watt,
 1 meter.
 - Baffle: White perforated, steel construction, round for in-ceiling, square for surface mounted.
 - c. Recessed Backbox: Steel construction, round, integral conduit knockouts, 4" deep.
 - d. Surface Backbox: Steel construction, square, integral conduit knockouts, white in color, 4" deep.
 - Provide where shown on the drawings with required tile bridges and mounting hardware.
- B. Wall Mounted Horn-Type:
 - a. Each horn speaker shall be provided with a means of adjusting the output level over the rated horn speaker range to an appropriate audio level in the area installed.
 - b. Speakers shall be all-metal, weatherproof construction; complete with universal mounting brackets.
 - c. Frequency Response: Within plus or minus 3 dB from 275 to 14,000

Hz.

- d. Minimum Power Rating of Driver: 15 W, continuous.
- e. Minimum Dispersion Angle: 110 degrees.
- f. Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
- C. Equipment Cabinet: Equal to Middle Atlantic, Lowell. Wall mounted, pivoting wall rack with rear access, comply with TIA/EIA-310-D. Equipment Cabinet Requirements:
 - a) Wall mounted: minimum height to house all equipment plus 25% spare, adjust size accordingly for actual equipment rack unit requirements.
 - c) Provide with lockable front door, ventilated metal cabinet housing. Provide as necessary to house all required terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for paging and control functions.

2.2 OUTLETS

A. As specified in Section 26 05 33 - Raceway and Boxes for Electrical Systems.

2.3 CABLE

A. 70 Volt Distributed Speaker Cable: 18 AWG two conductor speaker cable with 100% overall aluminum shield and drain wire. Cable shall be equal to West Penn 293.

PART 3 EXECUTION

3.1 GENERAL

- A. All conductors will be installed in conduit, 3/4 inch minimum.
- B. Terminations will be made using screw type terminals, push-on terminal boards, multi-pin connectors or solder lugs with good, clean solder joints. Under no circumstances are any terminations to be taped.
- C. All incoming cables will be clearly marked as to origin with printed heat shrink tubing. All mic level cables to be labeled with white tubing and black print, line level cables with blue tubing and black print, and speaker level with yellow tubing and black print.
- D. Equalize sound system and adjust transformer taps for adequate paging coverage in all areas.
- E. All non-speaker level audio lines must be continuous, shielded cable. All termination of such lines must be made in accordance with manufacturer's specifications for the given electronic devise. All terminations made at wall plates or cable connectors must be solder type.

F. All equipment power and signal wiring shall conform to NEC and all state and local codes.

- - - END - - -

SECTION 28 08 00

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Section 28 13 16 ACCESS CONTROL SYSTEM.
- E. Section 28 16 00 INTRUSION DETECTION SYSTEM.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent. B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Project Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Project Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Project Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

SECTION 28 13 16

ACCESS CONTROL SYSTEM

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Access control devices.
- B. Access control panels.

1.2 RELATED REQUIREMENTS

- A. Section 08 71 00 Door Hardware.
- B. Section 26 05 21 Low Voltage Electric Power Conductors and Cables.
- C. Section 26 05 33 Raceway and Boxes for Electrical Systems.

1.3 REFERENCES

A. NFPA 70 - National Electrical Code; National Fire Protection Association; 2011.

1.4 SYSTEM DESCRIPTION

- A. Extension of the existing door access control system to numerous doors as shown on the drawings. New access control panel is to be to accommodate the new card readers. All new system components shall be compatible with the existing facility access control system and system software.
- B. System shall communicate with the existing card access server over existing fiber optic cabling. Contractor shall coordinate with VA OI&T for exact fiber strands available for use.

1.5 SUBMITTALS

- A. See Section 01 33 23 for submittal procedures.
- B. Shop Drawings: Provide system wiring diagram showing each device and wiring connections required. Submit drawings in ACAD format compatible with version in use at Fargo VAMC, showing all devices and wiring requirements.
- C. Product Data: Provide electrical characteristics and connection requirements.
- D. Manufacturer's Installation Instructions: Include instructions for storage, handling, protection, examination, preparation, installation, and starting of product.
- E. Project Record Documents: Record actual locations of all system components.
- F. Operation Data: Operating instructions.
- G. Maintenance Data: Maintenance and repair procedures.

1.6 QUALITY ASSURANCE

- A. Conform to requirements of NFPA 70.
- B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience and with service facilities and an authorized installer within 100 miles of project.
- C. Products: Furnish products listed and classified by Underwriters Laboratories Inc. as suitable for purpose specified and indicated.

PART 2 PRODUCTS

2.1 MANUFACTURERS

- A. Access Control and Security System:
 - 1. SimplexGrinnell Software House or equal.

2.2 COMPONENTS

- A. Access Control Panel:
 - 1. Product: Simplex Grinnell Software House i-Star Pro Controller or equal.
 - Description: 16 card reader capacity control panel with 64 MB of on board memory, battery backup, local area network compatible. Control panels shall accommodate 16 card readers, door position monitoring inputs for 16 doors and request to exit sensors for 16 doors.
- B. Encoded Card Readers:
 - Product: HID RP40-6125CGN000DG30 for the 5" by 5" locations or the HID RP15-6145CGN000DG30 for the narrow mullion mount locations, or equals.
 - Description: Proximity card reader, indoor/outdoor rated, 5"x 5" square polycarbonate housing with approximately a 8" read range. The card reader shall be fully compatible with the PIV badges being used at the VA hospital.
- C. Encoded Card Readers with Keypad:
 - 1. Product: HID 6136CGN000D00G30 with integral keypad, or Equal.
 - 2. Description: Proximity card reader with integral 10 button keypad, indoor/outdoor rated, 5"x 5" square polycarbonate housing with approximately a 8" read range. The card reader shall be fully compatible with the PIV badges presently being used at the VA hospital.
- D. Request to Exit Sensors:
 - 1. Product: Bosch DS160 or equal.
 - Description: Surface mount with passive infrared sensor with a 8' by 10' coverage pattern. White plastic enclosure.
- E. Door Position Switches:
 - 1. Product: See BMS switches in Section 28 16 00.

- F. Key Switches:
 - Single gang mounted, stainless steel faceplate, replaceable key cylinder.
 - 2. Match VA standard keying, coordinate with VA for requirements.
 - Status light: Provide green illuminated status light when door is armed, and red illuminated status light if door has been bypassed.
- G. System Cable:
 - 1. Product: Communications Supply Corporation or equal.
 - Plenum rated cable with aluminum foil shield, copper drain wire, yellow PVC jacket. Cable shall include integral #18-4/C unshielded, #22-3PR shielded, #22-2/C unshielded, and #22-4/C unshielded conductors for card reader, REX and door contact functions.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Use multi-conductor cable for connections to all of the access control components at each door. Install all wiring in conduit, ³/₄ inch minimum.
- C. Make conduit and wiring connections to door hardware devices furnished and installed under Section 08 71 00.
- D. Provide a connection from each control panel to the VA Hospital local area network system in the nearest IRM closet using category 6e plenum rated cable in accordance with section 27 10 05.
- E. Provide a 120 volt power connections to each control panel and electric strike or latch power supply to the nearest emergency power (equipment branch) circuit connected to a transfer switch as shown on the drawings.

3.2 FIELD QUALITY CONTROL

A. Manufacturer Services: Furnish services of technician to supervise installation, adjustments, final connections, system testing, and to train Owner personnel.

3.3 CLOSEOUT ACTIVITIES

A. Demonstrate normal and abnormal modes of operation for both the access control and security systems, and required response to each.

3.4 MAINTENANCE

A. Furnish service and maintenance of access control and security system for one year from Date of Substantial Completion.

- - - E N D - - -

28 13 16 - 3

SECTION 28 16 00 INTRUSION DETECTION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Intrusion Detection System, hereinafter referred to as IDS, as specified in this section.
- B. This Section includes the following:
 - Intrusion detection with [hard-wired] [multiplexed], modular, microprocessor-based controls, intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions.
 - Responsibility for integrating electronic and electrical systems and equipment is specified in the following Sections, with Work specified in this Section:
 - a. Division 08 Section "DOOR HARDWARE".
 - b. Division 28 Section "ACCESS CONTROL".

1.2 RELATED WORK

- A. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- B. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- C. Section 28 13 16 ACCESS CONTROL SYSTEM: Requirements for control and operation of all security systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the IDS as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.

1.4 DEFINITIONS

- A. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- B. I/O: Input/Output.
- C. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- D. LED: Light-emitting diode.
- E. NEC: National Electric Code
- F. NEMA: National Electrical Manufacturers Association
- G. NFPA: National Fire Protection Association
- H. NRTL: Nationally Recognized Testing Laboratory.
- I. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- J. PIR: Passive infrared.
- K. RF: Radio frequency.
- L. Standard Intruder: A person who weighs 45 kg (100 lb.) or less and whose height is 1525 mm (60 in) or less; dressed in a long-sleeved shirt, slacks, and shoes.
- M. Standard-Intruder Movement: Any movement, such as walking, running, crawling, rolling, or jumping, of a "standard intruder" in a protected zone.
- N. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- O. UPS: Uninterruptible Power Supply
- P. UTP: Unshielded Twisted Pair

1.5 SUBMITTALS

- A. Submit below items in conjunction with Sections 26 05 11 Requirements for electrical systems.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a shop drawing and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.

- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the

- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the IDS, provide the sensor ID, sensor type and housing model number.
- Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- F. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- G. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

A	. The publications listed below (including amendments, addenda,
	revisions, supplement, and errata) form a part of this specification to
	the extent referenced. The publications are referenced in the text by
	the basic designation only.
В	. American National Standards Institute (ANSI)/Security Industry
	Association (SIA):
	PIR-01-00Passive Infrared Motion Detector Standard -
	Features for Enhancing False Alarm Immunity
	CP-01-00 for False Alarm
	Reduction
С	. Department of Justice American Disability Act (ADA)
	28 CFR Part 362010 ADA Standards for Accessible Design
D	. Federal Communications Commission (FCC):
	(47 CFR 15) Part 15Limitations on the Use of Wireless
	Equipment/Systems
E	. National Electrical Manufactures Association (NEMA):
	250-08Enclosures for Electrical Equipment (1000 Volts
	Maximum)
F	. National Fire Protection Association (NFPA):
	70-11National Electrical Code
	731-08of Electric
	Premises Security Systems
G	. Underwriters Laboratories, Inc. (UL):
	464-09Audible Signal Appliances
	609-96 And Systems
	634-07Btandards for Connectors with Burglar-Alarm
	Systems
	639-07Detection Units
	1037-09and Devices
	1635-10Digital Alarm Communicator System Units
H	. Uniform Federal Accessibility Standards (UFAS), 19841.
1.7 0	COORDINATION
A	. Coordinate arrangement, mounting, and support of intrusion detection

- system equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 EQUIPMENT AND MATERIALS

- A. General
 - All equipment associated within the IDS shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
 - 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 96 hours of run time in the event of a loss of primary power to the facility.
 - 3. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
 - 4. All equipment and materials for the system will be compatible to ensure functional operation in accordance with requirements.

PART 2 - PRODUCT

2.1 FUNCTIONAL DESCRIPTION OF SYSTEM

A. Supervision: System components shall be continuously monitored for normal, alarm, supervisory, and trouble conditions. Indicate deviations from normal conditions at any location in system. Indication includes identification of device or circuit in which deviation has occurred and whether deviation is an alarm or malfunction.

- 1. Alarm Signal: Display at central-station control unit and actuate audible and visual alarm devices.
- Trouble Condition Signal: Distinct from other signals, indicating that system is not fully functional. Trouble signal shall indicate system problems such as battery failure, open or shorted transmission line conductors, or controller failure.
- 3. Supervisory Condition Signal: Distinct from other signals, indicating an abnormal condition as specified for the particular device or controller.
- B. System Control: Central-station control unit shall directly monitor intrusion detection units and connecting wiring.
- C. System Control: Central-station control unit shall directly monitor intrusion detection devices, perimeter detection units, controllers associated with perimeter detection units, and connecting wiring in a multiplexed distributed control system or as part of a network.
- D. System shall automatically reboot program without error or loss of status or alarm data after any system disturbance.
- E. Operator Commands:
 - Acknowledge Alarm: To indicate that alarm message has been observed by operator.
 - Place Protected Zone in Access: Disable all intrusion-alarm circuits of a specific protected zone. Tamper circuits may not be disabled by operator.
 - 3. Place Protected Zone in Secure: Activate all intrusion-alarm circuits of a protected zone.
 - Protected Zone Test: Initiate operational test of a specific protected zone.
 - 5. System Test: Initiate system-wide operational test.
 - 6. Print Reports.
- F. Timed Control at Central-Station Control Unit: Allow automatically timed "secure" and "access" functions of selected protected zones.
- G. Response Time: 2 seconds between actuation of any alarm and its indication at central-station control unit.
- J. Circuit Supervision: Supervise all signal and data transmission lines, links with other systems, and sensors from central-station control unit. Indicate circuit and detection device faults with both protected

zone and trouble signals, sound a distinctive audible tone, and illuminate an LED. Maximum permissible elapsed time between occurrence of a trouble condition and indication at central-station control unit is 20 seconds. Initiate an alarm in response to opening, closing, shorting, or grounding of a signal or data transmission line.

- K. Programmed Secure-Access Control: System shall be programmable to automatically change status of various combinations of protected zones between secure and access conditions at scheduled times. Status changes may be preset for repetitive, daily, and weekly; specially scheduled operations may be preset up to a year in advance. Manual secure-access control stations shall override programmed settings.
- L. Manual Secure-Access Control: Coded entries at manual stations shall change status of associated protected zone between secure and access conditions.

2.2 SYSTEM COMPONENT REQUIREMENTS

A. Compatibility: Detection devices and their communication features, connecting wiring, and central-station control unit shall be selected and configured with accessories for full compatibility with the following equipment:

1. Software House Card Access System, see 28 13 16 CARD ACCESS SYSTEM.

- B. Interference Protection: Components shall be unaffected by radiated RFI and electrical induction of 15 V/m over a frequency range of 10 to 10,000 MHz and conducted interference signals up to 0.25-V RMS injected into power supply lines at 10 to 10,000 MHz.
- C. Tamper Protection: Tamper switches on detection devices, controllers, annunciators, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled and when entering conductors are cut or disconnected. Central-station control-unit alarm display shall identify tamper alarms and indicate locations.
- D. Self-Testing Devices: Automatically test themselves periodically, but not less than once per hour, to verify normal device functioning and alarm initiation capability. Devices transmit test failure to centralstation control unit.
- E. Addressable Devices: Transmitter and receivers shall communicate unique device identification and status reports to central-station control unit.

- A. Interior Sensors: Enclosures that protect against dust, falling dirt, and dripping noncorrosive liquids.
- B. Interior Electronics: NEMA 250, Type 12.
- C. Screw Covers: Where enclosures are accessible to inmates, secure with security fasteners of type appropriate for enclosure.

2.5 EQUIPMENT ITEMS

- A. General:
 - 1. All requirements listed below are the minimum specifications that need to be met in order to comply with the IDS.
 - 2. All IDS sensors shall conform to UL 639, Intrusion Detection Standard.
 - 3. Ensure that IDS is fully integrated with other security subsystems as required to include the Physical Access Control System and Database Management. The IDS provided shall not limit the expansion and growth capability to a single manufacturer and shall allow modular expansion with minimal equipment modifications.
- B. IDS Components: The IDS shall consist of, but not be limited to, the following components:
 - 1. Control Panel
 - 2 Control Keypads
 - 3. Interior Detection Devices (Sensors)
 - 4. Power Supply with integral battery backup.
 - 5. Enclosures

2.6 CONTROL PANEL

- A. The Control panel shall be the main point of programming, monitoring, accessing, securing, and troubleshooting the IDS. Refer to American National Standards Institute (ANSI) CP-01 Control Panel Standard-Features for False Alarm Reduction.
- B. The Control Panel shall provide a means of reporting alarms to the existing Software House Access Control System server via a computer interface or by direct connection to an alarm control monitoring panel.
- C. The Control panel shall utilize a Multifunctional Keypad, Input and Output Modules for expansion of alarm zones, interfacing with additional security subsystems, programming, monitoring and controlling the IDS.

- D. The Control panel shall meet or exceed the following minimum functional requirements for programming outputs, system response, and user interface:
 - 1. Programming Outputs:
 - a. 2 Amps alarm power at 12 VDC
 - b. 1.4 Amps auxiliary power at 12 VDC
 - c. Four alarm output patterns
 - d. Programmable bell test
 - e. Programmable bell shut-off timer
 - 2. System Response:
 - a. Selectable point response time
 - b. Cross point capability
 - c. Alarm verification
 - d. Watch mode
 - e. Scheduled events arm, disarm, bypass and un-bypass points, control relays, and control authority levels
 - 3. User Interface:
 - a. Supervises up to eight command points (e.g. Up to 16 unsupervised keypads can be used)
 - b. Provides custom keypad text
 - c. Addresses full function command menu including custom functions
 - d. Allows user authority by defined area and 16-character name
 - e. Provides for 14 custom authority control levels allowing user's authority to change, add, delete pass codes, disarm, bypass points, and start system tests.
 - The Control panel shall meet or exceed the following technical characteristics:

Input Voltage via 110 VAC or 220 VAC Step-down Transformer	16 or 18 VAC
Operating Voltage	12 VDC
Output Voltage	12 VDC @ 2 A max
Direct Hardwire Zones	7
Partitions	8
Multifunctional Keypads	16 (2 per partition)
Communications Port	RJ-11

- E. A multifunctional keypad shall be utilized as a user interface for arming, disarming, monitoring, troubleshooting, and programming the alarm control panel.
- F. Keypads shall have the following features:
 - Multiple function keypads suitable for remote mounting, no greater than 4000 ft, shall be provided from the control panel and have an alphanumeric readout of alarm and trouble conditions by zone.
 - Trouble alarm indicators shall be distinguishable from intrusion alarms.
 - 3. A minimum of four (4) zones selectable as entry and exit with programmable time delay.
 - 4. Complete system test activated capability at the keypad.
 - 5. Capability for opening and closing reports to a remote monitoring location.
 - 6. Adjustable entry and exit delay times.
 - 7. Capability for a minimum of two (2) multiple function keypads.
 - Capability to shunt or bypass selected interior zones while arming perimeter protection and remaining interior zones.
 - 9. Capability for a minimum of seven assignable pass-codes that are keypad programmable from a suppressed master code.
 - 10. The control panel shall have a communications port that will allow for communications with a computer for programming, monitoring, and troubleshooting purposes. The communications port will be, at a minimum, and RJ-11 or better.
 - 11. The control panel will have a systems success probability of 95% or better, and shall include the following success considerations:
 - a. False Alarm: Shall not exceed one (1) false alarm per 30 days per sensor zone.
 - b. Nuisance Alarm: Shall not exceed a rate of one (1) alarm per seven (7) days per zone within the first 60 days after installation and acceptance. Sensor adjustments will be made and then shall not exceed one (1) alarm per 30 days.
 - 12. The Control Panel will be able to detect either a line fault or power loss for all supervised data cables.
 - a. Line Fault Detection: Communication links of the IDS shall have an active mode for line fault detection. Fault isolation at the systems level shall have the same geographic resolutions as

provided for intrusion detection. The line fault alarm shall be clearly distinguishable from other alarms.

b. Power Loss Detection: Provide the capability to detect when critical components experience temporary or permanent loss of power and annunciate to clearly identify the component experiencing power loss.

2.7 KEYPADS

A. Keypads shall meet or exceed the following technical characteristics:

Connections	4-wire flying lead for data and power
Operating Temperature	0°C to +50°C (+32°F to +122°F)
Display Window	Alphanumeric Display
Indicators: Illuminated keys	Armed Status-LED
	Point Status-LED
	Command Mode-LED
	Power-LED
Voltage	Nominal 12 VDC

2.8 INPUT MODULE

A. An input module shall be utilized to connect additional detection devices to the control panel. This module will meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Zone Inputs	Style A (Class B) Supervised
Operating Temperature	0 to 40 degrees C (32 to 140 degrees F)

2.9 OUTPUT MODULE

A. An output module shall be utilized to interface the control panel with other security subsystems. The output module shall meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Output Relays	"Form C" Dry Relay Contracts
Relay Contact Rating	4A @ 24 VDC
	4A @ 24 VAC
	1A @ 70 VAC
Operating Temperature	0 to 40 degrees C F (32 to 140 degrees)

2.10 INTERIOR DETECTION DEVICES (SENSORS)

- A. The IDS shall consist of interior detection devices that are capable of:
 - Locating intrusions at individually protected asset areas or at an individual portal;
 - 2. Locating intrusions within a specific area of coverage;
 - 3. Locating failures or tampering of individual sensors or components.
- B. Provide and adjust for devices so that coverage is maximized in the space or area it is installed in. For large rooms where multiple devices are required, ensure device coverage is overlapping.
- C. Detection sensitivity shall be set up to ensure maximum coverage of the secure area is obtained while at the same time limiting excessive false alarms due to the environment and impact of small animals. All detection devices shall be anti-masking with exception of video motion detection.
- D. Dual sensor technology shall be used when possible. Sensor technology shall not be of the same type that is easily defeated by a single method. This will reduce the amount of false alarms.
- E. Interior Environmental Conditions: Systems shall be able to operate in environmentally protected interior areas and shall meet operational performance requirements for the following ambient conditions:
 - 1. If components are installed in unheated areas they shall be able to operate in temperatures as low as -17 C (0 F);
 - 2. Interior Sensor Environmental Characteristics:

Temperatures	0 to 50 C (32F to 120 F)
Pressure	Sea Level to 4573m (15,000 ft.) above sea level
Humidity	5% - 95%
Fungus	Components of non-fungus nutrient materials
Acoustical Noise	Suitable for high noise environments above 100db

- F. Balanced Magnetic Switches (BMS)
 - BMS switches shall be surface or recessed mounted according to manufacturer's instructions. Recessed mounted is the preferred method to reduce tampering or defeating of the system. Switches

shall activate when a disturbance in the balanced magnetic field occurs.

- 2. Switches shall have a minimum of two (2) encapsulated reed switches.
- 3. Contractor shall provide each BMS with a current protective device, rated to limit current to 80% of the switch capacity.
- Surface Mounted BMS: For exterior application, components shall be housed in weatherproof enclosures.
- 5. BMS field adjustments in the fixed space between magnet and switch housing shall not be possible. Attempts to adjust or disturb the magnetic field shall cause a tamper alarm.
- 6. BMS Technical Characteristics:

Maximum current	.25 amperes
Maximum voltage	30 VDC
Maximum power	3.0 W (without internal terminating resistors). 1.0 W (with internal terminating resistors).
Components	Three (3) pre-adjusted reed switches Three (3) pre-adjusted magnets
Output contacts	Transfer type SPDT
Contact rating	0.5 amperes, 28 VDC
Switch mechanism	Internally adjustable ⅓ - ⅔ in. (6-13 mm)
Wiring	Two (2) wires #22 American Wire Gauge (AWG), three (3) or 11 foot attached cable
Activation lifetime	1,000,000 activations
Enclosure	Nonferrous materials
Tamper alarm activation	Cover opened 3 mm (1/8 in.) and inaccessible until actuated

- G. Passive Infrared Motion Sensors (PIR)
 - These sensors shall detect an intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone and meet ANSI PIR-01 Passive Infrared Motion Detector Standards Features for Enhancing False Alarm Immunity. An alarm shall be initiated when motion and temperature changes within set patterns are detected as follows.

- 2. The detector shall provide multiple detection zones distributed at a variety of angles and distance.
- 3. Sensors shall be passive in nature; no transmitted energy shall be required for detection.
- Sensors shall be sensitive to infrared energy emitted at wavelengths corresponding to human body and other objects at ambient temperatures.
- 5. Sensors shall not alarm in response to general area thermal variations and shall be immune to radio frequency interference.
- 6. Sensors shall not be susceptible to changes in temperature due to an air conditioner being turned on or off.
- 7. Sensors shall be housed in a tamper-alarmed enclosure.
- Sensor detectors shall include motion analyzer processing, adjustable lens, and walk test LED's visible from any angle.
- 9. Sensors shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indication shall be provided within the sensor enclosure.
- 10. Sensor detectors shall include a motion monitoring verification circuit that will signal trouble or alarm if the detector fails to detect motion for an extended period.
- 11. PIR Technical Characteristics:

Power	Six (6) - 12 VDC 25 mA continuous current draw
	38 mA peaks
Alarm Velocity	1500 mm (Five (5) ft.) at a velocity of 30 mm (0.1 ft.) per second, and one (1) step per second, assuming 150 mm (6 in.) per step. Also, faster than 30 mm (1 foot) per
	second, up to 3000 mm (10 feet) per second
Maximum detection range	10.6 m (35 ft.)
Frequency range- non activation or setup use	26 to 950 MHz using a 50 watt transmitter located 1 ft. from the unit or attached wiring
Infrared detection	1 1/2°C (3°F) different from the background temperature
Detection Pattern	180 degrees for volumetric units, non PIR 360
PIR 360°Detection	Programmable 60 detection zones

Pattern	including one directly below
Mounting	Ceiling and walls
Ceiling heights	2.4 m (Eight (8) ft.) - 5.4 m (18 ft)
Sensitivity adjustments	Three (3) levels

2.11 TAMPER ALARM SWITCHES

- A. The following IDS sensors shall be used to monitor and detect potential tampering of sensors, control panels and enclosures.
 - Tamper Switches: All enclosures including cabinets, housings, boxes, raceways, and fittings with hinged doors or removable covers containing circuits and power supplies related to the IDS shall include corrosion-resistant tamper switches.
 - Tamper alarms shall be annunciated to be clearly distinguishable from IDS alarms.
 - 3. Tamper switches will not be in a viewable from a direct line of sight perspective. The minimum amount of time the tamper switch becomes active and sends a signal after an enclosure is opened or panel removable is attempted, shall be one (1) second.
 - 4. Tamper switches will initiate when enclosure doors or covers is removed as little as 6.35 mm (1/4 inch) from the closed position unless otherwise indicated. Tamper switches shall be:
 - a. Push/pull automatic reset type;
 - b. Inaccessible until switch is activated;
 - c. Spring-loaded and held in closed position by door or cover; and
 - d. Wired to break a circuit when door or cover is removed with each sensor annunciated individually at a central reporting processor.
 - 5. Fail-Safe Mode: Shall provide the capability to detect and annunciate diminished functional capabilities and perform selftests. Fail-safe alarms shall be annunciated to be clearly distinguishable from other types of alarms.

2.12 POWER SUPPLY

- A. A power supply shall only be utilized if the control panel is unable to support the load requirements of the IDS system.
- B. All power supplies shall be UL rated and able to adequately power two entry control devices on a continuous base without failure.
- C. Power supplies shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ 2 amp
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to 7 Ah, rechargeable
OUTPUT CURRENT	4 amp max. @ 13.8 VDC
	3 amp max. @ 27.6 VDC
BATTERY FUSE SIZE	3.5 A @ 250 VAC
CHARGING CIRCUIT	Built-in standard

2.13 AUDIBLE AND VISUAL ALARM DEVICES

- A. Siren: 30-W speaker with siren driver, rated to produce a minimum sound output of 103 dB at 10 feet (3 m) from central-station control unit.
 - 1. Enclosure: Weather-resistant steel box with tamper switches on cover and on back of box.
- B. Strobe: Xenon light complying with UL 1638, with a clear polycarbonate lens.
 - 1. Light Output: 115 cd, minimum.
 - 2. Flash Rate: 60 per minute.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. IDS installation shall be in accordance with Underwriters Laboratories (UL) 639 Standards for Intrusion Detection Units and UL 634 Standards for Connectors with Burglar Alarm Systems, and appropriate manufacture's installation manuals for each type of IDS.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components and appurtenances in accordance with the manufacturer's instructions and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The IDS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems.

- E. The IDS shall be able to be integrated with other security subsystems. Integration with these security subsystems shall be achieved by computer programming and the direct hardwiring of the systems. Determination for methodology shall be outlined when the system(s) is/are being designed and engineered. For installation purposes, the IDS shall utilize input and output modules for integration with other security subsystems. The Contractor will ensure all connections are per the OEM and that any and all software upgrades required to integrate the systems are installed prior to system start-up.
- F. For programming purposes, the Contractor shall refer to the manufacturer's requirements and Contracting Officer instructions for correct system operations. This includes ensuring computers being utilized for system integration meet or exceeds the minimum system requirements outlined in the IDS software packages.
- G. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name, equipment model and serial identification numbers, and UL logo. The Contracting Officer may inventory the IDS equipment at the time of delivery and reject items that do not conform to this requirement.
 - 2. Storage and Handling: Store and protect equipment in a manner that will preclude damage as directed by the Contracting Officer.
- H. Cleaning and Adjustments:
 - Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
 - Prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or synchronization. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.
- I. Tamper Switches
 - Install tamper switches to initiate an alarm signal when a panel, box, or component housing door or cover is moved as little as 6.35 mm (1/4 inch) from the normally closed position unless otherwise specified.
 - Locate tamper switches within enclosures, cabinets, housings, boxes, raceways, and fittings to prevent direct line of sight to any

internal components and to prevent tampering with switch or circuitry.

- Conceal tamper switch mounting hardware so that the location of the switch within the enclosure cannot be determined from the exterior.
- J. Unique IDS Installation Components:
 - 1. BMS Surface Mounted:
 - a. Surface mounted BMS housing for the switch element shall have the capability to receive threaded conduit. Housing covers for surface mounted BMS, if made of cast aluminum, shall be secured by stainless steel screws. Magnet housing cover shall not be readily removable and BMS housings shall be protected from unauthorized access by a cover operated, corrosion-resistant tamper device.
 - b. Conductors running from a door to alarm circuits shall be contained within a flexible armored cord constructed from corrosion-resistant metal. Length of armored cord shall be kept to a minimum. Each end of the armored cord shall terminate in a junction box or other enclosure. Armored cord ends shall be mechanically secured to the junction boxes by clamps or bushings. Conductors within the armored cord shall be provided with lug terminals at each end. Conductors and the armored cord shall experience no mechanical strain as the door is removed from fully open to closed position. Switch circuits shall initiate an alarm if a short circuit is applied to the door cord.
 - c. For exterior application on double gates, both BMS elements must be mounted on the gate. Flexible armored cord constructed from corrosion-resistant metal shall be used to provide electrical connection.
 - 2. Passive Infrared Detectors: (PIR)
 - a. The protective beam shall be focused in a straight line.
 - b. Installed beam distance from transmitter to receiver shall not exceed 80% of the manufacturer's maximum recommended rating.
 - c. Mirrors may be used to extend the beam or to establish a network of beams. Each mirror used shall not lower the rated maximum system range by more than 50%.
 - d. Mirrors and photoelectric sources used in outdoor applications shall have self-heating capability to eliminate condensation and shall be housed in weatherproof enclosures.

3.2 WIRING INSTALLATION

- A. Wiring Method: Install wiring in metal raceways. Conceal raceway except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch. Control and data transmission wiring shall not share conduit with other building wiring systems.
- B. Wiring Method: Cable, concealed in accessible ceilings and walls when possible.
- C. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- D. Wires and Cables:
 - Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.
 - 120-V Power Wiring: Install according to Division 26 Section "LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES," unless otherwise indicated.
 - 3. Control and Signal Transmission Conductors: Install unshielded, twisted-pair cable, unless otherwise indicated or if manufacturer recommends shielded cable.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- F. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.
- G. Identify components with engraved, laminated-plastic or metal nameplate for central-station control unit and each terminal cabinet, mounted with corrosion-resistant screws.

3.3 GROUNDING

A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.

A. The Commissioning Agent will observe startup and contractor testing of equipment. Coordinate the startup and contractor testing schedules with the Architect/Engineer, Project Engineer and Commissioning Agent. Provide a minimum of 21 days prior notice.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 TESTS AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

----END----

SECTION 28 23 00 VIDEO SURVEILLANCE SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

A. Cameras.

- B. Control equipment.
- C. Cable and accessories.
- D. Video management software and recording equipment.

1.2 RELATED WORK

- A. Section 26 05 11 Requirements for Electrical Installations.
- B. Section 26 05 19 Low-Voltage Electrical Power Conductors and Cables.
- C. Section 26 05 33 Raceway and Boxes for Electrical Systems.
- D. Section 27 10 05 Computer Network and Telephone Wiring
- E. Section 28 13 16 Access Control System.

1.3 REFERENCE STANDARDS

A. NFPA 70 - National Electrical Code; National Fire Protection Association; Most Recent Edition Adopted by Authority Having Jurisdiction, Including All Applicable Amendments and Supplements.

1.4 SYSTEM DESCRIPTION

A. Description: Provide complete and functional IP based video communications between points of surveillance indicated on drawings and central recording and monitoring station located in the Boiler Plant.

1.5 SUBMITTALS

- A. See Section 26 05 11 Requirements for Electrical Installations.
- B. Shop Drawings: Indicate electrical characteristics and connection requirements, including system wiring diagram.
- C. Product Data: Provide showing electrical characteristics and connection requirements for each component.
- D. Manufacturer's Installation Instructions: Indicate application conditions and limitations of use stipulated by product testing agency. Include instructions for storage, handling, protection, examination, preparation, installation, and starting of product.
- E. Project Record Documents: Record actual locations of cameras and routing of cable. Provide testing of data cabling links and provide printed documentation.
- F. Operation Data: Instructions for starting and operating system.
- G. Maintenance Data: Routine trouble shooting procedures.

1.6 QUALITY ASSURANCE

A. Conform to requirements of NFPA 70.

- B. Manufacturer Qualifications: Company specializing in manufacturing the products specified in this section with minimum three years documented experience and with service facilities within 100 miles of project.
- C. Supplier Qualifications: Authorized distributor of specified manufacturer with minimum three years documented experience.
- D. Installer Qualifications: Authorized installer of specified manufacturer with service facilities within 100 miles of project.
- E. Cabling Installer Qualifications: Cabling installer shall meet the qualifications as described in Section 27 10 05.
- F. Products: Furnish products listed and classified by Underwriters Laboratories Inc. as suitable for purpose specified and indicated.

PART 2 - PRODUCTS

2.1 VIDEO SURVEILLANCE SYSTEM

- A. Video Surveillance System: Provide an IP based video communications between points of surveillance indicated on drawings and centralized network video recorder and monitoring station.
- B. Provide Video Management software with at minimum the following features:
 - The software shall consist of base software with individual, nonexpiring camera licenses in the required quantity.
 - The IP video management system shall support up to 128 combined IP and analog video streams, with up to 64 direct-attached analog cameras.
 - 3. The IP video management system shall provide 280 Mbps throughput for recording of analog and IP video streams, playback and export.
 - The IP video management system shall support recording of JPEG, MPEG-4 and H.264 IP streams.
 - 5. The IP video management system shall support H.264 Megapixel video streams up to 10 Megapixel resolution with quantities based on a total system of 280 Mbps throughput for recording of analog and IP video streams, playback and export.
 - 6. The video management system shall support adjustable frame rate and image quality for motion, alarm and pre-alarm recording. System shall support independent configuration settings for each camera channel.
 - The IP video management system shall have a fully open architecture with support for both IP specific and cameras with ONIVIF compliance.

- 8. The IP video management system shall provide optional support for up to 64 looping analog camera inputs using direct-attached 16-channel encoders; with up to four direct-attached encoders per system. The direct-attached 16-channel encoders shall support H.264 compression, CIF, 2CIF, and D1 resolutions at maximum 30ips, 16 audio inputs and RS422/485 PTZ control.
- 9. The IP video management system shall be viewed, managed, and played back through a single user interface simultaneously with other digital video management systems through supplied Administrative or Client software.
- 10. The IP video management system shall operate on a 2nd Generation Intel® Core™ I7 (2600k) processor and 8 GB of RAM.
- 11. The IP video management system shall utilize a Windows operating system compatible with the Fargo VA OI&T requirements.
- 12. The IP video management system shall support and have an option for an internal DVD+/-RW.
- 13. The IP video management system shall allow expansion of IP video channel capacity through a licensing without any hardware modification.
- 14. The IP video management system shall support multiple models of IP cameras and encoders.
- 15. The IP video management system shall support audio recording.
- 16. The IP video management system shall support recording to the internal server with additional storage utilizing SCSI attached storage or external USB storage.
- 17. The IP video management system shall be capable of continuous scheduled alarm/event and motion recording. Pre- and post- alarm recording shall also be available and shall be fully programmable on a per channel basis.
- 18. The IP video management system shall allow archival of video data to computers or SAN storage devices over a network connection. The archival schedule shall be either automatic at user-defined intervals or manual and shall be configurable per connected camera.
- C. Provide Client Software with at minimum the following features:
 - The IP video management system shall provide the capability of running a client application in additional to the video management system.

- 2. A client computer with system compatible software shall be the user interface for viewing one or more systems. Live and recorded video and current event video shall be displayed on any client computer using a proper login and password. The client computer shall be able to connect to an unlimited number of recorders simultaneously to display live and recorded video.
- Client Software shall be unlicensed and available to be installed on as many clients as required by the user.
- 4. Client Software shall be password controlled such that password functionality set at each connected system will be recognized at the client. Password shall limit the ability to access live or recorded video as well as the ability to export video.
- Client Software shall allow multiple monitor support for up to four displays per client workstation, providing virtual matrix functionality.
- Client Software shall allow video streams to be selectable on an individual camera, individual system, client defined local groups, or from predefined recorder based groups.
- 7. Client tabs shall include system management, live, and search options. Tabs can be displayed simultaneously on the client.
- 8. Live video tab shall have the ability to be created up to four times on a single client workstation providing for video display combinations and simultaneous video streams from as many different systems with consideration for maximum client bandwidth. Live video tab shall provide the following functionalities:
 - Quick Review which shall display recorded video from the last 1, 5, 15, 30, 60 or 90 minutes, providing near instantaneous review of recent events
 - b. One week graphical display of recorded video
 - c. Screen layout selection
 - d. On the fly on-screen display changes including time, date, camera name, frame rate, frame size, alarm display, and border indicators
 - e. Digital zoom
 - f. User selectable in-video PTZ control or dashboard style control

- 9. Search video tab shall allow for the search of one or multiple cameras from one or multiple systems simultaneously. Search tab shall provide the following functionalities:
 - a. Time and date search
 - c. Drag and drop audio support to associate audio with any video
 - d. Video export to any system accessible media including locally to HDD, CD/DVD, Flash USB device or to network storage
 - e. Video authentication of exported video via check sum verification
- 10. Alarm video tab shall allow for alarm pop-up and playback of active alarms. Alarms may be based on motion activity, an external software trigger from video analytics or a preset data alarm. An alarm list shall be displayed for playback of queued alarms.
- 11. The Client shall incorporate virtual matrix functionality whereby camera sequences may be created on the monitoring workstation with the following functionalities:
 - Each camera in the sequence shall have its own individual and configurable dwell time.
 - Each entry in a sequence shall have the capacity to trigger
 PTZ camera presets, patterns, or auxiliaries
 - c. The Client shall have the capability to display recorded video with full VCR controls. This feature shall display video from multiple cameras simultaneously. The user shall be able to play video as fast as possible (all images), in real time, or by skipping a selectable number of seconds
 - d. The Client shall support simultaneous playback of up to sixty-four all synchronized with each other. Nonsynchronous playback of multiple cameras shall not be acceptable
 - e. The Client shall support tours of multi-camera displays
- D. IP Video Surveillance Cameras
 - The network cameras shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be available for primary and secondary streams with selectable Unicast and Multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.

- The network camera shall support industry standard Power over Ethernet (PoE) IEEE 802.3af to supply power to the camera over the network.
- 3. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 4. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 5. The network camera shall provide analytics to detect changes in the camera's field of view, including obstruction of the lens (examples include by cloth, spray paint, or a lens cap cover) and unauthorized movement of the camera. Such behaviors shall trigger an alarm.
- 6. The network camera shall support standard IT protocols.
- The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.

2.3 COMPONENTS

- A. INDOOR/OUTDOOR MINI-DOME CAMERA TYPE A:
 - The network camera shall offer dual video streams with up to 2.0 megapixel resolution (1600 x 1200) in progressive scan format.
 - The network camera shall be a compact size with a 3-inch clear glass bubble, shall include a compact outdoor rugged enclosure with pendant mount kit and heater for outdoor units.
 - The network camera shall provide advanced low-light day/night capabilities with sensitivity down to 0.03 lux.
 - 4. The network camera shall provide line-in/line-out with microphone.
 - 5. The network camera shall meet or exceed the following design and performance specifications.
 - a. Imaging Device: 1/3 inch CMOS or CCD.
 - b. Resolution: Minimum 1280 x 960.
 - c. DC drive auto iris lens.
 - d. 60 dB wide dynamic range.
 - e. Sensitivity (f/1.2, 2,850K; SNR>24 dB):Color: .50 lux
 - f. Color(1x/33 ms): .5 lux
 - g. Mono: (1x/33ms): .25 lux
 - h. Video Encoding; H.264, MJPEG, MPEG4.
 - i. Frame Rate; up to 30 fps.

- j. Supported Protocols:
- TCP/IP, UDP/IP(Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP, IPv4, SNMP v2c/v3, QoS, HTTP, HTTPS, LDAP (client), SSH, SSL, SMTP, FTP, and 802.1x
- k. Power Input: Camera: PoE, (IEEE 802.3af), Heater/Enclosure: 24VAC.
- Operating Temperature: -4 F to 122 F. Provide with 24V AC heater module.
- m. Lens: adjustable, 2.8-12mm varifocal lens.
- D. Network Video Recorder Hardware Specifications:
 - 1. Processor: Intel Core I7 Series.
 - 3. Internal Memory: 8 GB RAM.
 - 4. Network: Gigabit Ethernet (1000Base-T).
 - 5. Internal Storage: 4 TB.
 - 6. External Storage: Support for RAID 5 external storage.
 - 7. System drives: Hot swappable 3.5 inch hard drives.
 - 8. Optical drive: DVD +RW.
 - 9. Aux ports: USB 2.0.

2.4 ACCESSORIES

- A. Branch Video Cable: Category 6e, plenum rated. All cabling, terminations and patch panels shall meet the requirements as described in Section 27 10 05.
- B. Patch Cables: Provide Category 6e rated patch cables for connections between network switches, camera ports and recording equipment.
- C. UPS
 - 1. 120V, 1000W, 1500 VA.
 - 2. 2U rack mounted device.
 - 3. (6) NEMA 5-20R receptacles.
 - 4. Provide with all required mounting hardware.
 - 5. Quantity: (1) Install in existing Network Equipment Rack.
- D. Network Switches
 - Provide POE, 802.3af compatible network switch, fully managed, Layer
 IPv6 compatible, 100/1000 connectivity, rack mounted with ports sufficient for cameras as shown on the drawings plus 25% spare.
- E. Equipment Cabinet:
 - Wall mounted, swing out cabinet, adjudstable 19" EIA threaded equipment rails, vented body, steel locking front door, 200LB load rating.

- a. Roof mounted fan assembly and UL Listed power strip, 120V
 single phase, 20 A rated, (8) NEMA 20R receptacles.
- b. Ventilated front door with key lock.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install in accordance with manufacturer's instructions.
- B. Install all camera, power supplies, and equipment. Install client software on computer workstation. Configure network hardware for viewing over Owner's data network.
- C. Install video management system software in compliance with the manufacturer's printed instructions and recommendations on the control room operator PC. Provide all software programming and setup for a fully functional system. Program the function of each camera as instructed by the Owner. Each camera will have alarm functions and frame rates separate from other cameras.

3.2 TEST AND ADJUSTING

- A. Test all cabling and provide documentation of results per Section 27 10 05.
- B. Adjust camera pan, tilt zoom and focus settings to meet Owner's viewing requirements.
- C. Program system for event based recording, camera frame rates and recording resolutions according to Owner's requirements.
- D. Upon completion of the installation of all components, contractor shall thoroughly test and adjust the system and systems devices to ensure proper operation.
- E. Where required, appropriate correction and adjustment shall be made.

3.3 CLOSEOUT ACTIVITIES

- A. Demonstrate system operation and provide four hours of instruction with manufacturer's training personnel.
- B. Conduct walking tour of project and briefly describe function, operation, and maintenance of each component.

3.4 MAINTENANCE

A. Provide service and maintenance of system for one year from date of final inspection.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of new fire alarm system with connections to the existing facility fire alarm network equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified.
- B. Fire alarm systems shall comply with requirements of NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Contracting Officer or his authorized representative. Installers shall have a minimum of two years experience installing fire alarm systems.
- C. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in Room 1D-01.
- D. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- B. New fire alarm system components shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless

specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.

- D. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- E. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed five (5) seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
 - 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet of floor space or 3 floors whichever is less.
 - 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS: Sprinkler system supervisory requirements.
- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements for items which are common to other Division 26 sections.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and boxes for cables/wiring.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW: Cables/wiring.

1.4 SUBMITTALS

A. General: Submit 4 copies and 1 reproducible in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

- Prepare drawings using AutoCAD release compatible with the version in use at the VAMC in Fargo and include all contractors information. Layering shall be by VA criteria. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
- 2. Floor plans: Provide updated locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
- 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show revised HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the Project Engineer one (1) set of reproducible, as-built drawings, two blueline copies and one (1) set of the as-built drawing computer files(using AutoCAD release compatible with that currently in use at the Fargo VA). As-built drawings (floor plans) shall show all new and existing conduit used for the fire alarm system. The as-builts

shall be added to the overall fire alarm system as-builts for the facility and submitted as an update to the entire facility asbuilts. The existing computer workstation electronic background and device layout will also be updated to accommodate modifications to the fire alarm system.

1.5 WARRANTY

A. All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of five (1) years from the date of acceptance of the entire installation by the Contracting Officer.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only.
- B. National Fire Protection Association (NFPA):

70-2005.....National Electrical Code (NEC).
72-2002....National Fire Alarm Code.
90A-2002....Installation of Air Conditioning and
Ventilating Systems.

101-2003.....Life Safety Code

- C. Underwriters Laboratories, Inc. (UL): 2000-2000.....Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2005 Edition
- E. American National Standards Institute (ANSI):

S3.41-1996..... Audible Emergency Evacuation Signal

F. International Code Council, International Building Code (IBC) 2003 Edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

- A. Conduit shall be in accordance with Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS and as follows:
 - 1. All new and reused conduit shall be installed in accordance with NFPA 70.
 - Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 19 mm (3/4 inch) minimum.
 - 4. All fire alarm conduit shall be red, factory tinted.
- B. Wire:
 - All existing wiring shall be removed and new wiring installed in a conduit or raceway.
 - 2. Wiring shall be in accordance with NEC article 760, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW), and as recommended by the manufacturer of the fire alarm system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.
 - Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
 - 4. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 5. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All new and reused boxes shall be sized and installed in accordance with NFPA 70.
 - 3. New and existing covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for

cabinets and terminal boxes. Lettering shall be a minimum of 19 mm (3/4 inch) high.

- Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
- Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. Each building shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system.
 - Each power source shall be supervised from the other source for loss of power.
 - 3. All circuits shall be monitored for integrity.
 - Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
 - 5. Transmit digital alarm information to the main fire alarm control unit.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- C. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - Power supply for smoke detectors shall be taken from the fire alarm control unit.
 - 3. Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.

- 4. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler and fire suppression system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals.
- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.

2.4 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - Shall be a supervised, LCD display containing a minimum of two lines of 40 characters for alarm annunciation in clear English text.
 - Message shall identify building number, floor, zone, etc on the first line and device description and status (pull station, smoke detector, waterflow alarm or trouble condition) on the second line.
 - 3. The initial alarm received shall be indicated as such.
 - A selector switch shall be provided for viewing subsequent alarm messages.
 - 5. The display shall be UL listed for fire alarm application.

2.3 VOICE COMMUNICATION SYSTEM (VCS)

- A. General:
 - An emergency voice communication system shall be installed throughout.
 - Upon receipt of an alarm signal from the building fire alarm system, the VCS shall automatically transmit a pre-recorded fire alarm message throughout the building.

- A digitized voice module shall be used to store each prerecorded message.
- 4. The VCS shall supervise all speaker circuits, control equipment, remote audio control equipment, and amplifiers.
- B. Speaker Circuit Arrangement:
 - 1. Audio amplifiers and control equipment shall be electrically supervised for normal and abnormal conditions.
 - 2. Speaker circuits shall be either 25 VRMS or 70.7 VRMS with a minimum of 50% spare power available.
 - Speaker circuits and control equipment shall be arranged such that loss of any one speaker circuit will not cause the loss of any other speaker circuit in the system.

2.4 ALARM NOTIFICATION APPLIANCES

- A. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the one-half watt tap. Speakers shall provide a minimum sound output of 80 dBA at ten feet with the one-half watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4000 HZ.
 - 3. 100 mm (4 inches) or 200 mm (8 inches) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- B. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 13 mm (1/2 inch) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of twenty (20) percent spare capacity.
 - Strobes may be combined with the audible notification appliances specified herein.

2.5 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.

- Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills. The key shall be a Simplex 'B' key to match existing keys.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.

B. Tamper/Flow Switches

- All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings.
- All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

2.6 SUPERVISORY DEVICES

- A. Sprinkler System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each system riser control valve shall be equipped with a supervisory switch.
 - PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.
 - 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.

5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.

2.7 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.8 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key to match the existing Simplex 'B' key currently in use.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key to match the existing keys presently in use at the facility.
- C. All keys shall be delivered to the Project Engineer.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). B. All new conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas. All existing accessible fire alarm conduit not reused shall be removed.
- C. All new conduit shall be factory tinted red in color. All junction box covers shall be painted red and stenciled with 'FA' to match existing junction boxes.

- D. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- E. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations to be approved by the Project Engineer.
- F. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- G. Strobes shall be flush wall mounted 2,000 mm (80 inches) above the floor or 150 mm (6 inches) below ceiling, whichever is lower. Locate and mount to maintain a minimum 900 mm (36 inches) clearance from side obstructions.
- H. Manual pull stations shall be installed not less than 1050 mm (42 inches) or more than 1200 mm (48 inches) from finished floor to bottom of device and within 1500 mm (60 inches) of a stairway or an exit door.
- I. Where possible, locate water flow and pressure switches a minimum of 300 mm (12 inches) from a fitting that changes the direction of the flow and a minimum of 900 mm (36 inches) from a valve.
- J. Mount value tamper switches so as not to interfere with the normal operation of the value and adjust to operate within two revolutions toward the closed position of the value control, or when the stem has moved no more than one-fifth of the distance from its normal position.
- K. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm.

- Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control.
- 3. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
- B. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the Project Engineer.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the Project Engineer. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the Project Engineer, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

A. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article3.2 TESTS and those required by NFPA 72. In addition the representative

shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

4.12 DIGITIZED VOICE MESSAGES:

A. The new voice communication system shall be named to match the existing boiler plant zone naming currently in use.

- - - END - - -