

DEPARTMENT OF VETERAN'S AFFAIRS ON NEW FRONT LOBBY AND PRIMARY CARE ADDITION

Sioux Falls, South Dakota

VA Project # 438-480

Project Specifications – Volume 2

June 22, 2022

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTS Section 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
0.0.01.05		
00 01 07	Seals Page	
00 01 15	List of Drawing Sheets	05-20
00 80 00	Geotechnical Exploration and Engineering Review	
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	01-21
01 32 16.13	Network Analysis Schedules - Major Construction Project	01-21
01 32 10.13	Design-Bid-Build	03-20
01 33 23	Shop Drawings, Product Data, and Samples	05-17
01 35 26	Safety Requirements	07-20
01 42 19	Reference Standards	11-20
01 45 00	Quality Control	02-21
01 45 29	Testing Laboratory Services	11-18
01 45 35	Special Inspections	03-19
01 57 19	Temporary Environmental Controls	01-21
01 58 16	Temporary Interior Signage	07-15
01 74 19	Construction Waste Management	01-21
01 81 13	Sustainable Construction Requirements	10-17
01 91 00	General Commissioning Requirements	10-17
01 91 00	General commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Demolition	08-17
02 84 16	Tubes and Batteries	00 17
02 04 10		<u> </u>
	DIVISION 03 - CONCRETE	
02 20 00	Cost in Place Concusts	01 01
03 30 00	Cast-in-Place Concrete	01-21
03 45 00	Precast Architectural Concrete	01-21
03 63 36	Helical Piles	01-21
	DIVISION 05 - METALS	
05 12 00	Structural Steel Framing	11-18
05 21 00	Steel Joist Framing	11-18
05 31 00	Steel Decking	01-21
05 36 00	Composite Metal Decking	01-21
05 50 00	Metal Fabrications	08-18
05 51 33.23	Alternating Tread Steel Stairs	
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	

SECTION NO.	DIVISION AND SECTION TITLES	DATE
06 10 00	Rough Carpentry	10-17
06 20 00	Finish Carpentry	01-21
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	
07 01 50.19	Preparation for Re-Roofing	01-21
07 13 52	Modified Bituminous Sheet Waterproofing	01-21
07 21 13	Thermal Insulation	01-21
07 21 19	Foamed-In-Place Insulation	
07 22 00	Roof and Deck Insulation	01-21
07 42 13.23	Metal Composite Material Wall Panels	
07 54 23	Thermoplastic Polyolefin (TPO) Roofing	01-21
07 60 00	Flashing and Sheet Metal	01-21
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	10-17
	DIVISION 08 - OPENINGS	
08 11 13	Hollow Metal Doors and Frames	01-21
08 14 00	Interior Wood Doors	01-21
08 31 13	Access Doors and Frames	01-21
08 41 13	Aluminum-Framed Entrances and Storefronts	01-21
08 41 26.24	Interior Privacy Glass Walls and Entrances	
08 42 29.53	Sliding Automatic Entrances - Blast Rated	
08 44 13	Glazed Aluminum Curtain Walls	04-20
08 45 13	Structured Polycarbonate Panel Assemblies	
08 71 00	Door Hardware	01-21
08 71 13	Automatic Door Operators	01-21
08 71 13.11	Low Energy Power Assist Door Operators	01-21
08 80 00	Glazing	01-21
08 87 33	Architectural Window Film	
	DIVISION 09 - FINISHES	
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 06 00	Schedule for Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20
09 30 13	Ceramic/Porcelain Tiling	01-21
09 51 00	Acoustical Ceilings	12-18
09 54 23	Linear Metal Ceilings	01-21
09 65 13	Resilient Base and Accessories	01-21
09 65 16	Resilient Sheet Flooring	05-18
09 65 19	Resilient Tile Flooring	05-18
09 67 23	Resinous Epoxy Broadcast with Urethane Topcoat	
09 67 23.50	Resinous Terrazzo Flooring	01-21
09 68 00	Carpeting	01-21
09 72 16	Vinyl-Coated Fabric Wall Covering	01-21
09 91 00	Painting	01-21
	DIVISION 10 - SPECIALTIES	

SECTION NO.	DIVISION AND SECTION TITLES	DATE
10 12 00	Display Cases	
10 14 19	Dimensional Letter Signage	
10 21 13	Toilet Compartments	01-21
10 21 23	Cubicle Curtain Tracks	01-21
10 12 23.13	Cubicle Curtains	01 21
10 26 00	Wall and Door Protection	01-21
10 28 00	Toilet, Bath, and Laundry Accessories	01-21
10 44 13	Fire Extinguisher Cabinets	08-18
10 44 13	Flagpoles	01-21
10 /3 00		01-21
	DIVISION 12 - FURNISHINGS	
10 04 00		0.0.15
12 24 00	Window Shades	08-17
	DIVISION 13 - SPECIAL CONSTRUCTION	
13 47 15	Bullet Resistant Products	
	DIVISION 21- FIRE SUPPRESSION	
21 13 13	Wet-Pipe Sprinkler Systems	06-15
-		
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	11-16
22 11 00	Facility Water Distribution	11-19
22 11 23	Domestic Water Pumps	09-15
22 13 00	Facility Sanitary and Vent Piping	09-20
22 14 00	Facility Storm Drainage	09-15
22 14 29	Sump Pumps	09-15
22 35 00	Domestic Water Heat Exchangers	09-20
22 40 00	Plumbing Fixtures	09-15
	DIVISION 23 - HEATING, VENTILATING, AND AIR	
	CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC and Steam	02-20
	Generation Equipment	
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	02-20
23 05 93	Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	02-20
23 21 23	Hydronic Pumps	02-20

SECTION NO.	DIVISION AND SECTION TITLES	DATE
23 22 13	Steam and Condensate Heating Piping	02-20
23 22 23	Steam Condensate Pumps	04-20
23 25 00	HVAC Water Treatment	02-20
23 31 00	HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 40 00	HVAC Air Cleaning Devices	03-20
23 64 00	Packaged Water Chillers	
23 73 00	Indoor Central-Station Air-Handling Units	03-20
23 81 23	Computer-Room Air-Conditioners	03-20
23 82 00	Convection Heating and Cooling Units	03-20
23 82 16	Air Coils	03-20
	DIVISION 26 - ELECTRICAL	
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	01-17
26 05 33	Raceway and Boxes for Electrical Systems	01-18
26 05 41	Underground Electrical Construction	01-17
26 05 73	Overcurrent Protective Device Coordination Study	01-18
26 08 00	Commissioning of Electrical Systems	11-16
26 09 23	Lighting Controls	01-18
26 24 16	Panelboards	01-18
26 27 26	Wiring Devices	01-18
26 29 11	Motor Controllers	01-18
26 29 21	Enclosed Switches and Circuit Breakers	01-17
26 41 00	Facility Lightning Protection	01-17
26 51 00	Interior Lighting	01-18
26 56 00	Exterior Lighting	01-18
20 30 00		01 10
	DIVISION 27 - COMMUNICATIONS	
27 05 11	Requirements for Communications Installations	09-19
27 05 26	Grounding and Bonding for Communications Systems	06-15
27 05 33	Raceways and Boxes for Communications Systems	10-18
27 05 36	Cable Trays For Telecommunications	
27 08 00	Commissioning of Communications Systems	11-16
27 10 00	Control, Communication and Signal Wiring	06-15
27 11 00	Communications Equipment Room Fittings	06-15
27 15 00	Communications Structured Cabling	01-16
27 41 31	Master Antenna Television Equipment and Systems	06-15
27 51 16	Public Address and Mass Notification Systems	10-18
27 51 23	Intercommunications and Program Systems	06-15
27 52 23	Nurse Call and Code Blue Systems	10-18
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 05 00	Common Work Results for Electronic Safety and Security	04-18

SECTION NO.	DIVISION AND SECTION TITLES	DATE
28 05 13	Conductors and Cables for Electronic Safety and Security	10-18
28 05 26	Grounding and Bonding for Electronic Safety and Security	09-11
28 05 28.33	Conduits and Backboxes for Electronic Safety and Security	09-11
28 08 00	Commissioning of Electronic Safety and Security Systems	11-16
28 13 00	Physical Access Control System	10-11
28 16 00	Intrusion Detection System	10-11
28 23 00	Video Surveillance	09-11
28 26 00	Electronic Personal Protection System	09-11
28 31 00	Fire Detection and Alarm	10-11
28 52 31	Emergency Call System	06-15
	DIVISION 31 - EARTHWORK	
31 20 00	Earthwork	07-16
31 23 19	Dewatering	
	DIVISION 32 - EXTERIOR IMPROVEMENTS	
32 05 23	Cement and Concrete for Exterior Improvements	08-16
32 12 16	Asphalt Paving	09-15
32 17 23	Pavement Markings	08-16
32 84 00	Planting Irrigation	08-16
32 90 00	Planting	08-16
	DIVISION 33 - UTILITIES	
33 08 00	Commissioning of Site Utility Systems	11-16
33 10 00	Water Utilities	03-17
33 30 00	Sanitary Sewer Utilities	06-13
33 40 00	Storm Sewer Utilities	12-17
33 46 13	Foundation Drainage	10-11

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. Modification of the existing sprinkler system, and addition of one additional sprinkler zone, as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
- 3. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following: 1. Oualifications:

06-15

- a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
- b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the

formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.

- 1) One full size (or size as directed by the COR) printed copy.
- 2) One complete set in electronic pdf format.
- One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of South Dakotafire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All

materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-13 (2019).....Installation of Sprinkler Systems

25-14 (2020).....Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems

101-15 (2021)....Life Safety Code

170-15 (2021).....Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory (2011)
- D. Factory Mutual Engineering Corporation (FM): Approval Guide

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 - Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
 - 4. Use nonferrous piping in MRI Scanning Rooms.
 - 5. Plastic piping shall not be permitted except for drain piping.

 Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter or 1-inch and a maximum length of 6-feet.

2.2 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.
- E. Backflow Preventer: Provide backflow preventer in accordance with Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING. Provide means to forward flow test the backflow preventer in accordance with NFPA 13.

2.3 SPRINKLERS

- A. All sprinklers shall be FM approved quick response except "institutional" type sprinklers shall be permitted to be UL Listed quick response. Provide FM approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.
- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.

2.5 SPRINKLER CABINET

A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13. Locate adjacent to the riser.

- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.6 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.7 SWITCHES:

- A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.
- C. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.8 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.11 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Concealed piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.
- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the

respective waterflow switch or pipe connection near to the pipe from where they were cut.

- Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- L. Where dry pendent sprinklers are used for freezers or similar spaces and they are connected to the wet pipe system, provide an EPDM boot around the dry pendent sprinkler on the heated side and securely seal to the pipe and freezer to prevent condensation from entering the freezer.
- M. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- N. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 2400 to 3000 mm (8 to 10 feet) above each connection location. Size the sign to 450 by 450 mm (18 by 18 inches) with the symbol being at least 350 by 350 mm (14 by 14 inches).
- O. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- P. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR.

21 13 13 - 9

Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-

F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire

Protection, Building 500, First Floor East, Number 001.)

- 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
- 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- S. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- Q. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, including the fire department connections, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at

least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping and equipment exposed to weather be it temperature, humidity, precipitation, wind or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ABS: Acrylonitrile Butadiene Styrene
 - 2. AC: Alternating Current
 - 3. ACR: Air Conditioning and Refrigeration
 - 4. A/E: Architect/Engineer
 - 5. AFF: Above Finish Floor
 - 6. AFG: Above Finish Grade
 - 7. AI: Analog Input
 - 8. AISI: American Iron and Steel Institute
 - 9. AO: Analog Output
 - 10. ASHRAE: American Society of Heating Refrigeration, Air Conditioning Engineers
 - 11. ASJ: All Service Jacket
 - 12. ASME: American Society of Mechanical Engineers
 - 13. ASPE: American Society of Plumbing Engineers
 - 14. AWG: American Wire Gauge
 - 15. BACnet: Building Automation and Control Network
 - 16. BAg: Silver-Copper-Zinc Brazing Alloy
 - 17. BAS: Building Automation System
 - 18. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 19. bhp: Brake Horsepower
 - 20. Btu: British Thermal Unit
 - 21. Btu/h: British Thermal Unit per Hour
 - 22. BSG: Borosilicate Glass Pipe
 - 23. C: Celsius
 - 24. CA: Compressed Air
 - 25. CD: Compact Disk
 - 26. CDA: Copper Development Association

- 27. CGA: Compressed Gas Association 28. CFM: Cubic Feet per Minute 29. CI: Cast Iron 30. CLR: Color 31. CO: Contracting Officer 32. COR: Contracting Officer's Representative 33. CPVC: Chlorinated Polyvinyl Chloride 34. CR: Chloroprene 35. CRS: Corrosion Resistant Steel 36. CWP: Cold Working Pressure 37. CxA: Commissioning Agent 38. dB: Decibels 39. db(A): Decibels (A weighted) 40. DCW: Domestic Cold Water 41. DDC: Direct Digital Control 42. DFU: Drainage Fixture Units 43. DHW: Domestic Hot Water 44. DHWR: Domestic Hot Water Return 45. DHWS: Domestic How Water Supply 46. DI: Digital Input 47. DI: Deionized Water 48. DISS: Diameter Index Safety System 49. DN: Diameter Nominal 50. DO: Digital Output 51. DOE: Department of Energy 52. DVD: Digital Video Disc 53. DWG: Drawing 54. DWH: Domestic Water Heater 55. DWS: Domestic Water Supply 56. DWV: Drainage, Waste and Vent 57. ECC: Engineering Control Center 58. EL: Elevation 59. EMCS: Energy Monitoring and Control System 60. EPA: Environmental Protection Agency 61. EPACT: Energy Policy Act 62. EPDM: Ethylene Propylene Diene Monomer
- 63. EPT: Ethylene Propylene Terpolymer
- 64. ETO: Ethylene Oxide

65. F: Fahrenheit
66. FAR: Federal Acquisition Regulations
67. FD: Floor Drain
68. FDC: Fire Department (Hose) Connection
69. FED: Federal
70. FG: Fiberglass
71. FNPT: Female National Pipe Thread
72. FOR: Fuel Oil Return
73. FOS: Fuel Oil Supply
74. FOV: Fuel Oil Vent
75. FPM: Fluoroelastomer Polymer
76. FSK: Foil-Scrim-Kraft Facing
77. FSS: VA Construction & Facilities Management, Facility Standards
Service
78. FU: Fixture Units
79. GAL: Gallon
80. GCO: Grade Cleanouts
81. GPD: Gallons per Day
82. GPH: Gallons per Hour
83. GPM: Gallons per Minute
84. HDPE: High Density Polyethylene
85. HEFP: Healthcare Environment and Facilities Program (replacement for
OCAMES)
86. HEX: Heat Exchanger
87. Hg: Mercury
88. HOA: Hands-Off-Automatic
89. HP: Horsepower
90. HVE: High Volume Evacuation
91. Hz: Hertz
92. ID: Inside Diameter
93. IE: Invert Elevation
94. INV: Invert
95. IPC: International Plumbing Code
96. IPS: Iron Pipe Size
97. IW: Indirect Waste
98. IWH: Instantaneous Water Heater
99. Kg: Kilogram

100. kPa: Kilopascal

101. KW: Kilowatt 102. KWH: Kilowatt Hour 103.lb: Pound 104. lbs/hr: Pounds per Hour 105. LNG: Liquid Natural Gas 106. L/min: Liters per Minute 107. LOX: Liquid Oxygen 108. L/s: Liters per Second 109.m: Meter 110. MA: Medical Air 111. MAWP: Maximum Allowable Working Pressure 112. MAX: Maximum 113. MBH: 1000 Btu per Hour 114. MED: Medical 115. MER: Mechanical Equipment Room 116. MFG: Manufacturer 117.mg: Milligram 118.mg/L: Milligrams per Liter 119. ml: Milliliter 120.mm: Millimeter 121. MIN: Minimum 122. MV: Medical Vacuum 123. N2: Nitrogen 124. N20: Nitrogen Oxide 125. NC: Normally Closed 126. NF: Oil Free Dry (Nitrogen) 127.NG: Natural Gas 128. NIC: Not in Contract 129. NO: Normally Open 130. NOM: Nominal 131. NPTF: National Pipe Thread Female 132. NPS: Nominal Pipe Size 133. NPT: Nominal Pipe Thread 134. NTS: Not to Scale 135.02: Oxygen 136.OC: On Center 137. OD: Outside Diameter 138. OSD: Open Sight Drain

- 139. OS&Y: Outside Stem and Yoke 140. PA: Pascal 141. PBPU: Prefabricated Bedside Patient Units 142. PD: Pressure Drop or Difference 143. PDI: Plumbing and Drainage Institute 144. PH: Power of Hydrogen 145. PID: Proportional-Integral-Differential 146. PLC: Programmable Logic Controllers 147. PP: Polypropylene 148. ppb: Parts per Billion 149. ppm: Parts per Million 150. PSI: Pounds per Square Inch 151. PSIA: Pounds per Square Inch Atmosphere 152. PSIG: Pounds per Square Inch Gauge 153. PTFE: Polytetrafluoroethylene 154. PVC: Polyvinyl Chloride 155. PVDF: Polyvinylidene Fluoride 156. RAD: Radians 157. RO: Reverse Osmosis 158. RPM: Revolutions Per Minute 159. RTD: Resistance Temperature Detectors 160. RTRP: Reinforced Thermosetting Resin Pipe 161. SAN: Sanitary Sewer 162. SCFM: Standard Cubic Feet per Minute 163. SDI: Silt Density Index 164. SMACNA: Sheet Metal and Air Conditioning Contractors National Association 165. SPEC: Specification 166. SPS: Sterile Processing Services 167. SQFT/SF: Square Feet 168.SS: Stainless Steel 169. STD: Standard 170. SUS: Saybolt Universal Second
- 171. SWP: Steam Working Pressure
- 172. TD: Temperature Difference
- 173. TDH: Total Dynamic Head
- 174. TEFC: Totally Enclosed Fan-Cooled
- 175. TEMP: Temperature

- 176. TFE: Tetrafluoroethylene
- 177. THERM: 100,000 Btu
- 178. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire
- 179. THWN: Thermoplastic Heat & Water Resistant Nylon Coated Wire
- 180. TIL: Technical Information Library
 - http//www.cfm.va.gov/til/indes.asp
- 181. T/P: Temperature and Pressure
- 182. TYP: Typical
- 183. USDA: U.S. Department of Agriculture
- 184.V: Vent
- 185.V: Volt
- 186. VA: Veterans Administration
- 187. VA CFM: VA Construction & Facilities Management
- 188. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service
- 189. VAC: Vacuum
- 190. VAC: Voltage in Alternating Current
- 191. VAMC: Veterans Administration Medical Center
- 192. VHA OCAMES: This has been replaced by HEFP.
- 193. VSD: Variable Speed Drive
- 194. VTR: Vent through Roof
- 195.W: Waste
- 196. WAGD: Waste Anesthesia Gas Disposal
- 197.WC: Water Closet
- 198.WG: Water Gauge
- 199. WOG: Water, Oil, Gas
- 200. WPD: Water Pressure Drop
- 201. WSFU: Water Supply Fixture Units

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 05 31 00, STEEL DECKING: Building Components for Attachment of Hangers.
- F. Section 05 36 00, COMPOSITE METAL DECKING: Building Components for Attachment of Hangers.
- G. Section 05 50 00, METAL FABRICATIONS.

- H. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- I. Section 07 84 00, FIRESTOPPING.
- J. Section 07 92 00, JOINT SEALANTS.
- K. Section 09 91 00, PAINTING.
- L. Section 22 07 11, PLUMBING INSULATION.
- M. Section 31 20 00, EARTH MOVING: Excavation and Backfill.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):
 B31.1-2013.....Power Piping
 ASME Boiler and Pressure Vessel Code BPVC Section IX-2019.... Welding, Brazing, and Fusing Qualifications
- C. American Society for Testing and Materials (ASTM):
 - A36/A36M-2019.....Standard Specification for Carbon Structural Steel

A575-96(2013)e1.....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E84-2013a.....Standard Test Method for Surface Burning Characteristics of Building Materials

E119-2012a.....Standard Test Methods for Fire Tests of

Building Construction and Materials

- D. International Code Council, (ICC): IBC-2018.....International Building Code IPC-2018.....International Plumbing Code
- E. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2018.....Pipe Hangers and Supports - Materials, Design,

Manufacture, Selection, Application and

Installation

- F. Military Specifications (MIL): P-21035B......Paint High Zinc Dust Content, Galvanizing Repair (Metric)
- G. National Electrical Manufacturers Association (NEMA): MG 1-2016......Motors and Generators

H. National Fire Protection Association (NFPA):

51B-2019..... Standard for Fire Prevention During Welding,

Cutting and Other Hot Work

54-2018.....National Fuel Gas Code

70-2020.....National Electrical Code (NEC)

99-2018.....Healthcare Facilities Code

I. NSF International (NSF):

5-2019.....Water Heaters, Hot Water Supply Boilers, and Heat Recovery Equipment

14-2019.....Plastic Piping System Components and Related Materials

61-2019.....Drinking Water System Components - Health Effects

372-2016..... Drinking Water System Components - Lead Content

J. Department of Veterans Affairs (VA): PG-18-102014(R18).....Plumbing Design Manual PG-18-13-2017(R18).....Barrier Free Design Guide

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. If the project is phased, contractors shall submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA

specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- H. Manufacturer's Literature and Data including: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Firestopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- I. Coordination/Shop Drawings:
 - 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than

1:32 (3/8-inch equal to 1 foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.

- Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
- In addition, for plumbing systems, provide details of the following:
 a. Mechanical equipment rooms.
 - b. Interstitial space.
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.
 - e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- J. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- K. Plumbing Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in

the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

L. Provide copies of approved plumbing equipment submittals to the TAB Subcontractor.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical, and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional plumbing.
- B. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
 - 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.

- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products or equipment or materials containing asbestos is prohibited.
- 9. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- C. Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC, Section IX, "Welding and Brazing Qualifications". Provide proof of current certification to CO.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".

- Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the association code.
- D. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- E. Execution (Installation, Construction) Quality:
 - All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution. Failure of the Contractor to resolve or call attention to any discrepancies or deficiencies to the COR will result in the Contractor correcting at no additional cost or time to the Government.
 - 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
 - 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five

projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.

- 5. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- F. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- G. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- H. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- I. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government. All piping shall be tested in accordance with the specifications and the International Plumbing Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

 Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.

- Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
- Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- 5. Protect plastic piping and tanks from ultraviolet light (sunlight) while in pre-construction. Plastic piping and tanks shall not be installed exposed to sunlight without metal jacketing to block ultraviolet rays.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and

pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- E. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are

deemed of beneficial use to the Government, inspections and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

PART 2 - PRODUCTS

2.1 MATERIALS FOR VARIOUS SERVICES

- A. Non-pressure PVC pipe shall contain a minimum of 25 percent recycled content.Steel pipe shall contain a minimum of 25 percent recycled content.
- B. Plastic pipe, fittings and solvent cement shall meet NSF 14 and shall bear the NSF seal "NSF-PW". Polypropylene pipe and fittings shall comply with NSF 14 and NSF 61. Solder or flux containing lead shall not be used with copper pipe.
- C. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372.
- D. In-line devices such as water meters, building valves, check valves, stops, valves, fittings, tanks and backflow preventers shall comply with NSF 61 and NSF 372.
- E. End point devices such as drinking fountains, lavatory faucets, kitchen and bar faucets, ice makers supply stops, and end-point control valves used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

2.2 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.

22 05 11 - 17

- 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model.

2.3 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.4 SAFETY GUARDS

- A. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 8 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- B. All Equipment shall have moving parts protected from personal injury.

2.5 LIFTING ATTACHMENTS

A. Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown in the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid

black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.

- C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 7 mm (3/16 inch) high riveted or bolted to the equipment.
- D. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- E. Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gauge, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic-coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct Contractor where frames shall be mounted.
 - 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color-coded sticker or thumb tack in ceiling or access door.

2.7 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

2.8 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.9 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.
- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 36 00, COMPOSITE METAL DECKING.
- F. For Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gauge), designed to accept special spring held, hardened steel nuts.

1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).

- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending 1 inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.

- Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gauge) minimum.
- J. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, trapeze hangers, roller supports or flat surfaces.

2.10 PIPE PENETRATIONS

A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.

- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are prohibited through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

2.11 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.

2.12 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.13 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

- A. Note that all piping fittings shall be soldered connections. If situations arise where use of hot permits is prohibitive, than the contractor will be responsible to get written approval from COR to use alternative connection methods (i.e. ProPress fittings).
- B. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of

windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

- C. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- D. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown in the drawings shall not be changed nor reduced.
- E. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- F. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- G. Cutting Holes:
 - Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
 - 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- H. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other services are not shown but must be provided.
- I. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during

22 05 11 - 25

installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- K. Gauges, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gauges shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, alarms, instruments and computer workstations. Comply with NFPA 70.
- M. Domestic cold and hot water systems interface with the HVAC control system for the temperature, pressure and flow monitoring requirements to mitigate legionella. See the HVAC control points list and Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEM FOR HVAC and Section 23 09 24, WATER QUALITY MONITORING.
- N. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service

piping at times that will cause the least interfere with normal operation of the facility.

- O. Work in Animal Research Areas: Seal all pipe penetrations with silicone sealant to prevent entrance of insects.
- P. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers' putty.
- Q. Switchgear Drip Protection: Every effort shall be made to eliminate the installation of pipe above data equipment, and electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum of joints. Drain valve shall be provided in low point of casement pipe.
- R. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or additional time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are prohibited in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

22 05 11 - 27

3.3 RIGGING

- A. Openings in building structures shall be planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
 - 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of 1 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

- A. Rigging access, other than indicated in the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided at no additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VAMC, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment,

devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
 - 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
 - The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be

22 05 11 - 31

3.8 IDENTIFICATION SIGNS

not be used.

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory-built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.9 STARTUP AND TEMPORARY OPERATION

- A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.
- B. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and CxA. Provide a minimum of 2 weeks prior notice.

3.10 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

3.11 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- I. Emergency procedures for shutdown and startup of equipment and systems.

3.12 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water and sewer systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): A112.14.1-2003.....Backwater Valves
- C. American Society of Sanitary Engineering (ASSE):

1001-2017.....Performance Requirements for Atmospheric Type Vacuum Breakers

- 1003-2009.....Performance Requirements for Water Pressure Reducing Valves for Domestic Water Distribution Systems
- 1011-2017.....Performance Requirements for Hose Connection Vacuum Breakers
- 1013-2011.....Performance Requirements for Reduced Pressure Principle Backflow Preventers and Reduced Pressure Principle Fire Protection Backflow Preventers
- 1015-2011.....Performance Requirements for Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies 1017-2009.....Performance Requirements for Temperature Actuated Mixing Valves for Hot Water

Distribution Systems

1020-2004.....Performance Requirements for Pressure Vacuum Breaker Assembly 1035-2008..... Performance Requirements for Laboratory Faucet Backflow Preventers 1069-2005..... Performance Requirements for Automatic Temperature Control Mixing Valves 1070-2015.....Performance Requirements for Water Temperature Limiting Devices 1071-2012.....Performance Requirements for Temperature Actuated Mixing Valves for Plumbed Emergency Equipment D. American Society for Testing and Materials (ASTM): A126-2004 (R2019) Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A276/A276M-2017.....Standard Specification for Stainless Steel Bars and Shapes A536-1984(R2019e).....Standard Specification for Ductile Iron Castings B62-2017.....Standard Specification for Composition Bronze or Ounce Metal Castings B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications E. International Code Council (ICC): IPC-2018..... International Plumbing Code F. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2018......Standard Marking Systems for Valves, Fittings, Flanges and Unions SP-67-2017.....Butterfly Valves SP-70-2011.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2018.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2019.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2011.....Gray Iron Globe & Angle Valves, Flanged and Threaded Ends SP-110-2010......Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

09-20

G. National Environmental Balancing Bureau (NEBB):

8th Edition 2015 Procedural Standards for Testing, Adjusting,

- Balancing of Environmental Systems
- H. NSF International (NSF):

61-2019.....Drinking Water System Components - Health Effects

372-2016.....Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Butterfly Valves.
 - 3. Balancing Valves.
 - 4. Check Valves.
 - 5. Water Pressure Reducing Valves and Connections.
 - 6. Backwater Valves.
 - 7. Backflow Preventers.
 - 8. Chainwheels.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

4. Piping diagrams of thermostatic mixing valves to be installed.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - Set ball and plug valves open to minimize exposure of functional surfaces.
 - 5. Set butterfly valves closed or slightly open.
 - 6. Block check valves in either closed or open position.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.
- C. A sling shall be used for large values. The sling shall be rigged to avoid damage to exposed parts. Hand wheels or stems shall not be used as lifting or rigging points.

1.6 AS BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing greater than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Exposed Valves over 65 mm or DN65 (2-1/2 inches) installed at an elevation over 3.6 m (12 feet) shall have a chain-wheel attachment to valve hand-wheel, stem, or other actuator.
- E. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.

- F. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- G. Refer to Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for additional sustainable design requirements.

2.2 SHUT-OFF VALVES

- A. Cold, Hot and Re-circulating Hot Water:
 - 1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be non-lead solder.
 - 2. Less than 100 mm DN100 (4 inches): Butterfly shall have an iron body with EPDM seal and aluminum bronze disc. The butterfly valve shall meet MSS SP-67, type I standard. The butterfly valve shall have a SWP rating of 1380 kPa (200 psig). The valve design shall be lug type suitable for bidirectional dead-end service at rated pressure. The body material shall meet ASTM A536, ductile iron.
 - 3. 100 mm DN100 (4 inches) and greater:
 - a. Class 125, OS&Y, Cast Iron Gate Valve. The gate valve shall meet MSS SP-70 type I standard. The gate valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall meet ASTM A126, grey iron with bolted bonnet, flanged ends, bronze trim, and positive-seal resilient solid wedge disc. The gate valve shall be gear operated for sizes under 200 mm or DN200 (8 inches) and crank operated for sizes 200 mm or DN200 (8 inches) and greater.
 - b. Single flange, ductile iron butterfly valves: The single flanged butterfly valve shall meet the MSS SP-67 standard. The butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The butterfly valve shall be lug type, suitable for bidirectional dead-end service at rated pressure without use of downstream flange. The body material shall comply with ASTM A536 ductile iron. The seat shall be EPDM with stainless steel disc and stem.

- c. Grooved end, ductile iron butterfly valves. The grooved butterfly valve shall meet the MSS SP-67 standard. The grooved butterfly valve shall have a CWP rating of 1380 kPa (200 psig). The valve materials shall be epoxy coated ductile iron conforming to ASTM A536 with two-piece stainless-steel stem, //Buna-N// //EPDM// encapsulated ductile iron disc, and EPDM seal. The butterfly valve shall be gear operated.
- B. Reagent Grade Water: Valves for reagent grade, reverse osmosis, or deionized water service shall be ball type of same material as used for pipe.

2.3 MANUAL BALANCING VALVES

- A. Hot Water Re-circulating, 75 mm or DN75 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitted with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (1/4 inch NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- B. Greater than 75 mm or DN75 (3 inches): Manual balancing valves shall be of heavy duty cast iron flanged construction with 861 kPa (125 psig) flange connections. The flanged manual balancing valves shall have either a brass ball with glass and carbon filled TFE seal rings or fitted with a bronze seat, replaceable bronze disc with EPDM seal insert and stainless steel stem. The design pressure shall be 1200 kPa (175 psig) at 121 degrees C (250 degrees F)

2.4 CHECK VALVES

A. 75 mm or DN75 (3 inches) and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, solder joints, and PTFE or TFE disc.

- B. 100 mm or DN100 (4 inches) and greater:
 - Check valves shall be Class 125, iron swing check valve with lever and weight closure control. The check valve shall meet MSS SP-71 Type I standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a clear or full waterway body design with gray iron body material conforming to ASTM A126, bolted bonnet, flanged ends, bronze trim.
 - 2. All check valves on the discharge side of submersible sump pumps shall have factory installed exterior level and weight with sufficient weight to prevent the check valve from hammering against the seat when the sump pump stops.

2.5 BACKWATER VALVE

- A. The backwater valve shall have a cast iron body, automatic thermoplastic type valve seat and flapper suited for water service. The flapper shall be slightly open during periods of non-operation. The pressure reducing valve shall meet ASME A112.14.1. The cleanout shall be extended to the finish floor and fit with a threaded countersunk plug. A clamping device shall be included when the cleanout extends through the waterproofing membrane.
- B. When the backwater valve is installed greater than 600 mm (24 inches) below the finish floor elevation, a pit or manhole large enough for a repair person can enter to service the backwater valve shall be installed.

2.6 BACKFLOW PREVENTERS

- A. A backflow prevention assembly shall be installed at any point in the plumbing system where the potable water supply comes in contact with a potential source of contamination. The backflow prevention assembly shall be approved by the University of Southern California Foundation for Cross Connection Control and Hydraulic Research (USCFCCC).
- B. The reduced pressure principle backflow prevention assembly shall be ASSE listed 1013 with full port OS&Y positive-seal resilient gate valves and an integral relief monitor switch. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade 4. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276/A276M. The seat disc shall be the elastomer type suited for water service. The checks and the relief valve shall be accessible for maintenance without removing the device from the line. An epoxy coated

wye type strainer with flanged connections shall be installed on the inlet. Reduced pressure backflow preventers shall be installed in the following applications.

- 1. Water make up to heating systems, cooling tower, chilled water system, generators, and similar equipment consuming water.
- 2. Medical equipment.
- 3. Process equipment.
- C. The pipe applied or integral atmospheric vacuum breaker shall be ASSE listed 1001. The main body shall be cast bronze. The seat disc shall be the elastomer type suited for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Atmospheric vacuum breakers shall be installed in the following applications.
 - 1. Hose bibs and sinks with threaded outlets.
 - 2. Detergent system.
 - 3. Glassware washers.
 - 4. Service sinks (integral with faucet only).
- D. The hose connection vacuum breaker shall be ASSE listed 1011. The main body shall be cast brass with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to hose thread outlets. Hose connection vacuum breakers shall be installed in the following locations requiring non-continuous pressure: 1. Hose bibbs and wall hydrants.
- E. The pressure vacuum breaker shall be ASSE listed 1020. The main body shall be brass. The disc and O-ring seal shall be the elastomer type. The valve seat and disc float shall be the thermoplastic type. Tee handle or lever handle shut-off ball valves. Test cocks for testing and draining where freezing conditions occur. All materials shall be suitable for water service. The device shall be accessible for maintenance without removing the device from the service line. The installation shall not be in a concealed or inaccessible location or where the venting of water from the device during normal operation is deemed objectionable. Pressure vacuum breakers shall be installed in the following locations requiring continuous pressure and no backpressure including equipment with submerged inlet connections:

1. 1. Lawn Irrigation.

- F. The laboratory faucet vacuum breaker shall be ASSE listed 1035. The main body shall be cast brass. Dual check valves with stainless steel working parts. The diaphragm and disc shall be the elastomer type suited for water service. The device shall permit the attachment of portable hoses to laboratory faucets for non-continuous pressure applications.
- G. The double check backflow prevention assembly shall be ASSE listed 1015 and supply with full port, OS&Y, positive-seal, resilient gate valves. The main body and access cover shall be epoxy coated ductile iron conforming to ASTM A536 grade. The seat ring and check valve shall be the thermoplastic type suited for water service. The stem shall be stainless steel conforming to ASTM A276/A276M. The seat disc shall be the elastomer type suited for water service. The first and second check valve shall be accessible for maintenance without removing the device from the line. Double check valves shall be installed in the following location requiring continuous pressure subject to backpressure and backsiphonage conditions.
 - 1. Lawn Irrigation.
 - 2. Food Processing Equipment.
 - 3. Laundry equipment.

2.7 CHAINWHEELS

- A. Valve chain wheel assembly with sprocket rim brackets and chain shall be constructed according to the following:
 - Brackets: Type, number, size, and fasteners required to mount actuator on valve.
 - 2. Attachment: For connection to ball or butterfly valve stem.
 - Sprocket rim with chain guides: Ductile or cast iron of type and size required for valve with zinc coating.
 - 4. Chain: Hot dipped galvanized steel of size required to fit sprocket rim.

2.8 THERMOSTATIC MIXING VALVES

- A. Thermostatic Mixing Valves shall comply with the following general performance requirements:
 - 1. Shall meet ASSE requirements for water temperature control.
 - The body shall be cast bronze or brass with corrosion resistant internal parts preventing scale and biofilm build-up. Provide chrome-plated finish in exposed areas.

- No special tool shall be required for temperature adjustment, maintenance, replacing parts and disinfecting operations.
- 4. Valve shall be able to be placed in various positions without making temperature adjustment or reading difficult.
- 5. Valve finish shall be chrome plated in exposed areas.
- 6. Valve shall allow easy temperature adjustments to allow hot water circulation. Internal parts shall be able to withstand disinfecting operations of chemical and thermal treatment of water temperatures up to 82°C (180°F) for 30 minutes or 50 mg/L (50 ppm) chlorine residual concentration for 24 hours.
- 7. Parts shall be easily removed or replaced without dismantling the valves, for easy scale removal and disinfecting of parts.
- 8. Valve shall have a manual adjustable temperature control with locking mechanism to prevent tampering by end user. Outlet temperature shall be visible to ensure outlet temperature does not exceed specified limits, particularly after thermal eradication procedures.
- 9. Provide mixing valves with integral check valves with screens and stop valves.
- B. Automatic Water Temperature Control Mixing Valves:
 - Application: Gang plumbing fixtures point-of-use when no other mixing at fixtures occurs.
 - 2. Standard: ASSE 1069.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).
 - 5. Connections: Threaded union or soldered inlets and outlet.
 - 6. Thermometers shall be provided to indicate mixed water temperature.
 - 7. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 qpm maximum
- C. Water Temperature Limiting Devices:
 - Application: Single plumbing fixture point-of-use such as sinks or lavatories.
 - 2. Standard: ASSE 1070.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 43 degrees C (110 degrees F).

09-20

- 5. Connections: Threaded union, compression or soldered inlets and outlet.
- Upon cold water supply failure the hot water flow shall automatically be reduced to 0.2 gpm maximum.
- D. Temperature Activated Mixing Valves:
 - 1. Application: Emergency eye/face/drench shower equipment.
 - 2. Standard: ASSE 1071.
 - 3. Pressure Rating: 861 kPa (125 psig).
 - Type: Thermostatically controlled water mixing valve set at 24-30 degrees C (75-85 degrees F).
 - 5. Connections: Soldered or threaded union inlets and outlet.
 - Cabinet: Factory-fabricated, stainless steel, for recessed or surface mounting and with hinged, stainless-steel door.
 - 7. Thermometers shall be provided to indicate mixed water temperature.
 - 8. Upon cold water supply failure the hot water flow shall automatically be reduced to 0.5 qpm maximum.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Install chain wheels on operators for ball, and butterfly valves NPS 100 mm or DN100 (4 inches) and greater and installed greater than 3.0 m (10 feet) above floor. Chains shall be extended to 1524 mm (60 inches) above finished floor.
- F. Check valves shall be installed for proper direction of flow and as follows:
 - Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- G. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that shall be sources of contamination. Comply with authorities having jurisdiction. Locate backflow preventers in same room as connected equipment or system.
 - Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe to floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are prohibited for this application.
- H. Install pressure gauges on outlet of backflow preventers.
- I. Do not install bypass piping around backflow preventers.
- J. Install temperature-actuated water mixing valves with check stops or shutoff valves on inlets.
 - 1. Install thermometers if specified.
 - Install cabinet-type units recessed in or surface mounted on wall as specified.
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- L. Install thermostatic balancing valves with inlet strainer and inlet and outlet isolation valves.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Calibrated balancing valves.
 - 2. Master, thermostatic, water mixing valves.
 - 3. Manifold, thermostatic, water-mixing-valve assemblies.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable flow set points of balancing values and record data. Ensure recorded data represents actual measured or observed conditions. Permanently mark settings of values and other adjustment devices allowing settings to be restored. Set and lock memory stops. After adjustment, take measurements to verify balance has not been disrupted or that such disruption has been rectified.
- C. Set field-adjustable temperature set points of temperature-actuated water mixing valves.
- D. Testing and adjusting of balancing valves shall be performed by an independent NEBB Accredited Test and Balance Contractor. A final settings and flow report shall be submitted to the VA Contracting Officer's Representative (COR).

3.5 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.6 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping and equipment.
 - Re-insulation of plumbing piping and equipment after asbestos abatement and or replacement of any part of existing insulation system (insulation, vapor retarder jacket, protective coverings/jacket) damaged during construction.
- B. Definitions:
 - 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
 - Cold: Equipment or piping handling media at design temperature of 15 degrees C (60 degrees F) or below.
 - 5. Concealed: Piping above ceilings and in chases and pipe spaces.
 - 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 7. FSK: Foil-scrim-Kraft facing.
 - Hot: Plumbing equipment or piping handling media above 40 degrees C (104 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).

- b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. HWR: Hot water recirculating.
- 14. CW: Cold water.
- 15. SW: Soft water.
- 16. HW: Hot water.
- 17. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Insulation material and insulation production method.
- D. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- F. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING: Hot and cold water piping.
- G. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-2011	.Standard Test Method for Hot-Surface
	Performance of High-Temperature Thermal
	Insulation
C449-2007 (R2013)	.Standard Specification for Mineral Fiber
	Hydraulic-Setting Thermal Insulating and
	Finishing Cement
C450-2008 (R2014)	.Standard Practice for Fabrication of Thermal
	Insulating Fitting Covers for NPS Piping, and
	Vessel Lagging
Adjunct to C450	.Compilation of Tables that Provide Recommended
	Dimensions for Prefab and Field Thermal
	Insulating Covers, etc.
C533-2013	.Standard Specification for Calcium Silicate
	Block and Pipe Thermal Insulation
C534/C534M-2014	.Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-2015	.Standard Specification for Mineral Fiber Pipe
	Insulation
C552-2014	.Standard Specification for Cellular Glass
	Thermal Insulation
C553-2013	.Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C591-2013	.Standard Specification for Unfaced Preformed
	Rigid Cellular Polyisocyanurate Thermal
	Insulation
C680-2014	.Standard Practice for Estimate of the Heat Gain
	or Loss and the Surface Temperatures of
	Insulated Flat, Cylindrical, and Spherical
	Systems by Use of Computer Programs
C612-2014	.Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126-2014	.Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136-2012	.Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation

C1710-2011.....Standard Guide for Installation of Flexible Closed Cell Preformed Insulation in Tube and Sheet Form D1668/D1668M-1997a(2014)Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-2015a.....Standard Test Method for Surface Burning Characteristics of Building Materials E2231-2015.....Standard Practice for Specimen Preparation and Mounting of Pipe and Duct Insulation to Assess Surface Burning Characteristics C. Federal Specifications (Fed. Spec.): L-P-535E-1979.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (2)-1987...Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass F. National Fire Protection Association (NFPA): 90A-2015.....Standard for the Installation of Air-Conditioning and Ventilating Systems G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013) Standard for Test for Surface Burning Characteristics of Building Materials 1887-2004 (R2013).....Standard for Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics

H. 3E Plus® version 4.1 Insulation Thickness Computer Program: Available from NAIMA with free download; https://insulationinstitute.org/toolsresources

09-19

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used and state surface burning characteristics.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
 - e. Make reference to applicable specification paragraph numbers for coordination.
 - f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe and duct insulation and coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels and duct silencers used in duct systems shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke

developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

4.3.3.3 Coverings and linings for air ducts, pipes, plenums and panels including all pipe and duct insulation materials shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

4.3.11.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.11.2.6.8 Smoke detectors shall not be required to meet the provisions of Section 4.3.

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.
 - D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.

- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at

temperatures up to 230 degrees C (446 degrees F) with an all service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (842 degrees F).

2.3 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C552, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 24 degrees C (75 degrees F).
- B. Pipe insulation for use at process temperatures below ambient air to 482 degrees C (900 degrees F) with or without all service vapor retarder jacket (ASJ).
- C. Pipe insulation for use at process temperatures for pipe and tube below ambient air temperatures or where condensation control is necessary are to be installed with a vapor retarder/barrier system of with or without all service vapor retarder sealed jacket (ASJ) system. Without ASJ shall require all longitudinal and circumferential joints to be vapor sealed with vapor barrier mastic.
- D. Cellular glass thermal insulation intended for use on surfaces operating at temperatures between -268 and 482 degrees C (-450 and 900 degrees F). It is possible that special fabrication or techniques for pipe insulation, or both, shall be required for application in the temperature range from 121 to 427 degrees C (250 to 800 degrees F).

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

2.5 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt

strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: FSK or PVDC type for concealed ductwork and equipment.
- D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity locations and conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inchpounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Except for cellular glass thermal insulation, when all longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations and conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multilayer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inchpounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.

- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- 2.6 PIPE COVERING PROTECTION SADDLES
 - A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)				
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)			
Up through 125 (5)	150 (6) long			
150 (6)	150 (6) long			
200 (8), 250 (10), 300 (12)	225 (9) long			
350 (14), 400 (16)	300 (12) long			
450 through 600 (18 through 24)	350 (14) long			

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C (300 degrees F)), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- 2.10 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - D. Mil. Spec. MIL-PRF-19565C, Type I: Protective finish for outdoor use.

- E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.
- E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer

22 07 11 - 11

insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to Section 07 84 00, FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions or as noted, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
- D. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, pumps, fittings, and equipment and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.

- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment. Do not insulate over equipment nameplate data.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Plumbing work not to be insulated unless otherwise noted:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.
 - 3. Water piping in contact with earth.
 - 4. Distilled water piping.
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Bio-based materials shall be utilized when possible.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions

e. Hourly rated walls

- M. Freeze protection of above grade outdoor piping (over heat tracing tape): 20 mm (3/4 inch) thick insulation, for all pipe sizes 75 mm (3 inches) and smaller and 25 mm (1 inch) thick insulation for larger pipes. Provide metal jackets for all pipe insulations. Provide freeze protection for cold water make-up piping and equipment where indicated on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- N. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - All interior piping conveying fluids below ambient air temperature in high humidity locations.
- O. Provide metal jackets over insulation as follows:
 - 1. All plumbing piping exposed to outdoor weather.
 - 2. Piping exposed in building, within 1829 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets except for cold pipe or tubing applications. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.
- P. Provide PVC jackets over insulation as follows:
 - Piping exposed in building, within 1829 mm (6 feet) of the floor, on piping that is not precluded in previous sections.
 - 2. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

- 2. Plain unfaced board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowelled to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with vapor retarder ASJ or FSK. Seal all facings, laps, and termination points and do not use staples or other attachments that may puncture ASJ or FSK.
 - a. Water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with unsealed ASJ or FSK.
 - a. Domestic water heaters and hot water storage tanks (not factory insulated).
 - b. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- C. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground piping other than or in lieu of that specified in Section 22 11 00, FACILITY WATER DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impreganted glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.

- d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- e. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
- f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- g. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and exposures to the public.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ.
- D. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

3.3 PIPE INSULATION SCHEDULE

Α.	Provide	insulation	for	piping	systems	as	scheduled	below:
----	---------	------------	-----	--------	---------	----	-----------	--------

Insulation Thickness Millimeters (Inches)					
		Nominal	Pipe Size M	lillimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1 ¹ / ₂ - 3)	100 (4) and Greater
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
(4-15 degrees C (40-60 degrees F)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
Storm drain and overflow drain piping (above grade only)	Mineral Fiber (Above ground piping only)	N/A	N/A	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 22 08 00

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.
- B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 07 92 00, JOINT SEALANTS.
- E. Section 09 91 00, PAINTING.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300

BPVC Section IX-2015....Welding, Brazing, and Fusing Qualifications C. American Society of Sanitary Engineers (ASSE): Arresters D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A269/A269M-2014e1.....Standard Specification for Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A403/A403M-2014.....Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings A536-1984 (R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-2008 (R2014).....Standard Specification for Solder Metal B43-2014.....Standard Specification for Seamless Red Brass Pipe, Standard Sizes B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications

	B687-1999 (R2011)Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
	C919-2012 Standard Practice for Use of Sealants in
	Acoustical Applications
	D1785-2012Standard Specification for Poly (Vinyl
	Chloride) (PVC) Plastic Pipe, Schedules 40, 80,
	and 120
	D2000-2012for Rubber
	Products in Automotive Applications
	D2564-2012 Standard Specification for Solvent Cements for
	Poly (Vinyl Chloride) (PVC) Plastic Piping
	Systems
	D2657-2007Standard Practice for Heat Fusion Joining of
	Polyolefin Pipe and Fittings
	D2855-1996 (R2010)Standard Practice for Making Solvent-Cemented
	Joints with Poly (Vinyl Chloride) (PVC) Pipe
	and Fittings
	D4101-2014Standard Specification for Polypropylene
	Injection and Extrusion Materials
	E1120-2008 Standard Specification for Liquid Chlorine
	E1229-2008 Standard Specification for Calcium Hypochlorite
	F2389-2010Standard Specification for Pressure-rated
	Polypropylene (PP) Piping Systems
	F2620-2013Joining of
	Polyethylene Pipe and Fittings
	F2769-2014Standard Specification for Polyethylene of
	Raised Temperature (PE-RT) Plastic Hot and
	Cold-Water Tubing and Distribution Systems
Ε.	American Water Works Association (AWWA):
	C110-2012 Fittings
	C151-2009Cuctile Iron Pipe, Centrifugally Cast
	C153-2011Ductile-Iron Compact Fittings
	C203-2008Coal-Tar Protective Coatings and Linings for
	Steel Water Pipelines - Enamel and Tape - Hot
	Applied
	C213-2007Fusion-Bonded Epoxy Coating for the Interior
	and Exterior of Steel Water Pipelines
	C651-2014Disinfecting Water Mains

F. American Welding Society (AWS): A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing and

Braze Welding

- G. International Code Council (ICC):
 IPC-2012.....International Plumbing Code
- H. Manufacturers Specification Society (MSS):
 - SP-58-2009.....Pipe Hangers and Supports Materials, Design, Manufacture, Selection, Application, and Installation
 - SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service

SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

- I. NSF International (NSF):
 14-2015.....Plastics Piping System Components and Related
 Materials
 - 61-2014a.....Drinking Water System Components Health Effects
 - 372-2011.....Drinking Water System Components Lead Content
- J. Plumbing and Drainage Institute (PDI): PDI-WH 201-2010.....Water Hammer Arrestors
- K. Department of Veterans Affairs: H-18-8-2013.....Seismic Design Handbook

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

1. All items listed in Part 2 - Products.

D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:1. Include complete list indicating all components of the systems.

- Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. A certificate shall be submitted prior to welding of steel piping showing the Welder's certification. The certificate shall be current and no more than one year old. Welder's qualifications shall be in accordance with ASME BPVC Section IX.
- B. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be by the same manufacturer as the groove components.
- C. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.
- D. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 ABOVE GROUND (INTERIOR) WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn. For pipe 150 mm (6 inches) and larger, stainless steel, ASTM A312, schedule 40 shall be used.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75/B75M C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, C84400. Mechanical grooved couplings, 2070 kpa (300 psig) minimum ductile iron, ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing,

with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.

- 3. Mechanical press-connect fittings for copper pipe and tube shall conform to the material and sizing requirements of ASME B16.51, NSF 61 approved, 50 mm (2 inch) size and smaller mechanical pressconnect fittings, double pressed type, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements and unpressed fitting identification feature.
- 4. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
- 5. Flanged fittings, bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Fittings for Stainless Steel:
 - Stainless steel butt-welded fittings, Type 316, Schedule 10, conforming to ASME B16.9.
 - 2. Grooved fittings, stainless steel, Type 316, Schedule 40, conforming to ASTM A403/A403M. Segmentally fabricated fittings are not allowed. Mechanical grooved couplings, ductile iron, 4138 kPa (600 psig), ASTM A536 Grade 448-310-12 (Grade 65-45-12), or malleable iron, ASTM A47/A47M Grade 22410 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- D. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- E. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- F. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.3 EXPOSED WATER PIPING

A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment

and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.

- 1. Pipe: ASTM B43, standard weight.
- 2. Fittings: ASME B16.15 cast bronze threaded fittings with chrome finish.
- 3. Nipples: ASTM B687, Chromium-plated.
- Unions: MSS SP-72, MSS SP-110, brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.4 STRAINERS

- A. Provide on high pressure side of pressure reducing valves, on suction side of pumps, on inlet side of indicating and control instruments and equipment subject to sediment damage and where shown on drawings. Strainer element shall be removable without disconnection of piping.
- B. Water: Basket or "Y" type with easily removable cover and brass strainer basket.
- C. Body: Less than 75 mm (3 inches), brass or bronze; 75 mm (3 inches) and greater, cast iron or semi-steel.

2.5 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.6 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.

2.7 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 413 kPa (60 psig) air charge above a Double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010. Access shall be provided where devices are concealed within partitions or above ceilings. Size and install in accordance with PDI-WH 201 requirements. Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.

4. All medical washing equipment.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.
 - b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
 - c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - 8) Rollers: Cast iron.

- Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
- 10) Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
- 11) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- 12) With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.
- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING.
 Completely fill and seal clearances between raceways and openings with the firestopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in

11-19

Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

- c. Acoustical sealant: Where pipes pass through sound rated walls, seal around the pipe penetration with an acoustical sealant that is compliant with ASTM C919.
- 8. Mechanical press-connect fitting connections shall be made in accordance with the manufacturer's installation instructions. The tubing shall be fully inserted into the fitting and the tubing marked at the shoulder of the fitting. The fitting alignment shall be checked against the mark on the tubing to assure the tubing is fully engaged (inserted) in the fitting. Ensure the tube is completely inserted to the fitting stop (appropriate depth) and squared with the fitting prior to applying the pressing jaws onto the fitting. The joints shall be pressed using the tool(s) approved by the manufacturer. Minimum distance between fittings shall be in accordance with the manufacturer's requirements. When the pressing cycle is complete, visually inspect the joint to ensure the tube has remained fully inserted, as evidenced by the visible insertion mark.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain values at bottom of risers and all low points in system. Design domestic hot water circulating lines with no traps.
 - Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.

- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.
- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 11 23 DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Hot water recirculation pump
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Code – BPVC Section VIII-1-2015 Rules for Construction of Pressure

Vessels, Division 1

BPVC Section VIII-2-2015 Rules for Construction of Pressure Vessels, Division 2-Alternative Rules

,

- C. American Society for Testing and Materials (ASTM): A48/A48M-2003 (R2012)...Standard Specification for Gray Iron Castings B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications
- E. National Electrical Manufacturers Association (NEMA): ICS 6-1993 (R2001, R2006) Industrial Control and Systems: Enclosures

250-2014.....Enclosures for Electrical Equipment (1000 Volts Maximum)

F. NSF International (NSF) 61-2014a.....Drinking Water System Components - Health Effects

22 11 23 - 1

372-2011.....Drinking Water System Components - Lead Content

G. Underwriters' Laboratories, Inc. (UL): 508-1999 (R2013).....Standards for Industrial Control Equipment 778-2010 (R2014)....Standard for Motor-Operated Water Pumps

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 23, DOMESTIC WATER PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed.
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Motor:
 - a. Manufacturer.
 - b. Speed.
 - c. Current Characteristics.
 - d. Efficiency.
- D. Certificate of shop test for domestic water booster system. Provide certified performance curves.
- E. Certified copies of all the factory and construction site test data sheets and reports.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

A. General:

- 1. UL Compliance: Comply with UL 778 for motor-operated water pumps.
- 2. Design Criteria:
 - a. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - b. Head-capacity curves shall slope up to maximum head at shut-off. Select pumps near the midrange of the curve, and near the point of maximum efficiency, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - c. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
 - d. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - e. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
 - f. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
 - g. After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- B. Hot Water Circulating and Recirculating Pumps: Components shall be assembled by a single manufacturer and the pump motor assembly shall be the standard cataloged product of the manufacturer.
- C. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be // in electronic version on compact disc or DVD // inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall be prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372.

2.2 HOT WATER RECIRCULATING PUMP

- A. General:
 - Centrifugal, single stage, pump. Driver shall be electric motor, close coupled or connected by flexible or magnetic coupling. Pump for hot water system shall be designed for quiet, trouble-free operation at a minimum of 82 degrees C (180 degrees F) water service and 1,035 kPa (150 psig).
 - Mounting shall be in-line, vertical or horizontal as indicated on drawing schedules.
 - 3. Stamped or engraved stainless steel nameplate.
 - 4. Motors: Maximum 40 degrees C (104 degrees F) ambient temperature rise, drip-proof, for operation with current, voltage, phase and cycle shown in schedule on Electrical drawings, conforming to NEMA Type 4. Motors shall be equipped with thermal overload protection. When motor has cooled down it shall re-start automatically if the operating control has been left on and the system requires pump to start.
 - 5. Pump shall operate continuously with on-off switch, or with an HOA switch for automatically controlled pumps, for manual shut down. In the inlet and outlet piping of the pump, shutoff valves shall be installed to permit service to the pump, strainer, and check valve without draining the system.
 - 6. A check valve shall be installed in the pump discharge piping immediately downstream of the pump. A strainer with drain valve and removable strainer screen or basket shall be installed immediately upstream of the pump.
- B. Horizontal, Wet-Rotor Circulators:
 - Maintenance free, close-coupled pump and motor with maximum 3,300 rpm rotational speed.
 - Cast iron body construction with ceramic shaft, plastic impeller, fluid lubricated bearings, no mechanical seal, and flanged connections.
 - 3. Bearings: Carbon type.
- C. Horizontal, Permanently Lubricated Circulators:
 - Close-coupled pump and motor with maximum 3,500 rpm rotational speed.

- Bronze body construction with solid steel shaft, plastic impeller, carbon/silicon carbide mechanical seal, and soldered joint connections.
- Bearings: Permanently oil lubricated and sealed, stainless steel ball bearings.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. System Test: After installation is completed provide an operational test of the completed system including flow rates, pressure compliance, alarms and all control functions.
- C. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- D. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to startup and testing.

3.3 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- D. Section 07 92 00, JOINT SEALANTS: Sealant products.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007.....Identification of Piping Systems A112.36.2M-1991....Cleanouts A112.6.3-2019.....Floor and Trench Drains B1.20.1-2013.....Pipe Threads, General Purpose (Inch) B16.1-2015.....Gray Iron Pipe Flanges and Flanged Fittings Classes 25, 125, and 250 B16.4-2016.....Grey Iron Threaded Fittings Classes 125 and 250 B16.15-2018.....Cast Copper Alloy Threaded Fittings, Classes 125 and 250 B16.18-2018.....Cast Copper Alloy Solder Joint Pressure Fittings B16.21-2016.....Nonmetallic Flat Gaskets for Pipe Flanges B16.22-2018.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2016.....Cast Copper Alloy Solder Joint Drainage Fittings: DWV

B16.24-2016.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, and Valves: Classes 150, 300, 600, 900, 1500, and 2500 B16.29-2017.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings: DWV B16.39-2014......Malleable Iron Threaded Pipe Unions Classes 150, 250, and 300 B18.2.1-2012......Square, Hex, Heavy Hex, and Askew Head Bolts and Hex, Heavy Hex, Hex Flange, Lobed Head, and Lag Screws (Inch Series) C. American Society of Sanitary Engineers (ASSE): 1001-2017..... Performance Requirements for Atmospheric Type Vacuum Breakers 1018-2001..... Performance Requirements for Trap Seal Primer Valves - Potable Water Supplied 1044-2015..... Performance Requirements for Trap Seal Primer Devices - Drainage Types and Electronic Design Types 1079-2012.....Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A53/A53M-2018.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated, Welded and Seamless A74-2017.....Standard Specification for Cast Iron Soil Pipe and Fittings A888-2018a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008 (R2014) Standard Specification for Solder Metal B43-2015..... Standard Specification for Seamless Red Brass Pipe, Standard Sizes B88-2016.....Standard Specification for Seamless Copper Water Tube B306-2013.....Standard Specification for Copper Drainage Tube (DWV) B687-1999(R2016).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples

	в813-2016	.Standard Specification for Liquid and Paste
		Fluxes for Soldering of Copper and Copper Alloy
		Tube
	в828-2016	.Standard Practice for Making Capillary Joints
		by Soldering of Copper and Copper Alloy Tube
		and Fittings
	C564-2014	.Standard Specification for Rubber Gaskets for
		Cast Iron Soil Pipe and Fittings
	D2321-2018	.Standard Practice for Underground Installation
		of Thermoplastic Pipe for Sewers and Other
		Gravity-Flow Applications
	D2564-2012(R3018)	.Standard Specification for Solvent Cements for
		Poly(Vinyl Chloride) (PVC) Plastic Piping
		Systems
	D2665-2014	.Standard Specification for Poly(Vinyl Chloride)
		(PVC) Plastic Drain, Waste, and Vent Pipe and
		Fittings
	D2855-2015	.Standard Practice for Two-Step (Primer and
		Solvent Cement) Method of Joining Poly(Vinyl
		Chloride) (PVC) or Chlorinated Poly (Vinyl
		Chloride) CPVCP Pipe and Piping Components with
		Tapered Sockets
	D5926-2015	.Standard Specification for Poly(Vinyl Chloride)
		(PVC) Gaskets for Drain, Waste, and Vent (DWV),
		Sewer, Sanitary, and Storm Plumbing Systems
	F402-2018	.Standard Practice for Safe Handling of Solvent
		Cements, Primers, and Cleaners Used for Joining
		Thermoplastic Pipe and Fittings
	F477-2014	.Standard Specification for Elastomeric Seals
		(Gaskets) for Joining Plastic Pipe
	F1545-2015e1	.Standard Specification for Plastic-Lined
		Ferrous Metal Pipe, Fittings, and Flanges
Ε.	Cast Iron Soil Pipe Ins	
		.Cast Iron Soil Pipe and Fittings Handbook
		.Standard Specification for Hubless Cast Iron
		Soil Pipe and Fittings for Sanitary and Storm
		Drain, Waste, and Vent Piping Applications
		2141., Mabee, and tene riping appreadions

310-2012..... Specification for Coupling for Use in

Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications

- F. Copper Development Association, Inc. (CDA):
 A4015-14/19.....Copper Tube Handbook
- G. International Code Council (ICC):
 IPC-2018.....International Plumbing Code
- H. Manufacturers Standardization Society (MSS): SP-123-2018.....Non-Ferrous Threaded and Solder-Joint Unions

for Use with Copper Water Tube

- I. National Fire Protection Association (NFPA): 70-2020.....National Electrical Code (NEC)
- J. Underwriters' Laboratories, Inc. (UL): 508-99 (R2013).....Standard For Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Grease Removal Unit.
 - 4. Cleanouts.
 - 5. Trap Seal Protection.
 - 6. Penetration Sleeves.
 - 7. Pipe Fittings.
 - 8. Traps.
 - 9. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- B. Refer to Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for additional sustainable design requirements.

1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless

joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

- B. Copper Tube, (DWV):
 - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.
 - 4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASTM D2665.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:

- 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated in the contract document

and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.

- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel-bronze square frame and stainless steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening shall not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drain pipe. For drains not installed in connection with a waterproof membrane, a 1.1 to 1.8 Kg (2.5 to 4 lbs.) flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.
- B. Type B (FD-B) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type B floor drain shall be constructed of galvanized cast iron with medium duty nickel bronze grate, double drainage pattern, clamping device, without sediment bucket but with

secondary strainer in bottom for large debris. The grate shall be 175 mm (7 inches) minimum.

- C. Type C (FD-C) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty nickel bronze adjustable strainer with round or square grate of 150 mm (6 inches) width or diameter minimum for toilet rooms, showers and kitchens.
- D. Type D (FD-D) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type D floor drain shall have a cast iron body with flange for membrane type flooring, integral reversible clamping device, seepage openings and 175 mm (7 inch) diameter or square satin nickel bronze or satin bronze strainer with 100 mm (4 inch) flange for toilet rooms, showers and kitchens.
- E. Type E (FD-E) floor drain shall comply with ASME A112.6.3. The type E floor drain shall have a heavy, cast iron body, double drainage pattern, heavy non-tilting nickel bronze grate not less than 300 mm (12 inches) square, removable sediment bucket. Clearance between body and bucket shall be ample for free flow of waste water. For traffic use, an extra heavy duty load classification ductile iron grate shall be provided.
- F. Type F (FD-F) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type F floor drain shall be have a cast iron body with flange, integral reversible clamping device, seepage openings and a 228 mm (9 inch) two-piece satin nickel-bronze or satin bronze strainer for use with seamless vinyl floors in toilet rooms and showers.
- G. Type G (FD-G) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type G floor drain shall have a cast iron body, shallow type with double drainage flange and removable, perforated aluminum sediment bucket. The type G drain shall have all interior and exposed exterior surfaces coated with acid resistant porcelain enamel finish. The floor drain shall have a clamping device. The frame and grate shall be nickel bronze. The grate shall be approximately 200 mm (8 inches) in diameter. The space between body of drain and basket shall be sufficient for free flow of waste water.
- H. Type H (FD-H) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type H drain shall have a cast iron body, double drainage pattern, without sediment bucket but with loose set nickel

bronze grate, secondary strainer, and integral clamping collar. The grate shall be 300 mm (12 inches) in diameter or 300 mm (12 inches) square. The drain body shall be 150 mm (6 inches) deep.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are prohibited on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that shall extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that shall extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.

- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drain pipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow greater than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- M. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and

restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:

- 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
- Pipe sections with damaged threads shall be replaced with new sections of pipe.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead-free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.

- 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted in the contract documents for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- I. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.

J. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gauge shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gauge shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system. - - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- H. Section 22 07 11, PLUMBING INSULATION.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A112.6.4-2003 (R2012) ..Roof, Deck, and Balcony Drains A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B1.20.1-2013......Pipe Threads, General Purpose, Inch B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300 B16.9-2012.....Factory-Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings B16.15-2013.....Cast Copper Alloy Threaded Fittings: Classes 125 and 250

B16.18-2012.....Cast Copper Alloy Solder-Joint Pressure Fittings

B16.22-2013.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2011.....Cast Copper Alloy Solder Joint Drainage Fittings - DWV B16.29-2012.....Wrought Copper and Wrought Copper Alloy Solder-Joint Drainage Fittings - DWV C. American Society of Sanitary Engineering (ASSE) 1079-2012..... Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2012.....Standard Specification for Pipe, Steel, Black And Hot-Dipped, Zinc-coated Welded and Seamless A74-2013a.....Standard Specification for Cast Iron Soil Pipe and Fittings A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A312/A312M-2015.....Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel Pipes A536-1984(R2014).....Standard Specification for Ductile Iron Castings A733-2013.....Standard Specification for Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples A888-2013a.....Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications B32-2008 (R2014).....Standard Specification for Solder Metal B61-2008 (R2013).....Standard Specification for Steam or Valve Bronze Castings B62-2009..... Standard Specification for Composition Bronze or Ounce Metal Castings B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014.....Standard Specification for Seamless Copper Water Tube

	B306-2013Standard Specification for Copper Drainage Tube (DWV)
	B584-2014Standard Specification for Copper Alloy Sand
	Castings for General Applications
	B687-1999 (R2011)Standard Specification for Brass, Copper, and
	Chromium-Plated Pipe Nipples
	B828-2002 (R2010)Standard Practice for Making Capillary Joints
	by Soldering of Copper and Copper Alloy Tube
	and Fittings
	B813-2010 Standard Specification for Liquid and Paste
	Fluxes for Soldering of Copper and Copper Alloy
	Tube
	C564-2014Standard Specification for Rubber Gaskets for
	Cast Iron Soil Pipe and Fittings
	C1173-2010 (R2014)Standard Specification for Flexible Transition
	Couplings for Underground Piping Systems
	D2000-2012 Standard Classification System for Rubber
	Products in Automotive Applications
	F1545-2015Standard Specification for Plastic-Lined
	Ferrous Metal Pipe, Fittings, and Flanges
Ε.	American Welding Society (AWS):
	A5.8M/A5.8 AMD1-2011Specification for Filler Metals for Brazing and
	Braze Welding
F.	Copper Development Association (CDA):
	A4015-2011Copper Tube Handbook
G.	Cast Iron Soil Pipe Institute (CISPI):
	301-2012Standard Specification for Hubless Cast Iron
	Soil Pipe and Fittings for Sanitary and Storm
	Drain, Waste, and Vent Piping Applications
	310-2012Standard Specification for Coupling for Use in
	Connection with Hubless Cast Iron Soil Pipe and
	Fittings for Sanitary and Storm Drain, Waste,
	and Vent Piping Applications
Η.	International Code Council (ICC):
	IPC-2012International Plumbing Code

I. Manufacturers Standardization Society of the Valve and Fittings
Industry, Inc. (MSS):

SP-72-2010a.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-110-2010.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 00, FACILITY STORM DRAINAGE", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and Fittings.
 - 2. Specialty Pipe Fittings.
 - 3. Cleanouts.
 - 4. Roof Drains.
 - 5. Expansion Joints.
 - 6. Downspout Nozzles.
 - 7. Sleeve Flashing Devices.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be // in electronic version on compact disc or DVD // inserted into a three

ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.
 - d. All mechanical equipment rooms or other areas containing mechanical air handling equipment.

22 14 00 - 5

- 2. The cast iron storm pipe shall be bell and spigot, or hubless (plain end or no-hub) as required by selected jointing method.
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
- 4. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Copper Tube, (DWV): May be used for piping above ground.
 - 1. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 2. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME 16.29.
 - 3. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.
- C. Roof drain piping and body of drain in locations where the outdoor conditions are subject to freezing shall be insulated.

2.2 PUMPED DRAIN PIPING

- A. Pumped drain piping 75 mm (3 inches) and less shall be copper tube conforming to ASTM B88, type K or L. For pumped drain piping 100 mm (4 inches) and greater, galvanized steel conforming to ASTM A53/A53M, seamless, schedule 40 may be used.
- B. Pumped drain pipe fittings shall comply with the following:
 - 1. Wrought copper or bronze castings for use with copper tube conforming to ASME B16.18 and B16.22.
 - Unions, for use with copper tube up to 50 mm (2 inches) shall be cast with bronze, conforming to ASME B16.18 and ASTM B584 with solder or braze joints.
 - 3. Grooved fittings, for use with copper tube 65 mm to 100 mm (2-1/2 to 4 inch) shall be wrought copper conforming to ASTM B75/B75M, alloy C12200, 125 to 150 mm (5 to 6 inch) bronze castings conforming to ASTM B584.
 - 4. Mechanical grooved couplings shall have a ductile iron housing conforming to ASTM A536 (Grade 65-45-12) elastomer gasket suitable for potable water service and process temperature and steel track

head bolts conforming to ASTM A183, housing shall be coated with colored alkyd enamel paint.

- C. Adapters shall be provided for joining pipe with different end connections.
- D. The solder shall be lead free using a water flushable, non-corrosive flux conforming to ASTM B32.
- E. Dielectric fittings and specialties shall be provided when joining pipe of dissimilar metals.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be unshielded, elastomeric, sleeve type reducing or transition pattern conforming with ASTM C1173 and include shear ring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - 2. For PVC soil pipes, the sleeve material shall be elastomeric seal conforming to ASTM F477 or PVC conforming to ASTM D5926.
 - 3. dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. Dielectric fittings shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- E. Dielectric nipples shall be electroplated steel and shall conform with ASTM F1545 with a pressure ratings of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene. Bio-based materials shall be utilized when possible.

2.4 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.

- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside caulk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two way cleanouts shall be provided where indicated on the drawings and at each building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of sanitary tees. Nickel bronze square frame and stainless steel cover with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.5 ROOF DRAINS AND CONNECTIONS

A. Roof Drains: Roof Drains (RD) shall be cast iron with clamping device for making watertight connection and shall conform with ASME A112.6.4. Free openings through strainer shall be twice area of drain outlet. For roof drains not installed in connection with a waterproof membrane, a soft copper membrane shall be provided 300 mm (12 inches) in diameter greater than outside diameter of drain collar. An integral gravel stop shall be provided for drains installed on roofs having built up roofing covered with gravel or slag. Integral no-hub, soil pipe gasket or threaded outlet connection shall be provided.

- 1. Flat Roofs: The roof drain shall have a beehive or dome shaped strainer with integral flange not less than 300 mm (12 inches) in diameter. For an insulated roof, a roof drain with an adjustable drainage collar shall be provided, which can be raised or lowered to meet required insulation heights, sump receiver and deck clamp. The bottom section shall serve as roof drain during construction before insulation is installed.
- 2. Canopy Roofs: The roof drain shall have a beehive or dome shaped strainer with the integral flange no greater than 200 mm (8 inches) in diameter. For an insulated roof, the roof drain shall be provided with an adjustable drainage collar, which can be raised or lowered to meet the required insulation heights, sump receiver and deck clamp. Bottom section shall serve as roof drain during construction before insulation is installed.
- Protective Roof Membrane Insulation Assembly: The roof drain shall have a perforated stainless steel extension filter, non-puncturing clamp ring, large sump with extra wide roof flange and deck clamp.
 a. Non pedestrian Roofs: The roof drain shall have large polypropylene or aluminum locking dome.
- Roof Drains, Overflow or Secondary (Emergency): Roof Drains identified as overflow or secondary (emergency) drains shall have a 50 mm (2 inch) water dam integral to the drain body.
- 5. Roof drains in areas subject to freezing shall have heat tape and shall be insulated.
- B. Expansion Joints: Expansions joints shall be heavy cast iron with cast brass or PVC expansion sleeve having smooth bearing surface working freely against a packing ring held in place and under pressure of a bolted gland ring, forming a water and air tight flexible joint. Asbestos packing is prohibited.
- C. Interior Downspouts: An expansion joint shall be provided, specified above, at top of run on straight, vertical runs of downspout piping 12 m (40 feet) long or greater.
- D. Downspout Nozzle: The downspout nozzle fitting shall be of brass, unfinished, with internal pipe thread for connection to downspout.

2.6 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the IPC and these specifications.
- B. Branch piping shall be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
- D. All pipe runs shall be laid out to avoid interference with other work/trades.
- E. The piping shall be installed above accessible ceilings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 2.44 m (8 feet) (1 percent slope) of pipe length.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two drains are installed back to back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried storm drainage piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed

upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements. Bio-based materials shall be utilized when possible.

- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to CDA A4015.
- M. PVC piping is prohibited for use as storm drain service.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - Pipe sections with damaged threads shall be replaced with new undamaged sections of pipe at no additional time or cost to Government.
- E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the IPC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.
- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. NPS 4 to NPS 5 (DN 100 to DN 125): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. NPS 6 to NPS 8 (DN 150 to DN 200): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. NPS 10 to NPS 12 (DN 250 to DN 300): 1500 mm (60 inches) with 23 mm (7/8 inch) rod.
- E. The maximum support spacing for horizontal plastic shall be 1.22 m (4 feet).
- F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, wall and ceiling plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.
 - 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and

welded to the hanger and support. The shield shall be 100 mm (4 inches) in length and be 1.6 mm (16 gage) steel. The shield shall be sized for the insulation.

- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- I. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

3.5 INSULATION

A. Insulate horizontal sections and 600 mm (2 feet) past changes of direction to vertical sections for interior section of roof drains. Install insulation in accordance with the requirements of Section 22 07 11, PLUMBING INSULATION.

3.6 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - If entire system is tested with water, tightly close all openings in pipes except the highest opening, and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each

section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- 3. Final Tests: While either one of the following tests may be used, Contractor shall check with VA as to which test will be performed.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 0.25 kPa (1 inch of water) with a smoke machine. **Chemical smoke is prohibited**.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.
- C. COR shall witness all tests. Contractor shall coordinate schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to flushing, disinfection/sterilization, startup, and testing.
 - - - E N D - - -

SECTION 22 14 29 SUMP PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Sump pumps. See schedule on Drawings for pump capacity and head.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- G. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING
- H. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklist, and training.
- I. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standard Institute (ANSI)/Hydraulic Institute (HI): 1.1-1.2-2014.....Rotodynamic Centrifugal Pumps for Nomenclature and Definitions
 - 1.3-2013.....Rotodynamic Centrifugal Pumps for Design and Application

1.4-2014.....Rotodynamic Centrifugal Pumps for Manuals Describing Installation, Operation, and

Maintenance

C. ASTM International (ASTM): A48/A48M-2003 (R2012)...Standard Specification for Gray Iron Castings A532/A532M-2010 (R2014).Standard Specification for Abrasion-Resistant Cast Irons B584-2014.....Standard Specification for Copper Alloy Sand Castings for General Applications D. National Electrical Manufacturers Association (NEMA):

ICS 6-1993 (R2001, R2006) Industrial Control and Systems:

Enclosures

250-2014......Enclosures for Electrical Equipment (1000 Volts Maximum)

E. Underwriters' Laboratories, Inc. (UL): 508-1999 (R2013).....Standards for Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 29, SUMP PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed (rpm).
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Electric Motor:
 - a. Manufacturer.
 - b. Speed.
 - c. Current Characteristics and W (HP).
 - d. Efficiency.
 - 3. Control panel.
 - 4. Sensors.
- D. Certified copies of all the factory and construction site test data sheets and reports.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list which indicates all components of the system.
 - Include complete diagrams of the internal wiring for each item of equipment.

- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance, and troubleshooting.
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in AutoCAD provided on compact disk or DVD. Should the installing contractor engage the testing

company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SUMP PUMP

- A. Centrifugal, vertical, submersible pump and motor, designed for 60 degrees C (140 degrees F) maximum water service. Driver shall be electric motor. Support shall be rigid type. Provide perforated, suction strainer. Systems may include one, two, or more pumps with alternator as required by Contract Documents. Pump shall be capable of continuous duty cycle.
 - Pump housings may be cast iron, bronze, aluminum or stainless steel. Cast iron and aluminum housings for submersible pumps shall be epoxy coated. Bio-based materials shall be utilized when possible.
- B. Impeller: Statically and dynamically balanced, keyed and secured to shaft, bronze ASTM B584.
- C. Shaft: Stainless steel or other approved corrosion-resisting metal.
- D. Bearings: As required to hold shaft alignment, anti-friction type for thrust permanently lubricated. Bio-based materials shall be utilized when possible.
- E. Seal: Mechanical.
- F. Motor: Maximum 40 degrees C (104 degrees F) ambient temperature rise above the maximum fluid temperature being pumped , drip-proof hermitically sealed, lifting eye, capacitor start type, voltage and phase as shown in schedule on Electrical drawings conforming to NEMA Type 4X. Size the motor capacity to operate pump without overloading the motor at any point on the pump curve. Refer to Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- G. Starting Switch: Manually-operated, tumbler type, as specified in Section 26 29 11, MOTOR CONTROLLERS.

22 14 29 - 4

- H. Automatic Control and Level Alarm: Furnish a control panel in a NEMA 1 enclosure for indoors or in a NEMA 4X enclosure for outdoors. The controls shall be suitable for operation with the electrical characteristics listed on the Electrical drawings. The control panel shall have a level control system with switches to start and stop pumps automatically, and to activate a high water alarm. The level control system shall include sensors in the sump that detect the level of the liquid. The pump is also connected to a control which has the ability to prevent oil from being pumped. The same unit shall activate an alarm when oil is detected. The sensors may be float type switches, ultrasonic level sensors, or transducers. The high water alarm shall have a red beacon light at the control panel and a buzzer, horn, or bell. The alarm shall have a silencing switch. Provide auxiliary contacts for remote communication with, and alarm monitoring to, the BAS using a BACnet compatible open-protocol type interface to DDC Controls System.
 - 1. The circuitry of the control panel shall include:
 - a. Power switch to turn on/off the automatic control mechanism
 - b. HOA switches to manually override automatic control mechanism
 - c. Run lights to indicate when pumps are powered up
 - d. Level status lights to indicate when water in sump has reached the predetermined on/off and alarm levels
 - e. Magnetic motor contactors
 - f. Disconnect/breaker for each pump
 - g. Automatic motor overload protection
 - h. Wiring terminal block
 - i. Dead front
 - j. Auxiliary contacts
 - k. Control circuit protection
 - 1. Fused control step down transformer
 - 2. Sensors that detect the level of water in the sump shall be so arranged as to allow the accumulation of enough volume of liquid below the normal on-level that the pump will run for a minimum cycle time as recommended by the pump manufacturer. Sensors shall be located to activate the alarm adequately before the water level rises to the inlet pipe.
 - Provide two separate power supplies to the control panel, one for the control/alarm circuitry and one for power to the pump motors.

Each power supply is to be fed from its own breaker so that if a pump overload trips a breaker, the alarm system shall still function. Each power supply is to be wired in its own conduit.

- 4. Wiring from the sump to the control panel shall have separate conduits for the pump power and for the sensor switches. All conduits are to be sealed at the basin and at the control panel to prevent the intrusion of moisture and of flammable and/or corrosive gases.
- I. Sump: Furnish fiberglass or steel basin with gas tight covers. Cover shall have 275 mm by 381 mm (11 inch by 15 inch) manhole with bolted cover, vent connection, openings for pumps and controls. Sump shall be sized to allow an adequate volume of water to accumulate for a minimum one minute cycle of pump operation.
- J. Provide a check and ball valve in the discharge of each pump. Refer to Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- K. Removal/Disconnect System: In a system utilizing a submersible pump, where sump depth, pump size, or other conditions make removal of the pump unusually difficult or unsafe, a manufacturer's removal/disconnect system shall be provided. The system shall consist of a discharge fitting mounted on vertical guide rails attached to the sump or quick connect pipe fitting connection to piping. The pump shall be fitted with an adapter fitting that easily connects to/disconnects from the discharge fitting as the pump is raised from or lowered into the sump. The discharge piping shall connect to the discharge fitting so that it is disconnected without workers entering the pit. Where the sump depth is greater than five feet or other conditions exist to make the removal of the pump difficult or hazardous, the system shall include a rail guided quick disconnect apparatus to allow the pump to be pulled up out of the sump.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Pump installation to comply with ANSI/HI 1.4 for sump pumps.
- B. Leak Test: Charge piping system and test for leaks. Test until there are no leaks. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of

the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- C. The tests shall include system capacity and all control and alarm functions.
- D. When any defects are detected, correct defects and repeat test.
- E. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to startup and testing.

3.2 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.3 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 35 00 DOMESTIC WATER HEAT EXCHANGERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for domestic hot water heat exchangers including thermometers and all necessary accessories, connections and equipment.
- B. Application is for indirect water heating utilizing steam or hot water as a medium and can be used for heat recovery or solar systems for preheating water prior to primary water heating equipment.
- C. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING.
- F. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- G. Section 22 11 23, DOMESTIC WATER PUMPS: Circulating Pump.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standards will govern.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2019.....Energy Standard for Buildings Except Low-Rise Residential Buildings
- C. American National Standard Institute (ANSI): Z21.22-2015......Relief Valves for Hot Water Supply Systems
- D. American Society of Mechanical Engineers (ASME):

ASME Boiler and Pressure Vessel Code -BPVC Section IV-2019....Rules for Construction of Heating Boilers BPVC Section VIII-1-2019 Rules for Construction of Pressure Vessels, Division 1 Form U-1......Manufacturer's Data Report for Pressure Vessels

B1.20.1-2013......Pipe Threads, General Purpose (Inch)

B16.5-2017.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.24-2016.....Cast Copper Alloy Pipe Flanges, Flanged Fittings, and Valves: Classes 150, 300, 600, 900, 1500, and 2500 PTC 25-2018.....Pressure Relief Devices

- E. National Fire Protection Association (NFPA): 70-2020.....National Electrical Code (NEC)
- F. NSF International (NSF):
 61-2018.....Drinking Water System Components Health
 Effects

372-2016.....Drinking Water System Components - Lead Content

G. Underwriter Laboratories (UL): 207-2009(R2020).....Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

778-2016(R2019).....Standard for Motor-Operated Water Pumps

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 35 00, DOMESTIC WATER HEAT EXCHANGERS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Heat Exchangers.
 - 2. Heat Reclaimers.
 - 3. Pressure and Temperature Relief Valves.
 - 4. Steam Control Valves.
 - 5. Heating Hot Water Control Valves.
 - 6. Thermometers.
 - 7. Pressure Gauges.
 - 8. Vacuum Breakers.
 - 9. Safety Valves.
 - 10. Expansion Tanks.
 - 11. Circulating Pumps.

- 12. Steam Traps.
- 13. Heat Traps.
- D. A Form U-1 or other documentation stating compliance with the ASME Boiler and Pressure Vessel Code.
- E. Shop drawings shall include wiring diagrams for power, signal and control functions.
- F. Submit documentation indicating compliance with applicable requirements of ASHRAE 90.1, Unfired Storage Tanks, for Service Water Heating.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

1.5 QUALITY ASSURANCE

- A. Equipment components in contact with potable water shall meet compliance requirements in documents NSF 61 and NSF 372.
- B. Comply with American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1 for efficiency performance.
- C. The heat exchanger shall be certified and labeled by an independent testing agency.
- D. Circulating pump power shall be installed per NFPA 70.
- E. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit https://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph AS-BUILT DOCUMENTATION of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

- A. The shell and tube heat exchangers shall be double wall semiinstantaneous type, vertical configuration with domestic water in the tubes and steam in the shell. Heat exchanger shall be of counter-flow design. The shell and tube heat exchanger shall be a packaged assembly of tank, heat exchanger coils, control valves, controls, and specialties constructed of ASME code stainless-steel shell with 1034 kPa (150 psig) minimum working pressure. Heat exchanger shall comply with NSF 61 and NSF 372 for barrier materials for potable-water tank linings. Provide with access for cleaning and disinfection. Heat exchanger capacities are scheduled on the drawings.
- B. The stand or skid shall be factory-fabricated for floor mounting.
- C. The tappings (openings) shall be factory-fabricated of materials compatible with the tank and in accordance with appropriate ASME standards for piping connections, pressure and temperature relief valve, pressure gauge, thermometer, drain valve, anode rods and controls. The openings shall be in accordance with ASME standards listed below:
 - 1. 50 mm or DN50 (NPS 2 inch) and smaller: Threaded ends according to ASME B1.20.1.
 - 2. 65 mm or DN65 (NPS 2-1/2 inch) and larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges, and according to ASME B16.24.
- D. Shell insulation shall comply with ASHRAE 90.1 and suitable for operating temperature. The entire shell and nozzles shall be completely surrounded except connections, gauges and controls.
- E. The heat exchanger coils shall be constructed from stainless-steel and fabricated in a helix wound or straight tube configuration for steam heating medium. The pressure rating shall be equal to or greater than the steam supply pressure plus 50 percent.
- F. The temperature controls shall be designed for an output temperature of 60 degrees C (140 degrees F) based upon an adjustable temperature transmitter that operates a control valve and is capable of maintaining outlet water temperature within 2 degrees C (4 degrees F) of setting. Heaters shall be capable of raising the discharge temperature to 77 to 82 degrees C (170 to 180 degrees F) for thermal eradication.
 - 1. Steam control valve shall regulate the control of steam flow to the heating coil water control valve to control water temperature and

shall be electronically operated. The outlet water temperature shall not vary more than +/-1 degrees C (2.5 degrees F).//

- A drip trap, steam condensate trap (if required), Y strainer, vacuum breaker, and pressure gauge shall be factory sized and piped with steam control valve.
- 3. A normally closed solenoid valve shall be rated at 5 amps, 120-volt. Solenoid valve shall close the steam supply to the heating coil, should the water temperature in the tank reach the high set point.
- G. Safety control shall be automatic, high temperature limit shutoff device.
- H. The relief valves shall be ASME rated and stamped for combination temperature and pressure relief valves.
- I. The pressure storage vessel shall be all welded construction and ASME BPVC Section VIII-1 stamped for a working pressure of 1034 kPa (150 psig). The storage tank shell of the exchanger shall be solid stainless-steel type 316L. Lining shall meet NSF 61 and NSF 372 requirements. The storage vessel shall be provided with a fiberglass insulation system in compliance with ASHRAE 90.1, with jacket, and a magnesium anode. Provide with access for cleaning and disinfection.

2.2 THERMOMETERS

A. Thermometers shall be rigid stem or remote sensing, scale or dial type with an aluminum, black metal, stainless-steel, or chromium plated brass case. The thermometer shall be back connected, red liquid (alcohol or organic-based) fill, vapor, bi-metal or gas actuated, with 228 mm (9 inches) high scale dial or circular dial 50 to 127 mm (2 to 5 inches) in diameter graduated from 4 to 100 degrees C (40 to 212 degrees F), with two-degree graduations guaranteed accurate within one scale division. The socket shall be separable, double-seat, micrometer-fittings, with extension neck not less than 63 mm (2 1/2 inches) to clear tank or pipe covering. The thermometer shall be suitable for 19 mm (3/4 inch) pipe threads. Thermometers may be console-mounted with sensor installed in separate thermometer well.

2.3 SAFETY VALVES FOR SHELL AND COIL HEATERS

- A. Separate combination pressure/temperature relief valves shall be provided on each water heater.
- B. A double solenoid safety system shall be provided for each shell and coil heater to function as a safety over temperature prevention system. System shall consist of aquastat, pilot light, solenoid safety valve

and solenoid water safety valve located in the control circuit. The aquastat shall be set at 60 degrees C (140 degrees F). Shutoff valves shall comply with Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.

2.4 DOMESTIC HOT WATER EXPANSION TANKS

- A. A steel pressure rated tank constructed with welded joints and factory installed butyl rubber diaphragm shall be installed as scheduled. The air precharge shall be set to minimum system operating pressure at tank.
- B. The tappings shall be factory-fabricated steel, welded to the tank and include ASME B1.20.1 pipe thread.
- C. The interior finish shall comply with NSF 61 and NSF 372 for barrier materials for potable water tank linings and the liner shall extend into and through the tank fittings and outlets.
- D. The air charging valve shall be factory installed.

2.5 HEAT TRAPS

A. Heat traps shall be installed in accordance with ASHRAE 90.1 unless provided integrally with the heaters.

2.6 COMBINATION TEMPERATURE AND PRESSURE RELIEF VALVES

A. The combination pressure and temperature relief Valve shall be ANSI Z21.22 and ASME rated and constructed of all brass or bronze with a self-closing reseating valve. The relief valves shall include a relieving capacity greater than the heat input and include a pressure setting less than the water heater's working pressure rating. Sensing element shall extend into storage tank.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the contractor shall correct the installation at no additional cost or time to the Government.
- B. The water heaters shall be installed on concrete bases. Refer to Specification Section 03 30 00, CAST-IN-PLACE CONCRETE and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- C. The water heaters shall be installed level and plumb and securely anchored.

- D. Water heaters shall be installed and connected in accordance with manufacturer's written instructions with manufacturer's recommended clearances.
- E. All pressure and temperature relief valves discharge shall be piped to nearby floor drains with air gap or break.
- F. Thermometers and isolation values shall be installed on water heater inlet and outlet piping and shall be positioned such that they can be read by an operator or staff standing on floor or walkway.
- G. The thermostatic control shall be set for a minimum setting of 60 degrees C (140 degrees F) for storage heaters.
- H. Shutoff valves shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
- I. All manufacturer's required clearances shall be maintained.
- J. A combination temperature and pressure relief valve shall be installed at the top portion of the storage tank. The sensing element shall extend into the tank. The relief valve outlet drain piping shall discharge by air gap into a floor drain.
- K. Piping type heat traps shall be installed on the inlet and outlet piping of the domestic water heater storage tanks, unless provided integrally with the tanks.
- L. Water heater drain piping shall be installed as indirect waste to spill by air gap into open drains or over floor drains. Hose end drain valves shall be installed at low points in water piping for gas fueled domestic hot water heaters without integral drains.
- M. Dielectric unions shall be provided if there are dissimilar metals between the water heater connections and the attached piping.
- N. Provide vacuum breakers per ANSI Z21.22 on the inlet pipe if the water heater is bottom fed.

3.2 LEAKAGE TEST

A. Before piping connections are made, the water heaters shall be tested at a hydrostatic pressure of 1380 kPa (200 psig) for water heaters rated at less than 1104 kPa (160 psig) and 1654 kPa (240 psig) for units with an maximum working pressure of 1104 kPa (160 psig) or over. Any failed test shall be corrected and the water heater shall be replaced with a new unit at no additional cost or time to the Government.

3.3 PERFORMANCE TEST

A. Ensure that all the remote water outlets are always tested to a minimum of 43 degrees C (110 degrees F) and a maximum of 49 degrees C (120 degrees F) water flow. If necessary, make all correction to balance the return water system or reset the thermostat to make the system comply with design requirements.

3.4 STARTUP AND TESTING

- A. Perform tests ss recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. The tests shall include system capacity, control function, and alarm functions.
- C. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- D. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.5 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA Personnel responsible in operation and maintenance of the system.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME):

A112.6.1M-1997 (R2012)..Supports for Off-the-Floor Plumbing Fixtures

for Public Use

A112.19.1-2013.....Enameled Cast Iron and Enameled Steel Plumbing Fixtures

A112.19.2-2013.....Ceramic Plumbing Fixtures

A112.19.3-2008.....Stainless Steel Plumbing Fixtures

C. American Society for Testing and Materials (ASTM):

A276-2013a.....Standard Specification for Stainless Steel Bars and Shapes

B584-2008.....Standard Specification for Copper Alloy Sand Castings for General Applications

- D. CSA Group: B45.4-2008 (R2013).....Stainless Steel Plumbing Fixtures
- E. National Association of Architectural Metal Manufacturers (NAAMM):
 - AMP 500-2006.....Metal Finishes Manual

- F. American Society of Sanitary Engineering (ASSE): 1016-2011.....Automatic Compensating Valves for Individual Showers and Tub/Shower Combinations
- G. NSF International (NSF):
 - 14-2013..... Plastics Piping System Components and Related Materials

61-2013..... Drinking Water System Components - Health Effects

372-2011.....Drinking Water System Components - Lead Content

- H. American with Disabilities Act (A.D.A)
- I. International Code Council (ICC):

IPC-2015.....International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be inserted into a three ring binder. All aspects of system operation and

maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption, and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended.

2.2 STAINLESS STEEL

- A. Corrosion-resistant Steel (CRS):
 - Plate, Sheet and Strip: CRS flat products shall conform to chemical composition requirements of any 300 series steel specified in ASTM A276.

- 2. Finish: Exposed surfaces shall have standard polish (ground and polished) equal to NAAMM finish Number 4.
- B. Die-cast zinc alloy products are prohibited.

2.3 STOPS

- A. Provide lock-shield loose key or screw driver pattern angle stops, straight stops or stops integral with faucet, with each compression type faucet whether specifically called for or not, including sinks in solid-surface, wood and metal casework, laboratory furniture and pharmacy furniture. Locate stops centrally above or below fixture in accessible location.
- B. Furnish keys for lock shield stops to the COR.
- C. Supply from stops not integral with faucet shall be chrome plated copper flexible tubing or flexible stainless steel with inner core of non-toxic polymer.
- D. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe, i.e. red brass pipe nipple, chrome plated where exposed.
- E. Mental Health Area: Provide stainless steel drain guard for all lavatories not installed in casework.

2.4 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures and at each wall, ceiling and floor penetrations in exposed finished locations and within cabinets and millwork.

2.5 LAMINAR FLOW CONTROL DEVICE

- A. Smooth, bright stainless steel or satin finish, chrome plated metal laminar flow device shall provide non-aeration, clear, coherent laminar flow that will not splash in basin. Device shall also have a flow control restrictor and have vandal resistant housing. Aerators are prohibited.
- B. Flow Control Restrictor:
 - Capable of restricting flow from 32 ml/s to 95 ml/s (0.5 gpm to 1.5 gpm) for lavatories; 125 ml/s to 140 ml/s (2.0 gpm to 2.2 gpm) for sinks P-505 through P-520, P-524 and P-528; and 174 ml/s to 190 ml/s (2.75 gpm to 3.0 gpm) for dietary food preparation and rinse sinks or as specified.
 - Compensates for pressure fluctuation maintaining flow rate specified above within 10 percent between 170 kPa and 550 kPa (25 psig and 80 psig).

 Operates by expansion and contraction, eliminates mineral/sediment build-up with self-cleaning action, and is capable of easy manual cleaning.

2.6 CARRIERS

- A. ASME A112.6.1M, with adjustable gasket faceplate chair carriers for wall hung closets with auxiliary anchor foot assembly, hanger rod support feet, and rear anchor tie down.
- B. ASME A112.6.1M, lavatory, chair carrier for thin wall construction. All lavatory chair carriers shall be capable of supporting the lavatory with a 250-pound vertical load applied at the front of the fixture.
- C. Where water closets, lavatories or sinks are installed back-to-back and carriers are specified, provide one carrier to serve both fixtures in lieu of individual carriers. The drainage fitting of the back to back carrier shall be so constructed that it prevents the discharge from one fixture from flowing into the opposite fixture.

2.7 WATER CLOSETS

- A. Water Closet (Wall Hung, ASME A112.19.2) office and industrial, elongated bowl, siphon jet 6 L (1.6 gallons) per flush, wall outlet. Top of seat shall be between 400 mm and 432 mm (16 inches and 17 inches) above finished floor. Handicapped water closet shall have seat set 450 mm (18 inches) above finished floor.
 - Seat: Institutional/Industrial, extra heavy duty, chemical resistant, solid plastic, open front less cover for elongated bowls, integrally molded bumpers, concealed check hinge with stainless steel post. Seat shall be posture contoured body design. Color shall be white.
 - 2. Fittings and Accessories: Gaskets-neoprene; bolts with chromium plated caps nuts and washers and carrier.
 - 3. Flush valve: Large chloramines resistant diaphragm, semi-red brass valve body, exposed chrome plated, either a non-hold open ADA approved side oscillating handle, or a battery powered active infrared sensor for automatic operation with courtesy flush button for manual operation sensor operated with manual override water saver design per flush with maximum 10 percent variance 25 mm (1 inch) screwdriver back check angle stop with vandal resistant cap, adjustable tailpiece, a high back pressure vacuum breaker, spud coupling for 40 mm (1-1/2 inches) top spud, wall and spud flanges,

solid-ring pipe support, and sweat solder adapter with cover tube and set screw wall flange. Valve body, cover, tailpiece and control stop shall be in conformance with ASTM alloy classification for semi-red brass. Seat bumpers shall be integral part of flush valve. Set centerline of inlet 292 mm (11-1/2 inches) above seat.

2.8 URINALS

- A. Urinal (Wall Hung, ASME A112.19.2) bowl with integral flush distribution, wall to front of flare 343 mm (13.5 inches) minimum. Wall hung with integral trap, siphon jet flushing action 4 L (1.0 gallons) per flush with 50 mm (2 inches) back outlet and 20 mm (3/4 inch) top inlet spud.
 - Support urinal with chair carrier and install with rim 600 mm (24 inches) above finished floor.
 - 2. Flushing Device: Large chloramines resistant diaphragm, semi-red brass body, exposed flush valve electronic sensor operated hardwired active infrared sensor for automatic operation non-hold open, water saver design, solid-ring pipe support, and 20 mm (3/4 inch) capped screwdriver angle stop valve. Set centerline of inlet 292 mm (11-1/2 inches) above urinal. Valve body, cover, tailpiece, and control stop shall be in conformance with ASTM alloy classification for semi-red brass.

2.10 LAVATORIES

- A. Dimensions for lavatories are specified, Length by width (distance from wall) and depth.
- B. Brass components in contact with water shall contain no more than 0.25 percent lead content by dry weight. Faucet flow rates shall be 3.9 L/m (1.5 gpm) for private lavatories and either 1.9 L/m (0.5 gpm) or 1.0 liter (0.25 gallons) per cycle for public lavatories.
- C. Lavatory (Single Lever Handle Control ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) maximum apron, first quality vitreous china. Punching for faucet on 102 mm (4 inches) centers. Set carrier per "2.4 Carriers" with rim 864 mm (34 inches) above finished floor.
 - Faucet: Solid cast brass construction, vandal resistant, heavy-duty single lever handle, center set. Control shall be washerless ceramic disc cartridge type. Provide laminar flow control device, adjustable hot water limit stop, and vandal proof screws. Flow shall be limited to 5.7 L/m (1.5 gpm).

- 2. Drain: Cast or wrought brass with flat grid strainer offset tailpiece, chrome plated. Provide cover per A.D.A 4-19.4.
- Stops: Angle type, see paragraph "Stops". Provide cover per A.D.A 4-19.4.
- 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extensions to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall. Provide cover per A.D.A 4-19.4.
- D. Lavatory (Elbow Control, ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) maximum apron, first quality vitreous china. Punching for faucet on 203 mm (8 inches) centers. Set carrier per "2.4 Carriers" with rim 864 mm (34 inches) above finished floor.
 - 1. Faucet: Solid cast brass construction with washerless ceramic disc mixing cartridge type and centrally exposed rigid gooseneck spout with outlet 127-152 mm (5-6 inches) above rim. Provide laminar flow control device. One hundred millimeters (4 inches) elbow handles on faucets shall be cast, formed or drop forged copper alloy. Faucet, wall and floor escutcheons shall be either copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Flow shall be limited to 5.7 L/m (1.5 gpm).
 - 2. Drain: Cast or wrought brass with flat grid strainer and offset tailpiece, chrome plated finish.
 - 3. Stops: Angle type, See paragraph "Stops".
 - 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extensions to wall. Exposed metal trap surfaces and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.
 - 5. Provide cover for exposed piping, drain, stops and trap per A.D.A.
- E. Lavatory (Foot Pedal Control, ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) maximum apron, first quality vitreous china. Centrally located single hole in slab for rigid gooseneck spout. Escutcheons shall be either copper alloy or CRS. Provide valve plate for foot control. Set

carrier per "2.4 Carriers" with rim 864 mm (34 inches) above finished floor.

- 1. Faucets: Solid cast brass construction, single rigid gooseneck spout with outlet 127 to 203 mm (5 to 8 inches) above slab. Provide laminar flow control device. Wall mounted, mechanical pedal mixing valve with self-closing pedal valve with stops, renewable seats, and supply from valve to spout, indexed lift up pedals having clearances of not more than 13 mm (1/2 inch) above the floor and not less than 356 mm (14 inches) from wall when in operation. Supply pipe from wall to valve stop shall be rigid threaded IPS copper alloy pipe. Supply pipe from valve to faucet shall be manufacturer's option. Exposed brass parts shall be chrome plated with a smooth bright finish.
- 2. Drain: Cast or wrought brass with flat grid strainer and tailpiece, chrome plated finish.
- 3. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 1.4 mm thick (17 gauge) tubing extension nipple to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish.
- L. Lavatory (Sensor Control, Gooseneck Spout, ASME A112.19.2) straight back, approximately 508 mm by 457 mm (20 inches by 18 inches) and a 102 mm (4 inches) minimum apron, first quality vitreous china with punching for gooseneck spout. Set carrier per "2.4 Carriers" with rim 864 mm (34 inches) above finished floor.
 - 1. Faucet: Solid cast brass construction, chrome plated, gooseneck spout with outlet 102 mm to 127 mm (4 inches to 5 inches) above rim. Electronic sensor operated, 102 mm (4 inches) center set mounting, plug in transformer, back check valves, solid brass hot-cold water mixer adjusted from top deck with barrier free design control handle and inline filter. Provide laminar flow control device. Breaking the light beam shall activate the water flow. Flow shall stop when user moves away from light beam. All connecting wiring between transformer, solenoid valve and sensor shall be cut to length with no excess hanging or wrapped up wiring allowed.
 - 2. Drain: Cast or wrought brass with flat grid strainer with offset tailpiece, brass, chrome plated.
 - 3. Stops: Angle type. See paragraph "Stops".

- 4. Trap: Cast copper alloy, 38 mm by 32 mm (1 1/2 inches by 1 1/4 inches) P-trap. Adjustable with connected elbow and 17 gage tubing extension to wall. Exposed metal trap surface and connection hardware shall be chrome plated with a smooth bright finish. Set trap parallel to wall.
- 5. Provide cover for exposed piping, drain, stops and trap per A.D.A.

2.11 SINKS AND LAUNDRY TUBS

- A. Dimensions for sinks and laundry tubs are specified, length by width (distance from wall) and depth.
- B. Service Sink (Regular, ASME A112.19.1) service sink, class 1, single bowl, acid resistant enameled cast iron, approximately 610 mm by 508 mm (24 inches by 20 inches) with a 229 to 305 mm (9 to 12 inches) raised back without faucet holes. Equip sink with CRS rim guard, and mounted on trap standard. Set sinks rim 711 mm (28 inches) above finished floor.
 - 1. Faucet: Part B, Type II, solid brass construction, 9.5 L/m (2.5 gpm) combination faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, integral check/stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch) hose coupling threads, vacuum breaker, and top or bottom brace to wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish.
 - 2. Drain: Grid.
 - 3. Trap: Trap standard, painted outside and enameled inside with acidresistant enamel, drain through adjoining wall.
- C. Service Sink (Corner, Floor Mounted) stain resistant terrazzo, 711 mm by 711 mm by 305 mm (28 inches by 28 inches by 12 inches) with 152 mm (6 inches) drop front. Terrazzo, composed of marble chips and white Portland cement, shall develop compressive strength of 20684 kPa (3000 psig) seven days after casting. Provide extruded aluminum cap on front side.
 - Faucet: Solid brass construction, 9.5 L/m (2.5 gpm) combination faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, integral check/stops, mounted on wall above sink. Spout shall have a pail hook, 19 mm (3/4 inch)

hose coupling threads, vacuum breaker, and top or bottom brace to wall. Four-arm handles on faucets shall be cast, formed, or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a smooth bright finish. Provide 914 mm (36 inches) hose with wall hook. Centerline of rough in is 1219 mm (48 inches) above finished floor.

- Drain: Seventy six millimeter (3 inches) cast brass drain with nickel bronze strainer.
- 3. Trap: P-trap, drain through floor.
- D. Sink (CRS, Single Compartment, Wall Hung) 14 gage CRS, approximately 762 mm by 508 mm (30 inches by 20 inches) by 203 mm (8 inches) deep with 305 mm (12 inch) splash back. Provide rolled rim on front and ends. Corners and edges shall be well rounded. Support sink with 10 gage CRS brackets on ASME A112.6.1M, Type I, chair carrier and secure fixture with minimum 10 mm (3/8 inch) all-thread bracket studs and nuts. Set rim of sink 914 mm (36 inches) above finished floor.
 - Faucet: Solid brass construction, combination faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, and swinging elevated spout, integral stops, mounted as close as possible to top of splash back. Wrist blade handles on faucet shall be cast, formed or drop forged copper alloy or CRS. Exposed metal parts, including exposed part under valve when in open position, shall have a smooth bright finish. Provide laminar flow control device.
 - 2. Drain: Drain plug with strainer, stainless steel.
 - 3. Trap: Cast copper alloy, 38 mm (1 1/2 inches) P-trap. Adjustable with connected elbow and nipple to wall and escutcheon.
 - 4. Provide cover for exposed piping, drain, stops and trap per A.D.A.
- Q. Sink (CRS, Single Compartment, Counter Top ASME A112.19.2, Kitchen Sinks) self-rimming, back faucet ledge, approximately 533 mm by 559 mm (21 inches by 22 inches) with single compartment inside dimensions approximately 406 mm by 483 mm by 191 mm (16 inches by 19 inches by 7 1/2 inches) deep. Shall be minimum of 1.3 mm thick (18 gauge) CRS. Corners and edges shall be well rounded:
 - Faucet: Solid brass construction, 8.3 L/m (2.2 gpm) deck mounted combination faucet with Monel or ceramic seats, removable replacement unit containing all parts subject to ware, swivel

22 40 00 - 10

gooseneck spout with approximately 203 mm (8 inches) reach with spout outlet 152 mm (6 inches above deck and 102 mm (4 inches) wrist blades single lever with hose spray. Faucet shall be polished chrome plated.

- 2. Drain: Drain plug with cup strainer, stainless steel.
- Trap: Cast copper alloy 38 mm (1 1/2 inches) P-trap with cleanout plug. Provide wall connection and escutcheon.
- 4. Provide cover for exposed piping, drain, stops and trap per A.D.A.

2.12 DISPENSER, DRINKING WATER

- A. Standard rating conditions: 10 degrees C (50 degrees F) water with 27 degrees C (80 degrees F) inlet water temperature and 32 degrees C (90 degrees F) ambient air temperature.
- B. Electric Water Cooler (Mechanically Cooled, Wall Hung, Self-contained, Wheelchair) bubbler style, 30 l/h (8 gph) minimum capacity, lead free. Top shall be CRS anti-splash design. Cabinet, CRS, satin finish, approximately 457 mm by 457 mm by 635 mm (18 inches by 18 inches by 25 inches) high with mounting plate. Set bubbler 914 mm (36 inches) above finished floor. Unit shall be push bar operated with front and side bar and automatic stream regulator. All trim polished chrome plated. Provide with bottle filler option.
- E. Electric Water Cooler: Mechanically cooled, self contained, wheel chair, bubbler style fully exposed dual height stainless steel fountain, recessed in wall refrigeration system, stainless steel grille, stainless steel support arm, wall mounting box, energy efficient cooling system consisting of a hermetically sealed reciprocating type compressor, 115v, 60 Hz, single phase, fan cooled condenser, permanently lubricated fan motor. Set highest bubbler 1016 mm (40 inches) above finished floor. Provide with bottle filler option.

2.14 EMERGENCY FIXTURES

A. (P-708) Emergency Eye and Face Wash (Wall Mounted): CRS, wall mounted, foot pedal control. Mount eye and face wash spray heads 1067 mm (42 inches) above finished floor. Pedal shall be wall mounted, entirely clear of floor, and be hinged to permit turning up. Receptor shall be complete with drain plug with perforated strainer, P-trap and waste connection to wall with escutcheon. Provide with thermostatic mixing valve to provide tepid water from 30 to 35 degrees C (85 to 95 degrees F). Flow rate shall be 11.4 L/m (3 gpm).

- A. Wall Hydrant: Cast bronze non-freeze hydrant with detachable T-handle. Brass operating rod within casing of bronze pipe of sufficient length to extend through wall and place valve inside building. Brass valve with coupling and union elbow having metal-to-metal seat. Valve rod and seat washer removable through face of hydrant; 19 mm (3/4 inch) hose thread on spout; 19 mm (3/4 inch) pipe thread on inlet. Finish may be rough; exposed surfaces shall be chrome plated. Set not less than 457 mm (18 inches) nor more than 914 mm (36 inches) above grade. On porches and platforms, set approximately 762 mm (30 inches) above finished floor. Provide integral vacuum breaker which automatically drains when shut off.
- B. Hose Bibb (Combination Faucet, Wall Mounted to Exposed Supply Pipes): Cast or wrought copper alloy, combination faucet with replaceable Monel seat, removable replacement unit containing all parts subject to wear, mounted on wall 914 mm (36 inches) above floor to concealed supply pipes. Provide faucet without top or bottom brace and with 19 mm (3/4 inch) hose coupling threads on spout, integral stops and vacuum breaker. Design valves with valve disc arranged to eliminate rotation on seat. Four-arm handles on faucets shall be cast, formed or drop forged copper alloy. Escutcheons shall be either forged copper alloy or CRS. Exposed metal parts, including exposed part under valve handle when in open position, shall have a bright finish.
- C. Water Supply Box Units: Fabricate of 16-gage steel with highly corrosion resistant epoxy finish. Unit to have 13 mm (1/2 inch) combination MPT brass sweat connection, ball type shut-off valve. Size 229 mm by 298 mm (9 inches by 11 3/4 inches) rough wall opening 203 mm by 254 mm by 92 mm (8 inches by 10 inches by 3 5/8 inches). Bottom of box shall be 457 mm (18 inches) above finished floor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces. Exposed heads of bolts

and nuts in finished rooms shall be hexagonal, polished chrome plated brass with rounded tops.

- C. Through Bolts: For free standing marble and metal stud partitions refer to Section 10 21 13, TOILET COMPARTMENTS.
- D. Toggle Bolts: For hollow masonry units, finished or unfinished.
- E. Expansion Bolts: For brick or concrete or other solid masonry. Shall be 6 mm (1/4 inch) diameter bolts, and to extend at least 76 mm (3 inches) into masonry and be fitted with loose tubing or sleeves extending into masonry. Wood plugs, fiber plugs, lead or other soft metal shields are prohibited.
- F. Power Set Fasteners: May be used for concrete walls, shall be 6 mm (1/4 inch) threaded studs, and shall extend at least 32 mm (1 1/4 inches) into wall.
- G. Tightly cover and protect fixtures and equipment against dirt, water and chemical or mechanical injury.
- H. Where water closet waste pipe has to be offset due to beam interference, provide correct and additional piping necessary to eliminate relocation of water closet.
- I. Aerators are prohibited on lavatories and sinks.
- J. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost or additional time to the Government.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials and equipment shall be thoroughly cleaned.

3.3 WATERLESS URINAL

A. Manufacturer shall provide an operating manual and onsite training for the proper care and maintenance of the urinals.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. AC: Air Conditioning
 - 3. ACU: Air Conditioning Unit
 - 4. ACR: Air Conditioning and Refrigeration
 - 5. AI: Analog Input
 - 6. AISI: American Iron and Steel Institute
 - 7. AO: Analog Output
 - 8. ASJ: All Service Jacket
 - 9. AWG: American Wire Gauge
 - 10. BACnet: Building Automation and Control Networking Protocol
 - 11. BAg: Silver-Copper-Zinc Brazing Alloy
 - 12. BAS: Building Automation System
 - 13. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 14. bhp: Brake Horsepower
 - 15. Btu: British Thermal Unit
 - 16. Btu/h: British Thermal Unit Per Hour
 - 17. CDA: Copper Development Association
 - 18. C: Celsius
 - 19. CD: Compact Disk
 - 20. CFM: Cubic Foot Per Minute
 - 21. CH: Chilled Water Supply
 - 22. CHR: Chilled Water Return
 - 23. CLR: Color
 - 24. CO: Carbon Monoxide
 - 25. COR: Contracting Officer's Representative
 - 26. CPD: Condensate Pump Discharge
 - 27. CPM: Cycles Per Minute

- 28. CPVC: Chlorinated Polyvinyl Chloride
- 29. CRS: Corrosion Resistant Steel
- 30. CTPD: Condensate Transfer Pump Discharge
- 31. CTPS: Condensate Transfer Pump Suction
- 32. CW: Cold Water
- 33. CWP: Cold Working Pressure
- 34. CxA: Commissioning Agent
- 35. dB: Decibels
- 36. dB(A): Decibels (A weighted)
- 37. DDC: Direct Digital Control
- 38. DI: Digital Input
- 39. DO: Digital Output
- 40. DVD: Digital Video Disc
- 41. DN: Diameter Nominal
- 42. DWV: Drainage, Waste and Vent
- 43. EPDM: Ethylene Propylene Diene Monomer
- 44. EPT: Ethylene Propylene Terpolymer
- 45. ETO: Ethylene Oxide
- 46. F: Fahrenheit
- 47. FAR: Federal Acquisition Regulations
- 48. FD: Floor Drain
- 49. FED: Federal
- 50. FG: Fiberglass
- 51. FGR: Flue Gas Recirculation
- 52. FOS: Fuel Oil Supply
- 53. FOR: Fuel Oil Return
- 54. FSK: Foil-Scrim-Kraft facing
- 55. FWPD: Feedwater Pump Discharge
- 56. FWPS: Feedwater Pump Suction
- 57. GC: Chilled Glycol Water Supply
- 58. GCR: Chilled Glycol Water Return
- 59. GH: Hot Glycol Water Heating Supply
- 60. GHR: Hot Glycol Water Heating Return
- 61. gpm: Gallons Per Minute
- 62. HDPE: High Density Polyethylene
- 63. Hg: Mercury
- 64. HOA: Hands-Off-Automatic
- 65. hp: Horsepower

66. HPS: High Pressure Steam (414 kPa (60 psig) and above) 67. HPR: High Pressure Steam Condensate Return 69. HWH: Hot Water Heating Supply 70. HWHR: Hot Water Heating Return

71. Hz: Hertz

68. HW: Hot Water

- 72. ID: Inside Diameter
- 73. IPS: Iron Pipe Size
- 74. kg: Kilogram
- 75. klb: 1000 lb
- 76. kPa: Kilopascal
- 77. lb: Pound
- 78. lb/hr: Pounds Per Hour
- 79. L/s: Liters Per Second
- 80. L/min: Liters Per Minute
- 81. LPS: Low Pressure Steam (103 kPa (15 psig) and below)
- 82. LPR: Low Pressure Steam Condensate Gravity Return
- 83. MAWP: Maximum Allowable Working Pressure
- 84. MAX: Maximum
- 85. MBtu/h: 1000 Btu/h
- 86. MBtu: 1000 Btu
- 87. MED: Medical
- 88. m: Meter
- 89. MFG: Manufacturer
- 90. mg: Milligram
- 91. mg/L: Milligrams Per Liter
- 92. MIN: Minimum
- 93. MJ: Megajoules
- 94. ml: Milliliter
- 95. mm: Millimeter
- 96. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig))
- 97. MPR: Medium Pressure Steam Condensate Return
- 98. MW: Megawatt
- 99. NC: Normally Closed
- 100. NF: Oil Free Dry (Nitrogen)
- 101. Nm: Newton Meter
- 102. NO: Normally Open

103. NOx: Nitrous Oxide 104. NPT: National Pipe Thread 105. NPS: Nominal Pipe Size 106. OD: Outside Diameter 107. OSD: Open Sight Drain 108. OS&Y: Outside Stem and Yoke 109. PC: Pumped Condensate 110. PID: Proportional-Integral-Differential 111. PLC: Programmable Logic Controllers 112. PP: Polypropylene 113. PPE: Personal Protection Equipment 114. ppb: Parts Per Billion 115. ppm: Parts Per Million 116. PRV: Pressure Reducing Valve \ 117. PSIA: Pounds Per Square Inch Absolute 118. psig: Pounds Per Square Inch Gauge 119. PTFE: Polytetrafluoroethylene 120. PVC: Polyvinyl Chloride 121. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 122. PVDF: Polyvinylidene Fluoride 123. rad: Radians 124. RH: Relative Humidity 125. RO: Reverse Osmosis 126. rms: Root Mean Square 127. RPM: Revolutions Per Minute 128. RS: Refrigerant Suction 129. RTD: Resistance Temperature Detectors 130. RTRF: Reinforced Thermosetting Resin Fittings 131. RTRP: Reinforced Thermosetting Resin Pipe 132. SCFM: Standard Cubic Feet Per Minute 133. SPEC: Specification 134. SPS: Sterile Processing Services 135. STD: Standard 136. SDR: Standard Dimension Ratio 137. SUS: Saybolt Universal Second 138.SW: Soft water 139. SWP: Steam Working Pressure 140. TAB: Testing, Adjusting, and Balancing

- 141. TDH: Total Dynamic Head 142. TEFC: Totally Enclosed Fan-Cooled 143. TFE: Tetrafluoroethylene 144. THERM: 100,000 Btu 145. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire 146. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire 147. T/P: Temperature and Pressure 148. USDA: U.S. Department of Agriculture 149.V: Volt 150. VAC: Vacuum 151. VA: Veterans Administration 152. VAC: Voltage in Alternating Current 153. VA CFM: VA Construction & Facilities Management 154. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service 155. VAMC: Veterans Administration Medical Center 156. VHA OCAMES: Veterans Health Administration - Office of Capital Asset Management Engineering and Support 157. VR: Vacuum condensate return
- 158. WCB: Wrought Carbon Steel, Grade B
- 159. WG: Water Gauge or Water Column
- 160. WOG: Water, Oil, Gas

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- E. Section 05 36 00, COMPOSITE METAL DECKING.
- F. Section 07 84 00, FIRESTOPPING.
- G. Section 07 92 00, JOINT SEALANTS.
- H. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION.
- I. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- J. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- K. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- L. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- M. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

- N. Section 23 36 00, AIR TERMINAL UNITS.O. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- P. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- Q. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- R. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. Air Movement and Control Association (AMCA):

410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans

C. American Society of Mechanical Engineers (ASME):

B31.1-2018.....Power Piping

B31.9-2014.....Building Services Piping

ASME Boiler and Pressure Vessel Code:

BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications

D. American Society for Testing and Materials (ASTM): A36/A36M-2014.....Standard Specification for Carbon Structural Steel

A575-1996(R2018).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E. Association for Rubber Products Manufacturers (ARPM):

IP-20-2015.....Specifications for Drives Using Classical V-Belts and Sheaves

IP-21-2016.....Specifications for Drives Using Double-V (Hexagonal) Belts

IP-24-2016.....Specifications for Drives Using Synchronous Belts

IP-27-2015.....Specifications for Drives Using Curvilinear Toothed Synchronous Belts

F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.:

SP-58-2018......Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation Dynamic Design, Selection, and Application

G. Military Specifications (MIL): MIL-P-21035B-2013.....Paint High Zinc Dust Content, Galvanizing

Repair (Metric)

- H. National Fire Protection Association (NFPA): 70-2017.....National Electrical Code (NEC) 101-2018....Life Safety Code
- I. Department of Veterans Affairs (VA):
 PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. If the project is phased submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as

foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- H. Coordination/Shop Drawings:
 - Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Interstitial space.
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.
 - e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.

- I. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- J. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- K. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- L. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.

- M. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- N. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.

02-20

- 2. Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a nonemergency. Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.

- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between

this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.

- 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
- 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.
- 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.

- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- Protect plastic piping and tanks from ultraviolet light (sunlight).
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
 - 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or

any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:

- Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- 2. As-built drawings are to be provided, with a copy of them on AutoCAD version provided on CD or DVD. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- 3. As-built drawings are to be provided, with a copy of them in three-dimensional Building Information Modeling (BIM) software version provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.

- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- G. Temporary Facilities: Refer to Article, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).

- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- Groove spacing for driving and driven pulleys shall be the same.
 Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - 2. Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.

- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; all edges shall be hemmed and ends shall be bent into flanges and the flanges shall be drilled and attached to pump base with minimum of four 6 mm (1/4 inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.

E. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with or without a bypass contactor as indicated in contract drawings.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as pumps and fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, pumps, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.
- C. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 5 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- D. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.
- E. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
- F. Valve Tags and Lists:
 - HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 82 00, CONVECTION HEATING AND COOLING UNITS and Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.

02-20

G. Ceiling Grid Labels:

- 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
- 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - 1. Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 100 mm (2 by 4 inches) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.
 - Pipe/duct pedestals: Provide a galvanized Unistrut channel welded to U-shaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.

- Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- F. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING Section 05 36 00, COMPOSITE METAL DECKING.
- G. Attachment to existing structure: Support from existing floor/roof frame.
- H. Attachment to Wood Construction: Wood screws or lag bolts.
- I. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- J. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.
 - Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- K. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium

silicate shield at all other types of supports and hangers including those for preinsulated piping.

- 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
- a. Standard clevis hanger: Type 1; provide locknut.
- b. Riser clamps: Type 8.
- c. Wall brackets: Types 31, 32 or 33.
- d. Roller supports: Type 41, 43, 44 and 46.
- e. Saddle support: Type 36, 37 or 38.
- f. Turnbuckle: Types 13 or 15. Preinsulate.
- g. U-bolt clamp: Type 24.
- h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- i. Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- 3. High and Medium Pressure Steam (MSS SP-58):
- a. Provide eye rod or Type 17 eye nut near the upper attachment.
- b. Piping 50 mm (2 inches) and larger: Type 43 roller hanger. For roller hangers requiring seismic bracing provide a Type 1 clevis hanger with Type 41 roller attached by flat side bars.
- c. Piping with Vertical Expansion and Contraction:
 - Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
 - Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- 4. Convertor and Expansion Tank Hangers: May be Type 1 sized for the shell diameter. Insulation where required will cover the hangers.

- L. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.
- M. Seismic Restraint of Piping and Ductwork: Refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Comply with MSS SP-127.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.

- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted piping, ductwork and equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, builtin cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

Β.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate

23 05 11 - 27

utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer

workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Use concrete and non-shrink grout 20 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- J. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Install steam piping expansion joints as per manufacturer's recommendations.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- M. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a

second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).

- N. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of

phasing and maintenance of service requirements as well as structural integrity of the building.

- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.

- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.
- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Chiller foundations shall have horizontal dimensions that exceed chiller base frame dimensions by at least 150 mm (6 inches) on all sides. Structural contract documents shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment,

devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Nameplates.
 - Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
 - 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
 - 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
 - Paint shall withstand the following temperatures without peeling or discoloration:

- a. Condensate and Feedwater: 38 degrees C (100 degrees F) on insulation jacket surface and 121 degrees C (250 degrees F) on metal pipe surface.
- b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. //The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.//
- D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of

23 05 11 - 36

tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.

- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 12 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- G. Section 26 24 19, MOTOR CONTROL CENTERS.
- H. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA): 9-2015.....Load Ratings and Fatigue Life for Ball Bearings 11-2014....Load Ratings and Fatigue Life for Roller

Bearings

C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

90.1-2013.....Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings

D. Institute of Electrical and Electronics Engineers (IEEE):

112-2017......Standard Test Procedure for Polyphase Induction Motors and Generators

841-2009.....IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors--Up to and Including 370 kW (500 hp)

23 05 12 - 1

- E. National Electrical Manufacturers Association (NEMA):
 - MG 1-2019.....Motors and Generators

MG 2-2014.....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric

Motors and Generators

250-2014.....Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.

- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc.

Coordinate lockout/tagout procedures and practices with local VA requirements.

E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.

- b. Motors connected to 208-volt systems: 200 volts.
- c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
- 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 hp), connected to 240-volt or 480volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 hp) or larger, connected to 240-volt
 systems: 230 volts.
 - d. Motors, 74.6 kW (100 hp) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown on the drawings.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - Shall be the NEMA types as specified and/or shown in the Contract Documents.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:

- a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
- b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
- c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
- 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - 2. The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
 - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.
- L. Mechanical Design Requirements:
 - 1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2.Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
 - 3.Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.

- 5.0il lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- 6.Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered
 peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- M. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees
 C (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-

Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.

- N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum	Premium 1	Efficienc	ies	Minimum Premium Efficiencies				
Open Drip-Proof				Totally Enclosed Fan-Cooled (TEFC)				
Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	Rating kW (hp)	1200 RPM	1800 RPM	3600 RPM	
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%	
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%	
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%	
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%	
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%	
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%	
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%	
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%	
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%	
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%	
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%	
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%	
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%	
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%	
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%	
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%	
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%	
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%	
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%	

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyphase Open Motors Average full load efficiency				Capacitor-start capacitor-run and capacitor-start induction run open motors Average full load efficiency				
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles	
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6	
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5	
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4	
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2	

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for two hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41 NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures, and vibration control techniques to boiler plant rotating equipment and parts including pumps, fans, and motors.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Conference Rooms	35
Corridors (Nurse Stations)	40
Corridors (Public)	40
Examination Rooms	35
Lobbies, Waiting Areas	40
Locker Rooms	45
Offices, Large Open	40
Offices, Small Private	35
Patient Rooms	35
Treatment Rooms	35

2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the fore-

going noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.

- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- 5. Equipment:
 - a. All mechanical equipment not supported with isolators external to the unit shall be securely anchored to the structure. Such mechanical equipment shall be properly supported to resist a horizontal force of 50 percent of the weight of the equipment furnished.
- 2. Piping: Refer to specification Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- 3. Ductwork: Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.
- D. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings

- b. Hangers
- c. Snubbers
- d. Thrust restraints

```
2. Bases.
```

C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Handbook 2017.....Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM): A123/A123M-2017.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-2016....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength D2240-05(2010)....Standard Test Method for Rubber Property -Durometer Hardness
- D. Manufacturers Standardization (MSS): SP-58-2018.....Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1960.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-2017.....Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008.....Seismic Restraint Manual: Guidelines for Mechanical Systems, 3rd Edition.
- H. International Code Council (ICC):
 IBC 2018.....International Building Code.
- I. Department of Veterans Affairs (VA):
 H-18-8 2016.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.
 - 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
 - 3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
 - 4. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be natural rubber or neoprene waffle, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be

reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).

- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
 - 6. Hangers used in seismic applications shall be provided with a neoprene and steel rebound washer installed ¼' clear of bottom of hanger housing in operation to prevent spring from excessive upward travel
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more

than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.

D. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.3 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peakto-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type

T-6

weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.4 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS and CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
 - Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.

- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
 - 9.Document critical paths of flow on reports.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. TABB: Testing Adjusting and Balancing Bureau
 - 6. SMACNA: Sheet Metal Contractors National Association
 - Hydronic Systems: Includes chilled water and heating hot water systems.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- D. Section 23 07 11, HVAC, AND BOILER PLANT INSULATION.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 31 00, HVAC DUCTS AND CASINGS.
- H. Section 23 36 00, AIR TERMINAL UNITS.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC, Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION, and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to

perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan or pump. These critical paths are ones in which are 100% open from the fan or pump to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. TAB Criteria:
 - One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC

Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.

- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Exhaust hoods/cabinets: 0 percent to plus 10 percent.
 - d. Minimum outside air: 0 percent to plus 10 percent.
 - e. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
 - f. Heating hot water pumps and hot water coils: Minus 5 percent to plus 5 percent.
 - g. Chilled water and condenser water pumps: Minus 0 percent to plus 5 percent.
 - h. Chilled water coils: Minus 0 percent to plus 5 percent.
- 3. Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and critical path results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of which shall be a critical path) and one hydronic system (pumps and three coils) as follows: a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC,NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 60 days for design-build projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - 5. Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
 - Include in each report the critical path for each balanced branch (air and hydronic. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): Handbook 2019.....HVAC Applications ASHRAE Handbook, Chapter 39, Testing, Adjusting, and Balancing and Chapter 49, Sound and Vibration Control
- C. Associated Air Balance Council (AABC): 7th Edition 2016AABC National Standards for Total System Balance

9th Edition 2019Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

3rd Edition 2015 Procedural Standards for the Measurement of Sound and Vibration

2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing TABB- TAB Procedural Guide Current Edition

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC and BOILER PLANT INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.

C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 DUCT AIR LEAKAGE TEST REPORT

TAB Agency shall perform the leakage test as outlined in "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS and CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. The TAB Contractor shall measure existing air and water flow rates associated with existing systems utilized to serve renovated areas as indicated on drawings. Submit report of findings to resident engineer.
- B. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent.
- C. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.6 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.7 TAB PROCEDURES

A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.

- 1. At least one trunk damper shall be 100% open.
- 2. At least one branch damper shall be 100%open per trunk.
- 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with existing systems and any phased construction completion requirements for the project. Provide TAB reports for pre construction air and water flow rate and for each phase of the project prior to partial final inspections of each phase of the project. Return existing areas outside the work area to pre constructed conditions.
- D. Allow 14 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, terminal units, fan coil units, room diffusers/outlets/inlets, computer room AC units, and laboratory fume hoods and biological safety cabinets.
 - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
 - 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from

maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).

- c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- 5. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - Coordinate water chiller flow balancing with Section 23 64 00, PACKAGED WATER CHILLERS.
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - 3. Primary-secondary (variable volume) systems: Coordinate TAB with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Balance systems at design water flow and then verify that variable flow controls function as designed.
 - 4. Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in //Section 23 05 11, COMMON WORK RESULTS FOR HVAC // Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANTS and STEAM GENERATION//. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors. B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.9 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.10 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.11 PHASING

- A. Phased Projects: Testing and Balancing Work to follow project with areas shall be completed per the project phasing. Upon completion of the project all areas shall have been tested and balanced per the contract documents.
- B. Existing Areas: Systems that serve areas outside of the project scope shall not be adversely affected. Measure existing parameters where shown to document system capacity.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 CRITICAL FLOW PATH

A. Provide a documented critical path for all fluid flows. There shall be at least one terminal device that can be traced back to the fan or pump where there is no damper or valves that are less than 100% open. - - E N D - - -

SECTION 23 07 11 HVAC AND BOILER PLANT INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Re-insulation of HVAC piping, ductwork and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).8. Density: kg/m³ - kilograms per cubic meter (Pcf - pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.
- 41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.

- B. Section 07 84 00, FIRESTOPPING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- G. Section 23 22 23, STEAM CONDENSATE PUMPS

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.2 Pneumatic tubing for control systems shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1820, Standard for Safety Fire Test of Pneumatic Tubing for Flame and Smoke Characteristics.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal

insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.):
 L-P-535E (2)- 1999.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
 C. Military Specifications (Mil. Spec.): MIL-A-3316C -1987 Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-2016 Adhesive, Flexible Unicellular-Plastic Thermal Insulation
 - MIL-C-19565C (1)- 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier

MIL-C-20079H-1987Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass

- D. American Society for Testing and Materials (ASTM):
 - A167-99 2014.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-2019.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation

- C449-2019..... Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement
- C533-2017..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation

	C534-2017	.Standard Specification for Preformed Flexible
		Elastomeric Cellular Thermal Insulation in
		Sheet and Tubular Form
	C547-2017	.Standard Specification for Mineral Fiber pipe
		Insulation
	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-2015	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-2016	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-2014	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126- 2019	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136- 2017	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a 2017	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-2014	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-2007	.Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-2019	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Ε.	National Fire Protection	n Association (NFPA):
	90A-2018	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-2018	.Standard s for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-2018	Life Safety Code
	251-2014	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials

255-2006......Standard Method of tests of Surface Burning Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):

723-2018.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2018.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) Class B-5, Density 32 kg/m³ (2 pcf), k = 0.04 (0.27) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics			
ITEMS	TYPE I	TYPE II	
Temperature, maximum degrees C	649 (1200)	927 (1700)	
(degrees F)			
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)	
Thermal conductivity:			
Min W/ m K (Btu in/h ft² degrees F)@	0.059	0.078	
mean temperature of 93 degrees C	(0.41)	(0.540)	
(200 degrees F)			
Surface burning characteristics:			

Flame spread Index, Maximum	0	0
Smoke Density index, Maximum	0	0

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity areasconveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.

- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.10 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of
 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.11 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)	
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)
Up through 125 (5)	150 (6) long

Nominal Pipe Size and Accessories Material (Insert Blocks)		
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)	
150 (6)	150 (6) long	
200 (8), 250 (10), 300 (12)	225 (9) long	
350 (14), 400 (16)	300 (12) long	
450 through 600 (18 through 24)	350 (14) long	

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- C. Boiler Plant Pipe supports: MSS SP58, Type 39. Apply at all pipe support points, except where MSS SP58, Type 3 pipe clamps provided as part of the support system.

2.12 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.13 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching monel or galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.

23 07 11 - 12

D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.14 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.15 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.16 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.

23 07 11 - 13

- C. Where removal of insulation of piping, ductwork and equipment is required to comply with hazardous abatement, such areas shall be reinsulated to comply with this specification.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Expansion tanks, flash tanks, hot water pumps, steam condensate pumps.
 - 5. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent

valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.

- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- M. Freeze protection of above grade outdoor piping (over heat tracing tape): 26 mm (10 inch) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(1inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up to cooling towers and condenser water piping and chilled water piping as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- N. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.)below ambient air temperature in high humidity areas.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets

may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.

3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

- Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
- 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct and after filter housing.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct, mixed air plenums and prefilter housing.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.

- d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- Supply air duct in the warehouse and in the laundry: 25 mm (one inch) thick insulation faced with ASJ.
- 5. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.a. Chilled water pumps, water filter, chemical feeder pot or tank.b. Pneumatic, cold storage water and surge tanks.
- 6. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Convertors, air separators, steam condensate pump receivers.
 - b. Reheat coil casing and separation chambers on steam humidifiers located above ceilings.
 - c. Domestic water heaters and hot water storage tanks (not factory insulated).
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.

- b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
- 4. Concealed return air duct:
 - a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - b. Concealed return air ductwork in other locations need not be insulated.
- 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- 6. Exhaust air branch duct from autopsy refrigerator to main duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.

- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
 - 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Cellular Glass Insulation:
 - Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - 2. Underground Piping Other than or in lieu of that Specified in Section 23 21 13, HYDRONIC PIPING and Section 33 63 00, STEAM ENERGY DISTRIBUTION: Type II, factory jacketed with a 3 mm laminate jacketing consisting of 3000 mm x 3000 mm (10 ft x 10 ft) asphalt impregnated glass fabric, bituminous mastic and outside protective plastic film.
 - a. 75 mm (3 inches) thick for hot water piping.
 - b. As scheduled at the end of this section for chilled water piping.
 - c. Underground piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with

jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.

- d. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
- e. Underground insulation shall be inspected and approved by the Resident Engineer as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
- f. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
- 3. Cold equipment: 50 mm (2 inch) thick insulation faced with ASJ for chilled water pumps, water filters, chemical feeder pots or tanks, expansion tanks, air separators and air purgers.
- 4. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
- F. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC //and Section 23 05 10, COMMON WORK RESULTS FOR BOILER PLANT and STEAM GENERATION//.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.

- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Minimum 20 mm (0.75 inch) thick insulation for pneumatic control lines for a minimum distance of 6 m (20 feet) from discharge side of the refrigerated dryer.
- Use Class S (Sheet), 20 mm (3/4 inch) thick for the following:
 a. Chilled water pumps
 - b. Bottom and sides of metal basins for winterized cooling towers (where basin water is heated).
 - c. Chillers, insulate any cold chiller surfaces subject to condensation which has not been factory insulated.
 - d. Piping inside refrigerators and freezers: Provide heat tape under insulation.
- Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.8 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Wall Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 14)	38 - 75 $(1\frac{1}{2} - 3)$	100 (4) and Above
	Insulation	Insulation Wall Thickness Millimeters (Inches)			

122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)
93-260 degrees C (200-500 degrees F) (HPS, HPR)	Calcium Silicate	100 (4)	125 (5)	150 (6)	150 (6)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121 degrees C (212-250 degrees F) (HPR, MPR, LPS, vent piping from PRV Safety Valves, Condensate receivers and flash tanks)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-94 degrees C (100-200 degrees F) (LPR, PC, HWH, HWHR, GH and GHR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)
4-16 degrees C (40-60 degrees F) (CH and CHR within chiller room and pipe chase and underground)	Cellular Glass Closed- Cell	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)

4-16 degrees C	Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
(40-60 degrees F)	Glass Closed- Cell	(1.5)			
(CH, CHR, GC, GCR and RS for DX refrigeration)					
(40-60 degrees F) (CH, CHR, GC, GCR and RS for DX refrigeration)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 00 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems of the related subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility HVAC systems commissioning will include the systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.7 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. Department of Veterans Affairs (VA): PG 18-10 2007.....Mission Critical Facilities - DRAFT PG 18-10 2007.....Life-Safety Protected Facilities - DRAFT
- C. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

HANDBOOK 2019.....HVAC Applications ASHRAE Handbook, Chapter 39, Testing, Adjusting, and Balancing, Chapter 44, HVAC Commissioning and Chapter 49, Sound and Vibration Control

HANDBOOK 2017.....HVAC Fundamentals ASHRAE Handbook, Chapter 8, Sound and Vibration

D. Associated Air Balance Council (AABC):
 7th Edition 2016.....AABC National Standards for Total System

Balance

E. National Environmental Balancing Bureau (NEBB): 9th Edition 2019.....Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration 2rd Edition 2019Standard for Whole Building Technical Commissioning of New Construction

F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):

006 2006..... HVAC Duct Construction Standard - Metal and Flexible Duct

3rd Edition 2005 ... HVAC Systems Testing, Adjusting and Balancing

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. Refer to Sections 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT, Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC and Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC requirements. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL

COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional requirements.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. General Contractor shall provide direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, configuration/setup hardware and software, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
 - The direct-digital control system(s) shall consist of high-speed, peer-to-peer network of DDC controllers, a control system server, all configuration and setup software and hardware devices, and an Engineering Control Center. Provide a remote user using JCI Building Controllers to access the control system graphics and change adjustable setpoints with the proper password.
 - 2. All new building controllers shall be native BACnet. All new BACNet workstations, controllers, devices and components shall be listed by BACnet Testing Laboratories. All new BACNet workstations, controllers, devices and components shall be accessible using a HTML5 Web browser interface. Browsers shall not require the use of an extension or add on software in order to access aforementioned workstations, controllers, devices, and components.
 - a. If used, gateways shall be BTL listed.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and any other items required for a complete and fully functional Controls System.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The A/E shall designate what each "mechanical systems" is composed of. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- 5. The control system shall accommodate 1 Engineering Control Center(s) and the control system shall accommodate 10 web-based Users simultaneously, and the access to the system should be limited only by operator password.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include but are not limited to the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Flow meters.
 - 4. Sensor wells and sockets in piping.
 - 5. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products.
- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. These products include but are not limited to the following:
 - 1. Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays,

which are provided and installed by the fire alarm system contractor, to be monitored.

- 4. Terminal units' velocity sensors
- 6. Unitary HVAC equipment (rooftop air conditioning units, split systems, packaged pumping stations) controls. These include:
 - a. Discharge temperature control.
 - b. Economizer control.
 - c. Flowrate control.
 - d. Setpoint reset.
 - e. Time of day indexing.
 - f. Status alarm.
- Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	16
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Thermowells	23 09 23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
Interface with chiller/boiler controls	23 09 23	23 09 23	23 09 23	26
Chiller/boiler controls interface with control	23	23	23 09 23	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
system				
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
Fire/Smoke Dampers	23	23	28 31 00	28 31 00
Smoke Dampers	23	23	28 31 00	28 31 00
Fire Dampers	23	23	N/A	N/A
Chiller/starter interlock wiring	N/A	N/A	26	26
Chiller Flow Switches	23	23	23	N/A
Water treatment system	23	23	23	26
VFDs	23	26	23 09 23	26
Medical gas panels	23	23	26	26
Laboratory Air Valves	23	23	23 09 23	N/A
Computer Room A/C Unit field-mounted controls	23	23	26	26
Control system interface with CRU A/C controls	23 09 23	23 09 23	23 09 23	26
CRU A/C unit controls interface with control system	23	23 09 23	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Fire-fighter's smoke control station (FSCS	28	28	28	28
Fan Coil Unit controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Unit Heater controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Starters, HOA switches	23	23	N/A	26

F. This facility's existing direct-digital control (DDC) system is manufactured by JCI, and its ECC is located at facilities office. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, spare capacity of the existing control system and its ECC prior to beginning work.

- 1. Upgrade the existing direct-digital control system's ECC to include all properties and services required by an ASHRAE Standard 135 BACnet B-AWS Profile. The upgraded ECC shall continue to communicate with the existing direct-digital control system's devices. The upgraded ECC shall communicate directly with the new native-BACnet devices over the existing control system's communications network without the use of a gateway. Provide programming converting the existing non-BACnet devices, objects and services to ASHRAE Standard 135 BACnet-complaint BIBBs. The contractor administered by this Section of the technical specifications shall provide all necessary investigation and sitespecific programming to execute the interoperability schedules.
 - a. The performance requirement for the combined system: the combined system shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global point sharing, global strategy deployment, graphical operations interface and custom reporting as specified.
- G. Unitary standalone systems including Unit Heaters, Cabinet Unit Heaters, Fan Coil Units, Base Board Heaters, thermal comfort ventilation fans, and similar units for control of room environment conditions may be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents. Application of standalone unitary controls is limited to at least those systems wherein remote monitoring, alarm and start-up are not necessary. Examples of such systems include:
 - 1. Light-switch-operated toilet exhaust
 - 2. Vestibule heater
 - 3. Exterior stair heater
 - 4. Attic heating and ventilation
 - 5. Mechanical or electrical room heating and ventilation.

23 09 23 - 5

H. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators, unless use of pneumatics as motive force is specifically granted in writing by the VA.

1.2 RELATED WORK

- A. Section 23 21 13, Hydronic Piping.
- B. Section 23 22 13, Steam and Condensate Heating Piping.
- C. Section 23 31 00, HVAC Ducts and Casings.
- D. Section 23 36 00, Air Terminal Units.
- E. Section 23 64 00, Packaged Water Chillers.
- F. Section 23 73 00, Indoor Central-Station Air-Handling Units.
- G. Section 23 74 13, Packaged, Outdoor, Central-Station Air-Handling Units.
- H. Section 23 81 00, Decentralized Unitary HVAC Equipment.
- I. Section 23 81 23, Computer-Room Air-Conditioners.
- J. Section 23 84 00, Humidity Control Equipment.
- K. Section 26 05 11, Requirements for Electrical Installations.
- L. Section 26 05 21, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- M. Section 26 05 26, Grounding and Bonding for Electrical Systems.
- N. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- O. Section 26 27 26, Wiring Devices.
- P. Section 26 29 11, Motor Starters.
- Q. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks -as defined by ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A

BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.

- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may use different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.
- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).

23 09 23 - 7

- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.
- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive

bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.

- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side. EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.

- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It uses twisted-pair wiring for relatively low speed and low cost communication.
- NN. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- OO. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- PP. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- QQ. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- RR. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- SS. Operating system (OS): Software, which controls the execution of computer application programs.
- TT. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- UU. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.

23 09 23 - 10

- VV. Peer-to-Peer: A networking architecture that treats all network
 stations as equal partners- any device can initiate and respond to
 communication with other devices.
- WW. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- XX. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- YY. Repeater: A network component that connects two or more physical segments at the physical layer.
- ZZ. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- AAA. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- BBB. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: Either the DDC Contractor or the System Integrator shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The Integration subcontractor shall be responsible for the complete design, installation, integration, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such

that the Department of Veterans Affairs (VA) representative could observe the control systems in full operation.

- The controls subcontractor shall have an in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 5. The controls subcontractor shall have minimum of three years of experience in design and installation of building automation systems similar in performance to those specified in this Section. //Provide evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.//
- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Graphic Display: The system shall display up to four (4) graphics on a single screen with a minimum of twenty (20) dynamic points per graphic. All current data shall be displayed within ten (10) seconds of the request.
 - Graphic Refresh: The system shall update all dynamic points with current data within eight (8) seconds. Data refresh shall be automatic, without operator intervention.

- 3. Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be two(2) seconds. Analog objects shall start to adjust within two (2) seconds.
- 4. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior six (6) seconds.
- Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.
- 6. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- Multiple Alarm Annunciations: All workstations on the network shall receive alarms within five (5) seconds of each other.
- Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 9. Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Water temperature	±0.5°C [±1°F]
Relative humidity	±2% RH
Water flow	±1% of reading
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading
Carbon Monoxide (CO)	±5% of reading

Carbon Dioxide (CO ₂)	±50 ppm	
Air pressure (ducts)	±25 Pa [±0.1"w.c.]	
Air pressure (space)	±0.3 Pa [±0.001"w.c.]	
Water pressure	$\pm 2\%$ of full scale *Note 1	
Electrical Power	±0.5% of reading	

Note 1: for both absolute and differential pressure

10. Control stability and accuracy: Control sequences shall maintain measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa (-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	
Humidity	±5% RH	MRI, SPS, PHARMACY
Fluid Pressure	±10 kPa (±1.5 psi)	0-1 MPa (1-150 psi)
Fluid Pressure	±250 Pa (±1.0 in. w.g.)	0-12.5 kPa (0-50 in. w.g.) differential

11. Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet to monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with on-

line support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 8 hours after the problem is reported.

D. Controls subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including but not limited to the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Control air-supply components, and computations for sizing compressors, receivers and main air-piping, if pneumatic controls are furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.

- Sequence of operations for each system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
- 7. Color prints of proposed graphics with a list of points for display.
- Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
- 9. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer manufacturers' model numbers and functions. Show all interface wiring to the control system.
- 10. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit (<u>CCU</u>) and all control panels.
- 12. Plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, ECC, and larger controlled devices.
- 13. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 14. Quantities of submitted items may be reviewed but it is the responsibility of the contractor administered by this Section of the technical specifications to provide sufficient quantities for a complete and working system.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems, ECC, and portable OWS and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.

- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
 - h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - 1. First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no

longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.

- 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 16 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.
- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- 4. Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35°C (65 to 90°F) at a relative humidity of 20 to 80% non-condensing.
- B. The Controllers used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65° C (-40 to 150° F).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): 135-2017.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

B16.18-2018.....Cast Copper Alloy Solder Joint Pressure Fittings. B16.22-2018.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings. D. American Society of Testing Materials (ASTM): B32-2014.....Standard Specification for Solder Metal B88-2016......Standard Specifications for Seamless Copper Water Tube B88M-2018..... Standard Specification for Seamless Copper Water Tube (Metric) B280-2019.....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-2018.....Standard Specification for Polyethylene (PE) Plastic Tubing E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2014 Part 15: Radio Frequency Devices. F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-2018......Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications G. National Fire Protection Association (NFPA): 70-2017.....National Electric Code 90A-2018.....of Air-Conditioning and Ventilation Systems H. Underwriter Laboratories Inc (UL): Parts and Devices and Appliances 294-2013.....Access Control System Units 486A/486B-2018.....Wire Connectors 555S-2014 (R2016) Standard for Smoke Dampers 916-2015..... Energy Management Equipment 1076-2018..... Proprietary Burglar Alarm Units and Systems PART 2 - PRODUCS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least **five** years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

A. General

- The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
- The ECC, building controllers and principal communications network equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. A fixed ECC and a portable operator's terminal.
 - b. Network computer processing, data storage and BACnet-compliant communication equipment including Servers and digital data processors.
 - c. BACnet-compliant routers, bridges, switches, hubs, modems, gateways, interfaces and similar communication equipment.
 - d. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - e. Addressable elements, sensors, transducers and end devices.
 - f. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - g. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards, and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:

- The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
- 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.
- E. Servers:
 - Provide data storage server(s) to archive historical data including trends, alarm and event histories and transaction logs.
 - Equip these server(s) with the same software tool set that is located in the BACnet building controllers for system configuration and custom logic definition and color graphic configuration.
 - 3. Access to all information on the data storage server(s) shall be through the same browser functionality used to access individual nodes. When logged onto a server the operator will be able to also interact with any other controller on the control system as required for the functional operation of the controls systems. The contractor administered by this Section of the technical specifications shall provide all necessary digital processor programmable data storage server(s).
 - 4. These server(s) shall be utilized for controls systems application configuration, for archiving, reporting and trending of data, for operator transaction archiving and reporting, for network information management, for alarm annunciation, for operator interface tasks, for controls application management and similar.

2.3 COMMUNICATION

- A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator interface communication shall conform to ANSI/ASHRAE Standard 135, BACnet.
 - The Data link / physical layer protocol between the ECC and all B-BC's (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.

23 09 23 - 21

2.4 NETWORK AND DEVICE NAMING CONVENTION

- A. Network Numbers
 - 1. BACnet network numbers shall be based on a "facility code, network" concept. The "facility code" is the VAMC's or VA campus' assigned numeric value assigned to a specific facility or building. The "network" typically corresponds to a "floor" or other logical configuration within the building. BACnet allows 65535 network numbers per BACnet internet work.
 - The network numbers are thus formed as follows: "Net #" = "FFFNN" where:
 - a. FFF = Facility code (see below)
 - b. NN = 00-99 This allows up to 100 networks per facility or building
- B. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.
 - 3. Facility code assignments:
 - 4. 000-400 Building/facility number
 - 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one

chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.5 BACNET DEVICES

- A. All BACnet Devices controllers, gateways, routers, actuators, Operator Displays, and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available for the Devices through links in the BTL website.
 - BACnet Building Controllers, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
 - BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
 - 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
 - BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
 - 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
 - 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.6 CONTROLLERS

- A. General. Provide an adequate number of BTL listed B-BC building controllers, BTL listed B-AAC, BTL listed B-ASC, BTL listed B-SA, and BTL listed B-SS's to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. Communication.
 - a. Each B-BC controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications.
 - b. Each B-BC controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. If this port is not available built into the controller, contractor is to install a 4 port unmanaged switch inside the B-BC control cabinet.
 - Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.
 - 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
 - 4. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
 - 5. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
 - Transformer. Power supply for the ASC must be rated at a minimum of 125% of B-ASC power consumption and shall be of the fused or current limiting type.
- A. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.

23 09 23 - 24

- Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
- Each B-ASC will contain sufficient I/O capacity to control the target system.
- 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
- 4.Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.
- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units. All new controllers installed will also include all software and/or hardware required to program, commission, or alter the sequence of operation of said controller(s). Controllers requiring

09-11

software or hardware that is not commercially available will not be allowed. Installation of software and/or hardware for controller configuration will be the responsibility of the DDC contractor. COR will direct to install said hardware and/or software on either the B-AWS or portable operator terminal. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters without requiring the services of a DDC contractor.

- 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.
- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
 e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of three (3)or a maximum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or

09-11

via a portable operator's terminal, when it is necessary, to access directly the programmable unit.

- a. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
- b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
- c. Optimum Start/Stop (OSS): Optimum start/stop program shall automatically be coordinated with event scheduling. The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated AHU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.
- e. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be

calendar based and advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:

- 1) Time, day.
- 2) Commands such as on, off, auto.
- 3) Time delays between successive commands.
- 4) Manual overriding of each schedule.
- 5) Allow operator intervention.
- f. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- g. Remote Communications: The system shall have the ability to dial out in the event of an alarm to the ECC and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- h. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.
- Chilled water Plant Operation: This program shall have the ability to sequence the multiple chillers to minimize energy consumption. The program shall provide sequence of operation as described on the drawings and include the following as a minimum:

- Automatic start/stop of chillers and auxiliaries in accordance with the sequence of operation shown on the drawings, while incorporating requirements and restraints, such as starting frequency of the equipment imposed by equipment manufacturers.
- 2) Secondary chilled water pumps and controls.
- Generate chilled water plant load profiles for different seasons for use in forecasting efficient operating schedule.
- 4) Cooling Tower Operation Program: The objective of cooling tower control is to optimize chiller/tower energy use within the equipment restraints and minimum condenser water temperature limit recommended by the equipment manufacturer. Maintain chilled water plant performance records and print reports at intervals selected by the operator. It shall be possible for the operator to change the set points and the operating schedule.
- 5) The chilled water plant program shall display the following as a minimum:
 - a) Secondary chilled flow rate.
 - b) Secondary chilled water supply and return temperature.
 - c) Condenser water supply and return temperature.
 - d) Outdoor air dry bulb temperature.
 - e) Outdoor air wet bulb temperature.
 - f) Ton-hours of chilled water per day/month/year.
 - g) On-off status for each chiller.
 - h) Chilled water flow rate.
 - i) Chilled water supply and return temperature.
 - j) Operating set points-temperature and pressure.
 - k) Kilowatts and power factor.
 - 1) Current limit set point.
 - m) Date and time.
 - n) Operating or alarm status.
 - o) Operating hours.

2.7 SENSORS (AIR, WATER AND STEAM)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the ECC.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.

- Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral 4-20 mA transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling/heating coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. Temperature well shall be filled with a thermal compound compatible with installed sensor.
 - c. All space sensors shall be equipped with in-space User set-point adjustment, override switch, numerical temperature display on sensor cover, and BACNet communication port. Match room thermostats. Provide a tooled-access cover.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - e. Room security sensors shall have stainless steel cover plate with insulated back and security screws.
 - f. Wire: Twisted, shielded-pair cable.
 - g. Output Signal: 4-20 mA.
- 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. Continuous Output Signal: 4-20 mA
- C. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1. 4-20 mA output signal.
 - 2. 0 to 5 inches wg for duct static pressure range.
 - 3. 0 to 0.25 inch wg for Building static pressure range.

23 09 23 - 30

- D. Vortex Water flow sensors:
 - Type: Insertion vortex type with retractable probe assembly and 2 inch full port gate valve.
 - a. Pipe size: up to 24 inches.
 - b. Retractor: ASME threaded, non-rising stem type with hand wheel.
 - c. Mounting connection: 2 inch 150 PSI flange.
 - d. Sensor assembly: Design for expected water flow and pipe size.
 - e. Seal: Teflon (PTFE).
 - 2. Controller:
 - a. Integral to unit.
 - b. Locally display flow rate and total.
 - c. Output flow signal to BAS/EMS/BES/BMCS: Digital pulse or BACNet type.
 - 3. Performance:
 - a. Turndown: 20:1
 - b. Response time: Adjustable from 1 to 100 seconds.
 - c. Power: 24 volt DC
 - Install flow meters according to manufacturer's recommendations. Where recommended by manufacturer because of mounting conditions, provide flow rectifier.
- E. Turbine Water Flow Sensors: shall be insertion turbine type with turbine element, retractor and preamplifier/transmitter mounted on a two-inch full port isolation valve; assembly easily removed or installed as a single unit under line pressure through the isolation valve without interference with process flow; calibrated scale shall allow precise positioning of the flow element to the required insertion depth within plus or minute 1 mm (0.05 inch); wetted parts shall be constructed of stainless steel. Operating power shall be nominal 24 Volt DC. Local instantaneous flow indicator shall be LED type in NEMA 4 enclosure with 3-1/2 digital display, for wall or panel mounting.
 - 1. Performance characteristics:
 - a. Ambient conditions: -40°C to 60°C (-40°F to 140°F), 5 to 100% humidity.
 - b. Operating conditions: 850 kPa (125 psig), 0°C to 120°C (30°F to 250°F), 0.15 to 12 m per second (0.5 to 40 feet per second) velocity.
 - c. Nominal range (turn down ratio): 10 to 1.

- d. Preamplifier mounted on meter shall provide 4-20 mA, a divided pulse output or switch closure signal for units of volume or mass per a time base. Signal transmission distance shall be a minimum of 1,800 meters (6,000 feet). // Preamplifier for bi-directional flow measurement shall provide a directional contact closure from a relay mounted in the preamplifier //.
- e. Pressure Loss: Maximum 1 percent of the line pressure in line sizes above 100 mm (4 inches).
- f. Ambient temperature effects, less than 0.005 percent calibrated span per °C (°F) temperature change.
- g. RFI effect flow meter shall not be affected by RFI.
- h. Power supply effect less than 0.02 percent of span for a variation of plus or minus 10 percent power supply.//
- F. Steam Flow Sensor/Transmitter:
 - Sensor: Vortex shedder incorporating wing type sensor and amplification technology for high signal-to-noise ratio, carbon steel body with 316 stainless steel working parts, 24 VDC power, NEMA 4 enclosure.
 - a. Ambient conditions, -40° C to 80° C (-40° F to 175° F).
 - b. Process conditions, 900 kPa (125 psig) saturated steam.
 - c. Turn down ratio, 20 to 1.
 - d. Output signal, 4-20 ma DC.
 - e. Processor/Transmitter, NEMA 4 enclosure with keypad program selector and six digit LCD output display of instantaneous flow rate or totalized flow, solid state switch closure signal shall be provided to the nearest DDC panel for totalization.
 - Ambient conditions, -20°C to 50°C (0°F-120°F), 0 95 percent noncondensing RH.
 - 2) Power supply, 120 VAC, 60 hertz or 24 VDC.
 - Internal battery, provided for 24-month retention of RAM contents when all other power sources are removed.
 - f. Sensor on all steam lines shall be protected by pigtail siphons installed between the sensor and the line, and shall have an isolation valve installed between the sensor and pressure source.
- G. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - Paddle-type switches (liquid service only) shall be UL Listed,
 SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.

- b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- H. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.8 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.
 - Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
 - 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
 - The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
 - 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
 - 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid or stranded, with thermoplastic insulated conductors as specified in Section 26 05 21.

- C. Copper digital communication cable between the ECC and the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. All MS/TP communications cables for devices utilizing the EIA-485 standard must be listed for use on EIA-485 networks by the manufacturer of the cable. This requirement overrides any cable recommendation by the controller manufacturer. The use of EIA-485 communication cables shall not affect the warranty from the installing DDC contractor. Cables shall have the following characteristic:
 - 1. Nominal Impedance: 100-130 Ohms
 - 2. Twisted/shielded construction of 1, 1.5, or 2 pairs depending on controller requirements.
 - 3. Be plenum rated when required
 - 4. Cables designated for use by the cable manufacturer for use in PA or Speaker systems shall not be allowed, regardless of recommendations by the controller manufacturer.
- E. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.9 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling unitary standalone heating and cooling devices not connected to the DDC system shall have three modes of operation (heating - null or dead band - cooling). Thermostats for patient bedrooms shall have capability of being adjusted to eliminate null or dead band. Wall mounted thermostats shall have polished or brushed aluminum finish, setpoint range and temperature display and external adjustment:

- 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Patient Room Thermostats: thermistor with in-space User set point adjustment and an on-casing room temperature numerical temperature display.
 - c. Psychiatric Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element. Freezestats shall be manually-reset.
- D. Room Humidistats: Provide fully proportioning humidistat with adjustable throttling range for accuracy of settings and conservation. The humidistat shall have set point scales shown in percent of relative humidity located on the instrument. Systems showing moist/dry or high/low are not acceptable.

2.10 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs)

differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.

- Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).
 - b. Duct mounted damper: 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).
- D. Smoke Dampers and Combination Fire/Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- E. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way modulating values shall be globe pattern. Position versus flow relation shall be linear relation for steam or equal percentage for water flow control.
 - b. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - c. Two-way 2-position valves shall be ball, gate or butterfly type.

- 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.
 - b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
 - c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- 7. Two position water valves shall be line size.
- F. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. For dampers a linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct, externally in the duct, externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motor(s) shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. Minimum valve close-off pressure shall be equal to the system pump's dead-head pressure, minimum 50 psig for valves smaller than 4 inches.
 - 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
 - 3. See and coordinate drawings for required control operation.

2.11 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.

- B. Air Flow Measuring Station -- Electronic Thermal Type:
 - 1. Air Flow Sensor Probe:
 - a. Each air flow sensor shall contain two individual thermal sensing elements. One element shall determine the velocity of the air stream while the other element shall compensate for changes in temperature. Each thermal flow sensor and its associated control circuit and signal conditioning circuit shall be factory calibrated and be interchangeable to allow replacement of a sensor without recalibration of the entire flow station. The sensor in the array shall be located at the center of equal area segment of the duct or fan inlet and the number of sensors shall be adequate to accommodate the expected velocity profile and variation in flow and temperature. The airflow station shall be of the insertion type in which sensor support structures are inserted from the outside of the ducts to make up the complete electronic velocity array.
 - b. Thermal flow sensor shall be constructed of hermetically sealed thermistors or nickel chromium or reference grade platinum wire, wound over an epoxy, stainless steel or ceramic mandrel and coated with a material suitable for the conditions to be encountered. Each dual sensor shall be mounted in an extruded aluminum alloy strut.
 - 2. Air Flow Sensor Grid Array:
 - a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct or fan inlet. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.

- b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
- c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 3. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 4-20 ma type or PWM type for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
 - c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal shall be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
 - d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45° C to 70° C (-50° F to 160° F).
 - 5) Analog output resolution (full scale output) of 0.025%.
 - e. All readings shall be in I.P. units.
- 4. Thermal flow sensors and its electronics shall be installed as per manufacturer's instructions. The required probe sensor density shall be as follows:

Probe Sensor Density	
Area (sq.ft.)	Qty. Sensors
<=1	2
>1 to <4	4

4 to <8	6
8 to <12	8
12 to <16	12
>=16	16

- a. Complete installation shall not exhibit more than \pm 2.0% error in airflow measurement output for variations in the angle of flow of up to 10 percent in any direction from its calibrated orientation. Repeatability of readings shall be within \pm 0.25%.
- D. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the required input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major or main trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and Control Unit (CU) shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually reset.
- E. Constant Volume Control Systems shall consist of an air flow measuring station along with such relays and auxiliary devices as required to produce a complete functional system. The transmitter shall receive its air flow signal or differential pressure signal from the flow measuring station and shall have a span not exceeding three times the design flow rate. The CU shall receive the transmitter signal and shall provide an

output to the fan volume control device to maintain a constant flow rate. The CU shall provide proportional plus integral (PI) (automatic reset) control mode and where required also inverse derivative mode. Overall system accuracy shall be plus or minus the equivalent of 2 Pascal (0.008 inch) velocity pressure as measured by the flow station.

- F. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each main supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.
 - The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

2.12 SAFETY

A. Provide hard-wired interlocked connections for such all safety devices, such as freeze stats, smoke detectors, smoke dampers, and refrigerant leak detection devices. All safety devises shall be provided with additional dry contacts and shall be connected to the DDC system for monitoring and sequencing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.

- Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
- 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 7. Install equipment level and plumb.
- B. Electrical Wiring Installation:
 - All wiring and cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.
 - Install analog signal and communication cables in conduit and in accordance with Specification Division 27 - COMMINICATIONS. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, COMMINICATIONS STRUCTURED CABLING.
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
 - 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
 - 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as

applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.

- c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
- d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor unless otherwise noted on the plans or drawings.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. Sensors used in mixing plenum, and hot and cold decks shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
 - g. All pipe mounted temperature sensors shall be installed in wells.

- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation values on steam pressure sensing devices.
- 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:
 - a. Install flow switch according to manufacturer's written instructions.
 - b. Mount flow switch a minimum of //5// // // //10// pipe diameters up stream and //5// // // //10// pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
 - c. Assure correct flow direction and alignment.
 - d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet

Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.

- b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity: 100 Base TX (Category 5e cabling) for the communications between the ECC and the B-BC and the B-AAC controllers.
- Third party interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- E. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be human readable, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the ECC and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this

specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft

2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.

copy of operation and maintenance manual with performance

C. Demonstration

verification test.

- 1. System operation and calibration to be demonstrated by the installer in the presence of the Architect, Cx Agent or COR on random samples of equipment as dictated by the COR. Should random sampling indicate improper work, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
- Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. PG-18-10 Safety DM
- Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.

- d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
- e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one(1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one(1) minute.
- 5. Witnessed demonstration of ECC functions shall consist of:
 - a. Running each specified report.
 - b. Display and demonstrate each data entry to show site specific customizing capability. Demonstrate parameter changes.
 - c. Step through penetration tree, display all graphics, demonstrate dynamic update, and direct access to graphics.
 - d. Execute digital and analog commands in graphic mode.
 - e. Demonstrate DDC loop precision and stability via trend logs of inputs and outputs (6 loops minimum).
 - f. Demonstrate Energy Management System (EMS) performance via trend logs and command trace.
 - g. Demonstrate scan, update, and alarm responsiveness.
 - h. Demonstrate spreadsheet/curve plot software, and its integration
 with database.
 - Demonstrate on-line user guide, and help function and mail facility.
 - j. Demonstrate digital system configuration graphics with interactive upline and downline load, and demonstrate specified diagnostics.

- k. Demonstrate multitasking by showing dynamic curve plot, and graphic construction operating simultaneously via split screen.
- 1. Demonstrate class programming with point options of beep duration, beep rate, alarm archiving, and color banding.//

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 32 hours to instruct each VA personnel responsible in the operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

3.6 CONSTRUCTION WASTE MANAGEMENT

- A. General: Comply with Contractor's Waste Management Plan and Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- B. To the greatest extent possible, separate reusable and recyclable products from contaminated waste and debris in accordance with the Contractor's Waste Management Plan. Place recyclable and reusable products in designated containers and protect from moisture and contamination.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Chilled water, condenser water, heating hot water and drain piping.
 - 2. Extension of domestic water make-up piping for HVAC systems.
 - 3. Glycol-water piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Section 23 07 11, HVAC AND BOILER PLANT INSULATION: Piping insulation.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- I. Section 23 21 23, HYDRONIC PUMPS: Pumps.
- J. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- K. Section 23 25 00, HVAC WATER TREATMENT: Water treatment for open and closed systems.
- L. Section 23 82 00, CONVECTION HEATING AND COOLING UNITS: Induction units, fan coil units, Unit Heaters and radiant ceiling panels.
- M. Section 31 20 00, EARTHWORK: Excavation and backfill.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013.....Pipe Threads, General Purpose (Inch)

B16.3-2016	.Malleable Iron Threaded Fittings: Classes 150
	and 300
B16.4-2016	.Gray Iron Threaded Fittings: (Classes 125 and
	250)
B16.5-2017	.Pipe Flanges and Flanged Fittings: NPS 1/2
	through NPS 24 Metric/Inch Standard
B16.9-2018	.Factory Made Wrought Buttwelding Fittings
B16.11-2016	.Forged Fittings, Socket-Welding and Threaded
B16.18-2018	.Cast Copper Alloy Solder Joint Pressure
	Fittings
B16.22-2018	.Wrought Copper and Copper Alloy Solder-Joint
	Pressure Fittings
B16.24-2016	.Cast Copper Alloy Pipe Flanges and Flanged
	Fittings: Classes 150, 300, 600, 900, 1500, and
	2500
B16.39-2014	.Malleable Iron Threaded Pipe Unions: Classes
	150, 250, and 300
B16.42-2016	.Ductile Iron Pipe Flanges and Flanged Fittings
В31.9-2014	.Building Services Piping
В40.100-2013	.Pressure Gauges and Gauge Attachments
ASME Boiler and Pressur	e Vessel Code:
BPVC Section VIII-2015.	.Rules for Construction of Pressure Vessels
American Society for Te	sting and Materials (ASTM):
A47/A47M-2018	.Standard Specification for Ferritic Malleable
	Iron Castings
A53/A53M-2018	.Standard Specification for Pipe, Steel, Black
	and Hot-Dipped, Zinc-Coated, Welded and
	Seamless
A106/A106M-2019	.Standard Specification for Seamless Carbon
	Steel Pipe for High-Temperature Service
A126-2004 (R2019)	.Standard Specification for Gray Iron Castings
	for Valves, Flanges, and Pipe Fittings
A183-2014	.Standard Specification for Carbon Steel Track
	Bolts and Nuts
A216/A216M-2018	.Standard Specification for Steel Castings,
	Carbon, Suitable for Fusion Welding, for High-
	Temperature Service
	B16.4-2016 B16.5-2017 B16.9-2018 B16.11-2016 B16.18-2018 B16.22-2018 B16.24-2016 B16.39-2014 B16.42-2016 B31.9-2014 B40.100-2013 ASME Boiler and Pressur BPVC Section VIII-2015. American Society for Te A47/A47M-2018 A53/A53M-2018 A106/A106M-2019 A126-2004 (R2019)

	A307-2016 Standard Specification for Carbon Steel Bolts,
	Studs, and Threaded Rod 60,000 PSI Tensile
	Strength
	A536-1984(R2019)Standard Specification for Ductile Iron
	Castings
	B62-2017Standard Specification for Composition Bronze
	or Ounce Metal Castings
	B88-2016Standard Specification for Seamless Copper
	Water Tube
	F439-2019Standard Specification for Chlorinated Poly
	(Vinyl Chloride) (CPVC) Plastic Pipe Fittings,
	Schedule 80
	F441/F441M-2015Standard Specification for Chlorinated Poly
	(Vinyl Chloride) (CPVC) Plastic Pipe, Schedules
	40 and 80
D.	American Welding Society (AWS):
	B2.1/B2.1M-2014Standard for Welding Procedure and Performance
	Specification
Ε.	Expansion Joint Manufacturer's Association, Inc. (EJMA):
	EJMA 2017s Association Joint Manufacturer's Association
	Standards, Tenth Edition
F.	Manufacturers Standardization Society (MSS) of the Valve and Fitting
	Industry, Inc.:
	SP-67-2017Butterfly Valves
	SP-70-2014Gray Iron Gate Valves, Flanged and Threaded
	Ends
	SP-71-2014Gray Iron Swing Check Valves, Flanged and
	Threaded Ends
	SP-80-2014Bronze Gate, Globe, Angle, and Check Valves
	SP-85-2014 Gray Iron Globe and Angle Valves, Flanged and
	Threaded Ends
	SP-110-2014Ball Valves Threaded, Socket-Welding, Solder
	Joint, Grooved and Flared Ends
	SP-125-2018Gray Iron and Ductile Iron In-line, Spring-
	Loaded, Center-Guided Check Valves
G.	Tubular Exchanger Manufacturers Association (TEMA):
	TEMA Standards20159th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gauges.
 - 15. Thermometers and test wells.
 - 16. Electric heat tracing systems.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Water to Water).
 - 2. Air separators.
 - 3. Expansion tanks.
 - 4. Buffer tanks.
- E. Submit the welder's qualifications in the form of a current (less than one-year old) and formal certificate.

- F. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. As-Built Piping Diagrams: Provide drawing as follows for chilled water, condenser water, and heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic AutoCAD and pdf format.
- H. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- I. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than oneyear old.
- C. All couplings, fittings, valves, and specialties shall be the products of a single manufacturer.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.

23 21 13 - 5

- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE PARTS

A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Chilled Water, Heating Hot Water, and Vent Piping:
 - 1. Steel: ASTM A53/A53M Grade B, seamless or ERW, Schedule 40.
 - 2. Copper water tube option: ASTM B88, Type K or L, hard drawn. Soft drawn tubing, 20 mm (3/4 inch) and larger, may be used for runouts routed under slab to floor mounted fan coil units.
- B. Extension of Domestic Water Make-up Piping: ASTM B88, Type K or L, hard drawn copper tubing.
- C. Cooling Coil Condensate Drain Piping:
 - From air handling units: Copper water tube, ASTM B88, Type M, or Schedule 40 PVC plastic piping.
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type M for runouts and Type L for mains.
- D. Chemical Feed Piping for Condenser Water Treatment: CPVC, Schedule 80, ASTM F441/F441M.
- E. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150-pound malleable iron, ASME B16.3. 125-pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.

- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
 - 2. Welding flanges and bolting: ASME B16.5:
 - a. Water service: Weld neck or slip-on, plain face, with 3.2 mm (1/8 inch) thick full-face neoprene gasket suitable for 104 degrees C (220 degrees F).
 - 1) Contractor's option: Convoluted, cold formed 150-pound steel flanges, with Teflon gaskets, may be used for water service.
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: CPVC, Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.

- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42. Dielectric gasket material shall be compatible with hydronic medium.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 50 mm (2 inch) and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ASME B1.20.1.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.4 m (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Ball Valves (Pipe sizes 50 mm (2 inch) and smaller): MSS SP-110, screwed or solder connections, brass or bronze body with chromeplated ball with full port and Teflon seat at 4137 kPa (600 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
 - 2. Butterfly Valves (Pipe Sizes 65 mm (2-1/2 inch) and larger): Provide stem extension to allow 50 mm (2 inches) of pipe insulation without interfering with valve operation. MSS SP-67, flange lug type rated 1200 kPa (175 psig) working pressure at 93 degrees C (200 degrees F). Valves shall be ANSI Leakage Class VI and rated for bubble tight shut-off to full valve pressure rating. Valve shall be rated for dead end service and bi-directional flow capability to full rated pressure. Butterfly valves are prohibited for direct buried pipe applications.
 - a. Body: Cast iron, ASTM A126, Class B. Malleable iron, ASTM A47/A47M electro-plated, or ductile iron, ASTM A536, Grade 65-45-12 electro-plated.
 - b. Trim: Bronze, aluminum bronze, or 300 series stainless steel disc, bronze bearings, 316 stainless steel shaft and

manufacturer's recommended resilient seat. Resilient seat shall be field replaceable, and fully line the body to completely isolate the body from the product. A phosphate coated steel shaft or stem is acceptable, if the stem is completely isolated from the product.

- c. Actuators: Field interchangeable. Valves for balancing service shall have adjustable memory stop to limit open position.
 - Valves 150 mm (6 inches) and smaller: Lever actuator with minimum of seven locking positions, except where chain wheel is required.
 - Valves 200 mm (8 inches) and larger: Enclosed worm gear with handwheel, and where required, chain-wheel operator.
 - 3) Gate Valves:
 - a) 50 mm (2 inches) and smaller: MSS SP-80, Bronze, 1035 kPa (150 psig), wedge disc, rising stem, union bonnet.
 - b) 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke. MSS SP-70, iron body, bronze mounted, 861 kPa (125 psig) wedge disc.

E. Globe and Angle Valves:

- 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Globe valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for globe valves.
- 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig) Angle valves shall be union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-85 for angle.
- F. Check Valves:
 - 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS SP-80, bronze, 1035 kPa (150 psig), 45-degree swing disc.
 - b. 65 mm (2-1/2 inches) and larger: 861 kPa (125 psig), flanged, iron body, bronze trim, MSS SP-71 for check valves.

23 21 13 - 10

- 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS SP-125 cast iron, ASTM A126, Class B, or steel, ASTM A216/A216M, Class WCB, or ductile iron, ASTM 536, flanged or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62. Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball style valve.
 - 2. A dual-purpose flow balancing valve and adjustable flow meter, with bronze or cast-iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of 27 to 393 kPa (4 to 57 psig). Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron ASTM A126 or brass body rated 1200 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - 2. Brass or ferrous body designed for 2070 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.
 - Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.

2.9 WATER FLOW MEASURING DEVICES

A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.

23 21 13 - 11

- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless-steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in gpm.
- G. Portable Water Flow Indicating Meters:
 - Minimum 150 mm (6 inch) diameter dial, forged brass body, berylliumcopper bellows, designed for 1200 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
 - 2. Bleed and equalizing valves.
 - 3. Vent and drain hose and two 3 m (10 feet) lengths of hose with quick disconnect connections.
 - Factory-fabricated carrying case with hose compartment and a bound set of capacity curves showing flow rate versus pressure differential.
 - 5. Provide one portable meter for each range of differential pressure required for the installed flow devices.
- H. Permanently Mounted Water Flow Indicating Meters: Minimum 150 mm (6 inch) diameter, or 457 mm (18 inch) long scale, for 120 percent of design flow rate, direct reading in gpm, with three valve manifold and two shut-off valves.

SPEC WRITER NOTE: Basket strainers are normally only used in condenser water systems.

2.10 STRAINERS

- A. Y Type.
 - Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows: 1.1 mm (0.045 inch) diameter perforations for 100 mm (4 inches) and larger: 3.2 mm (1/8 inch) diameter perforations.
- B. Suction Diffusers: Specified in Section 23 21 23, HYDRONIC PUMPS.

2.11 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165 psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.

2.12 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association (EJMA) Standards.
- C. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.9.

23 21 13 - 13

- External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
- 7. Integral external cover.
- D. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.9.
 - 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- E. Expansion Compensators:
 - Corrugated bellows, externally pressurized, stainless steel or bronze.
 - 2. Internal guides and anti-torque devices.
 - 3. Threaded ends.
 - 4. External shroud.
 - 5. Conform to standards of EJMA.
- F. Expansion Joint (Contractor's Option): 2413 kPa (350 psig) maximum working pressure, steel pipe fitting consisting of telescoping body and slip-pipe sections, PTFE modified polyphenylene sulfide coated slide section, with welded or flanged ends, suitable for axial end movement to 75 mm (3 inch).
- G. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.
- H. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.
- Supports: Provide saddle supports and frame or hangers for heat exchanger. Mounting height shall be adjusted to facilitate gravity return of steam condensate. Construct supports from steel, weld joints.

2.13 HYDRONIC SYSTEM COMPONENTS

- A. Plate and Frame Heat Exchanger:
 - 1. Fixed frame with bolted removable corrugated channel plate assembly, ASME code stamped for 1035 kPa (150 psig) working pressure.
 - 2. Corrugated channel plates shall be type 316 or 304 stainless steel.
 - Channel plate ports to be double gasketed to prevent mixing or cross-contamination of hot side and cold side fluids. Gaskets to be EPDM.
 - 4. Channel plate carrying bars to be carbon steel with zinc yellow chromate finish.
 - 5. Fixed frame plates and moveable pressure plates to be corrosion resistant epoxy painted carbon steel.
 - 6. Piping connections 50 mm (2 inch) and smaller to be carbon steel NPT tappings. Piping connections 100 mm (4 inch) and larger to be studded port design to accept ANSI flange connections. Connection ports to be integral to the frame or pressure plate.
 - 7. Finished units to be provided with OSHA required, formed aluminum splash guards to enclose exterior channel plate and gasket surfaces.
 - Provide two sets of replacement gaskets and provide one set of wrenches for disassembly of plate type heat exchangers.
 - 9. Performance: As scheduled on drawings.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of converters, pumps, and other components, pre-piped and prewired supported on a welded steel frame or skid. Refer to Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING, for additional requirements.
- C. Tangential Air Separator: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, flanged tangential inlet and outlet connection, internal perforated stainless-steel air collector tube designed to direct released air into expansion tank, bottom blowdown connection. Provide Form No. U-1. If scheduled on the drawings, provide a removable stainless-steel strainer element having 5 mm (3/16 inch) perforations and free area of not less than five times the crosssectional area of connecting piping.
- D. Diaphragm Type Pre-Pressurized Expansion Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, welded steel shell, rustproof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 115 degrees C (240 degrees F).

Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).

- E. Closed Expansion (Compression) Tank: ASME BPVC Section VIII construction for 861 kPa (125 psig) working pressure, steel, rustproof coated. Provide gauge glass, with protection guard, and angle valves with tapped openings for drain (bottom) and plugged vent (top). Provide Form No. U-1.
 - 1. Horizontal tank: Provide cradle supports and following accessories:
 - a. Air control tank fittings: Provide in each expansion tank to facilitate air transfer from air separator, or purger, into tank while restricting gravity circulation. Fitting shall include an integral or separate air vent tube, cut to length of about 2/3 of tank diameter, to allow venting air from the tank when establishing the initial water level in the tank.
 - b. Tank drainer-air charger: Shall incorporate a vent tube, cut to above 2/3 of tank diameter, and drain valve with hose connection draining and recharging with air.
 - 2. Vertical floor-mounted expansion tank: Provide gauge glass, system or drain connection (bottom) and air charging (top) tappings. Provide gate valve and necessary adapters for charging system. Tank support shall consist of floor mounted base ring with drain access opening or four angle iron legs with base plates.
- F. Pressure Reducing Valve (Water): Diaphragm or bellows operated, spring loaded type, with minimum adjustable range of 28 kPa (4 psig) above and below set point. Bronze, brass or iron body and bronze, brass or stainless-steel trim, rated 861 kPa (125 psig) working pressure at 107 degrees C (225 degrees F).
- G. Pressure Relief Valve: Bronze or iron body and bronze or stainlesssteel trim, with testing lever. Comply with ASME BPVC Section VIII and bear ASME stamp.
- H. Automatic Air Vent Valves (where shown on drawings): Cast iron or semisteel body, 1035 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.
- I. See Section 23 25 00, HVAC WATER TREATMENT, paragraph, CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS.

2.14 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gauges in water service.
- C. Range of Gauges: Provide range equal to at least 130 percent of normal operating range.
 - 1. For condenser water suction (compound): 101 kPa (30 inches Hg) to 690 kPa (100 psig).

2.15 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gauge test connections shown on the drawings.
- B. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 101 kPa (30 inches Hg) to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.16 THERMOMETERS

- A. Mercury or organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, twodegree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Chilled Water: 0 to 38 degrees C (32 to 100 degrees F).

23 21 13 - 17

2. Hot Water: 38 to 93 degrees C (100 to 200 degrees F).

2.17 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.18 ELECTRICAL HEAT TRACING SYSTEMS

- A. Systems shall meet requirements of NFPA 70.
- B. Provide tracing for outdoor piping subject to freezing temperatures below 3.3 degrees C (38 degrees F) as follows:
 - 1. Chilled water and all other areas exposed to the weather.//
 - 2. Domestic water lines exposed to weather.
- C. Heat tracing shall be provided to the extent shown on the drawings (Floor plans and Elevations). Heat tracing shall extend below grade to below the defined frost line.
- D. Heating Cable: Flexible, parallel circuit construction consisting of a continuous self-limiting resistance, conductive inner core material between two parallel copper bus wires, designed for cut-to-length at the job site and for wrapping around valves and complex fittings. Selfregulation shall prevent overheating and burnouts even where the cable overlaps itself.
 - Provide end seals at ends of circuits. Wire at the ends of the circuits is not to be tied together.
 - Provide sufficient cable, as recommended by the manufacturer, to keep the pipe surface at 2.2 degrees C (36 degrees F) minimum during winter outdoor design temperature, but not less than the following:
 - a. 75 mm (3 inch) pipe and smaller with 25 mm (1 inch) thick insulation: 4 watts per foot of pipe.
 - b. 100 mm (4 inch) pipe and larger 40 mm (1-1/2 inch) thick insulation: 8 watts per feet of pipe.
- E. Electrical Heating Tracing Accessories:
 - Power supply connection fitting and stainless-steel mounting brackets. Provide stainless steel worm gear clamp to fasten bracket to pipe.
 - 2. 15 mm (1/2 inch) wide fiberglass reinforced pressure sensitive cloth tape to fasten cable to pipe at 300 mm (12 inch) intervals.
 - 3. Pipe surface temperature control thermostat: Cast aluminum, NEMA 4 (watertight) enclosure, 15 mm (1/2 inch) NPT conduit hub, SPST switch rated 20 amps at 480 volts ac, with capillary and copper bulb sensor. Set thermostat to maintain pipe surface temperature at not less than 1 degrees C (34 degrees F).

4. Signs: Manufacturer's standard (NFPA 70), stamped "ELECTRIC TRACED" located on the insulation jacket at 3 m (10 feet) intervals along the pipe on alternating sides.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves

with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.

- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- J. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders and condenser water treatment systems.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- K. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- L. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- M. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- D. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding.

3.4 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR. Tests may be either of those below, or a combination, as approved by the COR.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- B. Initial Flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and

strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/s (5.9 f/s), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the COR.

- C. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/s (5.9 f/s). Circulate each section for not less than 4 hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.
- D. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean makeup. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.6 WATER TREATMENT

- A. Install water treatment equipment and provide water treatment system piping.
- B. Close and fill system as soon as possible after final flushing to minimize corrosion.
- C. Charge systems with chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
- D. Utilize this activity, by arrangement with the COR, for instructing VA operating personnel.

3.7 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove

23 21 13 - 22

full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.8 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.9 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 8 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A.Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped. Hydronic pumps for Heating, Ventilating and Air Conditioning.
- B. Definitions:
 - Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
 - 3. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.
- C.A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C.Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D.Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E.Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F.Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- G.Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- H.Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- I.Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 21 13, HYDRONIC PIPING.
- K. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings: Classes 25, 125, and 250

C.American Society for Testing and Materials (ASTM): A48/48M-2003(R2016)....Standard Specification for Gray Iron Castings B62-2017....Standard Specification for Composition Bronze or Ounce Metal Castings

1.4 SUBMITTALS

- A.Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 23, HYDRONIC PUMPS", with applicable paragraph identification.
- C.Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.
 - 3. Variable speed motor controllers.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.
- E.Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F.Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G.Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

A. Design Criteria:

- Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
- 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
- 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation, without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
- 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
- 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- B.Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a

written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.7 SPARE MATERIALS

A.Furnish one spare seal and casing gasket for each pump to the COR Project Manager.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

- A.General:
 - Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
 - Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1-1/2 times the designed pressure.
 - Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
 - 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT. Motors shall be open drip proof TEFC and operate at 1750 RPM unless noted otherwise.
 - d. Heating pumps shall be suitable for handling water to 107 degrees C (225 degrees F).
 - e. Provide coupling guards that meet OSHA requirements.
 - f. Pump Connections: Flanged.
 - g. Pump shall be factory tested.
 - h. Performance: As scheduled on the Contract Drawings.
 - 5. Variable Speed Pumps:
 - a. The pumps shall be the type shown on the drawings and specified herein flex coupled to an open drip proof a TEFC motor.
 - b. Variable Speed Motor Controllers: Refer to Section 26 29 11, MOTOR CONTROLLERS and to Section 23 05 11, COMMON WORK RESULTS FOR HVAC Article, VARIABLE SPEED MOTOR CONTROLLERS. Furnish controllers with pumps and motors.
 - c. Pump operation and speed control shall be as shown on the drawings.

- d. Direct drive pumps with integrated variable frequency drive (VFD) utilizing the design pump curve programmed on board the built-in controller (also known as sensor-less, or self-sensing). Pump to comply with paragraphs in this section. VFD and motor to comply with Section 26 29 11, MOTOR CONTROLLERS and Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- B.In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48/A48M.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 861 kPa (125 psig), ASME B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - Casing Drain and Gauge Taps: 15 mm (1/2 inch) plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, Type 1045 or stainless steel.
 - Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - 10. Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
 - 11. Base Mounted Pumps:
 - a. Designed for disassembling for service or repair without disturbing the piping or removing the motor.
 - b. Impeller Wear Rings: Bronze.
 - c. Shaft Coupling: Non-lubricated steel flexible type or spacer type with coupling guard, bolted to the baseplate.
 - d. Bearings (Double-Suction pumps): Regreaseable ball or roller type.
 - e. Provide lip seal and slinger outboard of each bearing.
 - f. Base: Cast iron or fabricated steel for common mounting to a concrete base.
 - 12. Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump suction (with blow down valve). Contractor option: Provide suction diffuser as follows:

- a. Body: Cast iron with steel inlet vanes and combination diffuserstrainer-orifice cylinder with 5 mm (3/16 inch) diameter openings for pump protection. Provide taps for strainer blowdown and gauge connections.
- b. Provide adjustable foot support for suction piping.
- c. Strainer free area: Not less than five times the suction piping.
- d. Provide disposable startup strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A.If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B.Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- C. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- D.Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

D.Verify that the piping system has been flushed, cleaned and filled.

- E.Lubricate pumps before startup.
- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.

- G.Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H.Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- I.Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- J.After several days of operation, replace the disposable startup strainer with a regular strainer in the suction diffuser.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B.Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A.Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 07 11, HVAC AND BOILER PLANT INSULATION.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- I. Section 23 22 23, STEAM CONDENSATE PUMPS.
- J. Section 23 25 00, HVAC WATER TREATMENT.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013......Pipe Threads, General Purpose (Inch) B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2012.....Factory Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.42-2016.....Ductile Iron Pipe Flanges and Flanged Fittings: Classes 150 and 300 B31.1-2018.....Power Piping B31.9-2014/....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code (BPVC) -BPVC Section II-/2019 Materials
 - BPVC Section VIII-2019/ Rules for Construction of Pressure Vessels,

Division 1

BPVC Section IX-2019/Welding, Brazing, and Fusing Qualifications C. American Society for Testing and Materials (ASTM): A53/A53M-2017.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2019.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A216/A216M-2019.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A285/A285M-2017.....Standard Specification for Pressure Vessel Plates, Carbon Steel, Low-and Intermediate-Tensile Strength A307-2019.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A516/A516M-2017.....Standard Specification for Pressure Vessel Plates, Carbon Steel, for Moderate- and Lower-Temperature Service A536-1984(R2017).....Standard Specification for Ductile Iron Castings B62-2017......Standard Specification for Composition Bronze or Ounce Metal Castings D. American Welding Society (AWS): B2.1/B2.1M-2014.....Specification for Welding Procedure and Performance Qualifications Z49.1-2012.....Safety in Welding and Cutting and Allied Processes E. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-80-2013.....Bronze Gate, Globe, Angle, and Check Valves F. Military Specifications (Mil. Spec.): MIL-S-901D-2017.....Shock Tests, H.I. (High Impact) Shipboard Machinery, Equipment, and Systems G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves H. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2015....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gauges.
 - 13. Thermometers and test wells.
 - 14. Electric heat tracing systems.
- D. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Heat Exchangers (Steam-to-Hot Water).
 - 2. Flash tanks.
- E. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.

- One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
- 2. One set of reproducible drawings.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
 - 2. Comply with provisions in ASME B31.9.
 - Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.

- All welds shall be stamped according to the provisions of the American Welding Society.
- D. ASME Compliance: Comply with ASME B31.9 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall

contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. 65 mm (2-1/2 inches) and Larger: Welded or flanged joints.
 - 1. Cast iron fittings or piping is not acceptable for steam and steam condensate piping.

- Butt welding fittings: ASME B16.9 with same wall thickness as connecting piping. Elbows shall be long radius type, unless otherwise noted.
- 3. Welding flanges and bolting: ASME B16.5:
 - a. Steam service: Weld neck or slip-on, raised face, with nonasbestos gasket. Non-asbestos gasket shall either be stainless steel spiral wound strip with flexible graphite filler or compressed inorganic fiber with nitrile binder rated for saturated and superheated steam service 400 degrees C (750 degrees F) and 10,342 kPa (1500 psig).
 - b. Flange bolting: Carbon steel machine bolts or studs and nuts, ASTM A307, Grade B.
- C. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.
- C. 65 mm (2-1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.

23 22 13 - 7

- b. 65 mm (2-1/2 inches) and larger: Flanged, outside screw and yoke.
 - High pressure steam 110 kPa (16 psig) and above system): Cast steel body, ASTM A216/A216M grade WCB, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel solid disc and seats. Provide 25 mm (1 inch) factory installed bypass with globe valve on valves 100 mm (4 inches) and larger.
 - 2) All other services: Forged steel body, Class B, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronze face wedge and seats, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
 - b. 65 mm (2-1/2 inches) and larger:
 - Globe valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - 2) All other services: Steel body, rated for 850 kPa (123 psig) saturated steam, 1380 kPa (200 psig) WOG, bronze or bronzefaced disc (Teflon or composition facing permitted) and seat, 850 kPa (123 psig) ASME flanged ends, OS&Y, rising stem, bolted bonnet, and renewable seat rings.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
 - b. 65 mm (2-1/2 inches) and larger:
 - Angle valves for high pressure steam 110 kPa (16 psig): Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.

- F. Swing Check Valves:
 - 1. 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45degree swing disc.
 - 2. 65 mm (2-1/2 inches) and Larger:
 - a. Check valves for high pressure steam 110 kPa (16 psig) and above system: Cast steel body, ASTM A216/A216M grade WCB, flanged, OS&Y, 1035 kPa (150 psig) at 260 degrees C (500 degrees F), 11-1/2 to 13 percent chrome stainless steel disc and renewable seat rings.
 - b. All other services: 861 kPa (125 psig), flanged, cast steel body, and bronze trim.
- G. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1035 kPa (150 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel, rated for saturated steam at 1034 kPa (150 psig) threaded ends.
 - 2. 65 mm (2-1/2 inches) and larger: Cast steel rated for 1034 kPa (150 psig) saturated steam with 1034 kPa (150 psig) ASME flanged ends or forged steel with 1724 kPa (250 psig) ASME flanged ends.
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.
 - 1. 50 mm (2 inches) and smaller: Cast steel body.
 - 2. 65 mm (2-1/2 inches) and larger: Flanged, cast steel body.
- D. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.
 - 2. 100 mm (4 inches) and larger: 1.1 mm (0.045) inch diameter perforations for steam and 3.2 mm (1/8 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-29 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Steam Service 214-850 kPa (31-123 psig): Rated 1035 kPa (150
 psig) at 186 degrees C (366 degrees F).
 - c. Steam Service 869-1035 kPa (126-150 psig): Rated 1380 kPa (200
 psig) at 194 degrees C (381 degrees F).
 - d. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C
 (309 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - Movement: As shown on drawings plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 345 kPa (50 psig).
 - 4. Welded ends.
 - 5. Design shall conform to standards of EJMA and ASME B31.1.
 - External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
 - 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.

- 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
- 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.9 FLEXIBLE BALL JOINTS

- A. Design and Fabrication: One-piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1725 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 762 mm (30 inches). Joints through 355 mm (14 inches) shall have forged pressure retaining members; while size 406 mm (16 inches) through 762 mm (30 inches) shall be of one-piece construction.
- B. Material:
 - Cast or forged steel pressure containing parts and bolting in accordance with ASME BPVC Section II or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME BPVC Section II SA 515, Grade 70.
 - Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6 psig) saturated steam for 60 days.
 - Flex cycling: 800 Flex cycles at 3447 kPa (500 psig) saturated steam.
 - Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.

5. Vibration: 170 hours on each of three mutually perpendicular axes at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.10 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.10 STEAM SYSTEM COMPONENTS

- A. Heat Exchanger (Steam to Hot Water): Shell and tube type, U-bend removable tube bundle, steam in shell, water in tubes, equipped with support cradles.
 - 1. Maximum tube velocity: 2.3 m/s (7.5 f/s).
 - 2. Tube fouling factor: TEMA Standards, but not less than 0.00018 m^2K/W (0.001 ft²hrF/Btu).
 - 3. Materials:
 - a. Shell: Steel.
 - b. Tube sheet and tube supports: Steel or brass.
 - c. Tubes: 20 mm (3/4 inch) OD copper.
 - d. Head or bonnet: Steel.
 - 4. Construction: In accordance with ASME Pressure Vessel Code for 861 kPa (125 psig) working pressure for shell and tubes. Provide manufacturer's certified data report, Form No. U-1.
- B. Optional Heat Transfer Package: In lieu of field erected individual components, the Contractor may provide a factory or shop assembled package of heat exchangers, pumps, and other components, pre-piped and pre-wired and supported on a welded steel frame or skid.
- C. Steam Pressure Reducing Valves in PRV Stations:
 - Type: Single-seated, diaphragm operated, spring-loaded, external or internal steam pilot-controlled, normally closed, adjustable set pressure. Pilot shall sense controlled pressure downstream of main valve.
 - Service: Provide controlled reduced pressure to steam piping systems.
 - Pressure control shall be smooth and continuous with maximum drop of 10 percent deviation from set pressure. Maximum flow capacity of each valve shall not exceed capacity of downstream safety valve(s).
 - 4. Main valve and pilot valve shall have replaceable valve plug and seat of stainless steel, Monel, or similar durable material.
 - a. Pressure rating for high pressure steam: Not less than 1035 kPa (150 psig) saturated steam.
 - b. Connections: Flanged for valves 65 mm (2-1/2 inches) and larger; flanged or threaded ends for smaller valves.

23 22 13 - 12

- 5. Select pressure reducing valves to develop less than 85 db(A) at 1.5 m (5 feet) elevation above adjacent floor, and 1.5 m (5 feet) distance in any direction. Inlet and outlet piping for steam pressure reducing valves shall be Schedule 80 minimum for required distance to achieve required levels or sound attenuators shall be applied.
- D. Safety Valves and Accessories: Comply with ASME BPVC Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown. Valve shall have stainless steel seats and trim.
- E. Steam PRV for Individual Equipment: Cast steel body, screwed or flanged ends, rated 861 kPa (125 psig), or 20 percent above the working pressure, whichever is greater. Single-seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.
- F. Flash Tanks: Horizontal or vertical vortex type, constructed of copper bearing steel, ASTM A516/A516M or ASTM A285/A285M, for a steam working pressure of 861 kPa (125 psig) to comply with ASME Code for Unfired Pressure Vessels and stamped with "U" symbol. Perforated pipe inside tank shall be ASTM A53/A53M Grade B, seamless or ERW, or ASTM A106/A106M Grade B seamless, Schedule 80. Corrosion allowance of 1.6 mm (1/16 inch) may be provided in lieu of the copper bearing requirement. Provide data Form No. U-1.
- G. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - Trap bodies: Steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The

23 22 13 - 13

use of raised face flange is required on pipe sizes 1½ inch and above. The use of unions is acceptable for pipe sizes below 1½ inches. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.

- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- H. Pressure Driven Condensate Pump Trap:
 - Unit shall automatically trap and pump condensate from process and heating equipment under all operating conditions including vacuum.
 - Body shall be constructed of cast iron with all stainless-steel internals. The mechanism shall incorporate stainless steel springs.
 - 3. Motive Force: The pump trap shall utilize steam to remove condensate from the receiving vessel. If two types of motive forces are used (e.g., primary and back-up force) the two systems shall never be permanently interconnected.
 - 4. Pumps shall require no electricity for operation.
 - 5. The pump trap shall include a bronze water level gauge with shut off valves.
 - 6. Check valves at inlet and outlet shall be steel or stainless steel.
 - 7. ASME BPVC Section VIII.
 - 8. Provide pump trap with removable insulation cover.
 - 9. Manufacturer standard paint finish.
- I. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- J. Steam Humidifiers:
 - Distribution Manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct or air handler, and shall be multiple manifold type under any of the following conditions:
 - a. Duct section height exceeds 900 mm (36 inches).

- b. Duct air velocity exceeds 5.1 m/s (1000 feet per minute).
- c. If within 900 mm (3 feet) upstream of fan, damper or pre-filter.
- d. If within 3 m (10 feet) upstream of after-filter.
- K. Steam Flow Meter/Recorder: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.11 GAUGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide steel, lever handle union cock. Provide steel or stainlesssteel pressure snubber for gauges in water service. Provide steel pigtail syphon for steam gauges.

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the COR:
 - 6 mm (1/4 inch) FPT by 3.2 mm (1/8 inch) diameter stainless steel pressure gauge adapter probe for extra-long test plug. Pressure/temperature plug is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gauge, 762 mm (30 inches) Hg to 690 kPa (100 psig) range.
 - 3. 0 to 104 degrees C (32 to 220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (1 inch) dial, 125 mm (5 inch) long stainless-steel stem, plastic case.

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or

23 22 13 - 15

time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping

23 22 13 - 16

insulated piping refer to Section 23 07 11, HVAC AND BOILER PLANT INSULATION.

K. Pipe vents to the exterior. Where a combined vent is provided, the cross-sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping 25 mm (1 inch) in 12 m (40 feet) 0.25 percent in direction of flow. Provide a drip pan elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 300 mm (12 inches) above the roof or through the wall minimum 2.4 m (8 feet) above grade with down turned elbow.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.
 - Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.

- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - 1. Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.
 - 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
 - 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.5 STEAM TRAP PIPING

- A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.
 - On pipe size 1 ½ inch and above a raised face flange is required to allow for removal of the steam trap without disturbing surrounding piping.
 - On pipe size below 1 ½ inch raised face flanges or unions may be used to allow for removal of the traps.

23 22 13 - 19

3.6 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems, the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

3.7 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.8 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Adjust red set hand on pressure gauges to normal working pressure.

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.10 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 23 STEAM CONDENSATE PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam condensate pumps for Heating, Ventilating and Air Conditioning.
- B. Definitions:
 - 1. Capacity: Liters per second (L/s) (Gallons per minute (gpm)) of the fluid pumped.
 - 2. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 23, STEAM CONDENSATE PUMPS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pumps and accessories.
 - 2. Motors and drives.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump //and if specified, for dual parallel pump operation//.

- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.4 QUALITY ASSURANCE

- A. Design Criteria:
 - Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - 2. Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Select pumps so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).
 - Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve including one pump operation in a parallel or series pumping installation.
 - Provide all electric-powered pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
 - 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in gpm and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
 - 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
 - After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.

9. Furnish one spare seal and casing gasket for each pump to the COR.

B. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

1.5 AS-BUILT DOCUMENTATION

- A. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- B. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings.
- C. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- D. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data

on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI): AISI 1045 2013.....Cold Drawn Carbon Steel Bar, Type 1045 AISI 416 2016.....Type 416 Stainless Steel
- C. American National Standards Institute (ANSI): ANSI B15.1-2000....Safety Standard for Mechanical Power Transmission Apparatus ANSI B16.1-2015.....Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800
 D. American Society for Testing and Materials (ASTM):
- A48-2016.....Standard Specification for Gray Iron Castings B62-2016.....Standard Specification for Composition Bronze or Ounce Metal Castings
- E. Maintenance and Operating Manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

PART 2 - PRODUCTS

2.1 PRESSURE POWERED CONDENSATE PUMP

- A. Pressure-Powered Pump Packages:
 - Pump packages shall be furnished and installed as a packaged assembly of the types, sizes, capacities, and characteristics as shown on the drawings. Pump package shall be rated for not less than 185 degrees C (365 degrees F), maximum condensate temperatures.
 - Pump package(s) shall come completely piped and mounted on a steel skid including (1) receiver/reservoir, two positive displacement pressure-powered pumps as scheduled, interconnecting piping and valves, and all accessories as hereafter specified below:
 - a. The receiver shall be of a steel elevated design, warranted for 1 year against defects in material and workmanship. Receiver shall be 150 psig ASME labeled and coded. Receiver shall be sized for the required condensate storage volume and flash steam capacity. Receiver shall be horizontally mounted and have openings of the

appropriate size and number including: (2) inlets, (1) vent opening, (1) NPT drain with pipe plug, (1) NPT anode opening with anode, and gauge glass openings with gauge glass set consisting of (2) brass isolation valves and guard rods, and red-line tubular glass. Replaceable magnesium anode, which retards the corrosive action of most waters and adds to the service life of the tanks, shall be furnished with each receiver for corrosion protection.

- b. Pressure-powered pumps shall be non-electric as shown on the drawings. Units shall be constructed of 1034 kPa (150 psig) ASME labeled and coded fabricated steel body, shall be float operated, and contain a condensate inlet baffle. Each unit shall have (1) inlet check valve, (1) outlet check valve, and gauge glass set with isolation valves.
- c. The float operating mechanism shall have all moving components constructed of stainless steel and be of a snap acting design with no external seals or packing. The float mechanism shall contain a reinforced stainless-steel float, (2) 300 series stainless steel open coil design springs, and spring calibration pins.
- d. Pressure-powered pumps shall be of a non-cavitating design capable of operation on systems up to the maximum working pressure of the tank rating using steam, compressed air, or other compatible inert gas as the supply (motive) pressure. Units shall be capable of operating at temperatures up to 185 degrees C (365 degrees F) when pumping from a 'closed' system using a compatible motive gas. Balance and fine tune motive pressure to be 138 kPa (20 psig) higher than the static backpressure.
- e. Package shall include interconnecting piping between receiver/reservoir and the positive displacement pressure-powered pump(s). Interconnecting suction (fill) line shall be provided to each unit and each suction (fill) line shall include a gate valve for isolation. Pipe material and schedule shall comply with Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- f. Manufacturer shall provide the following for field installation on each pressure-powered pump:
 - 1) Digital Cycle counter
 - 2) Removable insulation jacket

- 3) Pressure gauge
- 4) Drain piping
- g. Provide the following components for each pump:
 - 1) Motive pressure reducing valve
 - Safety relief valve(s)
 - 3) Motive pressure inlet strainer
 - 4) Pressure gauge with pigtail, as required
 - 5) Motive pressure drip trap(s)
 - 6) Motive pressure line check valve(s)
 - 7) Motive pressure shut-off valve
- 3. The package shall be factory tested as a complete unit using steam as the motive pressure. The pump manufacturer shall furnish appropriate assembly and parts drawings, and installation and operation manuals. The package shall be shipped completely assembled, or with connection match marks if package must be shipped as sub-assemblies.
- B. Removable Insulation Jacket:
 - The insulation jacket should be of sewn construction with Velcro fasteners and have openings for inlet, outlet, drain, and gauge glass.
 - 2. Materials:
 - a. Liner and jacket shall be silicone impregnated heavy duty glass fiber rated for a maximum temperature of 260 degrees C (500 degrees F).
 - b. Insulation shall be 25 mm (1 inch) minimum thickness, Type E needled glass fiber mat rated for a maximum temperature of 650 degrees C (1200 F).
 - c. Jacket shall be sewn with Nomex thread with a UV inhibitor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. Follow manufacturer's written instructions for pump mounting and startup. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.

23 22 23 - 6

- C. Sequence of installation for base-mounted pumps:
 - 1. Level and shim the unit base and grout to the concrete pad.
 - Shim the driver and realign the pump and driver. Correct axial, angular or parallel misalignment of the shafts.
 - 3. Connect properly aligned and independently supported piping.
 - 4. Recheck alignment.
- D. Pad-mounted Condensate Pump: Level, shim, bolt, and grout the unit base onto the concrete pad.
- E. Sump Type Condensate Pump: Apply two coats of asphalt or bituminous compound on the exterior of the receiver tank, and mount level and flush in the floor with waterproofing gaskets and grouting to prevent ground water from entering the building from around the receiver.
- F. Coordinate location of thermometer and pressure gauges as per Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

3.2 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.
- D. Verify that the piping system has been flushed, cleaned and filled.
- E. Lubricate pumps before startup.
- F. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- G. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.
- H. Field modifications to the bearings and or impeller (including trimming) are prohibited. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies cleaning and treatment of circulating HVAC water systems, including the following.
 - 1. Cleaning compounds.
 - 2. Chemical treatment for closed loop heat transfer systems.
 - 3. Chemical treatment for open loop systems.
 - 4. Glycol-water heat transfer systems.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Technical Services: Provide the services of an experienced water treatment chemical engineer or technical representative to direct flushing, cleaning, pre-treatment, training, debugging, and acceptance testing operations; direct and perform chemical limit control during construction period and monitor systems for a period of 12 months after acceptance, including not less than 6 service calls and written status reports. Emergency calls are not included. Minimum service during construction/start-up shall be 6 hours.
- C. Field Quality Control and Certified Laboratory Reports: During the one year guarantee period, the water treatment laboratory shall provide not less than 12 reports based on on-site periodic visits, as stated in paragraph 1.3.B, sample taking and testing, and review with VA personnel, of water treatment control for the previous period. In addition to field tests, the water treatment laboratory shall provide certified laboratory test reports. These monitoring reports shall assess chemical treatment accuracy, scale formation, fouling and corrosion control, and shall contain instructions for the correction of any out-of-control condition.

- D. Log Forms: Provide one year supply of preprinted water treatment test log forms.
- E. Chemicals: Chemicals shall be non-toxic approved by local authorities and meeting applicable EPA requirements.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data including:
 - 1. Cleaning compounds and recommended procedures for their use.
 - Chemical treatment for closed systems, including installation and operating instructions.
 - 3. Chemical treatment for open loop systems, including installation and operating instructions.
 - 4. Glycol-water system materials, equipment, and installation.
- C. Water analysis verification.
- D. Materials Safety Data Sheet for all proposed chemical compounds, based on U.S. Department of Labor Form No. L5B-005-4.
- E. Maintenance and operating instructions in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 70-2017.....National Electric Code (NEC)
- C. American Society for Testing and Materials (ASTM): F441/F441M-02-2018 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80

PART 2 - PRODUCTS

2.1 CLEANING COMPOUNDS

- A. Alkaline phosphate or non-phosphate detergent/surfactant/specific to remove organic soil, hydrocarbons, flux, pipe mill varnish, pipe compounds, iron oxide, and like deleterious substances, with or without inhibitor, suitable for system wetted metals without deleterious effects.
- B. All chemicals to be acceptable for discharge to sanitary sewer.

C. Refer to Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING, PART 3, for flushing and cleaning procedures.

2.2 CHEMICAL TREATMENT FOR CLOSED LOOP SYSTEMS

- A. Inhibitor: Provide sodium nitrite/borate, molybdate-based inhibitor or other approved compound suitable for make-up quality and make-up rate and which will cause or enhance bacteria/corrosion problems or mechanical seal failure due to excessive total dissolved solids. Shot feed manually. Maintain inhibitor residual as determined by water treatment laboratory, taking into consideration residual and temperature effect on pump mechanical seals.
- B. pH Control: Inhibitor formulation shall include adequate buffer to maintain pH range of 8.0 to 10.5.
- C. Performance: Protect various wetted, coupled, materials of construction including ferrous, and red and yellow metals. Maintain system essentially free of scale, corrosion, and fouling. Corrosion rate of following metals shall not exceed specified mills per year penetration; ferrous, 0-2; brass, 0-1; copper, 0-1. Inhibitor shall be stable at equipment skin surface temperatures and bulk water temperatures of not less than 121 degrees C (250 degrees F) and 52 degrees C (125 degrees Fahrenheit) respectively. Heat exchanger fouling and capacity reduction shall not exceed that allowed by fouling factor 0.0005.
- D. Pot Feeder: By-pass type, complete with necessary shut off valves, drain and air release valves, and system connections, for introducing chemicals into system, cast iron or steel tank with funnel or large opening on top for easy chemical addition. Feeders shall be 18.9 L (five gallon) minimum capacity at 860 kPa (125 psig) minimum working pressure.
- E. Side stream Water Filter for Closed Loop Systems: Stainless steel housing, and polypropylene filter media with polypropylene core. Filter media shall be compatible with antifreeze and water treatment chemicals used in the system. Replaceable filter cartridges for sediment removal service with minimum 20 micrometer particulate at 98 percent efficiency for approximately five (5) percent of system design flow rate. Filter cartridge shall have a maximum pressure drop of 13.8 kPa (2 psig) at design flow rate when clean, and maximum pressure drop of 172 kPa (25 psig) when dirty. A constant flow rate valve shall be provided in the piping to the filter. Inlet and outlet pressure gauges shall be provided to monitor filter condition.

2.4 GLYCOL-WATER SYSTEM

- A. Propylene glycol shall be inhibited with 1.75 percent dipotassium phosphate. Do not use automotive anti-freeze because the inhibitors used are not needed and can cause sludge precipitate that interferes with heat transfer.
- B. Provide required amount of glycol to obtain the percent by volume for glycol-water systems as follows and to provide one-half tank reserve supply: 40 percent for run-around coil systems and chilled water system.
- D. Glycol-Water Make-up System:
 - Glycol-Water storage tank: Self supporting polyethylene, minimum 90 mil thickness, with removable cover or black steel with 90 mil polyethylene insert. Capacity shall be 213 L (55 gallons), with approximate diameter of 584 mm (23 inches) and height of 914 mm (36 inches). Reinforced threaded pipe connections shall be provided for all connections. Provide identification for tank showing name of the contents.
 - 2. Glycol-Water make-up pump: Bronze fitted, self-priming, high head type suitable for pumping a 33 percent to 50 percent glycol-water solution in intermittent service. The pump shall be provided with a mechanical shaft seal and be flange connected to a 1750 rpm NEMA type C motor. The pump capacity shall be 11 L/m (3 gpm), 345 kPa (50 psig) discharge pressure with a suction lift capability of 127 mm (5 inches) of mercury, with a 2.5 kW (1/3 horsepower) drip-proof motor. The pump may be a "gear-within-a-gear" positive displacement type with built-in relief valve set for 296 kPa (43 psig), or the pump may be a regenerative turbine type providing self-priming with built-in or external relief valve set for design head of the pump.
 - 3. Back pressure regulating valve: Spring loaded, diaphragm actuated type with bronze or steel body, stainless steel trim with capacity to relieve 100 percent of pump flow with an allowable rise in the regulated pressure of 69 kPa (10 psig) above the set point. Set point shall be 103 kPa (15 psig) above system PRV setting.
 - 4. Low water level control: Steel or plastic float housing, stainless steel or plastic float, positive snap-acting SPST switch mechanism, rated 10 amps-120 volt AC, in General Purpose (NEMA 1) enclosure. The control shall be rated for pressures to 1034 kPa (150 psig) and make alarm circuit on low water level. The alarm circuit shall be

wired to an alarm light on the nearest local Temperature Control panel (LTCP). Provide remote output relay to indicate alarm condition at the Building Control System specified under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.5 EQUIPMENT AND MATERIALS IDENTIFICATION

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Delivery and Storage: Deliver all chemicals in manufacturer's sealed shipping containers. Store in designated space and protect from deleterious exposure and hazardous spills.
- B. Install equipment furnished by the chemical treatment supplier and charge systems according to the manufacturer's instructions and as directed by the Technical Representative.
- C. Refer to Section 23 21 13 HYDRONIC PIPING for chemical treatment piping, installed as follows:
 - Provide a by-pass line around water meters and bleed off piping assembly. Provide ball valves to allow for bypassing, isolation, and servicing of components.
 - Bleed off water piping with bleed off piping assembly shall be piped from pressure side of circulating water piping to a convenient drain. Bleed off connection to main circulating water piping shall be upstream of chemical injection nozzles.
 - Provide piping for the flow assembly piping to the main control panel and accessories.
 - a. The inlet piping shall connect to the discharge side of the circulating water pump.
 - b. The outlet piping shall connect to the water piping serving the cooling tower downstream of the heat source.
 - c. Provide inlet Y-strainer and ball valves to isolate and service main control panel and accessories.
 - 4. Install injection nozzles with corporation stops in the water piping serving the cooling tower downstream of the heat source.
 - Provide piping for corrosion monitor rack per manufacturer's installation instructions. Provide ball valves to isolate and service rack.

- Provide installation supervision, start-up and operating instruction by manufacturer's technical representative.
- D. Before adding cleaning chemical to the closed system, all air handling coils and fan coil units should be isolated by closing the inlet and outlet valves and opening the bypass valves. This is done to prevent dirt and solids from lodging the coils.
- E. Do not valve in or operate system pumps until after system has been cleaned.
- F. After chemical cleaning is satisfactorily completed, open the inlet and outlet valves to each coil and close the by-pass valves. Also, clean all strainers.
- G. Perform tests and report results in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. After cleaning is complete, and water PH is acceptable to manufacturer of water treatment chemical, add manufacturer-recommended amount of chemicals to systems.
- I. Instruct VA personnel in system maintenance and operation in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - Supply air, return air, outside air, exhaust, make-up air, and relief systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - Exposed Duct: Exposed to view in a finished room, exposed to weather.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 08 90 00, LOUVERS and VENTS: Outdoor and Exhaust Louvers.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- G. Section 23 36 00, AIR TERMINAL UNITS: Air Flow Control Valves and Terminal Units.
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Supply Air Fans.
- I. Section 23 82 00, CONVECTION HEATING and COOLING UNITS.
- J. Section 23 82 16, AIR COILS: Duct Mounted Coils.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - 6. Sound attenuators, including pressure drop and acoustic performance.
 - Flexible ducts and clamps, with manufacturer's installation instructions.
 - 8. Flexible connections.
 - 9. Instrument test fittings.
 - 10 Details and design analysis of alternate or optional duct systems.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Civil Engineers (ASCE): ASCE7-2017......Minimum Design Loads for Buildings and Other Structures
- C. American Society for Testing and Materials (ASTM): A167-2009..... Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-2019.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-2018.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C1071-2019.....Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material) E84-2014.....Standard Test Method for Surface Burning Characteristics of Building Materials D. National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air Conditioning and Ventilating Systems

96-2018..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations

E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 3rd Edition -2006.....HVAC Duct Construction Standards, Metal and Flexible 2nd Edition -2012.....HVAC Air Duct Leakage Test Manual

6th Edition -2016.....Fibrous Glass Duct Construction Standards

F. Underwriters Laboratories, Inc. (UL): 181-2013......Factory-Made Air Ducts and Air Connectors 555-2006Standard for Fire Dampers 5558-2014.....Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
 - Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal

- D. Duct for Negative Pressure Up to 750 Pa (3-inch W.G.): Provide for exhaust duct between HEPA filters and exhaust fan inlet including systems for Autopsy Suite exhaust.
 - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints.
 - 2. Rectangular Duct: Galvanized steel, minimum 1.0 mm (20 gage), Pittsburgh lock seam, companion angle joints 32 mm by 3.2 mm (1-1/4 by 1/8 inch) minimum at not more than 2.4 m (8 feet) spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles.
- E. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - 3. Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
 - 4. Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13. Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the Resident Engineer.

02-20

23 31 00 - 5

- F. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.
- G. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- H. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream,
 - in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless-steel construction, all others may be galvanized steel.

- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles, minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.
 - 2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 SMOKE DAMPERS

- A. Maximum air velocity, through free area of open damper, and pressure loss: Low pressure and medium pressure duct (supply, return, exhaust, outside air): 450 m/min (1500 fpm). Maximum static pressure loss: 32 Pa (0.13 inch W.G.).
- B. Maximum air leakage, closed damper: 0.32 cubic meters /min/square meter (4.0 CFM per square foot) at 750 Pa (3-inch W.G.) differential pressure.
- C. Minimum requirements for dampers:
 - Shall comply with requirements of Table 6-1 of UL 555S, except for the Fire Endurance and Hose Stream Test.
 - Frame: Galvanized steel channel with side, top and bottom stops or seals.
 - 3. Blades: Galvanized steel, parallel type preferably, 300 mm (12 inch) maximum width, edges sealed with neoprene, rubber or felt, if required to meet minimum leakage. Airfoil (streamlined) type for minimum noise generation and pressure drop are preferred for duct mounted dampers.
 - 4. Shafts: Galvanized steel.
 - 5. Bearings: Nylon, bronze sleeve or ball type.
 - 6. Hardware: Zinc plated.
 - Operation: Automatic open/close. No smoke damper that requires manual reset or link replacement after actuation is acceptable. See drawings for required control operation.
- D. Motor operator (actuator): Provide pneumatic or electric as required by the automatic control system, externally mounted on stand-offs to allow complete insulation coverage.

2.6 COMBINATION FIRE AND SMOKE DAMPERS

Combination fire and smoke dampers: Multi-blade type units meeting all requirements of both fire dampers and smoke dampers shall be used where shown and may be used at the Contractor's option where applicable.

2.7 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.8 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans, air terminal units, and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall

02-20

conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.9 SOUND ATTENUATING UNITS

- A. Casing, not less than 1.0 mm (20 gage) galvanized sheet steel, or 1.3 mm (18 gage) aluminum fitted with suitable flanges to make clean airtight connections to ductwork. Sound-absorbent material faced with glass fiber cloth and covered with not less than 0,6 mm (24 gage) or heavier galvanized perforated sheet steel, or 0.85 mm (22 gage) or heavier perforated aluminum. Perforations shall not exceed 4 mm (5/32-inch) diameter, approximately 25 percent free area. Sound absorbent material shall be long glass fiber acoustic blanket meeting requirements of NFPA 90A.
- B. Entire unit shall be completely air tight and free of vibration and buckling at internal static pressures up to 2000 Pa (8 inches W.G.) at operating velocities.
- C. Pressure drop through each unit: Not to exceed indicated value at design air quantities indicated.
- D. Submit complete independent laboratory test data showing pressure drop and acoustical performance.
- E. Cap open ends of attenuators at factory with plastic, heavy duty paper, cardboard, or other appropriate material to prevent entrance of dirt, water, or any other foreign matter to inside of attenuator. Caps shall not be removed until attenuator is installed in duct system.

2.10 PREFABRICATED ROOF CURBS

Galvanized steel or extruded aluminum 300 mm (12 inches) above finish roof service, continuous welded corner seams, treated wood nailer, 40 mm (1-1/2 inch) thick, 48 kg/cubic meter (3 pound/cubic feet) density rigid mineral fiberboard insulation with metal liner, built-in can't strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.

2.11 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.12 DUCT MOUNTED THERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7-inch scale, red appearing mercury, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.13 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.14 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

2.18 AIR FLOW CONTROL VALVES (AFCV)

Refer to Section 23 36 00 / 23 82 00, AIR TERMINAL UNITS / CONVECTION HEATING and COOLING UNITS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for

02-20

space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Install fire dampers, smoke dampers and combination fire/smoke dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers, smoke dampers and combination fire/smoke dampers at locations indicated and where ducts penetrate fire rated and/or smoke rated walls, shafts and where required by the Resident Engineer. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers and operation of smoke dampers to the Resident Engineer.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.

- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- J. Low Pressure Duct Liner: Install in accordance with SMACNA, Duct Liner Application Standard.
- K. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results,

the scope of the testing may be reduced by the Resident Engineer on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa (2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the Resident Engineer and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the Resident Engineer and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the Resident Engineer.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- I. Section 23 82 16, AIR COILS.
- J. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point

- b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - Except for fans in fume hood exhaust service, all steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.
 - Fans for general purpose fume hoods, or chemical hoods, and radioisotope hoods shall be constructed of materials compatible with the chemicals being transported in the air through the fan.
- I. Spark resistant construction: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), the fan construction shall be as recommended by AMCA's Classification for Spark Resistant Construction. Drive set shall be comprised of non-static belts for use in an explosive.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Centrifugal fans, motors, drives, accessories and coatings.
 - a. In-line centrifugal fans.
 - b. Tubular Centrifugal Fans.
 - c. Up-blast kitchen hood exhaust fans.
 - d. Industrial fans.
 - e. Utility fans and vent sets.
 - 3. Prefabricated roof curbs.
 - 4. Power roof and wall ventilators.
 - 5. Centrifugal ceiling fans.
 - 6. Propeller fans.
 - 7. Packaged hood make-up air units.
 - 8. Vane axial fans.
 - 9. Tube-axial fans.

10. Air curtain units.

- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- F. Belt guards.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-2016.....Standards Handbook 210-2016..... Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-2017.....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-2014.....Reverberant Room Method for Sound Testing of Fans C. American Society for Testing and Materials (ASTM): B117-2018.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-2008.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-2017..... Standard Test Methods for Measuring Adhesion by Tape Test G152-2013..... Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-2013..... Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA):

NFPA 96-2018.....Standard for Ventilation Control and Fire

Protection of Commercial Cooking Operations

E. National Sanitation Foundation (NSF):

37-2017Air Curtains for Entrance Ways in Food and Food Service Establishments

F. Underwriters Laboratories, Inc. (UL):

181-2013......Factory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

A. Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 FAN SECTION (CABINET FAN)

Refer to specification Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.

2.2 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWS1 fans: Arrangement 1, 3, 9 or 10.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - 1. Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.
 - 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
 - 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
 - 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
 - 5. Belts: Oil resistant, non-sparking and non-static.

- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 26 29 11, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- D. In-line Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C3 thru 2.2.C9, provide minimum 18 Gauge galvanized steel housing with inlet and outlet flanges, backward inclined aluminum centrifugal fan wheel, bolted access door and supports as required. Motors shall be factory pre-wired to an external junction box. Provide factory wired disconnect switch.
- E. Tubular Centrifugal Fans: In addition to the requirements of paragraphs A and 2.2.C2 thru 2.2.C9 provide;
 - Housings: Hot rolled steel, one-piece design, incorporating integral guide vanes, motor mounts, bolted access hatch and end flanges. Provide spun inlet bell and screen for unducted inlet and screen for unducted outlet. Provide welded steel, flanged inlet and outlet cones for ducted connection. Provide mounting legs or suspension brackets as required for support. Guide vanes shall straighten the discharge air pattern to provide linear flow.
- F. Industrial Fans: Use where scheduled or in lieu of centrifugal fans for low volume high static service. Construction specifications paragraphs A and C for centrifugal fans shall apply. Provide material handling flat blade type fan wheel.
- G. Utility Fans, Vent Sets and Small Capacity Fans: Class 1 design, arc welded housing, spun intake cone. Applicable construction specification, paragraphs A and C, for centrifugal fans shall apply for wheel diameters 300 mm (12 inches) and larger. Requirement for AMCA

seal is waived for wheel diameters less than 300 mm (12 inches) and housings may be cast iron.

H. Spark Resistant/Explosion Proof Fans: If flammable gas, vapor or combustible dust is present in concentrations above 20% of the Lower Explosive Limit (LEL), provide AMCA construction option: A, B or C as indicated. Drive set shall be comprised of non-static belts for use in an explosive atmosphere. Motor shall be explosion proof type if located in air stream.

2.3 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Centrifugal fan, backward inclined blades. Provide down-blast or up-blast type as indicated.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper. Provide electric motor operated dampers.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.
- F. Up-blast Type: Top discharge exhauster, motor out of air stream. For kitchen hood exhaust applications, provide grease trough on base and threaded drain. The mounting height of the kitchen up-blast exhaust fan shall be in compliance with NFPA 96. (Provide vented curb extension if required to maintain required clearances.)

2.4 AIR CURTAIN UNITS

- A. Manufacturer's standard, high velocity, non-recirculating type with demonstrated performance in effectively preventing entry of dust and insects and effectively stopping inflow of air due to winds of 24 km/h (15 mph) velocity. AMCA seal is waived. Units for kitchens or food storage shall comply with NSF 37.
- B. Casing: Sheet metal or polycarbonate plastic. Provide internal or external vibration isolation to effectively prevent transmission of vibration and noise from units to building structure. Units shall

completely house all parts and have manufacturer's standard finish coating.

- C. Fans: Ruggedly constructed, statically and dynamically balanced. Noise level shall not exceed 77 dBA measured at 1.5 m (5 feet) distance.
- D. Air Discharge Outlet Nozzle: Cover full width of door opening. Fan discharge ducts, plenum, flow control vanes and nozzles shall provide a uniform distribution of air over entire length of door. Provide adjustable volume and directional control.
- E. Heating Coil: Provide hot water heating coil. Maximum discharge air temperature shall be 49 degrees C (120 degrees F).
- F. Controls: Provide on-off door operated switch. The "on-off" switch circuit shall close to start fan motors when door starts to open and open when the door reaches closed position. A local disconnect switch for each fan motor shall be provided and shall be mounted to be accessible without use of ladder.
- G. Motors: Fan motors shall be of type suitable for service conditions, sealed ball bearings, resilient mounting and automatic thermal overload switch.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.

23 34 00 - 7

- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units, air flow control valves.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.
- G. Section 23 82 16, AIR COILS.

1.3 QUALITY ASSURANCE

Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:

1. Air Terminal Units: Submit test data.

- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-2017.....Performance Rating of Air Terminals
- C. National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air Conditioning and Ventilating Systems

- D. Underwriters Laboratories, Inc. (UL):
 - 181-2013.....Standard for Factory-Made Air Ducts and Air Connectors
- E. American Society for Testing and Materials (ASTM):

C 665-2006.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARANTY

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

A. Coils:

- All Air-Handling Units: Provide aluminum fins and copper coils for all hot water reheat coils.
- 2. Water Heating Coils:
 - ARI certified, continuous plate or spiral fin type, leak tested at 2070 kPa (300 PSI).
 - b. Capacity: As indicated, based on scheduled entering water temperature.
 - c. Headers: Copper or Brass.
 - d. Fins: Aluminum, maximum 315 fins per meter (8 fins per inch).
 - e. Tubes: Copper, arrange for counter-flow of heating water.
 - f. Water Flow Rate: Minimum 0.032 Liters/second (0.5 GPM).
 - g. Provide vent and drain connection at high and low point, respectively of each coil.
 - h. Coils shall be guaranteed to drain.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.

E. Terminal Sound Attenuators: See Section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

- A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.
- B. Capacity and Performance: The Maximum Capacity of a single terminal unit shall not exceed 566 Liters/second (1,200 CFM) with the exception of operating rooms and Cystoscopy rooms, which shall be served by a single air terminal unit at a maximum of 1,250 Liters/second (3,000 CFM).
- C. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedules shall show the sound power levels in all octave bands. Terminal sound attenuators shall be provided, as required, to meet the intent of the design.

- D. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Air terminal units serving the operating rooms and Cystoscopy rooms shall be fabricated without lining. Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTMC 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 4lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material. No lining material

is permitted in the boxes serving operating rooms and Cystoscopy rooms.

- 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
- 3. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- 4. Octopus connector: Factory installed, lined air distribution terminal. Provide where flexible duct connections are shown on the drawings connected directly to terminals. Provide butterflybalancing damper, with locking means in connectors with more than one outlet. Octopus connectors and flexible connectors are not permitted in the Surgical Suite.
- E. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).
- F. Provide multi-point velocity pressure sensors with external pressure taps.
 - 1. Provide direct reading air flow rate table pasted to box.
- G. Provide static pressure tubes.
- H. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

2.3 AIR FLOW CONTROL VALVE (AFCV)

- A. Airflow control device shall be a venturi valve type air flow control valve.
- B. Pressure independent over a 150 Pa-750 Pa (0.6 inch WG 3.0 inch WG) drop across valve.

- C. Volume control accurate to plus or minus 5% of airflow over an airflow turndown range of 16 to 1. No minimum entrance or exit duct diameters shall be required to ensure accuracy or pressure independence.
- D. Response time to change in command signal and duct static pressure within three seconds.
- E. 16 gauge spun aluminum valve body and control device with continuous welded seam and 316 stainless steel shaft and shaft support brackets. Pressure independent springs shall be stainless steel. Shaft bearing surfaces shall be Teflon or polyester.
- F. Constant volume units:
 - 1. Actuator to be factory mounted to the valve.
 - 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
 - Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
 - 4. The maximum and minimum airflows shall be as scheduled.
- G. Variable volume units:
 - 1. Actuator to be factory mounted to the valve.
 - 2. Closed loop control of airflow by way of flow feedback signal with less than 1 second response time.
 - Shaft positioned using direct potentiometer measurement to produce a linear factory calibrated feedback.
- H. Certification:
 - Control device: factory calibrated to airflows detailed on plans using NIST traceable air stations and instrumentation having a combined accuracy of plus or minus 1% of signal over the entire range of measurement.
 - Electronic airflow control devices: further calibrated and their accuracy verified to plus or minus 5% of signal at a minimum of eight different airflows across the full operating range of the device.
 - 3. All airflow control devices: individually marked with device specific, factory calibration data to include: tag number, serial number, model number, eight point characterization information (for electronic devices), and quality control inspection numbers.
- I. Airflow measuring devices and airflow control devices that are not venturi valves (e.g., Pitot tube, flow cross, air bar, orifice ring,

vortex shedder, etc.) are acceptable, provided the following conditions are met:

- 1. They meet the performance and construction characteristics stated throughout this section of the specification.
- Suppliers of airflow control devices or airflow measuring devices requiring minimum duct diameters: provide revised duct layouts showing the required straight duct runs upstream and downstream of these devices.
- Supplier of the airflow control system: submit coordination drawings reflecting these changes and include static pressure loss calculations as part of submittal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Roof Curbs
- B. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 08 90 00, LOUVERS and VENTS.
- C. Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air intake/exhaust hoods.
 - 2. Diffusers, registers, grilles and accessories.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-2015.....Certification, Rating, and Test Manual 4th Edition
- C. American Society of Civil Engineers (ASCE): ASCE7-2017......Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):

A167-99 2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip B209- 2014....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate E. National Fire Protection Association (NFPA): 90A-2018....Standard for the Installation of Air Conditioning and Ventilating Systems

F. Underwriters Laboratories, Inc. (UL):
 181-2013.....UL Standard for Safety Factory-Made Air Ducts
 and Connectors

PART 2 - PRODUCTS

2.1 GRAVITY INTAKE/EXHAUST VENTILATORS (ROOF MOUNTED)

- A. Aluminum, ASTM B209, louvered, spun, or fabricated using panel sections with roll-formed edges, 13 mm (1/2 inch) mesh aluminum welded wire bird screen, with gravity or motorized dampers where shown, accessible interior, designed for wind velocity specified in Paragraph 3.3.
 - Louvered Intake/Exhaust Hoods: Louvered hood constructed from 0.081 Gauge extruded aluminum tiers welded to a minimum 3.3 mm (8 Gauge) aluminum support structure. The aluminum hood shall be constructed of a minimum 0.064 marine alloy aluminum and provided with a layer of anti-condensate coating. The aluminum base shall have continuously welded curb cap corners for maximum leak protection.
- B. See ventilator schedule on the drawings. Sizes shown on the drawings designate throat size. Area of ventilator perimeter opening shall be not less than the throat area.
- C. Dampers for Gravity Ventilators without Duct Connection: Construct damper of the same material as the ventilator and of the design to completely close opening or remain wide open. Hold damper in closed position by a brass chain and catch. Extend chains 300 mm (12 inches) below and engage catch when damper is closed.
- D. Provide Roof Curb by unit manufacturer. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for additional requirements.

2.2 EXTERIOR WALL LOUVERS:

- A. General:
 - 1. Provide fixed type louvers of size and design shown.

- Heads, sills and jamb sections are to have formed caulking slots or be designed to retain caulking. Head sections are to have exterior drip lip, and sill sections an integral water stop.
- 3. Furnish louvers with sill extension or separate sill as shown.
- 4. Frame is to be mechanically fastened or welded construction with welds dressed smooth and flush.
- B. Performance Characteristics:
 - Weather louvers are to have a minimum of 48 percent free area and to pass 1200 fpm free area velocity at a pressure drop not exceeding 0.2 inch water gauge and carry not more than 0.15 ounces of water per square foot of free area for 15 minutes when tested per AMCA Standard 500-L.
 - 2. Louvers are to bear AMCA certified rating seals for air performance and water penetration ratings.
 - 3. Blast Resistance:
 - A. Louvers in exterior walls shall be blast resistant and meet the following criteria per the VA Physical Security Design Manual for Mission Critical Protected Facilities January 2015:
 - 1. Standoff Distance: 50 feet (Mission Critical Protected)
 - a. Design Threat W1 at the standoff distance not to exceed pressure and impulse associated with W1 at the standoff distance not to exceed pressure and impulse associated with GP2 threat for Mission Critical Protected Buildings.
 - b. Deformation not to exceed those defined by B3 response per the Protective Design Center document PDC-TR-08 while experiencing design level pressures.
- C. Aluminum Louvers:
 - General: Frames, blades, sills and mullions (sliding interlocking type); 2 mm (0.078-inch) thick extruded 6063-T5 or -T52 aluminum. Blades to be drainable type and have reinforcing bosses.
 - Louvers, fixed: Make frame sizes 13 mm (1/2-inch) smaller than openings. Single louvers frames are not to exceed 1676 mm (66 inches) wide. When openings exceed 1676 mm (66 inches), provide twin louvers separated by mullion members.
 - 3. Louvers are to withstand the effects or gravity loads and the following wind loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise

- a. Wind load acting inward or outward of not less than 30 pound per square foot.
- D. Hidden Mullion Construction
 - Individual louver sections are designed to withstand a 30 PSF wind load. Structural reinforcing members may be required to adequately support and install multiple louver sections within a large opening. Refer to drawing basis-of-design model information.
- E. Closure angles and closure plates:
 - 1. Fabricate from 2 mm (0.078-inch) thick stainless steel or aluminum.
 - Provide continuous closure angles and closure plates on inside head, jambs and sill of exterior wall louvers.
 - Secure angles and plates to louver frames with screws, and to masonry or concrete with fasteners as indicated in construction documents.
- F. Birdscreen: Provide with $\frac{1}{2}$ " x $\frac{1}{2}$ " stainless steel birdscreen mesh secured behind louver face.
- G. Finish:
 - Organic Finish: AAMA 2605 (Fluorocarbon coating) with total dry film thickness of not less than 0.03 mm (1.2 mil), color as indicated in drawing equipment schedule.
 - H. Aluminum Louvers: Sand blasted satin finish.
- I. Blank-off panels:
 - Insulated laminated panels consisting of an insulating core surfaced on back and front with metal sheets and attached to back of louver with clips on screws and gasketed or sealant sealed perimeter. Panel finish is to be same type of finish applied to louvers but black color.
 - a. Thickness: 50 mm (2 inches).
 - b. Aluminum sheet for aluminum louver 0.81 mm (0.032 inch) minimum.
 - c. Insulating Core: Rigid, glass-fiber-board insulation or extrudedpolystyrene foam.

2.2 EQUIPMENT SUPPORTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 AIR OUTLETS AND INLETS

A. Materials:

- 1. Steel or aluminum. Provide manufacturer's standard gasket.
- Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
- Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers: Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Perforated face type: Manual adjustment for one-, two-, three-, or four-way horizontal air distribution pattern without change of air volume or pressure. Provide equalizing or control grid and opposed blade over overlapping blade damper. Perforated face diffusers for VAV systems shall have the pattern controller on the inner face, rather than in the neck and designed to discharge air horizontally at the ceiling maintaining a Coanda effect.
 - b. Slot diffuser/plenum:
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Form slots or use adjustable pattern controllers, to provide stable, horizontal air flow pattern over a wide range of operating conditions.
 - 2) Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, anti-microbial, and non-friable.
 - Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
 - Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.)

- 2. Linear Bar Grilles and Diffusers: Extruded aluminum, manufacturer's standard finish, and positive holding concealed fasteners.
 - a. Margin Frame: Flat, 20 mm (3/4 inch) wide.
 - b. Bars: Minimum 5 mm (3/16 inch) wide by 20 mm (3/4 inch) deep, zero deflection unless otherwise shown. Bar spacing shall be a minimum of 3 mm (1/8 inch) on center. Reinforce bars on 450 mm (18 inch) center for sidewall units and on 150 mm (6 inch) center for units installed in floor or sills.
 - c. Provide opposed blade damper and equalizing or control grid where shown.
- 3. Supply Registers: Double deflection type with horizontal face bars and opposed blade damper with removable key operator.
 - a. Margin: Flat, 30 mm (1-1/4 inches) wide.
 - b. Bar spacing: 20 mm (3/4 inch) maximum.
 - c. Finish: Off white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded with manufacturer's standard finish.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting, or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - Standard Type: Fixed horizontal face bars set at 30 to 45 degrees, approximately 30 mm (1-1/4 inch) margin.
 - 3. Perforated Face Type: To match supply units.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 INTAKE/ EXHAUST HOODS EXPOSED TO WIND VELOCITY

Provide additional support and bracing to all exposed ductwork installed on the roof or outside the building to withstand wind velocity of 145 km/h (90 mph).

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 40 00 HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media used filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- E. Section 23 37 00 AIR OUTLETS AND INLETS.
- F. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS: Filter housing and racks.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to Resident Engineer, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.

- 2. Government Option: The Government at its option may take one of the filters for each different type submitted and run an independent test to determine if the filter meets the requirements of this specification. When the filter meets the requirements, the Government will pay for the test. When the filter does not meet the specification requirements, the manufacturer will be required to pay for the test and replace the filters with filters that will perform as required by the specifications.
- 3. Guarantee Performance: The manufacturer shall supply ASHRAE 52.2 test reports on each filter type submitted. Any filter supplied will be required to maintain the minimum efficiency shown on the ASHRAE Standard 52.2 report throughout the time the filter is in service. Within the first 6-12 weeks of service a filter may be pulled out of service and sent to an independent laboratory for ASHRAE Standard 52.2 testing for initial efficiency only. If this filter fails to meet the minimum level of efficiency shown in the previously submitted reports, the filter manufacturer/distributor shall take back all filters and refund the owner all monies paid for the filters, cost of installation, cost of freight and cost of testing.
- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, and UL classification.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
 - 4. HEPA filters.
 - 5. Magnehelic gages.
- C. Air Filter performance reports.
- D. Suppliers warranty.

E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2017.....Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J
- C. American Society of Mechanical Engineers (ASME): NQA-1-2017.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL): 900;Revision 15 July 2015 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

- A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of additional filters to the Resident Engineer.
- B. The Resident Engineer will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

HVAC Filter Types	
Table 2.2C	

MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway
11	11-A	After-Filter	1 to 3 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge
13	13-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge
14	14-A	After-Filter	0.3 to 1 Microns	150 mm (6-inch) or 300 mm (12-inch) Rigid Cartridge

D. HEPA Filters

HEPA Filters Table 2.2D					
Efficiency at 0.3 Micron	Application	Initial Resistance (inches w.g.)	Rated CFM	Construction	
99.97	Final Filter	1.35	1100	Galvanized Frame X- Body	
99.97	Final Filter	1.00	2000	Aluminum Frame V-Bank	

2.3 MEDIUM EFFICIENCY PLEATED PANEL PRE-FILTERS (2"; MERV 8; UL 900 CLASS 2):

- A. Construction: Air filters shall be medium efficiency ASHRAE pleated panels consisting of cotton and synthetic or 100% virgin synthetic media, self supporting media with required media stabilizers, and beverage board enclosing frame. Filter media shall be lofted to a uniform depth and formed into a uniform radial pleat. The media stabilizers shall be bonded to the downstream side of the media to maintain radial pleats and prevent media oscillation. An enclosing frame of no less than 28-point high wet-strength beverage board shall provide a rigid and durable enclosure. The frame shall be bonded to the media on all sides to prevent air bypass. Integral diagonal support members on the air entering and air exiting side shall be bonded to the apex of each pleat to maintain uniform pleat spacing in varying airflows.
- B. Performance: The filter shall have a Minimum Efficiency Reporting Value of MERV 8 when evaluated under the guidelines of ASHRAE Standard 52.2. It shall also have a MERV-A of 8 when tested per Appendix J of the same standard. The media shall maintain or increase in efficiency over the life of the filter. Pertinent tolerances specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-

2014 shall apply to the performance ratings. All testing is to be conducted on filters with a nominal $24'' \ge 24''$ face dimension.

Minimum Efficiency Reporting (MERV)	8		
Dust Holding Capacity (Grams)	105		
Nominal Size (Width x Height x Depth)	24x24x2		
Rated Air Flow Capacity (Cubic Feet per Minute)	2,000		
Rated Air Flow Rate (Feet per Minute)	500		
Final Resistance (Inches w.g.)	1.0		
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.66		
Rated Initial Resistance (Inches w.g.)	0.33		

C. The filters shall be approved and listed by Underwriters' Laboratories, Inc. as Class 2 when tested according to U. L. Standard 900 and CAN 4-5111.

2.4 HIGH EFFICIENCY EXTENDED SURFACE (INTERMEDIATE/AFTER (FINAL)) CARTRIDGE FILTERS (12"; MERV 14/13/11; UL 900 CLASS 2):

- A. Construction: Air filters shall consist of 8 pleated media packs assembled into 4 V-banks within a totally plastic frame. The filters shall be capable of operating at temperatures up to 80 degrees C (176 degrees F). The filters must either fit without modification or be adaptable to the existing holding frames. The molded end panels are to be made of high impact polystyrene plastic. The center support members shall be made of ABS plastic. No metal components are to be used.
- B. Media: The media shall be made of micro glass fibers with a water repellent binder. The media shall be a dual density construction, with coarser fibers on the air entering side and finer fibers on the air leaving side. The media shall be pleated using separators made of continuous beads of low profile thermoplastic material. The media packs shall be bonded to the structural support members at all points of contact, this improves the rigidity as well as eliminates potential air bypass in the filter
- C. Performance: Filters of the size, air flow capacity and nominal efficiency (MERV) shall meet the following rated performance specifications based on the ASHRAE 52.2-1999 test method. Where applicable, performance tolerance specified in Section 7.4 of the Air-Conditioning and Refrigeration Institute (ARI) Standard 850-2014 shall

apply to the performance ratings. All testing is to be conducted on filters with a nominal 24"x24" header dimension.

Minimum Efficiency Reporting Value (MERV)	14	13	11
Gross Media Area (Sq. Ft.)	197	197	197
Dust Holding Capacity (Grams)	486	430	465
Nominal Size (Width x Height x Depth)	24x24x12	24x24x12	24x24x12
Rated Air Flow Capacity (cubic feet per minute)	2,000	2,000	2,000
Rated Air Flow Rate (feet per minute)	500	500	500
Final Resistance (inches w.g.)	2.0	2.0	2.0
Maximum Recommended Change-Out Resistance (Inches w.g.)	0.74	0.68	0.54
Rated Initial Resistance (inches w.g.)	0.37	0.34	0.27

2.5 FILTER HOUSINGS/SUPPORT FRAMES

- A. Side Servicing Housings (HVAC Grade)
 - Filter housing shall be two-stage filter system consisting of 16gauge galvanized steel enclosure, aluminum filter mounting track, universal filter holding frame, insulated dual-access doors, static pressure tap, filter gaskets and seals. In-line housing depth shall not exceed 21". Sizes shall be as noted on enclosed drawings or other supporting materials.
 - 2. Construction: The housing shall be constructed of 16-gauge galvanized steel with pre-drilled standing flanges to facilitate attachment to other system components. Corner posts of Z-channel construction shall ensure dimensional adherence. Where installed outdoors, the housing shall be weatherproof and suitable for rooftop/outdoor installation. The housing shall incorporate the capability of two stages of filtration without modification to the housing. A filter track, of aluminum construction shall be an integral component of housing construction. The track shall accommodate a 2" deep prefilter, a 6" or 12" deep rigid final filter, or a pocket filter with header. Insulated dual access doors, swing-open type, shall include high-memory sponge neoprene gasket to facilitate a door-to-filter seal. Each door shall be equipped with adjustable and replaceable positive sealing UV-resistant star-style knobs and replaceable door hinges. A universal holding frame constructed of 18-gauge galvanized steel, equipped with centering

dimples, multiple fastener lances, and polyurethane filter sealing gasket, shall be included to facilitate installation of highefficiency filters. The housing shall include a pneumatic fitting to allow the installation of a static pressure gauge to evaluate pressure drop across a single filter or any combination of installed filters.

- 3. Performance: Leakage at rated airflow, upstream to downstream of filter, holding frame, and slide mechanism shall be less than 1% at 3.0" w.g. Leakage in to or out of the housing shall be less than one half of 1% at 3.0" w.g. Accuracy of pneumatic pressure fitting, when to evaluate a single-stage, or multiple filter stages, shall be accurate within ± 3% at 0.6" w.g.
- Manufacturer shall provide evidence of facility certification to ISO 9001:2015.
- B. Holding Frame System (HVAC Grade):
 - Air filter-holding frames shall be 16-gauge galvanized steel with filter sealing flange, centering dimples, sealing gasket and lances for appropriate air filter fasteners. Sizes shall be noted on drawings or other supporting materials.
 - 2. Construction: Filter holding frame shall be constructed of 16-gauge galvanized steel. The frame shall be assembled from two corner sections and welded to assure a rigid and durable frame assembly. The frame shall include a variety of pre-punched lances for filter fastener attachment. Fastener shall be capable of being installed without the use of tools, nuts or bolts. Lance penetrations shall be upstream of filter flange to assure leak-free integrity. The frame shall include filter-centering dimples on each frame wall to facilitate ease of filter installation and assure filter centering against filter sealing flange. A 3/4" filter-sealing flange shall be flush mitered and a permanently mounted polyurethane foam gasket shall be mounted on the sealing flange to assure filter to frame sealing integrity.
 - Manufacturer shall provide evidence of facility certification to ISO 9001:2015.

2.6 INSTRUMENTATION

A. Magnehelic Differential Pressure Filter Gages: Nominal 100 mm (four inch) diameter, zero to 500 Pa (zero to two inch water gage), three inch for HEPA) range. Gauges shall be flush-mounted in aluminum panel board, complete with static tips, copper or aluminum tubing, and accessory items to provide zero adjustment.

- B. DDC static (differential) air pressure measuring station. Refer to Specification Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- C. Provide one DDC sensor across each extended surface filter. Provide Petcocks for each gauge or sensor.
- D. Provide one common filter gauge for two-stage filter banks with isolation valves to allow differential pressure measurement.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install supports, filters and gages in accordance with manufacturer's instructions.
- B. Label clearly with words "Contaminated Air" on exhaust ducts leading to the HEPA filter housing.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Replace Pre-filters and install clean filter units prior to final inspection as directed by the Resident Engineer.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - E N D - - -

SECTION 23 64 00 PACKAGED WATER CHILLERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Rotary-Screw or Scroll air-cooled chillers complete with accessories.

1.2 RELATED WORK

- A. Section 00 72 00, GENERAL CONDITIONS.
- B. Section 01 00 00, GENERAL REQUIREMENTS.
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- G. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 21 13, HYDRONIC PIPING.
- J. Section 23 21 23, HYDRONIC PUMPS.
- K. Section 23 23 00, REFRIGERANT PIPING.
- L. Section 23 31 00, HVAC DUCTS and CASINGS
- M. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 DEFINITION

- A. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- B. BACNET: Building Automation Control Network Protocol, ASHRAE Standard 135.
- C. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- D. FTT-10: Echelon Transmitter-Free Topology Transceiver.

1.4 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, and comply with the following.
- B. Refer to PART 3 herein after and Section 01 00 00, GENERAL REQUIREMENTS for test performance.
- C. Comply with AHRI requirements for testing and certification of the chillers.

23 64 00 - 1

- D. Refer to paragraph, WARRANTY, Section 00 72 00, GENERAL CONDITIONS, except as noted below:
 - Provide a 5-year motor and compressor warranty to include materials, parts and labor.
- E. Refer to OSHA 29 CFR 1910.95(a) and (b) for Occupational Noise Exposure Standard
- F. Refer to 42 CFR-Public Health, Part 84, "Approval of Respiratory Protective Devices," Subpart H-"Self-Contained Breathing Apparatus," 1998.
- G. Refer to ASHRAE Standard 15, Safety Standard for Refrigeration System, for refrigerant vapor detectors and monitor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating and Refrigeration Institute (AHRI): 370-2015.....Refrigerating and Rating of Large Outdoor Refrigerating and Air-Conditioning Equipment 495-2005(R2009)Refrigerant Liquid Receivers 550/590-2018.....Standard for Water Chilling Packages Using the Vapor Compression Cycle 560-2000.....Absorption Water Chilling and Water Heating Packages 575-2017...... Methods for Measuring Machinery Sound within Equipment Space C. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): 15-2019......Safety Standard for Mechanical Refrigeration Systems GDL 3-1996......Guidelines for Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems D. American Society of Mechanical Engineers (ASME): CFVC VIII-1 2019ASME Boiler and Pressure Vessel Code, Section VIII, "Pressure Vessels - Division 1" E. American Society of Testing Materials (ASTM): C 534/C534M-2017.....Preformed, Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form

C 612-2014.....Mineral-fiber Block and Board Thermal

Insulation

F. National Electrical Manufacturing Association (NEMA): 250-2014.....Enclosures for Electrical Equipment (1000 Volts

Maximum)

- G. National Fire Protection Association (NFPA): 70-2017.....National Electrical Code
- H. Underwriters Laboratories, Inc. (UL): 1995-2015..... Heating and Cooling Equipment

1.6 SUBMITTALS

- A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data.
 - Rotary-screw or scroll water chillers, including motor starters, control panels, and vibration isolators, and remote condenser data shall include the following:
 - a. Rated capacity.
 - b. Pressure drop.
 - c. Efficiency at full load and part load WITHOUT applying any tolerance indicated in the AHRI 550/590/Standard.
 - d. Refrigerant
 - e. Fan performance (Air-Cooled Chillers only.)
 - f. Accessories.
 - g. Installation instructions.
 - h. Start up procedures.
 - Wiring diagrams, including factor-installed and field-installed wiring.
 - j. Sound/Noise data report. Manufacturer shall provide sound ratings. Noise warning labels shall be posted on equipment.
 - k. Refrigerant vapor detectors and monitors.
- C. Maintenance and operating manuals for each piece of equipment in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- D. Run test report for all chillers.
- E. Product Certificate: Signed by chiller manufacturer certifying that chillers furnished comply with AHRI requirements. The test report shall include calibrated curves, calibration records, and data sheets for the instrumentation used in factory tests.

PART 2 - PRODUCTS

2.1 ROTARY-SCREW AND SCROLL AIR-COOLED WATER CHILLERS

- A. General: Factory-assembled and-tested rotary-screw or scroll water chillers, complete with evaporator, compressors, motor, starters, integral condenser, and controls mounted on a welded steel base. The chiller unit shall consist of two compressors minimum, but not more than eight, mounted on a single welded steel base. Where compressors are paralleled, not more than two shall be so connected and not less than two independent refrigerant circuits shall be provided. Chiller shall be capable of operating one of the following refrigerants: HCFC-134a or HCFC-410a.
- B. Performance: Provide the capacity as shown on the drawings. Part load and full load efficiency ratings of the chiller shall not exceed those shown on the drawings. If chillers are required to operate at less than 25 percent of full unit rated capacity, specify provision for hot gas by-pass, to operate the unit stable at any stage of capacity reduction.
- C. Capacity of a single air-cooled chiller shall not exceed 250 Tons (Standard AHRI Conditions).
- D. Applicable Standard: Chillers shall be rated and certified according to AHRI 550/590, and shall be stamped in compliance with AHRI certification.
- E. Acoustics: Sound pressure levels shall not exceed the following specified levels. The manufacturer shall provide sound treatment if required to comply with the specified maximum levels. Testing shall be in accordance with AHRI requirements.

OCTAVE BAND					Overall			
63	125	250	500	1000	2000	4000	8000	dB(A)

F. Compressor (Rotary-Screw Type): Positive-displacement oil injected type, direct drive, cast-iron casing, precision-machined for minimum clearance about periphery of rotors. Lubrication system shall provide oil at proper temperature to all moving parts. Capacity control shall be by means of single slide valve to modulate the capacity from 100 to 225 percent of full unit rated capacity and hot gas bypass without unstable compressor operation. The slide valve shall be hydraulically operated upon the actuation of temperature or pressure sensor.

- G. Compressor (Scroll Type): Three dimensional, positive-displacement, hermetically sealed design, with suction and discharge valves, crankcase oil heater and suction strainer. Compressor shall be mounted on vibration isolators. Rotating parts shall be factory balanced. Lubrication system shall consist of reversible, positive displacement pump, strainer, oil level sight glass, and oil charging valve. Capacity control shall be by on-off compressor cycling of single and multiple compressors and either hot gas bypass or digital scroll operation.
- H. Refrigerants Circuit: Each circuit shall contain include an expansion valve, refrigerant charging connections, hot-gas muffler, compressor suction and discharge shutoff valves, replaceable-core filter drier, sight glass with moisture indicator, liquid-line solenoid valve and insulated suction line.
- I. Refrigerant and Oil: Sufficient volume of dehydrated refrigerant and lubricating oil shall be provided to permit maximum unit capacity operation before and during tests. Replace refrigerant charge lost during the warranty period, due to equipment failure, without cost to the Government.
- J. Condenser:
 - Air-cooled integral condenser as shown on the drawings and specified hereinafter.
 - 2. Integral Condenser: Condenser coils shall be extended surface fin and tube type, seamless copper tubes with aluminum fins. For corrosion protection, see Paragraph 2.7 below. Condenser coils shall be factory air tested at 3105 kPa (450 psig). Condenser fans shall be propeller type, directly connected to motor shaft. Fans shall be statically and dynamically balanced, with wire safety guards. Condenser fan motors with permanently lubricated ball bearings and three-phase thermal overload protection. Unit shall start -18°C (0°F) with external damper assemblies. Units shall have grilles factory mounted to prevent damage to coil surfaces.
 - 3. Remote Condenser: Refer to paragraph 2.5
- K. Evaporator: Shell and tube design with seamless copper tubes roller expanded into tube sheets. Designed, tested, and stamped in accordance with applicable portions of ASME Boiler and Pressure Vessel Code, Section VIII, for working pressure produced by the water system, but

carbon steel. For the waterside of liquid cooler the performance shall be based on a water velocity not less than 1 m/s (3 fps) with a maximum water velocity of 3 m/s (10 fps) and a fouling factor 0.0000176 m^2 degrees C (0.0001 hr. sq. ft.) degrees F/Btu. Brazed plate and frame type heat exchanger design. Brazed plate evaporator shall be constructed of stainless steel with copper brazing material. The evaporator shall be designed for a minimum of 1.5 times the working pressure produced by the water system, but not less than 10,350 kPa (150 psig). Refrigerant side working pressure shall comply with ASHRAE Standard 15. Evaporator for packaged air-cooled chiller units designed for outdoor installation shall be protected against freeze-up in ambient temperature down to -30 degrees C (-20 degrees F) by a resistance heater cable under insulation with thermostat set to operate below 3 degrees C (37 degrees F) ambient. If electric resistance heater is required and the chiller is connected to emergency power, provide emergency power to the heater cable.

- L. Insulation: Evaporator, suction piping, compressor, and all other parts subject to condensation shall be insulated with 20 mm (0.75 inch) minimum thickness of flexible-elastomeric thermal insulation, complying with ASTM C534.
- M. Refrigerant Receiver: Provide a liquid receiver for chiller units when system refrigerant charge exceeds 80 percent of condenser refrigerant volume. Liquid receivers shall be horizontal-type, designed, fitted, and rated in conformance with AHRI 495. Receiver shall be constructed and tested in conformance with Section VIII D1 of the ASME Boiler and Pressure Vessel Code. Each receiver shall have a storage capacity not less than 20 percent in excess of that required for fully charged system. Each receiver shall be equipped with inlet, outlet drop pipes, drain plug, purging valve, and relief devices as required by ASHRAE Standard 15.
- N. Controls: Chiller shall be furnished with unit mounted, stand-alone, microprocessor-based controls in NEMA 4 enclosure, hinged and lockable, factory wired with a single point power connection and separate control circuit. The control panel provide chiller operation, including monitoring of sensors and actuators, and shall be furnished with light emitting diodes or liquid-crystal display keypad.

23 64 00 - 6

- 1. Following shall display as a minimum on the panel:
 - a. Date and time.
 - b. Outdoor air temperature.
 - c. Operating and alarm status.
 - d. Entering and leaving water temperature-chilled water.
 - e. Operating set points-temperature and pressure.
 - f. Refrigerant temperature and pressure.
 - g. Operating hours.
 - h. Number of starts.
 - i. Current limit set point.
 - j. Maximum motor amperage (percent).
- 2. Control Functions:
 - a. Manual or automatic startup and shutdown time schedule.
 - b. Condenser water temperature.
 - c. Entering and leaving chilled water temperature and control set points.
 - d. Automatic lead-lag switch.
- 3. Safety Functions: Following conditions shall shut down the chiller and require manual reset to start:
 - a. Loss of chilled water flow.
 - b. Loss of condenser water flow (for water-cooled chillers only).
 - c. Low chilled water temperature.
 - d. Compressor motor current-overload protection.
 - e. Freeze protection (for air-cooled chillers).
 - f. Starter fault.
 - g. High or low oil pressure.
 - h. Recycling pumpdown.
- O. The chiller control panel shall provide leaving chilled water temperature reset based on return water temperature or 4-20 ma or 0-10 VDC signal from Energy Control Center (ECC).
- P. Provide contacts for remote start/stop, alarm for abnormal operation or shutdown, and for Engineering Control Center (ECC).
- Q. Auxiliary hydronic system and the chiller(s) shall be interlocked to provide time delay and start sequencing as indicated on control drawings.
- R. Motor: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Compressor motor furnished with the chiller shall be in accordance with the chiller manufacturer and the electrical

S. Motor Starter: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Provide a starter in NEMA 4 enclosure, designed for floor or unit mounted chiller using multiple compressors, with the lead compressor starting at its minimum capacity may be provided with across-the-line starter. See Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for additional requirements.

2.4 CONDENSING UNITS FOR AIR CONDITIONING SERVICE

Refer to Section 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for concrete equipment bases, anchor-bolt sizes and locations, piping and electrical to verify actual locations and sizes before chiller installation and other conditions that might affect chiller performance, maintenance, and operation. Equipment locations shown on drawings are approximate. Determine exact locations before proceeding with installation.

3.2 EQUIPMENT INSTALLATION

- A. Install chiller on concrete base with isolation pads or vibration isolators.
 - Concrete base is specified in Section 03 30 00, CAST-IN-PLACE CONCRETE
 - Vibration isolator types and installation requirements are specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
 - Anchor chiller to concrete base according to manufacturer's written instructions.
 - 4. Charge the chiller with refrigerant, if not factory charged.
 - 5. Install accessories and any other equipment furnished loose by the manufacturer, including remote starter, remote control panel, and remote flow switches, according to the manufacturer written instructions and electrical requirements.
 - 6. Chillers shall be installed in a manner as to provide easy access for tube pull and removal of compressor and motors etc.

- B. Install refrigerant monitoring and safety equipment in accordance with ASHRAE Standard 15.
- C. Install refrigerant piping as specified in Section 23 23 00, REFRIGERANT PIPING and ASHRAE Standard 15.
- D. Install thermometers and gages as recommended by the manufacturer and/or as shown on drawings.
- E. Piping Connections:
 - Make piping connections to the chiller for chilled water, condenser water, and other connections as necessary for proper operation and maintenance of the equipment.
 - 2. Make equipment connections with flanges and couplings for easy removal and replacement of equipment from the equipment room.

3.3 STARTUP AND TESTING

- A. Engage manufacturer's factory-trained representative to perform startup and testing service.
- B. Inspect, equipment installation, including field-assembled components, and piping and electrical connections.
- C. After complete installation startup checks, according to the manufacturers written instructions, do the following to demonstrate to the COR that the equipment operate and perform as intended.
 - Check refrigerant charge is sufficient and chiller has been tested for refrigerant leak.
 - 2. Check bearing lubrication and oil levels.
 - 3. Verify proper motor rotation.
 - 4. Verify pumps associated with chillers are installed and operational.
 - 5. Verify thermometers and gages are installed.
 - Verify purge system, if installed, is functional and relief piping is routed outdoor.
 - 7. Operate chiller for run-in-period in accordance with the manufacturer's instruction and observe its performance.
 - 8. Check and record refrigerant pressure, water flow, water temperature, and power consumption of the chiller.
 - 9. Test and adjust all controls and safeties. Replace or correct all malfunctioning controls, safeties and equipment as soon as possible to avoid any delay in the use of the equipment.
 - Prepare a written report outlining the results of tests and inspections, and submit it to the COR.

- D. Engage manufacturer's certified factory trained representative to provide training for 8 hours for the VA maintenance and operational personnel to adjust, operate and maintain equipment, including selfcontained breathing apparatus.
- E. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.
- F. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units. Coordinate this training with that of the cooling tower, if furnished together.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

INDOOR CENTRAL-STATION AIR-HANDLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air handling units including integral components specified herein.
- B. Definitions: Air Handling Unit (AHU): A factory fabricated and tested assembly of modular sections consisting of single or multiple plenum fans with direct-drive, coils, filters, and other necessary equipment to perform one or more of the following functions of circulating, cleaning, heating, cooling, humidifying, dehumidifying, and mixing of air. Design capacities of units shall be as scheduled on the drawings.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES,
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- F. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Section 23 31 00, HVAC DUCTS and CASINGS.
- K. Section 23 34 00, HVAC FANS.
- L. Section 23 40 00, HVAC AIR CLEANING DEVICES.
- M. Section 23 82 16, AIR COILS.
- N. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Article, Quality Assurance, in Section 23 05 11, COMMON WORK RESULTS FOR.
- B. Air Handling Units Certification
 - 1. Air Handling Units with Plenum Fans:
 - a. Air Handling Units with a single Plenum Fan shall be certified in accordance with AHRI 430 and tested/rated in accordance with AHRI 260.
 - b. Air handling Units with Multiple Fans in an Array shall be tested and rated in accordance with AHRI 430 and AHRI 260.

- C. Heating, Cooling, and Air Handling Capacity and Performance Standards: AHRI 430, AHRI 410, ASHRAE 51, and AMCA 210.
- D. Performance Criteria:
 - 1. The fan BHP shall include all system effects for all fans and v-belt drive losses for housed centrifugal fans.
 - 2. The fan motor shall be selected within the rated nameplate capacity, without relying upon NEMA Standard Service Factor.
 - 3. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point.
 - b. Air Foil, Backward Inclined, or Tubular Fans Including Plenum Fans: At or near the peak static efficiency but at an appropriate distance from the stall line.
 - 4. Operating Limits: AMCA 99 and Manufacturer's Recommendations.
- E. Units shall be factory-fabricated, assembled, and tested by a manufacturer, in business of manufacturing similar air-handling units for at least five (5) years.

1.4. SUBMITTALS:

- A. The contractor shall, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish a complete submission for all air handling units covered in the project. The submission shall include all information listed below. Partial and incomplete submissions shall be rejected without reviews.
- B. Manufacturer's Literature and Data:
 - 1. Submittals for AHUS shall include fans, drives, motors, coils, humidifiers, mixing box with outside/return air dampers, filter housings, blender sections, and all other related accessories. The contractor shall provide custom drawings showing total air handling unit assembly including dimensions, operating weight, access sections, flexible connections, door swings, controls penetrations, electrical disconnect, lights, duplex receptacles, switches, wiring, utility connection points, unit support system, vibration isolators, drain pan, pressure drops through each component (filter, coil etc).
 - 2. Submittal drawings of section or component only will not be acceptable. Contractor shall also submit performance data including performance test results, charts, curves or certified computer selection data; data sheets; fabrication and insulation details. If the unit cannot be shipped in one piece, the contractor shall

indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements. This data shall be submitted in hard copies and in electronic version compatible to AutoCAD version used by the VA at the time of submission.

- 3. Submit sound power levels in each octave band for the inlet and discharge of the fan and at entrance and discharge of AHUs at scheduled conditions. In absence of sound power ratings refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- 4. Provide fan curves showing Liters/Second (cubic feet per minute), static pressure, efficiency, and horsepower for design point of operation and at maximum design Liters/Second (cubic feet per minute).
- 5. Submit total fan static pressure, external static pressure, for AHU including total, inlet and discharge pressures, and itemized specified internal losses and unspecified internal losses. Refer to air handling unit schedule on drawings.
- C. Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS. Include instructions for lubrication, filter replacement, motor and drive replacement, spare part lists, and wiring diagrams.
- D. Submit written test procedures two weeks prior to factory testing.Submit written results of factory tests for approval prior to shipping.
- E. Submit shipping information that clearly indicates how the units will be shipped in compliance with the descriptions below.
 - Units shall be shipped in one (1) piece where possible and in shrink wrapping to protect the unit from dirt, moisture and/or road salt.
 - 2. If not shipped in one (1) piece, provide manufacturer approved shipping splits where required for installation or to meet shipping and/or job site rigging requirements in modular sections. Indicate clearly that the shipping splits shown in the submittals have been verified to accommodate the construction constraints for rigging as required to complete installation and removal of any section for replacement through available access without adversely affecting other sections.
 - 3. If shipping splits are provided, each component shall be individually shrink wrapped to protect the unit and all necessary

hardware (e.g. bolts, gaskets etc.) will be included to assemble unit on site (see section 2.1.A4).

4. Lifting lugs will be provided to facilitate rigging on shipping splits and joining of segments. If the unit cannot be shipped in one piece, the contractor shall indicate the number of pieces that each unit will have to be broken into to meet shipping and job site rigging requirements.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI)/(ARI): 410-2001.....Standard for Forced-Circulation Air-Heating and Air-Cooling Coils

430-2014.....Central Station Air Handling Units

- C. Air Movement and Control Association International, Inc. (AMCA): 210-2016.....Laboratory Methods of Testing Fans for Rating
- D. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE):

170-2017.....Ventilation of Health Care Facilities

- E. American Society for Testing and Materials (ASTM):
 - B117-2017.....Standard Practice for Operating Salt Spray (Fog) Apparatus
 - D1654-2016.....Standard Test Method for Evaluation of Painted or Coated Specimens Subjected to Corrosive Environments
 - D1735-2014.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus
 - D3359-2017..... Standard Test Methods for Measuring Adhesion by Tape Test
- F. Military Specifications (Mil. Spec.): P-21035B-2003.....Paint, High Zinc Dust Content, Galvanizing Repair (Metric)
- G. National Fire Protection Association (NFPA): 90A-2018.....Standard for Installation of Air Conditioning and Ventilating Systems, 2009

H. Energy Policy Act of 2005 (P.L.109-58)

PART 2 - PRODUCTS

2.1 CUSTOM AIR HANDLING UNITS

- A. Equivalent Manufacturers: Shall be one of the following.
 - a. Innovent or Ventrol with FanWall Technology supply fans
 - b. Haakon with AcoustiFLO supply fans
 - c. Ingenia with Fan Array supply fans
- B. General:
 - 1. AHUS shall be entirely of double wall galvanized steel construction without any perforations except as specified in section 2.1.C.2. Casing is specified in paragraph 2.1.C. Foil face lining is not an acceptable substitute for double wall construction. Galvanizing shall be hot dipped conforming to ASTM A525 and shall provide a minimum of 0.275 kg of zinc per square meter (0.90 oz. of zinc per square foot) (G90). Aluminum constructed units may be provided subject to VA approval and documentation that structural rigidity is equal or greater than the galvanized steel specified.
 - 2. Cabinet (Innovent, Ventrol, or Ingenia Options): Formed and reinforced wall panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed. Outside Casing shall be solid 16-ga, Bright spangled G-90 galvanized steel, double die-formed 2" thick panel secured with 1/4" hex head, zinc plated fasteners at 12" on-centers. The inside liner shall be 20-ga, G-90 galvanized steel and incorporate a 5 degree bend on all exposed surfaces to eliminate any waving. Liner shall be secured with sheet metal screws to outside casing at 12" on-centers. The unit construction needs to be of thermal break hybrid polyisocyanurate foam, meeting NFPA 90 A and B. The thermal break must have a minimum R value of 3.3 and the panels to have a minimum R value of 17.9. The fiberglass insulation has an effective thermal conductivity (C) of 0.24 (BTU in. / hr sq.ft.°F) and a noise reduction coefficient (NRC) of 0.70 per inch thick (based on a type "A' mounting). Coefficient meets or exceeds a 3.0 P.C.F. density

material rating. The fiberglass and foam insulated panels meets

erosion requirement of UL 181 facing the air stream and fire hazard classification of 25/50 tested per ASTM E84 for flame and smoke spread, to meet NFPA 90 A and B.

- 3. Cabinet (Haakon Option): Formed and reinforced wall panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed. Outside Casing shall be solid 16-ga, Bright spangled G-90 galvanized steel, double die-formed 4" thick panel secured with 1/4" hex head, zinc plated fasteners at 12" on-centers. The inside liner shall be 20-ga, G-90 galvanized steel and incorporate a 5 degree bend on all exposed surfaces to eliminate any waving. Liner shall be secured with sheet metal screws to outside casing at 12" on-centers. The unit construction needs to be no-thru metal construction, meeting NFPA 90 A and B. The panel construction must have a minimum R value of 1.3 in the walls, ceiling and unit base, to ensure no thru metal unit design throughout the entire unit. The fiberglass insulation has an effective thermal conductivity (C) of 0.24 (BTU in. / hr sq.ft. $^{\circ}$ F) and a noise reduction coefficient (NRC) of 0.70 per inch thick (based on a type ''A'' mounting). Coefficient meets or exceeds a 3.0 P.C.F. density material rating. The fiberglass and foam insulated panels meets erosion requirement of UL 181 facing the air stream and fire hazard classification of 25/50 tested per ASTM E84 for flame and smoke spread, to meet NFPA 90 A and B
- 4. The contractor and the AHU manufacturer shall be responsible for insuring that the unit will not exceed the allocated space shown on the drawings, including required clearances for service and future overhaul or removal of unit components. All structural, piping, wiring, and ductwork alterations of units, which are dimensionally different than those specified, shall be the responsibility of the contractor at no additional cost to the government.
- 5. Gaskets: All door and casing and panel gaskets and gaskets between air handling unit components, if joined in the field, shall be high quality which seal air tight and retain their structural integrity and sealing capability after repeated assembly and disassembly of bolted panels and opening and closing of hinged components. Bolted

sections may use a more permanent gasketing method provided they are not disassembled.

- 6. Structural Rigidity: Provide structural reinforcement when required by span or loading so that the deflection of the assembled structure shall not exceed 1/200 of the span based on a differential static pressure of 1991 PA (8 inch WG) or higher.
- 7. Acoustical Performance: The housing shall have acoustical performance described below.

Test methods and facilities used to establish sound transmission loss values shall conform explicitly with the ASTM designation E90-85 and E413-73.

Sound Transmission Loss DB ASTM E-90 & E413-73:

	1	2	3	4	5	6	7	8
2"-4" Walls	20	20	28	41	51	56	55	57
STC=40								

Test methods and facilities used to establish sound absorption values shall conform explicitly with the requirements of the ASTM Standard Test Method for Sound Absorption Coefficients by the Reverberation Method: ASTM C423-84A and E795-83.

Sound Absorption ASTM C423-84A & E795-83:

1 2 3 4 5 6 7 8 2"-4" Walls .40 .65 1.38 1.28 1.09 1.05 1.02 1.02 STC=40

C. Base:

 Provide a heavy duty steel base for supporting all major AHU components. Bases shall be constructed of wide-flange steel I-beams, channels, or minimum 5 inch high 10 Gauge steel base rails. Welded or bolted cross members shall be provided as required for lateral stability. Contractor shall provide supplemental steel supports as required to obtain proper operation heights for cooling coil condensate drain trap and steam coil condensate return trap as shown on drawings.

- AHUs shall be completely self-supporting for installation on concrete housekeeping pad, steel support pedestals, or suspended as shown on drawings.
- 3. The AHU bases not constructed of galvanized steel shall be cleaned, primed with a rust inhibiting primer, and finished with rust inhibiting exterior enamel.
- 4. Units shall be constructed from structural steel C-channel around the perimeter of the unit with intermediate channel and angle iron supports. Units less than or equal to 20' in length shall have a minimum 4" channel, and units greater than 20' in length shall have a minimum 6" channel.
- 5. Use a 12 gauge floor shall be installed on the base. The floor shall be slip resistant and corrosion resistant. The floor shall be flat, reinforced from below, with all seams continuously welded. Floors that "oil can" are not acceptable. Drive screw attachment and caulking are not acceptable.
- 6. The base shall be provided with lifting lugs, a minimum of four [4] per unit section. The base shall be insulated with 4" fiberglass insulation and sheeted with a galvanized steel liner. The insulation shall be encapsulated with a minimum 22 ga galvanized steel under-liner with joints sealed to provide a continuous vapor barrier. Floors that "oil can" are not acceptable.
- 7. The manufacturer shall provide a 1.5" perimeter collar around the entire unit and around each floor opening to ensure the unit is internally watertight. The entire base shall act as an auxiliary drain pan and hold up to 1.5" of water.
- 8. The manufacturer shall provide auxiliary floor drains in fan sections downstream of cooling coils and in mixing sections. All drain connections on floor mounted air handling units shall terminate at the side of the unit.
- 9. Floors and walls operating under positive pressure (Fan Discharge Side), a maximum allowable deflection shall not exceed more than 1/200th of any span in any direction at 1.5 times design pressure or 10" WG, whichever is more positive. Floors and walls operating under negative pressure (Fan Inlet Side), a maximum allowable deflection shall not exceed more than 1/200th of any span in any

direction at 1.5 times design pressure or 10" WG, whichever is more negative.

- C. Casing (including wall, floor and roof):
 - General: AHU casing shall be constructed as solid double wall, galvanized steel insulated panels without any perforations, integral of or attached to a structural frame. The thickness of insulation, mode of application and thermal breaks shall be such that there is no visible condensation on the exterior panels of the AHU located in the non-conditioned spaces.
 - 2. Blank-Off: Provide blank-offs as required to prevent air bypass between the AHU sections, around coils, and filters.
 - 3. The wet sections of the air handler shall be lined with 20 gauge 316 stainless steel liner. This includes the cooling coil and humidifier sections.
 - 4. Casing panels shall be secured to the support structure with stainless steel or zinc-chromate plated screws and gaskets installed around the panel perimeter. Panels shall be completely removable to allow removal of fan, coils, and other internal components for future maintenance, repair, or modifications. Welded exterior panels are not acceptable.
 - 5. Access Doors: Provide in each access section and where shown on drawings. Doors shall be a minimum of 50 mm (2 inch) thick with same double wall construction as the unit casing. Doors shall be a minimum of 600 mm (24 inches) wide, unless shown of different size on drawings, and shall be the full casing height up to a maximum of 1850 mm (6 feet). Doors shall be gasketed, hinged, and latched to provide an airtight seal. The access doors for fan section, mixing box, humidifier, and coil section shall include a minimum 150 mm x 150 mm (6 inch x 6 inch) double thickness, with air space between the glass panes tightly sealed, reinforced glass or Plexiglas window in a gasketed frame.
 - a. Hinges: Manufacturers standard, designed for door size, weight and pressure classifications. Hinges shall hold door completely rigid with minimum 45 kg (100 lb) weight hung on latch side of door.
 - b. Latches: Non-corrosive alloy construction, with operating levers for positive cam action, operable from either inside or outside.

Doors that do not open against unit operating pressure shall allow the door to ajar and then require approximately 0.785 radian (45 degrees) further movement of the handle for complete opening. Latch shall be capable of restraining explosive opening of door with a force not less than 1991 Pa (8 inch WG).

- c. Gaskets: Neoprene, continuous around door, positioned for direct compression with no sliding action between the door and gasket. Secure with high quality mastic to eliminate possibility of gasket slipping or coming loose.
- d. Access doors are constructed with a double wall construction and an extruded aluminum frame. The doorframe features a built-in nothrough-metal high density resin barrier and a perimeter gasket. Door frames with no thermal break are not acceptable. The door gasket is seamed together at each corner to prevent leakage through the door. Door is attached to the unit with 3 axes adjustable stainless steel hinges. Doors shall open against higher pressure side. Where this is not feasible due to site constraints, an interlocking mechanism furnished on the fan section access door with a de-energizing switch complying with CAL-OSHA, ETL and the mechanical protection requirements of UL 1995 will be provided.
- e. Access doors shall be manufactured from 16 gauge galvanized steel. The doors shall be double wall construction with 20 gauge solid metal liner on the inside. Corners of the doors shall be continuously welded for rigidity. Doors shall be the same thickness as the unit casing to maximize thermal and acoustical resistance. A 12" round (or equivalent) hermetically sealed double pane thermally insulated glass window shall be provided in each door. Hinges shall be heavy duty stainless steel, resistant to damage.
- f. Two [2] high pressure latches operable from either side of the door shall be provided. The door opening shall be fully gasketed with continuous ½" closed cell hollow round black gasketing and a metal encapsulated reinforcing backing that mechanically fastens to the door frame. Door frames shall be made from 16 gauge galvanized steel with the outside of the door flush with the unit. The minimum door opening size shall be 18" x 70" [where height permits] or as shown on the drawings. Fan compartments

must have a door of minimum width to remove the motor and fan scroll.

- g. Inspection access panels and doors shall be sized and located to allow periodic maintenance and inspections. Provide access panels and doors in the following locations as shown on drawings
- h. Dual-paned tempered glass with vacuum seal windows with thermally broken fames shall be supplied as shown on unit drawings. Singled paned windows are not acceptable.
- i. All outward swinging doors must be equipped with a door chain to limit door swing.
- 6. Provide sealed sleeves, metal or plastic escutcheons or grommets for penetrations through casing for power and temperature control wiring and pneumatic tubing. Coordinate with electrical and temperature control subcontractors for number and location of penetrations. Coordinate lights, switches, and duplex receptacles and disconnect switch location and mounting. All penetrations and equipment mounting may be provided in the factory or in the field. All field penetrations shall be performed neatly by drilling or saw cutting. No cutting by torches will be allowed. Neatly seal all openings airtight.
- E. Floor:
 - 1. Unit floor shall be level without offset space or gap and designed to support a minimum of 488 kg/square meter (100 lbs per square foot) distributed load without permanent deformation or crushing of internal insulation. Provide adequate structural base members beneath floor in service access sections to support typical service foot traffic and to prevent damage to unit floor or internal insulation. Unit floors in casing sections, which may contain water or condensate, shall be watertight with drain pan.
 - Where indicated, furnish and install floor drains, flush with the floor, with nonferrous grate cover and stub through floor for external connection.
 - 3. Units shall be constructed from structural steel C-channel around the perimeter of the unit with intermediate channel and angle iron supports. Units less than or equal to 20' in length shall have a minimum 4" channel, and units greater than 20' in length shall have a minimum 6" channel.

- 4. A 12 gauge floor shall be installed on the base. The floor shall be slip resistant and corrosion resistant. The floor shall be flat, reinforced from below, with all seams continuously welded. Floors that "oil can" are not acceptable. Drive screw attachment and caulking are not acceptable.
- 5. The base shall be provided with lifting lugs, a minimum of four [4] per unit section. The base shall be insulated with 2" or 4" fiberglass insulation and sheeted with a galvanized steel liner. The insulation shall be encapsulated with a minimum 22 ga galvanized steel under-liner with joints sealed to provide a continuous vapor barrier. Floors that "oil can" are not acceptable.
- 6. The manufacturer shall provide a 1.5" perimeter collar around the entire unit and around each floor opening to ensure the unit is internally watertight. The entire base shall act as an auxiliary drain pan and hold up to 1.5" of water.
- 7. The manufacturer shall provide auxiliary floor drains in fan sections downstream of cooling coils and in mixing sections. All drain connections on floor mounted air handling units shall terminate at the side of the unit.
- 8. Floors and walls operating under positive pressure (Fan Discharge Side), a maximum allowable deflection shall not exceed more than 1/200th of any span in any direction at 1.5 times design pressure or 10" WG, whichever is more positive. Floors and walls operating under negative pressure (Fan Inlet Side), a maximum allowable deflection shall not exceed more than 1/200th of any span in any direction at 1.5 times design pressure or 10" WG, whichever is more negative.
- F. Condensate Drain Pan: Drain pan shall be designed to extend entire length of cooling coils including headers and return bends. Depth of drain pan shall be at least 43 mm (1.7 inches) and shall handle all condensate without overflowing. Drain pan shall be double-wall, double sloping type, and fabricated from stainless (304) with at least 50 mm (2 inch) thick insulation sandwiched between the inner and outer surfaces. Drain pan shall be continuous metal or welded watertight. No mastic sealing of joints exposed to water will be permitted. Drain pan shall be placed on top of casing floor or integrated into casing floor assembly. Drain pan shall be pitched in all directions to drain line.

- An intermediate, stainless-steel (304) condensate drip pan with copper downspouts shall be provided on stacked cooling coils. Use of intermediate condensate drain channel on upper casing of lower coil is permissible provided it is readily cleanable. Design of intermediate condensate drain shall prevent upper coil condensate from flowing across face of lower coil.
- Drain pan shall be piped to the exterior of the unit. Drain pan shall be readily cleanable.
- Installation, including frame, shall be designed and sealed to prevent blow-by.
- G. Supply Fan Sections:
 - 1. FANWALL TECHNOLOGY® (Innovent or Ventrol Option)
 - a. The multiple fan array systems shall include multiple, direct driven, arrangement 4 plenum fans constructed per AMCA requirements for the duty specified, minimum Class II or class III as required. Class I fans are not acceptable.
 - b. Fans shall be certified by AMCA for performance. All fans shall be selected to deliver the specified airflow quantity at the specified operating Total Static Pressure and specified fan/motor speed.
 - c. The fan array shall be selected to operate at a system Total Static Pressure that does not exceed 90% of the specified fan's peak static pressure producing capability at the specified fan/motor speed.
 - d. Each fan/motor cube or cell shall include a 12 gauge, G 90U Galvanized steel intake wall, 14 gauge spun steel fan inlet funnel, and an 10 gauge G90 Galvanized steel motor support plate rail and structure.
 - e. All fan array components (excluding wheel and base) shall be coated with air dried industrial grade alkyd enamel that meets the requirements set forth in corrosion resistance standard ASTM B-117 providing 500 hour salt spray resistance.
 - f. Motors

i. All motors shall be standard foot mounted type, TEFC or TEAO motors selected at the specified operating voltage, RPM, and efficiency as specified or as scheduled elsewhere.ii. Motors shall meet the requirements of NEMA MG-1 Part 30 and 31, section 4.4.2.

iii. Motors shall be as manufactured by Baldor, Siemens, or Toshiba for use in multiple fan arrays that operate at varying synchronous speeds as driven by an approved VFD with all features required for use in multiple fan arrays. iv. Motors shall be available in 1/2 HP increments so that the nameplate electrical service is at the minimum possible. Any additional electrical service required by an alternative fan array shall be by the contractor. v. Motor HP shall not exceed the scheduled HP as indicated in the AHU equipment schedule(s). vi. Motor BHP shall not exceed the scheduled BHP as indicated in the AHU equipment schedule(s). vii. Steel cased motors and/or ODP motors are not acceptable. viii. All motors shall include permanently sealed bearings and shaft grounding to protect the motor bearings from electrical discharge machining due to stray shaft currents.

ix. Motors sizes that are larger than 10 HP (7.47 KW) shall be provided with electrically isolated ceramic bearings.

g. Array Assembly

i. Each fan/motor assembly shall be dynamically balanced to meet AMCA standard 204-96, exceeding category BV-5, to meet or exceed an equivalent Grade G.55, producing a maximum rotational imbalance of .022" per second peak, filter in (.55mm per second peak, filter in).

ii. All fan and motor assemblies with 27" dia. and less shall be balanced to meet or exceed the G .55 residual unbalance. Fan and motor assemblies submitted for approval incorporating larger than 10 HP motors shall be balanced in three orthogonal planes to demonstrate compliance with the G.55 requirement with a maximum rotational imbalance of .022" per second peak filter in (.55 mm per second peak, filter in).

iii. Fan arrays that meet the balancing specification do not require spring isolation.

iv. Copies of the certified balancing reports shall be provided with the unit O&M manuals at the time of shipment. Submittals that do not include a statement of compliance with this requirement will be returned to the contractor without review.

h. Acoustical Performance

i. The multiple fan array AHU unit shall provide the specified acoustical performance as scheduled for the unit supply discharge opening(s), RA opening(s), and the Outside air and Exhaust air opening(s).

ii. A coplanar silencer shall be required so that discharge radial fan noise shall pass through multiple acoustically attenuated wall panels within the fan array.

iii. Submitted sound and performance data for preapproval showing only single fan performance for multiple fan arrays will be returned without review.

iv. Any proposed remedy for deviations in submitted sound power levels shall be approved by a registered acoustical consultant as selected by the owner or architect. Costs for review of proposed changes shall be borne by the contractor.

j. Array Construction

i. The fan array shall consist of multiple fan and motor "cubes" or "cells", spaced in the air way tunnel cross section to provide a uniform air flow and velocity profile across the entire air way tunnel cross section and components contained therein.
ii. In order to assure uniform velocity profile in the AHU cross section, the fan cube dimensions must be variable, such that each fan rests in an identically sized cube or cell, and in a spacing that must be such that the submitted array dimensions fill a minimum of 90% of the cross sectional area of the AHU air way tunnel.

iii. There shall be no blank off plates or "spacers" between adjacent fan columns or rows to position the fans across the air way tunnel.

iv. Each fan & motor assembly shall be removable through a 30" wide, free area, access door located on the discharge side of the fan wall array without removing the fan wheel from the motor.v. All fan/motor access doors shall open against pressure.

k. Array Performance

i. Scheduled fan performance and static efficiencies shall be based upon actual installed conditions that include the system effects associated with the actual fan mounting arrangement, enclosures around each individual fan, and the effects of any back flow prevention devices, or other appurtenances necessary for proper fan system performance in the event of disabling of one or more fans in the array. All fans in the multiple fan arrays shall be AMCA certified for performance, and that certified performance shall be corrected for system effects introduced by the mounting arrangement, enclosures, back draft dampers, and other fan appurtenances not considered when AMCA certified performance for free inlet and discharge is determined. Submitted AHU performance that does not indicate allowance for system effects for the back flow prevention device(s) and the system effect for the fan and motor enclosure in which each fan is mounted, will be returned to the contractor disapproved and will need to be resubmitted with all of the requested information included for approval.

ii. The array shall produce a uniform air flow profile and velocity profile within the airway tunnel of the air handling unit to equal the specified cooling coil and/or filter bank face velocity by +/- 10% when measured at a point 36" from the intake side of the fan array intake plenum wall, and at a distance of 72" from the discharge side of the fan array intake plenum wall. iii. Any increase in fan system power requirements or sound power levels that exceed those as specified will be corrected at no additional cost to the owner. Corrections for both fan power and sound power levels shall be determined and submitted to the engineer for approval prior to release for production of the submitted equipment.

iv. Submittals for units providing less than the scheduled quantity of fans and/or spacing of the fans for multiple fan arrays shall submit CFD modeling of the air flow profile for prebid approval that indicates uniform velocity and flow across all internal components without increasing the length of the AHU unit or changing the aspect ratio of the unit casing as designed.

k. Backdraft dampers

i. Each individual cube or cell in the multiple fan arrays shall be provided with an integral back flow prevention device that prohibits recirculation of air in the event a fan or multiple fans become disabled. ii. All fans in the multiple fan arrays shall be provided with a back flow prevention means that produces near no static pressure drop and/or system effect when that fan is enabled.iii. The system effects for the back flow prevention device(s) shall be included in the criteria for TSP determination for fan selection purposes, and shall be indicated as a separate line item SP loss in the submittals.iv. Back Draft Damper performance data that is per AMCA ducted inlet and discharge arrangements will not be accepted. Damper data must be for the specific purpose of preventing back flow in

any disabled fan cube and that is close coupled to the entering face of the inlet cone of each fan. Motorized dampers for this purpose are not acceptable.

- 1. ACOUSTIFLO OR FAN ARRAY (Haakon or Ingenia Option)
 - a. AcoustiFlo Option (Haakon): Plenum fan assembly include direct drive single width, single inlet plenum fans with radial outlet silencers acting as an attenuator and static regain device.
 - b. Fan Array Option (Ingenia): Plenum fan assembly include direct drive single width, single inlet plenum fans. Fan array can utilize either VFD's within enclosure, or leverage ECM motors to integrate into unit. However, the preliminary submittal must be clear on which option is be presented under the project quote provided by manufacturer.
 - c. Fan performance shall be based on tests run in an AMCA certified laboratory and administered in accordance with AMCA Standard 210. Fans shall bear AMCA seal for air and sound.
 - d. Each fan shall be sized to perform as indicated on the equipment schedule. The wheel diameter shall not be less than that shown on the equipment schedule. The fan shall be constructed to AMCA Standards for the Class Rating as indicated on the Equipment Schedule.
 - e. Fan static efficiencies shall not be less 68% for the supply fans, and shall modulate to 10% of design capacity without entering a surge region with the system static pressure control point set at 0.75" w.g. If a fan were to fail the remaining fans shall provide a standby capacity of 94% at the design static pressure.

- f. Mount fan and motor on an internal rigid steel frame. The fan shall be isolated from the cabinet by steel springs. The spring isolators shall be mounted to structural steel members and shall be mounted on a waffle pad for vibration isolation.
- g. The fan shaft shall be sized not to exceed 75% of the first critical speed for maximum RPM of Class specified. The critical speed will refer to the top of the speed range of the fans' AMCA class. The lateral static deflection shall not exceed 0.003" per foot of the length of the shaft. Fans shall be balanced to ISO standard G6.3.
- h. A copy of the above balance test data for this project showing calculations for deflection and critical speed of the shaft and wheel assembly shall be submitted to the engineer and a copy forwarded to the Owner.
- i. Furnish premium-efficiency open drip proof, NEMA frame, NEMA premium ball bearing type motors. Horsepower as shown on the schedule are minimum allowable. The fan motors shall be factory wired to an external junction box with flexible conduit of adequate length so that it will not have any affect on the vibration isolation. Motor efficiencies shall not be below NEMA Premium efficiencies.
- j. The connected motor horsepower for the fan array shall not exceed that of the scheduled unit.
- k. The scheduled KW of the fan array shall be exceeded.

2. FAN CONTROL PANEL (VFD ENCLOSURE REQUIRED BY ALL OPTIONS)

- a. Each fan motor shall be individually wired within an enclosed motor control panel containing motor overloads and VFD(s). VFD configuration shall be one per fan, no exceptions or group of fans allowed. VFD control display shall be remote mounted on outside of enclosure to make basic adjustments and read status of each drive without opening the vented enclosure. Enclosure shall be locked and labeled to be opened only by a licensed electrician.
- b. Each control panel shall have a single point electrical power connection. Therefore, units with supply and return fan wall would have two power connections. Each VFD or Microdrive within enclosure shall have its own touch safe disconnect to be able to

take out of service and repair without impacting any other drives in the array.

- c. Wire sizing shall be determined, and installed, in accordance with applicable NEC standards and local code requirements. Contractor to determine with manufacturer on scope of wiring that will be required for installation on site and include within their base bids.
- d. Provide internal ground fault protection such that a ground fault in any of the motor circuits does not cause a system shutdown.
- e. The AHU unit shall be completely factory-wired, requiring only field wiring of main power wiring to the line side of the main power disconnect switch, and a separate 120/60/1 power supply with disconnect switch for receptacles and light fixtures when indicated and required. For field assembled units, contractor to determine with manufacturer on scope of wiring that will be installed on site and include within their base bids.
- f. Redundancy in the variable frequency drives shall be included, along with all necessary controls and devices to assure that in a fault condition for any drive, whether internal or external to the drive, the fan array shall maintain flow and pressure at the required fan operating speed at the time of the fault with no interruption in flow to the system affected.
- H. Fan Motor, Drive and Mounting Assembly:
 - Provide internally vibration isolated fan, motor and drive, mounted on a common integral bolted or welded structural steel base with adjustable motor slide rail with locking device. Provide vibration isolators and flexible duct connections at fan discharge to completely isolate fan assembly. Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, for additional requirements.
 - 2. Fan Motor and Drive: Motors shall be premium energy efficient type, as mandated by the Energy Policy Act of 2005, with efficiencies as shown in the Specifications Section 23 05 12 (General Motor Requirements For HVAC and Steam Equipment), on drawings and suitable for use in variable frequency drive applications on AHUs where this type of drive is indicated. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, for additional motor and

drive specifications. Refer to Specification Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

- 3. Fan drive and belts shall be factory mounted with final alignment and belt adjustment to be made by the Contractor after installation. Drive and belts shall be as specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide additional drive(s) if required during balancing, to achieve desired airflow.
- J. Mixing Boxes: Mixing box shall consist of casing and outdoor air and return air dampers in opposed blade arrangement with damper linkage for automatic operation. Coordinate damper operator with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. Dampers shall be of ultra-low leak design with metal compressible bronze jamb seals and extruded vinyl edge seals on all blades. Blades shall rotate on stainless steel sleeve bearings or bronze bushings. Leakage rate shall not exceed 1.6 cubic meters/min/square meter (5 CFM per square foot) at 250 Pa (1 inch WG) and 2.8 cubic meters/min/square meter (9 CFM per square foot) at 995 Pa (4 inch WG). Electronic operators shall be furnished and mounted in an accessible and easily serviceable location by the air handling unit manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Filter Section: Refer to Section 23 40 00, HVAC AIR CLEANING DEVICES, for filter requirements.
 - Filters including one complete set for temporary use at site shall be provided independent of the AHU. The AHU manufacturer shall install filter housings and racks in filter section compatible with filters furnished. The AHU manufacturer shall be responsible for furnishing temporary filters (pre-filters and after-filters, as shown on drawings) required for AHU testing.
 - 2. Factory-fabricated filter section shall be of the same construction and finish as the AHU casing including filter racks and hinged double wall access doors. Filter housings shall be constructed in accordance with side service or holding frame housing requirements in Section 23 40 00, HVAC AIR CLEANING DEVICES.
 - 3. Air-Handling Units serving surgical suites, shall have after filters located on the downstream side of the supply air fans and cooling coils. Provide a diffuser section between the fan and the after-

filters to ensure uniform air distribution. The final filters shall be HEPA filters located prior to the air outlets

- 4. <u>Prefilters:</u> The filter shall consist of a pleated media, media support grid, and enclosing frame. The filters shall be labeled by Underwriters Laboratories as Class 2. The media shall be non-woven cotton fabric and shall have a minimum efficiency (ASHRAE test standard 52-76) of 30% with minimum arrestance of 90%. The media support shall be a welded wire grid with an effective open area of not less than 90%. The grid shall be bonded to the filter media to eliminate media oscillation and pull away. The enclosing frame shall be constructed of rigid, heavy duty, high wet strength beverage board. The frame shall be bonded to the filter pack. Standard sizes shall be 12" x 24" x 2" and 24" x 24" x 2". All filter holding frames must be caulked in between them to minimize bypass air through the frames. Filters shall be American Air Filter Perfect Pleat, or equal by Cam-Farr, Eco-Air or Airguard.
- 5. Final Filter Rigid Type: The filter shall be a high performance, deep pleated, totally rigid type and shall consist of a glass fiber media, media support frame, contour stabilizers, and enclosing frame. The filter shall be labeled by Underwriters Laboratories as Class 2. The filter media shall be a high density microfine glass fiber laminated to a non-woven synthetic backing to form a lofted filter blanket. The media shall have a minimum efficiency (ASHRAE test standard 52-76) of 90% with a minimum arrestance of 90%. The media support shall be a welded wire grid with an effective open area of not less than 96%. The grid shall be bonded to the filter media to eliminate media oscillation and pull-away. The grid shall support the media both vertically and horizontally. Contour stabilizers shall be permanently installed on both the air entering and exiting sides of the filter media pack to insure the pleat configuration is maintained throughout the life of the filter. The enclosing frame shall be constructed of galvanized steel. It shall be constructed and assembled to provide a rigid and durable enclosure for the filter pack. The frame shall be bonded to the filter pack. Standard filter sizes shall be 12" x 24" x 12" and 24" x 24" x 12". All filter holding frames must be caulked in between them to minimize bypass air through the frames. Filters shall be American Air Filter Rigifil, or equal by Cam-Farr, Eco-Air or

Airguard. Provide Dwyer Instruments Inc Series 2000 Magnahelic gauges across each filter bank.

- M. Cooling Coils: Coils shall be mounted on hot dipped galvanized steel supports to assure proper anchoring of coil and future maintenance. Coils shall be face or side removable for future replacement thru the access doors or removable panels. Each coil shall be removable without disturbing adjacent coil. Cooling coils shall be designed and installed to insure no condensate carry over. Provide factory installed extended supply, return, drain, and vent piping connections. Refer to Drawings and Section 23 82 16, AIR COILS for additional coil requirements.
 - a. <u>Primary Tube Surface:</u> Round seamless 5/8" O.D. copper tubes with 0.020" wall thickness mechanically expanded into fin collars of the secondary surface. Tubes shall be mechanically expanded to provide a permanent metal-to-metal bond for efficient heat transfer. Manufacturer may only use staggered tubes in direction of airflow and only return bends reduced tube wall hairpin bends are not acceptable. 10 rows maximum.
 - b. <u>Secondary Fin Surface:</u> Die-formed, corrugated plate-type 0.008" Aluminum fins with full drawing fin collars to provide accurate fin spacing control and maximum tube contact. 12 fins per inch maximum.
 - c. <u>Headers:</u> Seamless copper with die-formed holes to provide a parallel surface to the coil tube for strong brazing joints. Coil is supplied with 1/8" brass female pipe thread (FPT) vents and drains. All circuiting is designed to gravity-drain.
 - d. <u>Connections:</u> Red Brass Schedule 40 male pipe thread (MPT) to prevent dielectric reaction between dissimilar metals.
 - e. <u>Casing:</u> Minimum 16 ga., 304 stainless steel, with 1-1/2" dieformed flanges to permit easy stacking and mounting. Intermediate tube supports are supplied on coils over 44" fin length with additional supports every 42" multiple thereafter. Coils shall be fully enclosed within the casing and shall be on mounted 304 stainless steel angle racks manufactured to allow coils to slide out individually.
 - f. <u>Removable coil access panels</u>: Shall be provided for removal of coils through the casing wall. Coils shall be individually removable towards the access side. Coils must be individually

racked, removable through the side access panels. Refer to drawings for coil configuration.

- g. Drain pans for all cooling coils: Drain pans shall be continuously welded 304 stainless steel. The coil section must have intermediate drain pans and shall be interconnected with 1" copper drain lines. Each coil support shall include a minimum 16qa 304 stainless steel all welded condensate drain pan extending no more than 12" downstream of coil face unless specified. Each drain pan shall have sufficient depth to hold condensate water but not less than 2". Drain pan shall be sloped in 2 directions (pitched in direction of airflow and pitched sideways to drain connection) for self-drainage at minimum 4" per foot slope. If multiple coils are stacked, intermediate drain pans shall be individually piped down to the drain pan located below, and bottom drain pan shall be piped to the exterior of the unit through the base rail. Drain pan connections shall be located at the lowest point of the drain pan. Drain pipe shall be copper with sufficient size, but not less than 1.5''.
- h. <u>Testing and Performance:</u> All coil assemblies are leak tested under water at 300 PSIG. Standard construction is suitable for 250 PSIG operating pressure up to 300° F. PERFORMANCE is CERTIFIED under ARI Standard 410. All coil performance ratings are generated with manufacturer's ARI certified selection software.
- N. <u>Integral Face and Bypass Steam Coils:</u> Provide multi-circuit heating coil with integral vertical face and bypass dampers. Electric damper operators shall be furnished and mounted by the AHU manufacturer at the factory. Damper operators shall be of same manufacturer as controls furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- O. <u>Humidifier:</u> When included in design, coordinate the humidification requirements with section 23 84 13 Humidifiers. Provide humidification section with stainless steel drain pan of adequate length to allow complete absorption of water vapor. Provide stainless steel dispersion panel or distributors as indicated, with stainless steel supports and hardware.

- a. <u>General:</u> All humidifier sections shall have a stainless steel drain pan as minimum 12" longer than scheduled absorption distance. Manufacturer to mount humidifier dispersion tube panel only. (See the unit drawing for location). All exterior piping shall be done in the field by Mechanical Contractor. Humidity controls and safeties such as air proving and high limit to be provided by Controls Contractor. See the air handling unit schedule for humidifier capacities.
- b. <u>Manifold header</u>: The manifold header shall be constructed of type 304 stainless steel and installed at the bottom of the duct or air handler for a horizontal airflow installation. The header shall be mounted on supplied support brackets, sloped to ensure efficient condensate removal through the steam inlet connection without the use of a separate condensate connection/leg.
- c. <u>Dispersion tubes</u>: The dispersion tubes shall be constructed of type 304 stainless steel. They shall be welded to the header, closely spaced and spanning the width of the duct. The dispersion tubes spacing shall be optimized for every application to provide the best steam coverage, and the required absorption distance. Each tube shall contain a single row of integrally formed holes facing the airflow for shorter absorption distances. The dispersion tubes shall be supplied with a top support bracket adjustable in height for easy field installation. Manifolds supplied with all around frames will not be accepted because of their higher pressure drop.
- d. <u>Tube holes</u>: Each hole shall be formed to extend the tube material internally in a cylindrical shape to get the driest steam from the center of the tube and prevent any condensation entrainment through the holes. Added plastic/resin or stainless steel nozzles are not acceptable. The spacing between holes shall be optimized, spanning the height of the tube and sized to ensure constant pressure inside every tube for even steam distribution.
- e. Pressurized Manifold Steam Accessories:
 - i. The appropriate steam valve, actuator, steam trap and strainer shall be shipped loose for field installation by Mechanical Contractor.

- ii. The steam valve body should be made of bronze and the valve trim should be made of stainless steel for extended life.
- f. The valve actuator should be electrical (24 Vdc) or pneumatic. For electric valve actuators, the control signal should be 0-10 Vdc or 4-20 mA.
- g. The steam trap should be of the Float and Thermostatic (F&T) type with a cast iron body. When using treated water (DI or RO), the trap should be of the stainless steel Inverted Bucket type.
- h. The Y strainer should be made of cast iron, except when using treated water (DI or RO) where stainless steel Y strainer should be supplied.
- P. <u>Sound Attenuators:</u> Refer to Drawings, Specification Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT, and Section 23 31 00, HVAC DUCTS AND CASINGS, for additional unit mounted sound attenuator requirements. AHU sound attenuators shall be factory installed as an integral part of AHU.
- Q. <u>Discharge Section:</u> Provide aerodynamically designed framed discharge openings or spun bellmouth fittings to minimize pressure loss.
- R. Variable Frequency Drives (by manufacturer with vented enclosure):
 - <u>General:</u> Provide enclosed variable frequency drives suitable for operation at the current, voltage, and horsepower indicated on the schedule. Conform to requirements of NEMA ICS 3.1.
 - 2. VFD Ratings:
 - a. VFD must operate, without fault or failure, when voltage varies plus 10% or minus 15% from rating, and frequency varies plus or minus 5% from rating.
 - b. Displacement Power Factor: 0.98 over entire range of operating speed and load.
 - c. Operating Ambient Temperature: -10 degrees C to 40 degrees C (14 degrees F to 104 degrees F)
 - d. Humidity: 0% to 95% non-condensing.
 - e. Altitude: to 3,300 feet, higher altitudes achieved by derating.
 - f. Minimum Efficiency: 96% at half speed; 98% at full speed.
 - g. Starting Torque: 100% starting torque shall be available from 0.5 Hz. to 60 Hz.

03-20

- h. Overload capability: 110% of rated FLA (Full Load Amps) for 60 seconds; 180% of rated FLA, instantaneously.
- i. The VFD must meet the requirements for Radio Frequency Interference (RFI) above 7 MHz as specified by FCC regulations, part 15, subpart J, Class A devices.
- j. Total Harmonic Distortion (THD) compliance: Given the information provided by the customer's electric power single line diagram and distribution transformer data, the VFD manufacturer shall carry out an analysis of the system. The analysis reviews the potential for the proposed equipment, and any existing equipment, to meet IEEE 519 (tables 10.2 and 10.3) recommendations at the Point of Common Coupling (PCC). The result of the analysis shall determine if additional power quality improvement measures should be included in the proposal to meet the THD recommendations of IEEE 519. The PCC shall be at the primary side of the main distribution transformer.
- k. VFDs must have a minimum short circuit rating of 65K amps RMS (100K amps RMS with a DC bus reactor) without additional input fusing.
- 3. VFD Design:
 - a. VFD shall employ microprocessor based inverter logic, isolated from all power circuits.
 - b. VFD shall include surface mount technology with protective coating.
 - c. VFD shall employ a PWM (Pulse Width Modulated) power electronic system, consisting of:
 - i. Input Section: VFD input power stage shall convert three-phase AC line power into a fixed DC voltage via a solid state full wave diode rectifier, with MOV (Metal Oxide Varistor) surge protection.
 - ii. Intermediate Section:
 - DC bus as a supply to the VFD output Section shall maintain a fixed voltage with filtering and short circuit protection.
 - DC bus shall be interfaced with the VFD diagnostic logic circuit, for continuous

monitoring and protection of the power components.

- 3. 30 HP to 150 HP @ 208 VAC, 30 HP to 150 HP @ 240 VAC, and 40 HP to 500 HP 480 VAC, VFDs shall include a DC bus reactor to minimize reflected harmonics.
- iii. Output Section
 - Insulated Gate Bipolar Transistors (IGBTs) shall convert DC bus voltage to variable frequency and voltage.
 - The VFD shall employ PWM sine coded output technology to power the motor.
- d. VFD shall have a disconnect and removable control I/O terminal block to simplify control wiring procedures.
- e. VFD shall include two independent analog inputs. One shall be 0-10 VDC. The other shall be programmable for either 0-10 VDC or 4-20 mA. Either input shall respond to a programmable bias and gain.
- f. VFD shall include two 0-10 VDC or 4-20 mA analog output for monitoring, or "speed tracking" the VFD. The analog output signal will be proportional to output frequency, output current, output power, PI (Proportional & Integral control) feedback or DC bus voltage.
- g. VFD shall provide terminals for remote input contact closure, to allow starting in the automatic mode.
- h. VFD shall include at least one external fault input, which shall be programmable for a normally open or normally closed contact. These terminals can be used for connection of firestats, freezestats, high pressure limits or similar safety devices.
- i. VFD shall include two form "A" contacts and one form "C" contact, capable of being programmed to determine conditions that must be met in order for them to change state. These output relay contacts shall be rated for at least 5A at 120 VAC and shall provide up to 18 functions, including, but not limited to: Speed agree detection, Low and high frequency detection, Missing frequency reference

detection, Overtorque/Undertorque detection, Drive Running, and Drive Faulted

- j. VFD shall include a power loss ride through of 2 seconds.
- k. VFD shall have DC injection braking capability, to prevent fan "wind milling" at start or stop, adjustable, current limited.
- VFD shall include diagnostic fault indication in selected language, last 10 faults storage and heatsink cooling fan operating hours.
- m. VFD shall include loss of input signal protection, with a selectable response strategy including speed default to a percent of the most recent speed.
- n. VFD shall include electronic thermal overload protection for both the drive and motor. The electronic thermal motor overload shall be approved by UL. If the electronic thermal motor overload is not approved by UL, a separate UL approved thermal overload relay shall be provided in the VFD enclosure.
- o. VFD shall include the following program functions:
 - Critical frequency rejection capability: 3 selectable, adjustable deadbands.
 - ii. Auto restart capability: 0 to 10 attempts with adjustable delay between attempts.
 - iii. Stall prevention capability.
 - iv. Bi-directional "Speed search" capability, in order to start a rotating load.
 - v. Heatsink over temperature speed fold back capabilityvi. Preset speeds
- p. VFD shall include factory settings for all parameters, and the capability for those settings to be reset.
- S. <u>Electrical and Lighting</u>: Wiring and equipment specifications shall conform to Division 26, ELECTRICAL.
 - Lights: Marine lights with a protective metal cage and glass seals, complete with duplex receptacles, shall be installed on the wall across from the access doors by unit manufacturer. A switch with an indicator light shall be installed on the unit by unit manufacturer. Vapor-proof lights using cast aluminum base style with glass globe

and cast aluminum guard shall be installed in access sections for fan, mixing box, humidifier and any section over 300 mm (12 inch) wide. A switch shall control the lights in each compartment with pilot light mounted outside the respective compartment access door. Wiring between switches and lights shall be factory installed. All wiring shall run in neatly installed electrical conduits and terminate in a junction box for field connection to the building system. Provide single point 115 volt - one phase connection at junction box.

- 2. Install compatible 100 watt bulb in each light fixture.
- 3. Provide a convenience duplex weatherproof receptacle next to the light switch.
- 4. Disconnect switch and power wiring: Provide factory or field mounted disconnect switch. Coordinate with Division 26, ELECTRICAL.
- 5. Electrical power shall be 120V/1/60.
- 6. <u>Filter Gauges:</u> The unit manufacturer shall provide magnehelic gauges across all filter sections. One gauge shall be provided for each filter bank. All gauges shall be recessed into the cabinet casing. In addition, digital differential pressure sensors to integrate into building automation will be provided by the Controls Contractor.
- 7. <u>Section Drains</u>: The manufacturer shall provide 1" capped floor drain connections on the side of the unit for complete drainability of the base pan for all sections. This will be necessary for cleaning purposes. Drains will be necessary in the following sections: Return air plenum, Return fan section, Mixing plenum, Prefilter section, Heating coil section, Cooling coil section, Supply fan section, Final filter section

- - - E N D - - -

SECTION 23 81 23 COMPUTER-ROOM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies process cooling split systems air conditioning unit.
- B. Definitions:
 - Energy Efficiency Ratio (EER): A ratio calculated by dividing the cooling capacity in Btuh by the power input in watts at any given set of rating conditions, expressed in Watts (Btu/h) per watt.
 - Coefficient of Performance (COP): A ratio calculated by dividing the change in heating or cooling capacity (Btu/h) to the energy consumed by the system (kW), expressed in Btu/kWh.
 - 3. Unitary (AHRI): Consists of one or more factory-made assemblies, which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function.
 - 4. CRAC Units: Computer Room Air Conditioning Units.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- D. Section 22 11 00, FACILITY WATER DISTRIBUTION.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Section 23 05 93: TESTING, ADJUSTING, and BALANCING FOR HVAC.
- I. Section 23 07 11, HVAC, and BOILER PLANT INSULATION.
- J. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.
- K. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- L. Section 23 21 13, HYDRONIC PIPING
- M. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.
- N. Section 23 21 23, HYDRONIC PUMPS and Section 23 22 23, STEAM CONDENSATE PUMPS.
- O. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.
- P. Section 23 31 00, HVAC DUCTS and CASINGS.
- Q. Section 23 40 00, HVAC AIR CLEANING DEVICES.

1.3 QUALITY ASSURANCE

Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data rated capacities (at design indoor and outdoor conditions), EER/COP, operating characteristics, required specialties and accessories. Submit published catalog selection data showing equipment ratings and compliance with required sensible ratio.
 - 1. Indoor Air Conditioning Unit
 - 2. Glycol Pump Package
 - 3. Dry Cooler
 - 4. Air Cooled Condensing Unit
- C. Submit detailed equipment assemblies with dimensions, operating weights, required clearances.
- D. Submit wiring diagrams for power, alarm and controls.
- E. Certification: Submit, simultaneously with shop drawings, a proof of certification:
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 GUARANTEE

The unit shall be guaranteed against all mechanical defects in material, parts or workmanship and shall be repaired or replaced at the Contractor's expense within the period of one year from final acceptance. Contractor shall adhere to a four-hour service response time to troubles during the guarantee period.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed Spec): 00-A-374C-1999.....Air-Conditioners with Remote Condensing Units or Remote Air-cooled and Water-Cooled Condenser Units, Unitary

TT-C-490D-1993.....Cleaning Methods for Ferrous Surfaces and Pretreatments for Organic Coatings

C. Air-Conditioning, Heating and Refrigeration Institute (AHRI) Standards:

	210/240-2017	Performance Rating of Unitary Air-Conditioning			
		and Air-Source Heat Pump Equipment			
	340/360-2015	.Performance Rating of Commercial and Industrial			
		Unitary Air Conditioning and Heat Pump			
		Equipment			
	410-2001	.Forced-Circulation Air-Cooling and Air-Heating			
		Coils			
	460-2005	.Performance Rating of Remote Mechanical-Draft			
		Air-Cooled Refrigerant Condensers			
	520-2004	.Performance Rating of Positive Displacement			
		Condensing Units			
	DCPP-2008	.Directory of Certified Product Performance -			
		Applied Directory of Certified Products			
D.	Air Movement and Control	l Association (AMCA):			
	210-2016	Laboratory Methods of Testing Fans for			
		Certified Aerodynamic Performance Rating (ANSI)			
	410-1996	Recommended Safety Practices for Users and			
		Installers of Industrial and Commercial Fans			
Ε.	American Society of Heating, Refrigerating, and Air-Conditioning				
	Engineers Inc. (ASHRAE):				
	15-2019	.Safety Standard for Refrigeration Systems			
		(ANSI)			
	Handbook 2016 HVAC Syste	ems and Equipment			
	Handbook 2018 Refrigeration				
	52.1-1992	Gravimetric and Dust-Spot Procedures for			
		Testing Air-Cleaning Devices used in General			
		Ventilation for Removing Particulate Matter			
	62-1-2016	Ventilation for Acceptable Indoor Air Quality			
		(ANSI)			
	90.1-2016	Energy Standard for Buildings except Low-Rise			
		Residential Buildings (ANSI Approved; IESNA Co-			
		sponsored)			
F.	American Society of Test	ting and Materials (ASTM):			
	В117-2017	Standard Practice for Operating Salt Spray			
		(Fog) Apparatus			
G.	National Electrical Manu	afacturer's Association (NEMA):			
	MG 1-2019 Motors and Generators (ANSI)				

H. National Fire Protection Association (NFPA) Publications: 70-2017.....National Electrical Code 90A-2018....Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 FLOOR-MOUNTED UNITS 24 KW (7 TONS) AND SMALLER

- A. Description: Self-contained, factory assembled, prewired, and prepiped; consisting of cabinet, fan, filters, and controls; for vertical floor mounting in upflow or downflow configuration.
- B. Cabinet and Frame: Welded tubular-steel frame with removable steel panels with baked-enamel finish, insulated with 1-inch- (25-mm-) thick duct liner.
- C. Floor Stand: Welded tubular steel, 300 mm (12 inches), with adjustable legs and vibration isolation pads.
- D. Finish of Interior Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- E. Supply-Air Fan:
 - 1. Forward-Curved Centrifugal Fan: Provide with adjustable V-belt drive.
 - Plenum Fans: Direct-drive, Arrangement 4, variable-speed drive fan(s) with aluminum wheels; with multiple fans, the number of fans shall not exceed four.
- F. Compressor: Hermetic, scroll with oil strainer, internal motor overload protection, resilient suspension system, and crankcase heater.
- G. Cooling Medium: Water.
- H. Split system shall have suction- and liquid-line compatible fittings and refrigerant piping for field interconnection.
- Hydronic Cooling Coil: Seamless copper tubes expanded into aluminum fins with modulating three-way control valve.
 - 1. Cooling Medium: Water.
 - Coil assembly shall be mounted over stainless-steel drain pan complying with ASHRAE 62.1 and having a condensate pump unit with integral float switch, pump-motor assembly, and condensate reservoir.
- J. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- K. Filter: 50-mm (2-inch) thick, disposable, glass-fiber media.

- 1. Initial Resistance: _____ Pa (inches wg).
- 2. Recommended Final Resistance: Pa (inches wg).
- 3. Arrestance: 90 percent according to ASHRAE 52.1.
- 4. MERV Rating: 7, according to ASHRAE 52.2.
- L. Infrared Humidifier: High-intensity quartz lamps mounted above stainless-steel evaporator pan, serviceable without disconnecting water, drain, or electrical connections; prepiped and located in bypass airstream; with flush-cycle timer and solenoid drain valve.
- M. Plumbing Components and Valve Bodies: Plastic, linked by flexible rubber hosing, with water fill with air gap and solenoid valve incorporating built-in strainer, pressure-reducing and flow-regulating orifice, and drain with integral air gap.
- N. Control: Fully modulating to provide gradual 0 to 100 percent capacity with field-adjustable maximum capacity; with high-water probe.
- O. Drain Cycle: Field-adjustable drain duration and drain interval.
- P. Disconnect Switch: Nonautomatic, molded-case circuit breaker with handle accessible when panel is closed and capable of preventing access until switched to off position.
- Q. Control System: Unit-mounted panel with main fan contactor, compressor contactor, compressor start capacitor, control transformer with circuit breaker, solid-state temperature and humidity control modules, timedelay relay, heating contactor, and high-temperature thermostat. Provide solid-state, wall-mounted control panel with start-stop switch adjustable humidity set point, and adjustable temperature set point.
- R. DDC Interface or BAS: Provide connection to the DDC or the BAS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Handle and install refrigeration units and accessories in accordance with the instructions and recommendations of the manufacturer.
- B. Coordinate installation of Computer Room Air Conditioning Units with Computer room access flooring installer.
- C. Field Refrigerant Piping: As specified in specification Section 23 23 00, REFRIGERANT PIPING.
- D. Field Piping: Glycol Piping, Hot water Piping, Steam and Condensate Piping, as specified in specification Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING.

- E. Fill glycol system with 40 percent glycol mixture and perform start-up procedures as recommended by the manufacturer.
- F. Electrical System Connections and Equipment Ground: As specified in Division 26 Sections.

3.2 CONNECTIONS

- A. Coordinate piping installations and specialty arrangements with schematics on Drawings and with requirements specified in piping systems. If Drawings are explicit enough, these requirements may be reduced or omitted.
- B. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- C. Install piping adjacent to machine to allow service and maintenance.
- D. Water and Drainage Connections: Comply with applicable requirements in Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING and Section 22 11 00, FACILITY WATER DISTRIBUTION. Provide adequate connections for water-cooled units, condensate drain, and humidifier flushing system.
- E. Retain first paragraph below for units with hot-water coils.
- F. Hot-Water Heating Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Provide shutoff valves in inlet and outlet piping to heating coils.
- G. Steam and Condensate Piping: Comply with applicable requirements in Section 23 22 13, STEAM and CONDENSATE HEATING PIPING. Provide shutoff valves in steam inlet and steam trap in condensate outlet piping to heating coils.
- H. Condenser-Water Piping: Comply with applicable requirements in Section 23 21 13, HYDRONIC PIPING. Provide shutoff valves in water inlet and outlet piping on water-cooled units.
- Refrigerant Piping: Comply with applicable requirements in Section
 23 23 00, REFRIGERANT PIPING. Provide shutoff valves and piping.

3.3 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 2. After installing computer-room air conditioners and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.

- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. After startup service and performance test, change filters and flush humidifier.

3.4 STARTUP AND TESTING

- A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of computer room air conditioning equipment.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 00 CONVECTION HEATING AND COOLING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies unit heaters, cabinet unit heaters, and finnedtube radiation.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Flow rates adjusting and balancing.
- H. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.
- I. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Valve operators.
- J. Section 23 21 13, HYDRONIC PIPING: Heating hot water and chilled water piping.
- K. Section 23 31 00, HVAC DUCTS and CASINGS: Ducts and flexible connectors.
- L. Section 23 82 16, AIR COILS: Additional coil requirements.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide guarantee in accordance with FAR clause 52.246-21

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Unit heaters.
 - 2. Cabinet unit heaters.
 - 3. Finned-tube radiation.
- C. Certificates:

- 1. Compliance with Article, QUALITY ASSURANCE.
- 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute / Air Conditioning, Heating and Refrigeration Institute (ANSI/AHRI): 440-2019.....Performance Rating of Room Fan Coils 445-2013....Standard for Air-Induction Units National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air Conditioning and Ventilating Systems 70-2017.....National Electrical Code
 C. Underwriters Laboratories, Inc. (UL): 181-2013.....Standard for Factory-Made Air Ducts and Air Connectors

1995-2015..... Heating and Cooling Equipment

PART 2 - PRODUCTS

2.1 UNIT HEATERS

- A. General: Horizontal or vertical discharge type for steam, hot water or electric heating medium, as indicated.
- B. Casing: Steel sheet, phosphatized to resist rust and finished in baked enamel. Provide hanger supports.
- C. Fan: Propeller type, direct driven by manufacturer's standard electric motor. Provide resilient mounting. Provide fan guard for horizontal discharge units.
- D. Discharge Air Control:
 - 1. Horizontal discharge: Horizontal, adjustable louvers.
 - 2. Vertical discharge: Radial louver diffuser.

- E. Steam or Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psig) steam working pressure.
- F. Controls: Provide field installed remote wall mounted line voltage electric space thermostats or unit mounted return air thermostats, where shown or specified to control the unit fan. Provide an aquastat on hot water units to prevent fan operation when the heating system is off.

2.2 CABINET UNIT HEATERS

- A. General: Vertical or horizontal type for steam, hot water or electric heating medium, as indicated.
- B. Cabinet: Not less than 1.3 mm (18 gage) steel with front panel for vertical units and hinged front panel for horizontal units. Finish on exposed cabinet shall be factory-baked enamel in manufacturer's standard color as selected by the Architect. Provide 76 mm (3-inch) high sub-base for vertical floor mounted units.
- C. Fan: Centrifugal blower, direct driven by a single phase, two-speed, electric motor with inherent overload protection. Provide resilient motor/fan mount.
- D. Filter: Manufacturer's standard, one-inch thick, throwaway type MERV 7 filters.
- E. Steam or Hot Water Coil: Aluminum fins bonded to seamless copper tubing by mechanical expansion of the tubing, designed for 517 kPa (75 psi) steam working pressure.
- F. Factory Mounted Controls: Manual fan starter and three-position (low, high and off) fan speed switch. Provide field installed remote wall mounted line voltage electric space thermostats or unit mounted return air thermostats, where shown or specified to control the unit fan. Provide an aquastat on hot water units to prevent fan operation when the heating system is off.

2.3 FINNED-TUBE RADIATION UNITS

- A. Ratings: Certified under the I=B=R program of the Gas Appliance Manufacturer's Association.
- B. Enclosures: 1.6 mm (16 gage) steel, sloping top, designed for wall mounting. Provide baked enamel finish in standard manufacturer's colors as selected by the Architect. End plates and corner pieces shall be die-formed with round edges and fit flush with enclosure surface. Where continuous wall-to-wall installations are shown on the drawings provide

all fillers, corner fittings, sleeves, end caps and other accessories, which shall have the same profile as the basic unit. Provide access panels or extensions where required for access to valves, or traps shown on the drawings.

C. Hydronic/Steam Heating Elements: Steel pipe or nonferrous tubing with fins mechanically bonded by mechanical expansion of the tube. Elements shall be positively positioned front-to-back with provisions for silent horizontal expansion and contraction.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they always remain stationary. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Install fiberglass blanket insulation with a minimum R value of 8 above hydronic radiant panels.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 DESCRIPTION

Heating and cooling coils for air handling unit and duct applications

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS
- E. Section 23 09 23, DDC SYSTEMS for HVAC
- F. Section 23 31 00, HVAC DUCTS AND CASINGS
- G. Section 23 36 00, AIR TERMINAL UNITS: Reheat coils for VAV/CV terminals.
- H. Section 23 72 00, AIR TO AIR ENERGY RECOVERY EQUIPMENT
- I. Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS.
- J. Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Unless specifically exempted by these specifications, heating and cooling coils shall be tested, rated, and certified in accordance with AHRI Standard 410 and shall bear the AHRI certification label.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data for Heating and Cooling Coils: Submit type, size, arrangements and performance details. Present application ratings in the form of tables, charts or curves.
- C. Provide installation, operating and maintenance instructions.
- D. Certification Compliance: Evidence of listing in current ARI Directory of Certified Applied Air Conditioning Products.
- E. Coils may be submitted with Section 23 36 00, AIR TERMINAL UNITS, Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS, Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS, or Section 23 82 00, CONVECTION HEATING AND COOLING UNITS.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician

and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI): Directory of Certified Applied Air Conditioning Products AHRI 410-2001.....Forced-Circulation Air-Cooling and Air-Heating Coils
- C. American Society for Testing and Materials (ASTM): B75/75M-2019.....Standard Specifications for Seamless Copper Tube
- D. National Fire Protection Association (NFPA): 70-2017.....National Electric Code
- E. National Electric Manufacturers Association (NEMA): 250-2014.....Enclosures for Electrical Equipment (1,000 Volts Maximum)
- F. Underwriters Laboratories, Inc. (UL):
 1996-2014.....Electric Duct Heaters

PART 2 - PRODUCTS

2.1 HEATING AND COOLING COILS

- A. Conform to ASTM B75 and AHRI 410.
- B. Surgical Suites All Locations: All coils installed in the air handling units serving surgical suites, duct-mounted reheat coils, and air terminal unit-mounted reheat coils shall be equipped with copper fins.
- C. High Humidity Locations: For air-handling unit mounted coils provide the following corrosion treatment:
 - 1. Epoxy Immersion Coating Electrically Deposited: The multi-stage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2-mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-

resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.

- The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:
 - a. Salt Spray Resistance (Minimum 6,000 Hours)
 - b. Humidity Resistance (Minimum 1,000 Hours)
 - c. Water Immersion (Minimum 260 Hours)
 - d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
 - e. Impact Resistance (Up to 160 Inch/Pound)
- D. Tubes: Minimum 16 mm (0.625 inch) tube diameter; Seamless copper tubing.
- E. Fins: 0.1397 mm (0.0055 inch) aluminum or 0.1143 mm (0.0045 inch) copper mechanically bonded or soldered or helically wound around tubing.
- F. Headers: Copper, welded steel or cast iron. Provide seamless copper tubing or resistance welded steel tube for volatile refrigerant coils.
- G. "U" Bends, Where Used: Machine die-formed, silver brazed to tube ends.
- H. Coil Casing: 1.6 mm (16 gage) galvanized steel with tube supports at 1200 mm (48 inch) maximum spacing. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.
- I. Pressures kPa (PSIG):

	Pressui	ce	Wa	ter Coi	1	Steam Co:	il	Refrigerant Coil	1
	Test	2	070	(300)	17	25 (250)		2070 (300)	
M	Vorking	1	380	(200)	г.)	520 (75)		1725 (250)	

- J. Protection: Unless protected by the coil casing, provide cardboard, plywood, or plastic material at the factory to protect tube and finned surfaces during shipping and construction activities.
- K. Vents and Drain: Coils that are not vented or drainable by the piping system shall have capped vent/drain connections extended through coil casing.
- L. Cooling Coil Condensate Drain Pan: Section 23 73 00, INDOOR CENTRAL-STATION AIR-HANDLING UNITS or Section 23 74 13, PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS.

2.2 REHEAT COILS, DUCT MOUNTED

The coils shall be continuous circuit booster type for steam or hot water as shown on drawings. Use the same coil material as listed in Article 2.1.

2.3 WATER COILS, INCLUDING GLYCOL-WATER

- A. Use the same coil material as listed in Paragraphs 2.1.
- B. Drainable Type (Self Draining, Self Venting); Manufacturer standard:
 - 1. Cooling, all types.
 - 2. Heating or preheat.
 - Runaround energy recovery. ARI certification of capacity adjustment is waived.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow coil manufacturer's instructions for handling, cleaning, installation and piping connections.
- B. Comb fins, if damaged. Eliminate air bypass or leakage at coil sections.

3.2 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS and as required by Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.
 - - E N D - -

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, ransformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render

satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Tests are specified, Factory Tests shall be performed in the factory by the equipment manufacturer, and witnessed by the contractor. In addition, the following requirements shall be complied with:
 - The Government shall have the option of witnessing factory tests. The Contractor shall notify the Government through the COR a minimum of thirty (30) days prior to the manufacturer's performing of the factory tests.

- When factory tests are successful, contractor shall furnish four (4) copies of the equipment manufacturer's certified test reports to the COR fourteen (14) days prior to shipment of the equipment, and not more than ninety (90) days after completion of the factory tests.
- 3. When factory tests are not successful, factory tests shall be repeated in the factory by the equipment manufacturer, and witnessed by the Contractor. The Contractor shall be liable for all additional expenses for the Government to witness factory retesting.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart
 - J General Environmental Controls, OSHA Part 1910 subpart K Medical

and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.

- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its entirety to ensure compliance with safety requirements and approved work plan.
 - 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
 - 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
 - 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.

- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- D. Electrical service entrance equipment and arrangements for temporary and permanent connections to the electric utility company's system shall conform to the electric utility company's requirements. Coordinate fuses, circuit breakers and relays with the electric utility company's system, and obtain electric utility company approval for sizes and settings of these devices.

1.11 EQUIPMENT IDENTIFICATION

A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.

- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.
 - Equipment/bus name, date prepared, and manufacturer name and address.
 - 3. Arc flash boundary.
 - 4. Available arc flash incident energy and the corresponding working distance.
 - 5. Minimum arc rating of clothing.
 - 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the COR in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall

be legible and clearly identify specific materials and equipment being submitted.

- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:

".

- a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
- b. A control sequence describing start-up, operation, and shutdown.
- c. Description of the function of each principal item of equipment.
- d. Installation instructions.
- e. Safety precautions for operation and maintenance.
- f. Diagrams and illustrations.
- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.
- H. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A minimum 300 mm (12 inches) length of each type and size of wire and cable along with the tag from the coils or reels from which the sample was taken. The length of the sample shall be sufficient to show all markings provided by the manufacturer.
 - 2. Each type of conduit coupling, bushing, and termination fitting.
 - 3. Conduit hangers, clamps, and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, lighting control sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.15 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.16 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.17 INSTRUCTION

- A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.
- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the COR at least 30 days prior to the planned training.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION (NOT USED)

---END---

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.

b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10.....Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10.....Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10.....Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09..... Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-14..... Thermoset-Insulated Wires and Cables 83-14.....Thermoplastic-Insulated Wires and Cables 467-13.....Grounding and Bonding Equipment 486A-486B-13.....Wire Connectors 486C-13.....Splicing Wire Connectors 486D-15.....Sealed Wire Connector Systems
 - 486E-15.....Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors

493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables

514B-12.....Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:

- 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
- 2. No. 8 AWG and larger: Stranded.
- 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
- 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- D. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.

208/120 V	Phase	480/277 V		
Black	А	Brown		
Red	В	Orange		
Blue	С	Yellow		
White	Neutral	Gray *		
* or white with	colored (other	than green) tracer.		

5. Conductors shall be color-coded as follows:

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the COR.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - 1. Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.

- The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - All bolts, nuts, and washers used with splices shall be zincplatedsteel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, or pullboxes,.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.3 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pullboxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.4 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pullbox and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.5 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.6 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.7 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.9 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:

26 05 19 - 6

- 1. Visual Inspection and Tests: Inspect physical condition.
- 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:
 - a. Two weeks prior to the final inspection, submit ground resistance field test reports to the COR.

3. Certifications:

a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 - B1-13.....Standard Specification for Hard-Drawn Copper Wire

B3-13.....for Soft or Annealed Copper Wire

- B8-11.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-12..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials
 - of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-15....National Electrical Safety Code 99-15.....Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL): 44-14Thermoset-Insulated Wires and Cables 83-14Thermoplastic-Insulated Wires and Cables 467-13Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.
- B. Bonding conductors shall be bare stranded copper, except that sizes No.10 AWG and smaller shall be bare solid copper. Bonding conductors

shall be stranded for final connection to motors, transformers, and vibrating equipment.

- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND CONNECTIONS

- A. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-platedsteel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-platedsteel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.3 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.4 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with //zinc-plated//cadmium-plated// steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section,

length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - 1. Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.
- D. For patient care area electrical power system grounding, conform to the latest NFPA 70 and 99.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.3 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Structural Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water pipe systems, building structural steel, and supplemental or made electrodes. Provide jumpers across insulating joints in the metallic piping.
 - Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.
- C. Panelboards, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.

3.5 RACEWAY

- A. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with a equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- D. Wireway Systems:
 - Bond the metallic structures of wireway to provide electrical continuity throughout the wireway system, by connecting a No. 6 AWG bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated No. 6 AWG bonding jumpers between the wireway system, bonded as required above, and the closest building ground at each end and approximately every 16 M (50 feet).
 - Use insulated No. 6 AWG bonding jumpers to ground or bond metallic wireway at each end for all intermediate metallic enclosures and across all section junctions.

- Use insulated No. 6 AWG bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 M (49 feet).
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to the device box ground screw and a jumper to the branch circuit equipment grounding conductor.
- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
 H.
- Panelboard Bonding in Patient Care Areas: The equipment grounding terminal buses of the normal and essential branch circuit panel boards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than No. 10 AWG, installed in rigid metal conduit.

3.6 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.7 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

3.8 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.14 ACCEPTANCE CHECKS AND TESTS

A. A.Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:

- 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
- 2. Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI): S100-12.....North American Specification for the Design of

Cold-Formed Steel Structural Members

C. National Electrical Manufacturers Association (NEMA): C80.1-15.....Electrical Rigid Steel Conduit C80.3-15.....Steel Electrical Metal Tubing C80.6-05.....Electrical Intermediate Metal Conduit FB1-14.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable FB2.10-13.....Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing)

FB2.20-14.....Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13.....Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13.....PVC Fittings for Use with Rigid PVC Conduit and Tubing D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-16.....Surface Metal Raceway and Fittings 6-07.....Electrical Rigid Metal Conduit - Steel 50-15..... Enclosures for Electrical Equipment 360-13.....Liquid-Tight Flexible Steel Conduit 467-13.....Grounding and Bonding Equipment 514A-13.....Metallic Outlet Boxes 514B-12.....Conduit, Tubing, and Cable Fittings and Covers 651-11.....Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11.....Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-14.....Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (0.5-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - Size: In accordance with the NEC, but not less than 13 mm (0.5inch).
 - 2. Rigid Steel Conduit (RMC): Shall conform to UL 6 and NEMA C80.1.
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.

- 4. Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
- 5. Flexible Metal Conduit: Shall conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
- 7. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
 - 2. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.

- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 3. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 4. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors
- 5. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 6. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in accordance with UL 467 and the NEC tables for equipment grounding conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the COR prior to drilling through structural elements.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the COR where working space is limited.
- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.

- 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 5. Cut conduits square, ream, remove burrs, and draw up tight.
- Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
- 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
- 10. Conduit installations under fume and vent hoods are prohibited.
- 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the COR.

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1.8
 M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 4. Tightening set screws with pliers is prohibited.
 - 5. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.

Mixing different types of conduits in the system is prohibited.

- B. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- F. Surface Metal Raceways: Use only where shown on drawings.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.7 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.8 MOTORS AND VIBRATING EQUIPMENT

A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.

- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.9 EXPANSION JOINTS

- A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.10 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.

- b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
- c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.11 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall.

Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.

- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.
 - c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show

the proposed locations accurately on scaled site drawings, and submit to the COR for approval prior to construction.

- Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-14/318M-14.....Building Code Requirements for Structural Concrete & Commentary SP-66-04.....ACI Detailing Manual
- C. American National Standards Institute (ANSI):
 - 77-14..... Underground Enclosure Integrity
- D. American Society for Testing and Materials (ASTM):

C478 REV A-15.....Standard Specification for Precast Reinforced Concrete Manhole Sections

C858-10.....Underground Precast Concrete Utility Structures

- C990-09.....Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants.
- E. National Electrical Manufacturers Association (NEMA): TC 2-13......Electrical Polyvinyl Chloride (PVC) Conduit TC 3-15.....Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing TC 6 & 8-13.....Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installations TC 9-04.....Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation F. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
 - 70E-15.....National Electrical Safety Code

- G. Underwriters Laboratories, Inc. (UL):
 - 6-07.....Electrical Rigid Metal Conduit-Steel
 - 467-13.....Grounding and Bonding Equipment

651-11.....Schedule 40, 80, Type EB and A Rigid PVC

Conduit and Fittings

651A-11.....Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

PART 2 - PRODUCTS

2.1 PRE-CAST CONCRETE MANHOLES AND HARDWARE

- A. Structure: Factory-fabricated, reinforced-concrete, monolithicallypoured walls and bottom. Frame and cover shall form top of manhole.
- B. Cable Supports:
 - Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms.
 - Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long.
 - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable.
 - Equip each cable stanchion with one spare cable arm, with three spare insulators for future use.
- C. Ladder: //Aluminum// //Fiberglass// with 400 mm (16 inches) rung spacing. Provide securely-mounted ladder for every manhole over 1.2 M (4 feet) deep.
- D. Ground Rod Sleeve: Provide a 75 mm (3 inches) PVC sleeve in manhole floors so that a driven ground rod may be installed.
- E. Sump: Provide 305 mm x 305 mm (12 inches x 12 inches) covered sump frame and grated cover.

2.1 PULLBOXES

A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 15loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.

- B. Polymer Concrete Pullboxes: Shall be molded of sand, aggregate, and polymer resin, and reinforced with steel, fiberglass, or both. Pullbox shall have open bottom.
- C. Fiberglass Pullboxes: Shall be sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.

2.2 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.3 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

PART 3 - EXECUTION

3.1 PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install pullboxes level and plumb.
 - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inch) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.

3.2 TRENCHING

- A. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- B. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- C. Cut the trenches neatly and uniformly.
- D. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the COR.

---END---

SECTION 26 05 73 OVERCURRENT PROTECTIVE DEVICE COORDINATION STUDY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the overcurrent protective device coordination study, related calculations and analysis, indicated as the study in this section.
- B. A short-circuit and selective coordination study, and arc flash calculations and analysis shall be prepared for the electrical overcurrent devices to be installed under this project.
- C. The study shall present a well-coordinated time-current analysis of each overcurrent protective device from the new distribution equipment up to the utility source and the on-site generator sources.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. The study shall be prepared by the equipment manufacturer, and performed by the equipment manufacturer's licensed electrical engineer.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - Product data on the software program to be used for the study. Software shall be in mainstream use in the industry, shall provide device settings and ratings, and shall show selective coordination by time-current drawings.
 - Complete study as described in paragraph 1.6. Submittal of the study shall be well-coordinated with submittals of the shop drawings for equipment in related specification sections.

- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the overcurrent protective devices have been set in accordance with the approved study.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronics Engineers (IEEE):

241-90.....Recommended Practice Electrical Systems in Commercial Buildings

- 242-03.....Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
- 399-97.....Recommended Practice for Industrial and Commercial Power Systems Analysis 1584-02....Performing Arc-Flash Hazards Calculations 1584A-04....Performing Arc-Flash Hazards Calculations -Amendment 1 1584B-11...Performing Arc-Flash Hazards Calculations -

Amendment 2

C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-18....Standard for Electrical Safety in the Workplace 99-18....Health Care Facilities Code

1.6 STUDY REQUIREMENTS

- A. The study shall be in accordance with IEEE and NFPA standards.
- B. The study shall include one line diagrams, short-circuit and ground fault analysis, protective coordination plots for all overcurrent protective devices, and arc flash calculations and analysis.
- C. One Line Diagram:
 - Show all electrical equipment and wiring to be protected by the overcurrent devices.
 - 2. Show the following specific information:
 - Calculated fault impedance, X/R ratios, and short-circuit values at each feeder and branch circuit bus.
 - b. Relay, circuit breaker, and fuse ratings.

- c. Generator kW/kVA and transformer kVA and voltage ratings, percent impedance, X/R ratios, and wiring connections.
- d. Voltage at each bus.
- e. Identification of each bus, matching the identification on the drawings.
- f. Conduit, conductor, and busway material, size, length, and $\ensuremath{X/R}$ ratios.
- D. Short-Circuit Study:
 - The study shall be performed using computer software designed for this purpose. Pertinent data and the rationale employed in developing the calculations shall be described in the introductory remarks of the study.
 - Calculate the fault impedance to determine the available shortcircuit and ground fault currents at each bus. Incorporate applicable motor and/or generator contribution in determining the momentary and interrupting ratings of the overcurrent protective devices.
 - Present the results of the short-circuit study in a table. Include the following:
 - a. Device identification.
 - b. Operating voltage.
 - c. Overcurrent protective device type and rating.
 - d. Calculated short-circuit current.
- E. Coordination Study:
 - Prepare the coordination curves to determine the required settings of overcurrent protective devices to demonstrate selective coordination. Graphically illustrate on log-log paper that adequate time separation exists between devices, including the utility company upstream device if applicable. Plot the specific time-current characteristics of each overcurrent protective device in such a manner that all devices are clearly depicted.
 - 2. The following specific information shall also be shown on the coordination curves:
 - a. Device identification.
 - b. Potential transformer and current transformer ratios.
 - c. Three-phase and single-phase ANSI damage points or curves for each cable, transformer, or generator.

01-18

- d. Applicable circuit breaker or protective relay characteristic curves.
- e. No-damage, melting, and clearing curves for fuses.
- f. Transformer in-rush points.
- 3. Develop a table to summarize the settings selected for the overcurrent protective devices. Include the following in the table:
 - a. Device identification.
 - b. Protective relay or circuit breaker potential and current transformer ratios, sensor rating, and available and suggested pickup and delay settings for each available trip characteristic.
 - c. Fuse rating and type.
- F. Arc Flash Calculations and Analysis:
 - 1. Arc flash warning labels shall comply with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - Arc flash calculations shall be based on actual over-current protective device clearing time. Maximum clearing time shall be in accordance with IEEE 1584.
 - 3. Arc flash analysis shall be based on the lowest clearing time setting of the over-current protective device to minimize the incident energy level without compromising selective coordination.
 - 4. Arc flash boundary and available arc flash incident energy at the corresponding working distance shall be calculated for all electrical power distribution equipment specified in the project, and as shown on the drawings.
 - 5. Required arc-rated clothing and other PPE shall be selected and specified in accordance with NFPA 70E.

1.7 ANALYSIS

A. Analyze the short-circuit calculations, and highlight any equipment determined to be underrated as specified. Propose solutions to effectively protect the underrated equipment.

1.8 ADJUSTMENTS, SETTINGS, AND MODIFICATIONS

- A. Final field settings and minor modifications of the overcurrent protective devices shall be made to conform with the study, without additional cost to the Government.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 08 00

COMMISSIONING OF ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 26.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electrical systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 26 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 26, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility electrical systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electrical systems will require inspection of individual elements of the electrical systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electrical systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 26 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 26 Sections for additional Contractor training requirements.

26 08 00 - 4

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 24 16, PANELBOARDS: Panelboard enclosure and interior bussing used for lighting control panels.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire ballast and drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:

26 09 23 - 1

- a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA): C136.10-10.....American National Standard for Roadway and Area Lighting Equipment-Locking-Type Photocontrol Devices and Mating Receptacles-Physical and Electrical Interchangeability and Testing ICS-1-15.....Standard for Industrial Control and Systems General Requirements ICS-2-05.....Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment ICS-6-16.....Standard for Industrial Controls and Systems Enclosures C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 20-10.....Standard for General-Use Snap Switches 98-16..... Enclosed and Dead-Front Switches
 - 773-16..... Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting

773A-16.....Nonindustrial Photoelectric Switches for Lighting Control 916-15....Standard for Energy Management Equipment Systems 917-06....Clock Operated Switches 924-16 Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
 - Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of

not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).

C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.2 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations.

- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of COR.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 4-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the COR.
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 09 23, LIGHTING CONTROLS: Lighting controls integral to panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data

sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.

- Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
- Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-14.....Enclosures for Electrical Equipment (1,000V

Maximum)

- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 70E-18....Standard for Electrical Safety in the Workplace
- E. Underwriters Laboratories, Inc. (UL):
 - 50-15.....Enclosures for Electrical Equipment
 - 67-09.....Panelboards
 - 489-16..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.

26 24 16 - 2

- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 200%rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full size. The first section shall be furnished with subfeed lugs on the line side of main lugs only, or through-feed lugs for main breaker type panelboards, and have field-installed cable connections to the second section as shown on the drawings. Panelboard sections with tapped bus or crossover bus are not acceptable.
- K. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.

5. Include removable inner dead front cover, independent of the panelboard cover.

B. Trims:

- 1. Hinged "door-in-door" type.
- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 120/240 V Panelboard: 10,000 A symmetrical.
 - 3. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - 8. Circuit breakers shall include a trip indicator.

a. When circuit breaker trips, the handle snaps to a midpoint position between "OFF" and "ON" and a highly visible red indicator identifies the tripped breaker.

- 9. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 10.Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 11.For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly. Provide a new, typewritten panelboard schedule.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- D. Install a printed schedule of circuits in each panelboard after approval by the COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- F. Provide blank cover for each unused circuit breaker mounting space.
- G. Rust and scale shall be removed from the inside of existing enclosures where new interior components are to be installed. Paint inside of enclosures with rust-preventive paint before the new interior components are installed. Provide new trim. Trim shall fit tight to the enclosure.
- H. Panelboard enclosures shall not be used for conductors feeding through, spliced, or tapping off to other enclosures or devices.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:

- 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: Fluorescent ballasts and LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015).....General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 99-18.....Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16.....Surface Metal Raceways and Fittings
 20-10.....General-Use Snap Switches
 231-16.....Power Outlets
 467-13....Grounding and Bonding Equipment
 498-17....Attachment Plugs and Receptacles
 943-16...Ground-Fault Circuit-Interrupters
 - 1449-14.....Surge Protective Devices

1472-15.....Solid State Dimming Controls

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears, and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be ivory in color.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - b. Bodies shall be red in color.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be grayin color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.

- Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be ivoryin color unless otherwise specified or shown on the drawings.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with LED dimming driver and be approved by the driver manufacturer, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.
- D. Manual dimming control and faceplates shall be ivoryin color unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be type 302 stainless steel, with the word "EMERGENCY" engraved in 6 mm (1/4 inch) red letters.

2.5 SURFACE MULTIPLE-OUTLET ASSEMBLIES

- A. Shall have the following features:
 - 1. Enclosures:
 - a. Thickness of steel shall be not less than 1 mm (0.040 inch) for base and cover. Nominal dimensions shall be 40 mm x 70 mm (1-1/2 inches by 2-3/4 inches) with inside cross sectional area not less than 2250 square mm (3-1/2 square inches). The enclosures shall be thoroughly cleaned, phosphatized, and painted at the factory with primer and the manufacturer's standard baked enamel finish.
 - 2. Receptacles shall be duplex, hospital grade. See paragraph 'RECEPTACLES' in this Section. Device cover plates shall be the manufacturer's standard corrosion resistant finish and shall not exceed the dimensions of the enclosure.
 - Unless otherwise shown on drawings, receptacle spacing shall be 600 mm (24 inches) on centers.
 - 4. Conductors shall be as specified in Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLE.
 - 5. Installation fittings shall be the manufacturer's standard bends, offsets, device brackets, inside couplings, wire clips, elbows, and other components as required for a complete system.
 - 6. Bond the assemblies to the branch circuit conduit system.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.

26 27 26 - 5

- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.
- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (with the exception of elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 13, MEDIUM-VOLTAGE CABLES: Medium-voltage cables and terminations.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.

26 29 11 - 1

- b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-14.....Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-12....Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus

C. International Code Council (ICC): IBC-15..... International Building Code D. National Electrical Manufacturers Association (NEMA): ICS 1-00(R2015).....Industrial Control and Systems: General Requirements ICS 1.1-84(R2015).....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-00(R2005).....Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-15.....Industrial Control and Systems: Terminal Blocks ICS 6-93(R2016).....Industrial Control and Systems: Enclosures ICS 7-14.....Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-14......Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems E. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL):

- 508A-13......Industrial Control Panels 508C-16.....Power Conversion Equipment 1449-14....Surge Protective Devices
- PART 2 PRODUCTS

2.1 MOTOR CONTROLLERS

- A. Motor controllers shall comply with IEEE, NEMA, NFPA, UL, and as shown on the drawings.
- B. Motor controllers shall be separately enclosed, unless part of another assembly. For installation in motor control centers, provide plug-in, draw-out type motor controllers up through NEMA size 4. NEMA size 5 and above require bolted connections.
- C. Motor controllers shall be combination type, with magnetic controller per Paragraph 2.3 below and with circuit breaker disconnecting means, with external operating handle with lock-open padlocking positions and ON-OFF position indicator.
- 1. Circuit Breakers:
 - Bolt-on thermal-magnetic type with a minimum interrupting rating as indicated on the drawings.

- b. Equipped with automatic, trip free, non-adjustable, inverse-time, and instantaneous magnetic trips for less than 400A. The magnetic trip shall be adjustable from 5x to 10x for breakers 400A and greater.
- c. Additional features shall be as follows:
 - 1) A rugged, integral housing of molded insulating material.
 - 2) Silver alloy contacts.
 - 3) Arc quenchers and phase barriers for each pole.
 - 4) Quick-make, quick-break, operating mechanisms.
 - 5) A trip element for each pole, a common trip bar for all poles, and one operator for all poles.//
- D. Enclosures:
 - 1. Enclosures shall be NEMA-type rated 1, 3R, or 12 as indicated on the drawings or as required per the installed environment.
 - Enclosure doors shall be interlocked to prevent opening unless the disconnecting means is open. A "defeater" mechanism shall allow for inspection by qualified personnel with the disconnect means closed. Provide padlocking provisions.
 - 3. All metal surfaces shall be thoroughly cleaned, phosphatized, and factory primed prior to applying light gray baked enamel finish.
- E. Motor control circuits:
 - 1. Shall operate at not more than 120 Volts.
 - 2. Shall be grounded, except where the equipment manufacturer recommends that the control circuits be isolated.
 - For each motor operating over 120 Volts, incorporate a separate, heavy duty, control transformer within each motor controller enclosure.
 - Incorporate primary and secondary overcurrent protection for the control power transformers.
- F. Overload relays:
 - 1. Thermal / Electronic type. Devices shall be NEMA type.
 - 2. One for each pole.
 - 3. External overload relay reset pushbutton on the door of each motor controller enclosure.
 - Overload relays shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.

- Thermal overload relays shall be tamperproof, not affected by vibration, manual reset, sensitive to single-phasing, and shall have selectable trip classes of 10, 20 and 30.
- 6. Electronic overload relays shall utilize internal current transformers and electro-mechanical components. The relays shall have ambient temperature compensation, single-phase protection, manual or automatic reset, and trip classes of 10, 15, 20 and 30. The relay shall provide fault cause indication, including jam/stall, ground fault, phase loss, and overload.
- G. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular controller. H-O-A switch shall be operable without opening enclosure door. H-O-A switch is not required for manual motor controllers.
- H. Incorporate into each control circuit a 120 Volt, electronic time-delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time-delay relay is not required where H-O-A switch is not required.
- I. Unless noted otherwise, equip each motor controller with not less than two normally open (N.O.) and two normally closed (N.C.) auxiliary contacts.
- J. Provide green (RUN) and red (STOP) pilot lights.
- K. Motor controllers incorporated within equipment assemblies shall also be designed for the specific requirements of the assemblies.
- L. Additional requirements for specific motor controllers, as indicated in other specification sections, shall also apply.

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - 2. Units shall include thermal overload relays, on-off operator, //red// //green// pilot light, //normally open// //normally closed// auxiliary contacts.
- C. Fractional horsepower manual motor controllers shall have the following features:

- Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
- 2. Units shall include thermal overload relays, red pilot light, and toggle operator.

2.3 MAGNETIC MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Controllers shall be general-purpose, Class A magnetic controllers for induction motors rated in horsepower. Minimum NEMA size 0.
- C. Where combination motor controllers are used, combine controller with protective or disconnect device in a common enclosure.
- D. Provide phase loss protection for each controller, with contacts to deenergize the controller upon loss of any phase.
- E. Unless otherwise indicated, provide full voltage non-reversing acrossthe-line mechanisms for motors less than 75 HP, closed by coil action and opened by gravity. For motors 75 HP and larger, provide reduced-voltage or variable speed controllers as shown on the drawings. Equip controllers with 120 VAC coils and individual control transformer unless otherwise noted.

2.4 REDUCED VOLTAGE MOTOR CONTROLLERS

- A. Shall be in accordance with applicable portions of 2.1 above.
- B. Shall have closed circuit transition.
- C. Shall limit inrush currents to not more than 70 percent of the locked rotor current.
- D. Provide phase loss protection for each motor controller, with contacts to de-energize the motor controller upon loss of any phase.

2.5 LOW-VOLTAGE VARIABLE SPEED MOTOR CONTROLLERS (VSMC)

- A. VSMC shall be in accordance with applicable portions of 2.1 above.
- B. VSMC shall be electronic, with adjustable frequency and voltage, three phase output, capable of driving standard NEMA B three-phase induction motors at full rated speed. The control technique shall be pulse width modulation (PWM), where the VSMC utilizes a full wave bridge design incorporating diode rectifier circuitry. Silicon controlled rectifiers or other control techniques are not acceptable.
- C. VSMC shall be suitable for variable torque loads, and shall be capable of providing sufficient torque to allow the motor to break away from rest upon first application of power.

- D. VSMC shall be capable of operating within voltage parameters of plus 10 to minus 15 percent of line voltage, and be suitably rated for the full load amps of the maximum watts (HP) within its class.
- E. Minimum efficiency shall be 95 percent at 100 percent speed and 85 percent at 50 percent speed.
- F. The displacement power factor of the VSMC shall not be less than 95 percent under any speed or load condition.
- G. VSMC current and voltage harmonic distortion shall not exceed the values allowed by IEEE 519.
- H. Operating and Design Conditions: 1.VSMC Location: Air conditioned space
- I. VSMC shall have the following features:
 - 1. Isolated power for control circuits.
 - 2. Manually resettable overload protection for each phase.
 - Adjustable current limiting circuitry to provide soft motor starting. Maximum starting current shall not exceed 200 percent of motor full load current.
 - Independent acceleration and deceleration time adjustment, manually adjustable from 2 to 2000 seconds. Set timers to the equipment manufacturer's recommended time in the above range.
 - 5. Control input circuitry that will accept 4 to 20 mA current or 0-10 VDC voltage control signals from an external source.
 - 6. Automatic frequency adjustment from 1 Hz to 300 Hz.
 - 7. Circuitry to initiate an orderly shutdown when any of the conditions listed below occur. The VSMC shall not be damaged by any of these electrical disturbances and shall automatically restart when the conditions are corrected. The VSMC shall be able to restart into a rotating motor operating in either the forward or reverse direction and matching that frequency.
 - a. Incorrect phase sequence.
 - b. Single phasing.
 - c. Overvoltage in excess of 10 percent.
 - d. Undervoltage in excess of 15 percent.
 - e. Running overcurrent above 110 percent (VSMC shall not automatically reset for this condition.)
 - f. Instantaneous overcurrent above 150 percent (VSMC shall not automatically reset for this condition).

- g. Short duration power outages of 12 cycles or less (i.e., distribution line switching, generator testing, and automatic transfer switch operations.)
- Automatic Reset/Restart: Attempt three restarts after VSMC fault or on return of power after an interruption and before shutting down for manual reset or fault correction, with adjustable delay time between restart attempts.
- 9. Bidirectional Autospeed Search: Capable of starting VSMC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to VSMC, motor, or load.
- J. VSMC shall include an input circuit breaker which will disconnect all input power, interlocked with the door so that the door cannot be opened with the circuit breaker in the closed position.
- K. VSMC shall include a 5% line reactor and a RFI/EMI filter.
- L. Surge Suppression: Provide three-phase protection against damage from supply voltage surges in accordance with UL 1449.
- M. VSMC shall include front-accessible operator station, with sealed keypad and digital display, which allows complete programming, operating, monitoring, and diagnostic capabilities.
 - 1. Typical control functions shall include but not be limited to:
 - a. HAND-OFF-AUTOMATIC-RESET, with manual speed control in HAND mode.
 - b. NORMAL-BYPASS.
 - c. NORMAL-TEST, which allows testing and adjusting of the VSMC while in bypass mode.
 - 2. Typical monitoring functions shall include but not be limited to:
 - a. Output frequency (Hz).
 - b. Motor speed and status (run, stop, fault).
 - c. Output voltage and current.
 - 3. Typical fault and alarm functions shall include but not be limited to:
 - a. Loss of input signal, under- and over-voltage, inverter overcurrent, motor overload, critical frequency rejection with selectable and adjustable deadbands, instantaneous line-to-line and line-to-ground overcurrent, loss-of-phase, reverse-phase, and short circuit.
 - b. System protection indicators indicating that the system has shutdown and will not automatically restart.

- N. VSMC shall include two N.O. and two N.C. dry contacts rated 120 Volts, 10 amperes, 60 Hz.
- O. Hardware, software, network interfaces, gateways, and programming to control and monitor the VSMC by control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- P. Network communications ports: As required for connectivity to control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- Q. Communications protocols: As required for communications with control systems specified in other specification sections, including but not limited to Divisions 22 and 23.
- R. Bypass controller: Provide contactor-style bypass, arranged to bypass the inverter.
 - Inverter Output Contactor and Bypass Contactor: Load-break NEMArated contactor.
 - 2. Motor overload relays.
 - 3. HAND-OFF-AUTOMATIC bypass control.
- S. Bypass operation: Transfers motor between inverter output and bypass circuit, manually, automatically, or both. VSMC shall be capable of stable operation (starting, stopping, and running), and control by fire alarm and detection systems, with motor completely disconnected from the inverter output. Transfer between inverter and bypass contactor and retransfer shall only be allowed with the motor at zero speed.
- T. Inverter Isolating Switch: Provide non-load-break switch arranged to isolate inverter and permit safe troubleshooting and testing of the inverter, both energized and de-energized, while motor is operating in bypass mode. Include padlockable, door-mounted handle mechanism.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor controllers in accordance with the NEC, as shown on the
- B. Install manual motor controllers in flush enclosures in finished areas.
- C. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and electronic overload relay pickup and trip ranges.
- D. Program variable speed motor controllers per the manufacturer's instructions and in coordination with other trades so that a complete and functional system is delivered.

- E. Adjust trip settings of circuit breakers and motor circuit protectors with adjustable instantaneous trip elements. Initially adjust at six times the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficiency motors if required). Where these maximum settings do not allow starting of a motor, notify //Resident Engineer// //COTR// before increasing settings.
- G. Set the taps on reduced-voltage autotransformer controllers at 80 percent of line voltage.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field tests in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage, required area clearances, and correct alignment.
 - d. Verify that circuit breaker, motor circuit protector, and fuse sizes and types correspond to approved shop drawings.
 - e. Verify overload relay ratings are correct.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - h. Test all control and safety features of the motor controllers.
 - i. For low-voltage variable speed motor controllers, final programming and connections shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor controllers are in good operating condition and properly performing the intended functions.

3.4 SPARE PARTS

A. Two weeks prior to the final inspection, provide one complete set of spare fuses for each motor controller.

3.5 INSTRUCTION

A. Furnish the services of a factory-trained technician for two 4-hour training periods for instructing personnel in the maintenance and operation of the motor controllers, on the dates requested by the COTR. ---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- E. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15.....International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 - FU 1-12.....Low Voltage Cartridge Fuses

KS 1-13.....Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)

- D. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC)
- E. Underwriters Laboratories, Inc. (UL):

98-16..... Enclosed and Dead-Front Switches

248 1-11.....Low Voltage Fuses

489-13..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeatable to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 FUSED SWITCHES RATED OVER 600 AMPERES TO 1200 AMPERES

A. Shall be the same as fused switches, and shall be NEMA classified Heavy Duty (HD).

2.4 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class RK1, time delay.
- C. Other Branch Circuits: Class J, fast acting.
- D. Control Circuits: Class CC, time delay.

2.6 SEPARATELY-ENCLOSED CIRCUIT BREAKERS

- A. Provide circuit breakers in accordance with the applicable requirements in Section 26 24 16, PANELBOARDS.
- B. Enclosures shall be the NEMA types shown on the drawings. Where the types are not shown, they shall be the NEMA type most suitable for the ambient environmental conditions.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- C. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the COR.

---END---

SECTION 26 41 00 FACILITY LIGHTNING PROTECTION

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing and installation of a complete UL master labeled lightning protection system.

1.2 RELATED WORK

- A. Section 07 60 00, FLASHING AND SHEET METAL: Penetrations through the roof.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground faults.
- D. Section 26 43 13, SURGE PROTECTIVE DEVICES: Surge protective device installed at the electrical service entrance.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Show locations of air terminals, connections to required metal surfaces, down conductors, and grounding means.
 - c. Show the mounting hardware and materials used to attach air terminals and conductors to the structure.
 - Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the lightning protection system conforms to the requirements of the drawings and specifications.

- b. Certification by the Contractor that the lightning protection system has been properly installed and inspected.
- c. Certification that the lightning protection system has been inspected by a UL representative and has been approved by UL without variation.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Fire Protection Association (NFPA):
 - 70-17.....National Electrical Code (NEC) 780-17....Standard for the Installation of Lightning Protection Systems
- C. Underwriters Laboratories, Inc. (UL): 96-16.....Lightning Protection Components

96A-16.....Installation Requirements for Lightning Protection Systems

467-13.....Standard for Grounding and Bonding Equipment

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Lightning protection components shall conform to NFPA 780 and UL 96, for use on Class I structures. Aluminum materials are not allowed.
 - 1. Class I conductors: Copper.
 - Class I air terminals: Solid copper, 460 mm (18 inches) long, not less than 9.5 mm (3/8 inch) diameter, with sharp nickel-plated points.
 - 3. Ground rods: Copper-clad steel, 0.75 in (19 mm) diameter by 3 m (10 feet) long.
 - 5. Ground plates: Solid copper, not less than 20 gauge.
 - 6. Bonding plates: Bronze, 50 square cm (8 square inches).
 - 7. Through roof connectors: Solid copper riser bar, length and type as required to accommodate roof structure and flashing requirements.
 - 8. Down conductor guards: Stiff copper or brass.
 - 9. Anchors and fasteners: Bronze bolt and clamp type shall be used for all applications except for membrane roof. Adhesive type are

allowed only for attachment to membrane roof materials, using adhesive that is compatible with the membrane material.

- 10. Connectors: Bronze clamp-type connectors shall be used for roof conductor splices, and the connection of the roof conductor to air terminals and bonding plates. Crimp-type connectors are not allowed.
- 11. Exothermic welds: Exothermic welds shall be used for splicing the roof conductor to the down conductors, splices of the down conductors, and for connection of the down conductors to ground rods, ground plates, and the ground ring.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Coordinate installation with the roofing manufacturer and roofing installer.
- C. Install the conductors as inconspicuously as practical.
- D. Install the down conductors within the concealed cavity of exterior walls where practical. Run the down conductors to the exterior at elevations below the finished grade.
- E. Where down conductors are subject to damage or are accessible near grade, protect with down conductor guards to 2.4 m (8 feet) above grade. Bond down conductors guards to down conductor at both ends.
- F. Make connections of dissimilar metal with bimetallic type fittings to prevent electrolytic action.
- G. Install ground rods and ground plates not less than 600 mm (2 feet) deep and a distance not less than 900 mm (3 feet) nor more than 2.5 m (8 feet) from the nearest point of the structure. Exothermically weld the down conductors to ground rods and ground plates in the presence of the COR.
- H. Bond down conductors to metal main water piping where applicable.
- I. Bond down conductors to building structural steel.
- J. Connect roof conductors to all metallic projections and equipment above the roof as indicated on the drawings.
- K. Connect exterior metal surfaces, located within 900 mm (3 feet) of the conductors, to the conductors to prevent flashovers.

- L. Maintain horizontal or downward coursing of main conductor and insure that all bends have at least an 200 mm (8 inches) radius and do not exceed 90 degrees.
- M. Conductors shall be rigidly fastened every 900 mm (3 feet) along the roof and down to the building to ground.
- N. Air terminals shall be secured against overturning either by attachment to the object to be protected or by means of a substantial tripod or other braces permanently and rigidly attached to the building or structure.
- O. Install air terminal bases, cable holders and other roof-system supporting means without piercing membrane or metal roofs.
- P. Use through-roof connectors for penetration of the roof system. Flashing shall be provided by roofing contractor in accordance with Section 07 60 00, FLASHING AND SHEET METAL.
- Q. Down conductors coursed on or in reinforced concrete columns or on structural steel columns shall be connected to the reinforcing steel or the structural steel member at its upper and lower extremities. In the case of long vertical members an additional connection shall be made at intervals not exceeding 30 M (100 feet).
- R. A counterpoise or ground ring, where shown, shall be of No. 1/0 copper cable having suitable resistance to corrosion and shall be laid around the perimeter of the structure in a trench not less than 600 mm (2 feet) deep at a distance not less than 900 mm (3 feet) nor more than 2.5 M (8 feet) from the nearest point of the structure.
- S. On construction utilizing post tensioning systems to secure precast concrete sections, the post tension rods shall not be used as a path for lightning to ground.
- T. Where shown, use the structural steel framework or reinforcing steel as the down conductor.
 - Weld or bond the non-electrically-continuous sections together and make them electrically continuous.
 - Verify the electrical continuity by measuring the ground resistances to earth at the ground level, at the top of the building or stack, and at intermediate points with a sensitive ohmmeter. Compare the resistance readings.
 - Connect the air terminals together with an exterior conductor connected to the structural steel framework at not more than 18 M (60 feet) intervals.

- 4. Install ground connections to earth at not more than 18 M (60 feet) intervals around the perimeter of the building.
- 5. Weld or braze bonding plates to cleaned sections of the steel and connect the conductors to the plates.
- 6. Do not pierce the structural steel in any manner. Connections to the structural steel shall conform to UL 96A.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Test the ground resistance to earth by standard methods, and conform to the ground resistance requirements specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- B. A UL representative shall inspect the lightning protection system. Obtain and install a UL numbered master label for each of the lightning protection systems at the location directed by the UL representative and the COR.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 02 41 00, DEMOLITION: Removal and disposal of lamps and ballasts.
- C. Section 10 25 13, PATIENT BED SERVICE WALLS: Power and controls for wall-mounted bedlight fixtures.
- D. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- E. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- F. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- G. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- H. Section 27 52 23, NURSE CALL AND CODE BLUE SYSTEMS: For pillow speaker control of the wall-mounted bedlight fixtures.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.

- b. Material and construction details, include information on housing and optics system.
- c. Physical dimensions and description.
- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13....Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings

C. Environmental Protection Agency (EPA): 40 CFR 261.....Identification and Listing of Hazardous Waste D. Federal Communications Commission (FCC): CFR Title 47, Part 15...Radio Frequency Devices CFR Title 47, Part 18...Industrial, Scientific, and Medical Equipment E. Illuminating Engineering Society of North America (IESNA): LM-79-08..... Electrical and Photometric Measurements of Solid-State Lighting Products LM-80-15..... Measuring Lumen Maintenance of LED Light Sources LM-82-12.....Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91 (R1995)Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15..... International Building Code H. National Electrical Manufacturer's Association (NEMA): C78.376-14.....Chromaticity of Fluorescent Lamps C82.1-04(R2015).....Lamp Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02(R2016).....Method of Measurement of Fluorescent Lamp Ballasts C82.4-17.....Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-17.....Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL 9-11......Dimming of T8 Fluorescent Lighting Systems SSL 1-16.....Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17.....National Electrical Code (NEC) 101-18.....Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17....Lampholders 542-05..... Fluorescent Lamp Starters

844-12	Luminaires for U	Jse in	Hazaı	dous	(Classifi	ed)
	Locations					
924-16	Emergency Lighti	ing an	d Powe	er Equi	ipment	
935-01	Fluorescent-Lamp	p Ball	asts			
1029-94	High-Intensity-I	Discha	rge La	amp Bal	llasts	
1029A-06	Ignitors and Rel	lated	Auxili	aries	for HID	Lamp
	Ballasts					
1598-08	Luminaires					
1574-04	Track Lighting S	System	IS			
2108-15	Low-Voltage Ligh	nting	System	ns		
8750-15	Light Emitting I	Diode	(LED)	Light	Sources	for
	Use in Lighting	Produ	icts			

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches shall function easily by finger action without the use of tools.
- C. Ballasts and lamps shall be serviceable while the fixture is in its normally installed position. Ballasts shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- E. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.

26 51 00 - 4

- F. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- G. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- H. Lighting fixtures in hazardous areas shall be suitable for installation in Class and Division areas as defined in NFPA 70.

2.2 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.3 LED LIGHT FIXTURES

A. General:

- 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
- LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
- LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V (±10%) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
- LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - 1. Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.

- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed LED troffer fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
 - 5. Hardware for surface mounting troffer fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 6 mm (1/4)

inch) studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the

ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.//

- 6. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.
 - d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 7. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.

- 8. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.
- I. Dispose of lamps per requirements of Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT, and Section 02 41 00, DEMOLITION.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform the following:

- 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
- 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the COTR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
 - b. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless specifically recommended otherwise by the lamp manufacturer. Burn-in dimmed fluorescent and compact fluorescent lamps for at least 100 hours at full voltage, unless

specifically recommended otherwise by the lamp manufacturer. Replace any lamps and ballasts which fail during burn-in.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function.

---END---

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Finishes for exterior light poles and luminaires.
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- D. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- E. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- F. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- G. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.
- H. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.

- b. Material and construction details, include information on housing and optics system.
- c. Physical dimensions and description.
- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- k. Submit site plan showing all exterior lighting fixtures with fixture tags consistent with Lighting Fixture Schedule as shown on drawings. Site plan shall show computer generated point-bypoint illumination calculations. Include lamp lumen and light loss factors used in calculations.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

B. American Association of State Highway and Transportation Officials (AASHTO): LRFDLTS-17.....Structural Supports for Highway Signs, Luminaires and Traffic Signals C. American Concrete Institute (ACI): 318-14Building Code Requirements for Structural Concrete D. American National Standards Institute (ANSI): H35.1/H35 1M-17.....American National Standard Alloy and Temper Designation Systems for Aluminum E. American Society for Testing and Materials (ASTM): A123/A123M-17Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A153/A153M-16.....Zinc Coating (Hot-Dip) on Iron and Steel Hardware B108/B108M-15Aluminum-Alloy Permanent Mold Castings C1089-13 Spun Cast Prestressed Concrete Poles F. Federal Aviation Administration (FAA): AC 70/7460-IL-15.....Obstruction Lighting and Marking AC 150/5345-43H-16.....Obstruction Lighting Equipment G. Illuminating Engineering Society of North America (IESNA): HB-9-00.....Lighting Handbook RP-8-14.....Roadway Lighting LM-52-03..... Photometric Measurements of Roadway Sign Installations LM-72-97 (R2010) Directional Positioning of Photometric Data LM-79-08.....Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products LM-80-15..... Approved Method for Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules TM-15-11.....Luminaire Classification System for Outdoor Luminaires H. National Electrical Manufacturers Association (NEMA): C78.41-16.....Electric Lamps - Guidelines for Low-Pressure Sodium Lamps

C78.43-13Electric Lamps - Single-Ended Metal-Halide Lamps C78.1381-98......Electric Lamps - 70-Watt M85 Double-Ended Metal-Halide Lamps C81.61-17Electrical Lamp Bases - Specifications for

Sodium Lamps

Bases (Caps) for Electric Lamps C82.4-17Ballasts for High-Intensity-Discharge and Low-Pressure Sodium Lamps (Multiple-Supply Type) C136.3-14For Roadway and Area Lighting Equipment -

Luminaire Attachments

C136.17-05(R2010)(S2017) Roadway and Area Lighting Equipment -Enclosed Side-Mounted Luminaires for Horizontal-Burning High-Intensity-Discharge Lamps - Mechanical Interchangeability of Refractors

ICS 2-00(R2005)Controllers, Contactors and Overload Relays Rated 600 Volts

ICS 6-93(R2016)Enclosures

I. National Fire Protection Association (NFPA):

70-17National Electrical Code (NEC)

- 101-18....Life Safety Code
- J. Underwriters Laboratories, Inc. (UL):
 - 496-17Lampholders

773-16.....Plug-In, Locking Type Photocontrols for Use with Area Lighting

773A-16Nonindustrial Photoelectric Switches for Lighting Control

1598-08Luminaires

8750-15..... Light Emitting Diode (LED) Equipment for Use in Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 305 mm (12 inches) above

ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 POLES

- A. General:
 - Poles shall be as shown on the drawings, and as specified. Finish shall be as specified on the drawings.
 - 2. The pole and arm assembly shall be designed for wind loading of 161 km/hr (100 mph) minimum, as required by wind loading conditions at project site, with an additional 30% gust factor and supporting luminaire(s) and accessories such as shields, banner arms, and banners that have the effective projected areas indicated. The effective projected area of the pole shall be applied at the height of the pole base, as shown on the drawings.
 - 3. Poles shall be anchor-bolt type designed for use with underground supply conductors. Poles shall have handhole having a minimum clear opening of 65 x 125 mm (2.5 x 5 inches). Handhole covers shall be secured by stainless steel captive screws.
 - 4. Provide a steel-grounding stud opposite handhole openings, designed to prevent electrolysis when used with copper wire.
 - 5. Provide a base cover that matches the pole in material and color to conceal the mounting hardware pole-base welds and anchor bolts.
 - 6. Hardware and Accessories: All necessary hardware and specified accessories shall be the product of the pole manufacturer.
 - Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.

SPEC WRITER NOTE: Edit paragraph below to conform to project requirements.

B. Types:

 Steel: Provide round steel poles having minimum 11-gauge steel with minimum yield/strength of 48,000 psi and hot-dipped galvanized factory finish.

2.3 FOUNDATIONS FOR POLES

- A. Foundations shall be cast-in-place concrete, having 3000 psi minimum 28-day compressive strength.
- B. Foundations shall support the effective projected area of the specified pole, arm(s), luminaire(s), and accessories, such as shields, banner arms, and banners, under wind conditions previously specified in this section.
- C. Place concrete in spirally-wrapped treated paper forms for round foundations, and construct forms for square foundations.
- D. Rub-finish and round all above-grade concrete edges to approximately 6 mm (0.25-inch) radius.
- E. Anchor bolt assemblies and reinforcing of concrete foundations shall be as shown on the drawings. Anchor bolts shall be in a welded cage or properly positioned by the tiewire to stirrups.
- F. Prior to concrete pour, install electrode per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and ballast heat, and safe cleaning and relamping.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.
- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- E. Lamp sockets for high intensity discharge (H.I.D) fixture shall have locking-type porcelain enclosures in conformance to the applicable requirements of ANSI C81.61-09 and UL 496-08.
- F. Pre-wire internal components to terminal strips at the factory.
- G. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.
- H. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.

- I. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- J. Luminaires shall carry factory labels, showing complete, specific lamp and ballast information.

2.5 LAMPS

- A. Install the proper lamps in every luminaire installed as shown on the drawings.
- B. Lamps shall be general-service, outdoor lighting types.
- C. LED sources shall meet the following requirements:
 - 1. Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): 5000K.
 - 3. Color Rendering Index (CRI): \geq 85.
 - 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES) LM79 for photometric performance and LM80 for lumen maintenance and L70 life.
 - G. Mercury vapor lamps shall not be used.

2.6 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (±10%) volt.
 - 4. Power Supplies: Class I or II output.
 - 5. Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: 6kV/1.2 x 50 μs, 10kA/8 x 20 μs) waveforms at 1minute intervals with less than 10% degradation in clamping voltage. "C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.
 - 6. Power Factor (PF): \geq 0.90.
 - 7. Total Harmonic Distortion (THD): ≤ 20%.
 - 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.

9. Drivers shall be reduction of hazardous substances (ROHS) - compliant.//

2.7 EXISTING LIGHTING SYSTEMS

- A. For modifications or additions to existing lighting systems, the new components shall be compatible with the existing systems.
- B. New poles and luminaires shall have approximately the same configurations, dimensions, lamping and reflector type as the existing poles and luminaires, except where otherwise shown on the drawings.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- B. Pole Foundations:
 - Excavate only as necessary to provide sufficient working clearance for installation of forms and proper use of tamper to the full depth of the excavation. Prevent surface water from flowing into the excavation. Thoroughly compact backfill with compacting arranged to prevent pressure between conductor, jacket, or sheath, and the end of conduit.
 - 2. Set anchor bolts according to anchor-bolt templates furnished by the pole manufacturer.
 - 3. Install poles as necessary to provide a permanent vertical position with the bracket arm in proper position for luminaire location.
 - 4. After the poles have been installed, shimmed, and plumbed, grout the spaces between the pole bases and the concrete base with non-shrink concrete grout material. Provide a plastic or copper tube, of not less than 9 mm (0.375-inch) inside diameter through the grout, tight to the top of the concrete base to prevent moisture weeping from the interior of the pole.
- C. Install lamps in each luminaire.
- D. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose.

3.3 ACCEPTANCE CHECKS AND TESTS

Verify operation after installing luminaires and energizing circuits.

SPEC WRITER NOTE: A/E shall include the paragraph below when required and indicate mounting height on drawings

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

А	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD
CBOPC	Community Based Out Patient Clinic

CBC	Coupled Bonding Conductor
CBOC	Community Based Out Patient Clinic (refer to CBOPC,
	OPC, VAMC)
CCS	TIP's Cross Connection System (refer to VCCS and
	HCCS)
CFE	Contractor Furnished Equipment
CFM	US Department of Veterans Affairs Office of
	Construction and Facilities Management
CFR	Consolidated Federal Regulations
CIO	Communication Information Officer (Facility, VISN or
	Region)
CM	Centimeters
CO	Central Office
COR	Contracting Officer Representative
CPU	Central Processing Unit
CSU	Customer Service Unit
CUP	Conditional Use Permit(s) - Federal/GSA for VA
dB	Decibel
dBm	Decibel Measured
dBmV	Decibel per milli-Volt
DC	Direct Current
DEA	United States Drug Enforcement Administration
DSU	Data Service Unit
EBC	Equipment Bonding Conductor
ECC	Engineering Control Center (refer to DCR, EMCR)
EDGE	Enhanced Data (Rates) for GSM Evolution
EDM	Electrical Design Manual
EMCR	Emergency Management Control Room (refer to DCR, ECC)
EMI	Electromagnetic Interference (refer to RFI)
EMS	Emergency Medical Service
EMT	Electrical Metallic Tubing or thin wall conduit
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,
	LEC)

EPBX	Electronic Digital Private Branch Exchange
ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title
IAN	48 of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's
FMS	Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to
	CCS & VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-
	Definition Digital Television
HEC	Head End Cabinets(refer to HEIC, PA)
HEIC	Head End Interface Cabinets (refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
HZ	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
IDF	Intermediate Distribution Frame
ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information
	Resources Management

ISDN	Integrated Services Digital Network
ISM	Industrial, Scientific, Medical
IWS	Intra-Building Wireless System
LAN	Local Area Network
LBS	Location Based Services, Leased Based Systems
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)
LED	Light Emitting Diode
LMR	Land Mobile Radio
LTE	Long Term Evolution, or 4G Standard for Wireless Data
	Communications Technology
М	Meter
MAS	Medical Administration Service
MATV	Master Antenna Television
MCR	Main Computer Room
MCOR	Main Computer Operators Room
MDF	Main Distribution Frame
MH	Manholes or Maintenance Holes
MHz	Megaherts (10 ⁶ Hz)
mm	Millimeter
MOU	Memorandum of Understanding
MW	Microwave (RF Band, Equipment or Services)
NID	Network Interface Device (refer to DEMARC)
NEC	National Electric Code
NOR	Network Operations Room
NRTL	OSHA Nationally Recognized Testing Laboratory
NS	Nurse Stations
NTIA	U.S. Department of Commerce National
	Telecommunications and Information Administration
OEM	Original Equipment Manufacturer
OI&T	Office of Information and Technology
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)
OSH	Department of Veterans Affairs Office of Occupational
	Safety and Health

OSHA	United States Department of Labor Occupational Safety
	and Health Administration
OTDR	Optical Time-Domain Reflectometer
PA	Public Address System (refer to HE, HEIC, RPEC)
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)
PCR	Police Control Room (refer to SPCC, could be
	designated SCC)
PCS	Personal Communications Service (refer to UPCS)
PE	Professional Engineer
PM	Project Manager
PoE	Power over Ethernet
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,
	PBX)
PSTN	Public Switched Telephone Network
PSRAS	Public Safety Radio Amplification Systems
PTS	Pay Telephone Station
PVC	Poly-Vinyl Chloride
PWR	Power (in Watts)
RAN	Radio Access Network
RBB	Rack Bonding Busbar
RE	Resident Engineer or Senior Resident Engineer
RF	Radio Frequency (refer to FR)
RFI	Radio Frequency Interference (refer to EMI)
RFID	RF Identification (Equipment, System or Personnel)
RMC	Rigid Metal Conduit
RMU	Rack Mounting Unit
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,
	PA)
RTLS	Real Time Location Service or System
RUS	Rural Utilities Service
SCC	Security Control Console (refer to PCR, SPCC)
SMCS	Spectrum Management and Communications Security
	(COMSEC)

SFO	Solicitation for Offers			
SME	Subject Matter Experts (refer to AHJ)			
SMR	Specialized Mobile Radio			
SMS	Security Management System			
SNMP	Simple Network Management Protocol			
SPCC	Security Police Control Center (refer to PCR, SMS)			
STP	Shielded Balanced Twisted Pair (refer to UTP)			
STR	Stacked Telecommunications Room			
TAC	VA's Technology Acquisition Center, Austin, Texas			
TCO	Telecommunications Outlet			
TER	Telephone Equipment Room			
TGB	Telecommunications Grounding Busbar (also Secondary			
	Bonding Busbar (SBB))			
TIP	Telecommunications Infrastructure Plant			
TMGB	Telecommunications Main Grounding Busbar (also			
	Primary Bonding Busbar (PBB))			
TMS	Traffic Management System			
TOR	Telephone Operators Room			
TP	Balanced Twisted Pair (refer to STP and UTP)			
TR	Telecommunications Room (refer to STR)			
TWP	Twisted Pair			
UHF	Ultra High Frequency (Radio)			
UMTS	Universal Mobile Telecommunications System			
UPCS	Unlicensed Personal Communications Service (refer to			
	PCS)			
UPS	Uninterruptible Power Supply			
USC	United States Code			
UTP	Unshielded Balanced Twisted Pair (refer to TP and			
	STP)			
UV	Ultraviolet			
V	Volts			
VAAR	Veterans Affairs Acquisition Regulation			
VACO	Veterans Affairs Central Office			

VAMC	VA Medical Center (refer to CBOC, OPC, VACO)
VCCS	TIP's Vertical Cross Connection System (refer to CCS
	and HCCS)
VHF	Very High Frequency (Radio)
VISN	Veterans Integrated Services Network (refers to
	geographical region)
VSWR	Voltage Standing Wave Radio
W	Watts
WEB	World Electronic Broadcast
WiMAX	Worldwide Interoperability (for MW Access)
WI-FI	Wireless Fidelity
WMTS	Wireless Medical Telemetry Service
WSP	Wireless Service Providers

B. Definitions:

- BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 3. Bundled Microducts: All forms of jacketed microducts.
- 4. Conduit: Includes all raceway types specified.
- 5. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 6. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.

- 8. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 9. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 10. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions.
- 11. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 12. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 13. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 14. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.
- 15. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 16. Microducts: All forms of air blown fiber pathways.
- 17. Ohm: A unit of restive measurement.
- 18. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.

- 19. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 20. Sound (SND): Changing air pressure to audible signals over given time span.
- 21. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 22. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 23. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 24. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47:

- Restrictions of use for Part 15 listed RF Part 15 Equipment in Safety of Life Emergency Functions and Equipment Locations Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications Equipment and Customer Premises Equipment Part 58 Television Broadcast Service Part 73 Radio and Television Broadcast Rules Part 90 Rules and Regulations, Appendix C Form 854 Antenna Structure Registration Chapter XXIII National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book' - Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections
- 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design RUS Bull 1751F-815 Electrical Protection of Outside Plants, RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4) RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2) RUS Bull 345-50 Trunk Carrier Systems (PE-60) RUS Bull 345-65 Shield Bonding Connectors (PE-65) RUS Bull 345-72 Filled Splice Closures (PE-74) RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80) 3. US Department of Commerce/National Institute of Standards Technology, (NIST):

FIPS PUB 1-1	Telecommunications Information Exchange
FIPS PUB 100/1	Interface between Data Terminal Equipment (DTE)
	Circuit Terminating Equipment for operation
	with Packet Switched Networks, or Between Two
	DTEs, by Dedicated Circuit

	FIPS PUB 140/2	Telecommunications Information Security
		Algorithms
	FIPS PUB 143	General Purpose 37 Position Interface between
		DTE and Data Circuit Terminating Equipment
	FIPS 160/2	Electronic Data Interchange (EDI),
	FIPS 175	Federal Building Standard for
		Telecommunications Pathway and Spaces
	FIPS 191	Guideline for the Analysis of Local Area
		Network Security
	FIPS 197	Advanced Encryption Standard (AES)
	FIPS 199	Standards for Security Categorization of
		Federal Information and Information Systems
4.	US Department of Def	ense, (DoD):
	MIL-STD-188-110	Interoperability and Performance Standards for
		Data Modems
	MIL-STD-188-114	Electrical Characteristics of Digital Interface
		Circuits
	MIL-STD-188-115	Communications Timing and Synchronizations
		Subsystems
	MIL-C-28883	Advanced Narrowband Digital Voice Terminals
	MIL-C-39012/21	Connectors, Receptacle, Electrical, Coaxial,
		Radio Frequency, (Series BNC (Uncabled), Socket
		Contact, Jam Nut Mounted, Class 2)
5.	US Department of Hea	lth and Human Services:
	The Health Insurance	Portability and Accountability Act of 1996
	(HIPAA) Privacy, Sec	urity and Breach Notification Rules
6.	US Department of Jus	tice:
	2010 Americans with	Disabilities Act Standards for Accessible Design
	(ADAAD).	
7.	US Department of Lab	or, (DoL) - Public Law 426-62 - CFR, Title 29,
	Part 1910, Chapter X	VII - Occupational Safety and Health
	Administration (OSHA), Occupational Safety and Health Standards):
	Subpart 7	Approved NRTLs; obtain a copy at
		https://www.osha.gov/dts/otpca/nrtl/nrtllist.ht
		ml
	Subpart 35	Compliance with NFPA 101, Life Safety Code
	Subpart 36	Design and Construction Requirements for Exit
		Routes

27 05 11 - 11

Subpart	268	Telecommunications
Subpart	305	Wiring Methods, Components, and Equipment for
		General Use
Subpart	508	Americans with Disabilities Act Accessibility
		Guidelines; technical requirement for
		accessibility to buildings and facilities by
		individuals with disabilities

- 8. US Department of Transportation, (DoT):
 - a. Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.
 - d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
 - e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
 - f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
 - g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and

09-19

Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.

- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/laws-

regs/regulations/standardnumber/1926

- 1. Canadian Standards Association (CSA); same tests as presented by UL
- Communications Certifications Laboratory (CEL); same tests as presented by UL.
- Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
- 4. Underwriters Laboratory (UL):

1-2005	Flexible Metal Conduit
5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors

493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways

	2196-2001	Standard for Test of Fire Resistive Cable
	60950-1 ed. 2-2014	Information Technology Equipment Safety
D. In	dustry Standards:	
1.	Advanced Television	Systems Committee (ATSC):
	A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
		Digital Television System
	A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
		RF/Transmission System Characteristics
	A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
		Service Multiplex and Transport System
		Characteristics
	A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
		2 Video System Characteristics
	A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
		Audio System Characteristics
	A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
		Enhanced AC-3 Audio System Characteristics
2.	American Institute o	f Architects (AIA): 2006 Guidelines for Design &
	Construction of Heal	th Care Facilities.
3.	American Society of	Mechanical Engineers (ASME):
	A17.1 (2013)	Safety Code for Elevators and Escalators
		Includes Requirements for Elevators,
		Escalators, Dumbwaiters, Moving Walks, Material
		Lifts, and Dumbwaiters with Automatic Transfer
		Devices
	17.3 (2011)	Safety Code for Existing Elevators and
		Escalators
	17.4 (2009)	Guide for Emergency Personnel
	17.5 (2011)	Elevator and Escalator Electrical Equipment
4.	American Society for	Testing and Materials (ASTM):
	B1 (2001)	Standard Specification for Hard-Drawn Copper
		Wire
	B8 (2004)	Standard Specification for Concentric-Lay-
		Stranded Copper Conductors, Hard, Medium-Hard,
		or Soft
	D1557 (2012)	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		56,000 ft-lbf/ft3 (2,700 kN-m/m3)

	D2301 (2004)	Standard Specification for Vinyl Chloride
		Plastic Pressure Sensitive Electrical
		Insulating Tape
	B258-02 (2008)	Standard Specification for Standard Nominal
		Diameters and Cross-Sectional Areas of AWG
		Sizes of Solid Round Wires Used as Electrical
		Conductors
	D709-01(2007)	Standard Specification for Laminated
		Thermosetting Materials
	D4566 (2008)	Standard Test Methods for Electrical
		Performance Properties of Insulations and
		Jackets for Telecommunications Wire and Cable
5. American Telephone and Telegraph Corporation (AT&T) - Obtain		
	following AT&T Publi	cations at https://ebiznet.sbc.com/sbcnebs/
	ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
		Environmental, and Physical Design Requirements
	ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
		Requirements
	ATT-TP-76305 (2013)	Common Systems Cable and Wire Installation and
		Removal Requirements - Cable Racks and Raceways
	ATT-TP-76306 (2009)	Electrostatic Discharge Control
	ATT-TP-76400 (2012)	Detail Engineering Requirements
	ATT-TP-76402 (2013)	AT&T Raised Access Floor Engineering and
		Installation Requirements
	ATT-TP-76405 (2011)	Technical Requirements for Supplemental Cooling
		Systems in Network Equipment Environments
	ATT-TP-76416 (2011)	Grounding and Bonding Requirements for Network
		Facilities
	ATT-TP-76440 (2005)	Ethernet Specification
	ATT-TP-76450 (2013)	Common Systems Equipment Interconnection
		Standards for AT&T Network Equipment Spaces
	ATT-TP-76461 (2008)	Fiber Optic Cleaning
	ATT-TP-76900 (2010)	AT&T Installation Testing Requirement
	ATT-TP-76911 (1999)	AT&T LEC Technical Publication Notice
6.	British Standards In	stitution (BSI):
	BS EN 50109-2	Hand Crimping Tools - Tools for The Crimp

Termination of Electric Cables and Wires for

- All Parts & Sections. October 1997 7. Building Industry Consulting Service International (BICSI): ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices ANSI/BICSI 004-2012 Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities ANSI/NECA/BICSI 568-2006 Standard for Installing Commercial Building Telecommunications Cabling NECA/BICSI 607-2011 Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System Design and Implementation Best Practices 8. Electronic Components Assemblies and Materials Association, (ECA). ECA EIA/RS-270 (1973) Tools, Crimping, Solderless Wiring Devices -Recommended Procedures for User Certification EIA/ECA 310-E (2005) Cabinets, and Associated Equipment 9. Facility Guidelines Institute: 2010 Guidelines for Design and Construction of Health Care Facilities. 10. Insulated Cable Engineers Association (ICEA): ANSI/ICEA S-80-576-2002 Category 1 & 2 Individually Unshielded Twisted-Pair Indoor Cables for Use in Communications Wiring Systems ANSI/ICEA S-84-608-2010 Telecommunications Cable, Filled Polyolefin Insulated Copper Conductor, S-87-640(2011) Optical Fiber Outside Plant Communications Cable ANSI/ICEA S-90-661-2012 Category 3, 5, & 5e Individually Unshielded Twisted-Pair Indoor Cable for Use in General Purpose and LAN Communication Wiring Systems S-98-688 (2012) Broadband Twisted Pair Cable Aircore, Polyolefin Insulated, Copper Conductors

Low Frequency and Radio Frequency Applications

27 05 11 - 17

	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
		Indoor Cables (With or Without an Overall
		Shield) for use in Communications Wiring
		Systems Technical Requirements
11.	Institute of Electric	cal and Electronics Engineers (IEEE):
	ISSN 0739-5175	March-April 2008 Engineering in Medicine and
		Biology Magazine, IEEE (Volume: 27, Issue:2)
		Medical Grade-Mission Critical-Wireless
		Networks
	IEEE C2-2012	National Electrical Safety Code (NESC)
	C62.41.2-2002/	
	Cor 1-2012 IEEE	Recommended Practice on Characterization of
		Surges in Low-Voltage (1000 V and Less) AC
		Power Circuits 4)
	C62.45-2002	IEEE Recommended Practice on Surge Testing for
		Equipment Connected to Low-Voltage (1000 V and
		Less) AC Power Circuits
	81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
		Impedance, and Earth Surface Potentials of a
		Grounding System
	100-1992	IEEE the New IEEE Standards Dictionary of
		Electrical and Electronics Terms
	602-2007	IEEE Recommended Practice for Electric Systems
		in Health Care Facilities
	1100-2005	IEEE Recommended Practice for Powering and
		Grounding Electronic Equipment
12.	International Code Co	puncil:
	AC193 (2014)	Mechanical Anchors in Concrete Elements
13.	International Organia	zation for Standardization (ISO):
	TCO/MD 01700 (0007)	Her of Mahile Mineless Communication and

ISO/TR 21730 (2007) Use of Mobile Wireless Communication and Computing Technology in Healthcare Facilities -Recommendations for Electromagnetic Compatibility (Management of Unintentional Electromagnetic Interference) with Medical Devices 14. National Electrical Manufacturers Association (NEMA): NEMA 250 (2008) Enclosures for Electrical Equipment (1,000V Maximum) ANSI C62.61 (1993) American National Standard for Gas Tube Surge Arresters on Wire Line Telephone Circuits ANSI/NEMA FB 1 (2012) Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing EMT) and Cable ANSI/NEMA OS 1 (2009) Sheet-Steel Outlet Boxes, Device Boxes, Covers, and Box Supports NEMA SB 19 (R2007) NEMA Installation Guide for Nurse Call Systems TC 3 (2004) Polyvinyl Chloride (PVC) Fittings for Use with Rigid PVC Conduit and Tubing NEMA VE 2 (2006) Cable Tray Installation Guidelines 15. National Fire Protection Association (NFPA): 70E-2015 Standard for Electrical Safety in the Workplace 70-2014 National Electrical Code (NEC) 72-2013 National Fire Alarm Code Standard for the Fire Protection of Information 75-2013 Technological Equipment 76-2012 Recommended Practice for the Fire Protection of Telecommunications Facilities 77-2014 Recommended Practice on Static Electricity 90A-2015 Standard for the Installation of Air Conditioning and Ventilating Systems 99-2015 Health Care Facilities Code 101-2015 Life Safety Code 241 Safeguarding construction, alternation and Demolition Operations 255-2006 Standard Method of Test of Surface Burning Characteristics of Building Materials 262 - 2011 Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces 780-2014 Standard for the Installation of Lightning Protection Systems

1221-2013 Standard for the Installation, Maintenance, and Use of Emergency Services Communications Systems 5000-2015 Building Construction and Safety Code 16. Society for Protective Coatings (SSPC): SSPC SP 6/NACE No.3 (2007) Commercial Blast Cleaning 17. Society of Cable Telecommunications Engineers (SCTE): ANSI/SCTE 15 2006 Specification for Trunk, Feeder and Distribution Coaxial Cable 18. Telecommunications Industry Association (TIA): TIA-120 Series Telecommunications Land Mobile communications (APCO/Project 25) (January 2014) TIA TSB-140 Additional Guidelines for Field-Testing Length, Loss and Polarity of Optical Fiber Cabling Systems (2004) TIA-155 Guidelines for the Assessment and Mitigation of Installed Category 6 Cabling to Support 10GBASE-T (2010) Telecommunications Cabling Guidelines for TIA TSB-162-A Wireless Access Points (2013) TIA-222-G Structural Standard for Antenna Supporting Structures and Antennas (2014) Electrical Characteristics of Unbalanced TIA/EIA-423-B Voltage Digital Interface Circuits (2012) TIA-455-C General Requirements for Standard Test Procedures for Optical Fibers, Cables, Transducers, Sensors, Connecting and Terminating Devices, and other Fiber Optic Components (August 2014) TIA-455-53-A FOTP-53 Attenuation by Substitution Measurements for Multimode Graded-Index Optical Fibers in Fiber Assemblies (Long Length) (September 2001) TIA-455-61-A FOTP-61 Measurement of Fiber of Cable Attenuation Using an OTDR (July 2003) ТІА-472D000-В Fiber Optic Communications Cable for Outside Plant Use (July 2007)

ANSI/TIA-492-B	62.5-µ Core Diameter/125-um Cladding Diameter
	Class 1a Graded-Index Multimode Optical Fibers
	(November 2009)
ANSI/TIA-492AAAB-A	50-um Core Diameter/125-um Cladding Diameter
	Class IA Graded-Index Multimode Optically
	Optimized American Standard Fibers (November
	2009
TIA-492CAAA	Detail Specification for Class IVa Dispersion-
	Unshifted Single-Mode Optical Fibers (September
	2002)
TIA-492E000	Sectional Specification for Class IVd Nonzero-
	Dispersion Single-Mode Optical Fibers for the
	1,550 nm Window (September 2002)
TIA-526-7-B	Measurement of Optical Power Loss of Installed
	Single-Mode Fiber Cable Plant - OFSTP-7
	(December 2008)
TIA-526.14-A	Optical Power Loss Measurements of Installed
	Multimode Fiber Cable Plant - SFSTP-14 (August
	1998)
TIA-568	Revision/Edition: C Commercial Building
	Telecommunications Cabling Standard Set: (TIA-
	568-C.0-2 Generic Telecommunications Cabling
	for Customer Premises (2012), TIA-568-C.1-1
	Commercial Building Telecommunications Cabling
	Standard Part 1: General Requirements (2012),
	TIA-568-C.2 Commercial Building
	Telecommunications Cabling Standard-Part 2:
	Balanced Twisted Pair Cabling Components
	(2009), TIA-568-C.3-1 Optical Fiber Cabling
	Components Standard, (2011) AND TIA-568-C.4
	Broadband Coaxial Cabling and Components
	Standard (2011) with addendums and erratas
TIA-569	Revision/Edition C Telecommunications Pathways
	and Spaces (March 2013)
TIA-574	Position Non-Synchronous Interface between Data
	Terminal equipment and Data Circuit Terminating
	Equipment Employing Serial Binary Interchange
	(May 2003)

TIA/EIA-590-A	Standard for Physical Location and Protection
	of Below Ground Fiber Optic Cable Plant (July
	2001)
TIA-598-D	Optical Fiber Cable Color Coding (January 2005)
TIA-604-10-B	Fiber Optic Connector Intermateablility
	Standard (August 2008)
ANSI/TIA-606-B	Administration Standard for Telecommunications
	Infrastructure (2012)
TIA-607-B	Generic Telecommunications Bonding and
	Grounding (Earthing) For Customer Premises
	(January 2013)
TIA-613	High Speed Serial Interface for Data Terminal
	Equipment and Data Circuit Terminal Equipment
	(September 2005)
ANSI/TIA-758-B	Customer-owned Outside Plant Telecommunications
	Infrastructure Standard (April 2012)
ANSI/TIA-854	A Full Duplex Ethernet Specification for 1000
	Mb/s (1000BASE-TX) Operating over Category 6
	Balanced Twisted-Pair Cabling (2001)
ANSI/TIA-862-A	Building Automation Systems Cabling Standard
	(April 2011)
TIA-942-A	Telecommunications Infrastructure Standard for
	Data Centers (March 2014)
TIA-1152	Requirements for Field Testing Instruments and
	Measurements for Balanced Twisted Pair Cabling
	(September 2009)
TIA-1179	Healthcare Facility Telecommunications
	Infrastructure Standard (July 2010)

1.4 SINGULAR NUMBER

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

27 05 11 - 22

- 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
- 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
- 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
- Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
- General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
- 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
- 14.
- 15. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 16. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 17. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.

27 05 11 - 23

- 18. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 19. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.
 - Movement of materials: Unload materials and equipment delivered to site.
 - Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - 3. Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.

- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
 - 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
 - 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports.
- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IIIe twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).
 - d. Volt-Ohm meter.
 - e. Digital camera.

- 3. Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
 - Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.
- K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - Provide a Table of Contents and assemble files to conform to Table of Contents.

- 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources of supply, recommended spare parts, and name of servicing organization.
 - k. Warranty documentation indicating end date and equipment protected under warranty.
 - Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
 - 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
 - 4. Floor plans to include:

- a. Final room numbers and actual backbone cabling and pathway locations and labeling.
- b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
- c. Device locations with labels.
- d. Conduit.
- e. Head-end equipment.
- f. Wiring diagram.
- g. Labeling and administration documentation.
- 5. Submit Record Wiring Diagrams within five business days after final cable testing.
- Deliver Record Wiring Diagrams as CAD files in .dwg or.rvt formats as determined by COR.
- Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within four hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - Government reserves the right to require a list of installations where products have been in operation before approval.

- 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.
- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.

- Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.
 - b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
 - c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- A. Comply with FAR clause 52.246-21
 - 1. OEM must provide this capability.//

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.

2.2 EQUIPMENT IDENTIFICATION

A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.

27 05 11 - 30

B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.4 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.
 - 1. paths.

2.5 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches, or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.

- 4. Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
- Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
- Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.
- Install sleeves through floors watertight and extend minimum 50.8 mm
 (2 inches) above floor surface.
- Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- 9. Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:

- Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
- 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:
 - a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
 - b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.

- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.
- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.
 - Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
 - 3. Remove and replace defective work.
 - 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Protect adjacent installations during cutting and patching operations.
- D. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- E. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and

acceptance testing and demonstrations after verification of system operation and completeness by Contractor.

- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.
 - COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
 - 2. Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for // T568B // T568A // pin assignments and cabling connections are in compliance with TIA standards.
 - Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
 - Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.

- 8. Review cable tray, conduit and path/wire way installation practice.
- 9. OEM and contractor to perform:
 - a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.

SPEC WRITER NOTES:

- TIA-568-C.0 and addendum, TIA-568-C.0-2, provide requirements for testing installed optical fiber cabling systems.
- Optical loss testing is defined therein as Tier 1 testing, while Optical Time Domain Reflectometry (OTDR) testing is Tier 2.
- Tier 2 is an optional test and not recommended for installations containing branching devices and isolators.
- b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
- c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon

completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.

- 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical, aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present.
- Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system:

SPEC WRITER NOTE: 1. Edit list to project.

- a. Utility provider entrance.
- b. Buried conduit duct locations.
- c. Maintenance Holes (Manholes) and hand holes.
- d. ENTR or DEMARC.
- e. PBX interconnections.
- f. MCR interconnections.
- g. MCOR interconnections.
- h. TER interconnections.
- i. TOR interconnections.
- j. Control room interconnections.
- k. TR interconnections.
- 1. System interfaces in locations listed herein.
- m. HE interconnections.
- n. Antenna (outside and inside) interconnections.
- o. System and lightning ground interconnections.
- p. Communications circulating ground system.
- q. UPS areas.
- r. Emergency generator interconnections.
- s. Each general floor areas.
- t. Others as required by AHJ (SMCS 0050P2H3).
- 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR.
- I. Acceptance Test:

- Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR.
- Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification.
- 3. Test in the presence of the following:
 - a. COR.
 - b. OEM representatives.
 - c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
 - d. VISN-CIO, Network Officer and VISN representatives.
 - e. Facility:
 - FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
 - f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - EMS Representatives: Police, Sherriff, City, County or State representatives.
- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.

- If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.
 - A system inventory including available spare parts must be taken at this time.
 - 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
 - 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
 - Inventory system diagrams, record drawings, equipment manuals, pretest results.
 - Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:

SPEC WRITER NOTES:

 Refer to specific Division 27 and 28 sections for procedures to address the system.

- Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of // DAS //____// equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
- 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.

- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - 2. Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.
 - 3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

SPEC WRITER NOTE:

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

- A. Protection of Fireproofing:
 - Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
 - Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
 - Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.

- C. Telecommunication System Ground Busbars:
 - 1. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- D. Equipment Rack and Cabinet Ground Bars:
 - Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.
 - b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
 - c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
 - d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole
 grounding lugs.
 - e. Copper splice bar of same material to transition between adjoining racks.
 - f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
 - g. Listed as grounding and bonding equipment.
 - Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.

- d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
- e. NRTL listed as grounding and bonding equipment.
- E. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- F. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.
- G. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- H. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Install telecommunications bonding backbone conductor via telecommunication backbone pathways effectively bonding telecommunications grounding busbar in telecommunication rooms, to telecommunication main grounding busbar in Demarc room after testing bond to verify bonding conductor for telecommunications from grounding electrode conductor is installed per NEC. Size telecommunications bonding backbone conductor as specified in TIA-607-B.
- B. Inaccessible Grounding Connections: Utilize exothermic welding for bonding of buried or otherwise inaccessible connections with the exception of connections requiring periodic testing.
- C. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.

- Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- D. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- E. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- F. Telecommunications Grounding System:
 - Bond telecommunications grounding systems and equipment to facility's electrical grounding electrode at Intersystem Bonding Termination.
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 3. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 5. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
 - 6. Bonding Jumpers:
 - a. Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire terminated with compression connectors of proper size for conductors.
 - b. Use connector manufacturer's compression tool.
 - 7. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts.

Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.

- c. Grounding Busbars: Fasten bonding conductors using two-hole compression lugs. Use 300 series stainless steel bolts, Belleville Washers, and nuts.
- d. Slotted Channel Framing and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and Belleville washers or external tooth lock washers.
- G. Telecommunications Room Bonding:
 - 1. Telecommunications Grounding Busbars:
 - a. Install busbar hardware no less than 950 mm (18 inches) A.F.F.
 - b. Where other grounding busbars are located in same room, e.g. electrical panelboard for telecommunications equipment, bond busbars together as indicated on grounding riser diagrams.
 - c. Make conductor connections with two-hole compression lugs sized to fit busbar and conductors.
 - d. Attach lugs with stainless steel hardware after preparing bond according to manufacturer recommendations and treating bonding surface on busbar with anti-oxidant to help prevent corrosion.
 - 2. Telephone-Type Cable Rack Systems:
 - a. Aluminum pan installed on telephone-type cable rack serves as primary ground conductor within communications room.
 - b. Make ground connections by installing bonding jumpers:
 - Install minimum 16 mm² (6 AWG) bonding between telecommunications ground busbars and the aluminum pan installed on cable rack.
 - Install 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.
- H. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:
 - Install rack-mount horizontal busbar or vertical busbar to provide multiple bonding points,
 - At each rack or cabinet containing active equipment or shielded cable terminations:
 - a. Bond busbar to ground as part of overall telecommunications bonding and grounding system.
 - b. Bond copper ground bars together using solid copper splice plates manufactured by same ground bar manufacturer, when ground bars

are provided at rear of lineup of bolted together equipment racks.

- c. Bond non-adjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
- d. Provide 16 mm² (6 AWG) bonding jumpers between rack and cabinet ground busbars and overhead cable runway or raised floor stringers, as appropriate.
- I. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near top of backboards used for communications cross-connect systems. Connect backboard ground terminals to cable runway using an insulated 16 mm² (6 AWG) bonding jumper.
- J. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- K. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- L. Communications Cable Tray Systems:
 - Bond metallic structures of cable tray to provide 100 percent electrical continuity throughout cable tray systems.
 - 2. Where metallic cable tray systems are mechanically discontinuous:
 - a. Install splice plates provided by cable tray manufacturer between cable tray sections so resistance across a bolted connection is

0.010 ohms or less, as verified by measuring across splice plate connection.

- b. Install 16 mm² (6 AWG) bonding jumpers across each cable tray splice or junction where splice plates cannot be used.
- 3. Bond cable tray installed in same room as telecommunications grounding busbar to busbar.
- M. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.

N. Ground Resistance:

- Install telecommunications grounding system so resistance to grounding electrode system measures 5 ohms or less.
- Measure grounding electrode system resistance using an earth test meter, clamp-on ground tester, or computer-based ground meter as defined in IEEE 81. Record ground resistance measurements before electrical distribution system is energized.
- Backfill only after below-grade connection have been visually inspected by COR. Notify COR twenty-four hours before below-grade connections are ready for inspection.

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Conduct continuity test to verify that metallic pathways in telecommunications spaces are bonded to TGB or TMGB.
- D. Conduct electrical continuity test to verify that TMGB is effectively bonded to grounding electrode conductor.
- E. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.
- F. Perform a resistance test to ensure patch panel, rack and cabinet bonding connection resistance measures less than 5 Ohms to TGB or TMGB. --- E N D ---

SECTION 27 05 33 RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- A. Bedding of conduits: Section 31 20 00, EARTH MOVING.
- B. Mounting board for Telecommunication Rooms: Section 06 10 00, ROUGH CARPENTRY.
- C. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- D. Fabrications for deflection of water away from building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- E. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- F. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.

- 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
- Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
- 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.
- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.

- Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- g. Provide OEM approved fittings.
- 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.

- c. Provide connectors with insulated throats to prevent damage to cable jacket.
- d. Provide OEM approved fittings.
- 6. Surface Metal Raceway: Conform to UL 5 and "telecommunications service" rated with approved length-way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- 7. Surface Metal Raceway Fittings: As recommended by raceway manufacturer.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- 9. Rigid Aluminum Fittings:
 - a. Provide malleable iron, steel or aluminum alloy materials; zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
 - c. Set Screw Fittings: Not permitted for use with aluminum conduit.
 - d. Indent type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fit-tings or fittings made of "pot metal" are not permitted.
 - f. Provide OEM approved fittings.

10. Wireway Fittings: As recommended by wireway OEM.

- D. Conduit Supports:
 - Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.

- 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
- Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Outlet Boxes:
 - Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.
 - 2. //Flush wall mounted 12.7 cm (5 inches) square x 7.3 cm (2-7/8 inches); deep pressed galvanized steel.//
 - 3. 2-Gang Tile Box:
 - a. Flush backbox type for installation in block walls.
 - b. Minimum 92 mm (3-5/8 inches) deep.
- H. Cable Tray:
 - Provide wire basket type of sizes indicated; with all required splicing and mounting hardware.
 - 2. Materials and Finishes:
 - a. Electro-plated zinc galvanized (post plated) made from carbon steel and plated to ASTM B 633, Type III, SC-1.
 - b. Remove soot, manufacturing residue/oils, or metallic particles after fabrication.
 - c. Rounded edges and smooth surfaces.
 - Provide continuous welded top side wire to protect cable insulation and installers.
 - High strength steel wires formed into a 50 x 100 mm (2 inches by 4 inches) wire mesh pattern with intersecting wires welded together.
 - 5. Wire Basket Sizes:

- a. Wire Diameter: 5 mm (0.195 inch) minimum on all mesh sections.
- b. Usable Loading Depth: 105 mm (4 inch) // 150 mm (6 inches) // .
- c. Width: 300 mm (12 inches) // 450 mm (18 inches) // 600 mm (24 inches) // .
- 6. Fittings: Field-formed, from straight sections, in accordance with manufacturer's instructions.
- 7. Provide accessories to protect, support and install wire basket tray system.
- I. Cable Duct: Equip with hinged covers, except where removable covers are accepted by COR.
- J. Cable Duct Fittings: As recommended by cable duct OEM.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Raceways typically required for cabling systems unless otherwise indicated:

System	Specification Section	Installed Method
Grounding	27 05 26	Conduit Not Required
Control, Communication and Signal Wiring	27 10 00	Complete Conduit Allowed in Non-Partitioned Cable Tray or Cable Ladders
Communications Structured Cabling	27 15 00	Conduit to Cable Tray Partitioned Cable Tray
Public Address and Mass Notification Systems	27 51 16	Complete conduit
Intercommunications and Program systems	27 51 23	Conduit to Cable Tray, Partitioned Cable Tray
Nurse Call	27 52 23	Complete Conduit
Security Emergency Call, Duress Alarm, and Telecommunications	27 52 31	Conduit to Cable Tray, Partitioned Cable Tray
Grounding and Bonding for Electronic Safety and Security	28 05 26	Conduit Not Required Unless Required by Code

System	Specification Section	Installed Method
Fire Detection and Alarm	28 31 00	Complete Conduit

B. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new // and existing // structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
- C. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - 5. Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits

to enter telecommunication rooms next to wall and flush with backboard.

- Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.
- 7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on wall of communication closets where shown on drawings. Mount plywood with bottom edge 300 mm (12 inches) above finished floor and top edge 2.74 m (9 feet) A.F.F.
- Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- 11. Complete each entire conduit run installation before pulling in cables.
- 12. Flattened, dented, or deformed conduit is not permitted.
- Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- 14. Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 15. Install conduit mechanically continuous.
- 16. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling

supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).

- 17. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 19. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.
- 20. Do not use aluminum conduits in wet locations.
- 21. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 22. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 23. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- D. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.

- Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
- Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
- e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- E. Furred or Suspended Ceilings and in Walls:
 - Rigid steel, or rigid aluminum. Different type conduits mixed indiscriminately in same system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Tightening set screws with pliers is not permitted.
- F. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- G. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.

- Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
- 3. Install expansion and deflection couplings where shown.
- H. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
 - 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
 - 4. Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
 - 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
 - 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
 - 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
 - Bolts supported only by plaster or gypsum wallboard are not acceptable.
 - Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
 - 10. Do not support conduit from chain, wire, or perforated strap.

- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- I. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.
 - b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
 - 2. In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
 - Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
 - 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
 - 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 05 36

CABLE TRAYS FOR TELECOMMUNICATION SYSTEMS

Part 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing of all necessary labor, supervision, materials, equipment, installation, tests, and services to completely execute a complete wire basket cable tray system as described in this specification and as shown on the drawings.
- B. Wire basket cable tray systems are defined to include, but are not limited to straight sections of continuous wire mesh, field formed horizontal and vertical bends, tees, dropouts, supports and accessories.
- C. This section includes steel, cable trays and accessories.

1.2 RELATED WORK

- A. Section 27 05 11, Requirements for Communications Installations.
- B. Section 27 05 26, Grounding and Bonding for Communications Systems.
- C. Section 27 05 33, Raceways and Boxes for Communications Systems.

1.3 DRAWINGS

- A. The drawings, which constitute a part of these specifications, indicate the general route of the wire basket cable tray systems. Data presented on these drawings is as accurate as preliminary surveys and planning can determine until final equipment selection is made. Accuracy is not guaranteed and field verification of all dimensions, routing, etc., is required.
- B. Specifications and drawings are for assistance and guidance, but exact routing, locations, distances and levels will be governed by actual field conditions. Contractor is directed to make field surveys as part of his work prior to submitting system layout drawings.

1.4 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include the location of system equipment grounding connections.
 - Detail fabrication, including anchorages and attachments to structure and to supported cable trays.

27 05 36 - 1

- C. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COR:
 - Certification that the materials and installation is in accordance with the drawings and specifications.
 - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) for a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

- A. American Society for Testing and Materials (ASTM) International: ASTM A1011 / A1011M - Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength. ASTM A123 / A123M - Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products. ASTM A510 - Standard Specification for General Requirements for Wire Rods and Coarse Round Wire, Carbon Steel. ASTM A513 - Standard Specification for Electric-Resistance-Welded Carbon and Alloy Steel Mechanical Tubing. ASTM A580 - Standard Specification for Stainless Steel Wire. ASTM B633 - Standard Specification for Electrodeposited Coatings of Zinc on Iron and Steel. ASTM A641 / A641M - Standard Specification for Zinc-Coated (Galvanized) Carbon Steel Wire. ASTM A653 / A653M - Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process. B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-2012.....IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC) D. National Electrical Manufacturers Association:
 - NEMA VE 1 Metal Cable Tray Systems.

NEMA VE 2 - Cable Tray Installation Guidelines.

- E. Telecommunications Industry Association, (TIA) J-STD-607-B-2011....Generic Telecommunications Bonding and Grounding (Earthing) for Customer Premises
- F. Underwriters Laboratories, Inc. (UL): 44-2010Thermoset-Insulated Wires and Cables 83-2008Thermoplastic-Insulated Wires and Cables 467-2007Grounding and Bonding Equipment 486A-486B-2013Wire Connectors

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Delegated Design: Engage a qualified professional engineer to design cable tray supports and bracing.

2.2 GENERAL REQUIREMENTS FOR CABLE TRAYS

- A. Cable Trays and Accessories: Identified as defined in NFPA 70 and marked for intended location, application, and grounding.
 - 1. Source Limitations: Obtain cable trays and components from single manufacturer.
- B. Sizes and Configurations: As indicated on the Drawings.
- C. Structural Performance: See article on individual cable tray types for specific values for the following parameters:
 - Uniform Load Distribution: Capable of supporting a uniformly distributed load on the indicated support span when supported as a simple span and tested according to NEMA VE1.
 - Concentrated Load: A load applied at midpoint of span and centerline of tray.
 - 3. Load and Safety Factors: Applicable to both side rails and rung capacities.

2.3 WIRE BASKET CABLE TRAY SECTIONS AND COMPONENTS

- A. Provide wire basket cable tray of types and sizes indicated with connector assemblies, clamp assemblies, connector plates, splice plates and splice bars. Construct units with rounded edges and smooth surfaces; in compliance with applicable standards; and with the additional construction highlighted in this section.
- B. All straight section longitudinal wires shall be constructed with a continuous top wire safety edge. Safety edge must be kinked and Twelded on all tray sizes.

- C. Wire basket cable tray shall be made of high strength steel wires and formed into a standard 2 inch by 4 inch wire mesh pattern with intersecting wires welded together. All mesh sections must have at least one bottom longitudinal wire along entire length of straight section.
- D. Wire basket cable tray sizes shall conform to the following nominal criteria:
 - Straight sections shall be furnished in standard 118.3 inch lengths.
 - 2. Wire diameter shall be 0.196" (5mm) minimum on all mesh sections.
 - 3. Wire basket cable tray shall have a minimum 4 inch usable loading depth.
- E. The system is required to abide by the grounding and bonding requirements in specification 27 05 26 Grounding and Bonding for Communications Systems.
- F. Material and Finishes: Material and finish specifications for Pre-Galvanize Steel Wire are as follows.
 - Electro-Plated Zinc Galvanizing: Straight sections shall be made from steel meeting the minimum mechanical properties of ASTM A510, Grade 1008 and shall be electro-plated zinc in accordance with ASTM B633, Type III, SC-1.
 - Pre-Galvanized Zinc: Straight sections shall be made from pregalvanized steel meeting the minimum mechanical properties of ASTM A641.
 - 3. Hot Dipped Galvanizing: Straight sections shall be made from steel meeting the minimum mechanical properties of ASTM A510, Grade 1008and shall be hot dipped galvanized after fabrication in accordance with ASTM A123.
- G. All fittings shall be field formed from straight sections in accordance with manufacturer's instructions.
- H. Wire basket cable tray supports shall be center support hangers, trapeze hangers or wall brackets as approved by COR.
- Trapeze hangers or center support hangers shall be supported by 3/8" inch diameter rods.
- J. Special accessories shall be furnished as required to protect, support and install a wire basket cable tray system.

2.4 QUALITY ASSURANCE

- A. All cable and equipment shall be installed in a neat and workmanlike manner. All methods of construction that are not specifically described or indicated in the contract documents shall be subject to the control and approval of the COR.
- B. Supply all equipment and accessories new and free from defects.
- C. Supply all equipment and accessories in compliance with the applicable standards listed in Part 1.5 of this section and with all applicable national, state and local codes.
- D. All items of a given type shall be the products of the same manufacturer.
- E. Zinc plated wire basket cable tray shall be classified by Underwriters Laboratories (UL).
- F. Wire basket cable tray shall be of uniform quality and appearance.
- G. Comply with the National Electrical Code (NEC), as applicable, relating to construction and installation of cable tray and cable channel systems (Article 392, NEC).
- H. Comply with NFPA 70B, "Recommended Practice for Electrical Equipment Maintenance" pertaining to installation of cable tray systems.

PART 3 - EXECUTION

3.1 CABLE TRAY INSTALLATION

- A. Install cable trays according to NEMA VE 2.
- B. Install cable trays as a complete system, including fasteners, holddown clips, support systems, barrier strips, adjustable horizontal and vertical splice plates, elbows, reducers, tees, crosses, cable dropouts, adapters, covers, and bonding.
- C. Install cable trays so that the tray is accessible for cable installation and all splices are accessible for inspection and adjustment.
- D. Remove burrs and sharp edges from cable trays.
- E. Where supported by All Threaded Rod (ATR), use a minimum of 3/8" rod.
- F. Fasten cable tray supports to building structure.
- G. Design fasteners and supports to carry cable tray, the cables, and a concentrated load of 200 lb.
- H. Place supports so that spans do not exceed maximum support spans/loading capacity on load & fill chart schedules as provided by the product manufacturer. Provide clearances shown on Drawings. Install intermediate supports when cable weight exceeds the load-

carrying capacity of the tray rungs.

- I. Supports shall be installed providing the maximum load rating of the specific size of tray installed.
- J. Construct supports from channel members, threaded rods, and other appurtenances furnished by cable tray manufacturer. Arrange supports in trapeze or wall-bracket form as required by application.
- K. Support bus assembly to prevent twisting from eccentric loading.
- L. Install center-hung supports for single-rail trays designed for 60 versus 40 percent eccentric loading condition, with a safety factor of 3.
- M. Locate and install supports according to NEMA VE 2. Do not install more than one cable tray splice between supports.
- N. Make connections to equipment with flanged fittings fastened to cable tray and to equipment. Support cable tray independent of fittings. Do not carry weight of cable tray on equipment enclosure.
- O. Install expansion connectors where cable tray crosses building expansion joint and in cable tray runs that exceed dimensions recommended in NEMA VE 2. Space connectors and set gaps according to applicable standard.
- P. Make changes in direction and elevation using standard fittings.
- Q. Make cable tray connections using manufacturer's recommended fittings.
- R. Seal penetrations through fire and smoke barriers. Comply with requirements for "Penetration Firestopping" in Section 07 84 00 "Firestopping". Use firestop pillows where tray penetrates walls or floors.
- S. Install capped metal sleeves for future cables through firestopsealed cable tray penetrations of fire and smoke barriers.
- T. Install cable trays with enough workspace to permit access for installing cables.
- U. Coordinate wire basket cable tray with other work as necessary to properly interface installation of wire basket cable tray with the other work.
- V. Install barriers to separate cables of different systems, such as communications, patient monitoring, and data processing as directed by drawings.

3.2 CABLE TRAY BONDING

A. Bond cable trays according to NFPA 70 unless additional grounding or

bonding is specified. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communication Systems."

3.3 CABLE INSTALLATION

- A. Install cables only when cable tray installation has been completed and inspected.
- B. Fasten cables on vertical runs to cable trays every 18 inches using Velcro straps.
- C. Fasten and support cables that pass from one cable tray to another or drop from cable trays to equipment enclosures. Fasten cables to the cable tray at the point of exit and support cables independent of the enclosure. The cable length between cable trays or between cable tray and enclosure shall be no more than 72 inches.
- D. In existing construction, remove inactive or dead cables from cable tray.

3.4 CONNECTIONS

- A. Remove paint from all connection points before making connections. Repair paint after the connections are completed.
- B. Connect raceways to cable trays according to requirements in NEMA VE $_{\rm 2}$ and NEMA FG 1.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - After installing cable trays and after cabling is 'on-line', survey for compliance with requirements.
 - Visually inspect cable insulation for damage. Correct sharp corners, protuberances in cable tray, vibrations, and thermal expansion and contraction conditions, which may cause or have caused damage.
 - Verify that there are no intruding items such as pipes, hangers, or other equipment in the cable tray.
 - Remove dust deposits, industrial process materials, trash of any description, and any blockage of tray ventilation.
 - 5. Visually inspect each cable tray joint and each ground connection for mechanical continuity. Check bolted connections between sections for corrosion. Clean and re-torque in suspect areas.
 - Check for missing, incorrect, or damaged bolts, bolt heads, or nuts. When found, replace with specified hardware.
 - 7. Perform visual and mechanical checks for adequacy of cable tray grounding; verify that all takeoff raceways are bonded to cable

tray. Test entire cable tray system for continuity. Maximum allowable resistance is 1 ohm.

B. Prepare test and inspection reports.

3.6 PROTECTION

- A. Protect installed cable trays.
 - Repair damage to galvanized finishes with zinc-rich paint recommended by cable tray manufacturer.
 - 2. Repair damage to paint finishes with matching touchup coating recommended by cable tray manufacturer.

END OF SECTION 26 05 36

SECTION 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes requirements for commissioning facility communications systems, related subsystems and related equipment. This Section supplements general requirements specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- B. Complete list of equipment and systems to be commissioned is specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Specification 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Commissioned Systems:
 - Commissioning of systems specified in Division 27 is part of project's construction process including documentation and proof of performance testing of these systems, as well as training of VA's Operation and Maintenance personnel in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Division 27, in cooperation with Government and Commissioning Agent.
 - The facility exterior closure systems commissioning includes communications systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS and 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

1.2 RELATED WORK

- A. System tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Commissioning process requires review of selected submittals that pertain to systems to be commissioned: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Construction phase commissioning process and procedures including roles and responsibilities of commissioning team members and user training: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

1.3 COORDINATION

- A. Commissioning Agent will provide a list of submittals that must be reviewed by Commissioning Agent simultaneously with engineering review; do not proceed with work of sections identified without engineering and Commissioning Agent's review completed.
- B. Commissioning of communications systems require inspection of individual elements of communications system construction throughout construction period. Coordinate with Commissioning Agent in accordance

with Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and commissioning plan to schedule communications systems inspections as required to support the commissioning process.

1.4 CLOSEOUT SUBMITTALS

- A. Refer to Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for pre-functional checklists, equipment startup reports, and other commissioning documents.
- B. Pre-Functional Checklists:
 - Complete pre-functional checklists provided by commissioning agent to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing.
 - 2. Submit completed checklists to COR and to Commissioning Agent. Commissioning Agent can spot check a sample of completed checklists. If Commissioning Agent determines that information provided on the checklist is not accurate, Commissioning Agent then returns the marked-up checklist to Contractor for correction and resubmission.
 - 3. If Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, Commissioning Agent can select a broader sample of checklists for review.
 - 4. If Commissioning Agent determines that a significant number of broader sample of checklists is also inaccurate, all checklists for the type of equipment will be returned to Contractor for correction and resubmission.
- C. Submit training agendas and trainer resumes in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

A. Contractor's Tests:

- Scheduled tests required by other sections of Division 27 must be documented in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- Incorporate all testing into project schedule. Provide minimum seven calendar days' notice of testing for Commissioning Agent to witness selected Contractor tests at sole discretion of Commissioning Agent.

- Complete tests prior to scheduling Systems Functional Performance Testing.
- B. Systems Functional Performance Testing:
 - Commissioning process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions.
 - 2. Commissioning Agent prepares detailed Systems Functional Performance Test procedures for review and acceptance by COR.
 - 3. Provide required labor, materials, and test equipment identified in test procedure to perform tests.
 - 4. Commissioning Agent must witness and document the testing.
 - Provide test reports to Commissioning Agent. Commissioning Agent will sign test reports to verify tests were performed.

3.2 TRAINING

- A. Training of Government's operation and maintenance personnel is required in cooperation with COR and Commissioning Agent.
- B. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning location, operation, and troubleshooting of installed systems.
- C. Schedule instruction in coordination with COR after submission and approval of formal training plans.

- - - E N D - - -

SECTION 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes control, communication and signal wiring for a comprehensive systems infrastructure.
- B. This section applies to all sections of Divisions 27

1.2 RELATED WORK

- A. Sealing around penetrations to maintain integrity of time rated construction: Section 07 84 00, FIRESTOPPING.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Submit written certification from OEM:
 - Indicate wiring and connection diagrams meet National and Government Life Safety Guidelines, NFPA, NEC, NRTL, Joint Commission, OEM, this section and Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - 2. Include instructions, requirements, recommendations, and guidance for proper performance of system as described herein.
 - Government will not approve any submittal without this certification.
- C. Identify environmental specifications on technical submittals; identify requirements for installation.
 - 1. Minimum floor space and ceiling heights.
 - 2. Minimum size of doors for cable reel passage.
- D. Power: Provide specific voltage, amperage, phases, and quantities of circuits.
- E. Provide conduit size requirements.
- F. Closeout Submittals:

- Provide contact information for maintenance personnel to contact contractor for emergency maintenance and logistic assistance, and assistance in resolving technical problems at any time during warranty period.
- 2. Provide certified OEM sweep test tags from each cable reel to COR.
- Furnish spare or unused wire and cable with appropriate connectors (female types) for installation in appropriate punch blocks, barrier strips, patch, or bulkhead connector panels.
- Turn over unused and opened installation kit boxes, coaxial, fiber optic, and twisted pair cable reels, conduit, cable tray, cable duct bundles, wire rolls, physical installation hardware to COR.
- 5. Documentation: Include any item or quantity of items, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide system documentation required herein.

PART 2 - PRODUCTS

2.1 CONTROL WIRING

- A. Provide control wiring large enough so voltage drop under in-rush conditions does not adversely affect operation of controls.
- B. Provide cable meeting specifications for type of cable.
- C. Outside Location (i.e. above ground, underground in conduit, ducts, pathways, etc.): Provide cables filled with a waterproofing compound between outside jacket (not touching any provided armor) and inter conductors to seal punctures in jacket and protect conductors from moisture.
- D. Remote Control Cable:
 - Multi-conductor with stranded conductors able to handle power and voltage required to control specified system equipment, from a remote location.
 - 2. NRTL listed and pass VW-1 vertical wire flame test (UL 83) (formerly FR-1).
 - Color-coded Conductors: Combined multi-conductor and coaxial cables are acceptable for this installation, on condition system performance standards are met.
 - 4. Technical Characteristics:
 - a. Length: As required, in 1K (3,000 ft.) reels minimum.
 - b. Connectors: As required by system design.
 - c. Size:

- 1) 18 AWG, minimum, Outside.
- 2) 20 AWG, minimum, Inside.
- d. Color Coding: Required, EIA industry standard.
- e. Bend Radius: 10 times cable outside diameter.
- f. Impedance: As required.
- g. Shield Coverage: As required by OEM specification.
- h. Attenuation:

Frequency in MHz	dB per 305 Meter (1,000 feet), maximum
0.7	5.2
1.0	6.5
4.0	14.0
8.0	19.0
16.0	26.0
20.0	29.0
25.0	33.0
31.0	36.0
50.0	52.0

E. Distribution System Signal Wires and Cables:

- Provide in same manner, and use construction practices, as Fire Protective and other Emergency Systems identified and defined in NFPA 101, Life Safety Code, Chapters 7, 12, and 13, NFPA 70, National Electrical Code, Chapter 7, Special Conditions.
- 2. Provide system able to withstand adverse environmental conditions without deterioration, in their respective location.
- Provide entering of each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of cables.
- 4. Terminate on an item of equipment by direct connection.

2.2 COMMUNICATION AND SIGNAL WIRING

- A. Provide communications and signal wiring conforming to recommendations of manufacturers of systems.
- B. Wiring shown is for typical systems; provide wiring as required for systems being provided.
- C. Provide color-coded conductor insulation for multi-conductor cables.
- D. Connectors:

- Provide connectors for transmission lines, and signal extensions to maintain uninterupted continuity, ensure effective connection, and preserve uniform polarity between all points in system.
 - a. Provide AC barrier strips with a protective cover to prevent accidental contact with wires carrying live AC current.
 - b. Provide punch blocks for signal connection, not AC power. AC power twist-on wire connectors are not permitted for signal wire terminations.
- Cables: Provide connectors designed for specific size cable and conductors being installed with OEM's approved installation tool. Typical system cable connectors include:
 - a. Audio spade lug.
 - b. Punch block.
 - c. Wirewrap.

2.3 INSTALLATION KIT

- A. Include connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, cable tray, etc., required to accomplish a neat and secure installation.
- B. Terminate conductors in a spade lug and barrier strip, wire wrap terminal or punch block, so there are no unfinished or unlabeled wire connections.
- C. Minimum required installation sub-kits:
 - 1. System Grounding:
 - a. Provide required cable and installation hardware for effective ground path, including the following:
 - 1) Control Cable Shields.
 - 2) Data Cable Shields.
 - 3) Equipment Racks.
 - 4) Equipment Cabinets.
 - 5) Conduits.
 - 6) Ducts.
 - 7) Cable Trays.
 - 8) Power Panels.
 - 9) Connector Panels.
 - 10) Grounding Blocks.

- b. Bond radio equipment to earth ground via internal building wiring, according to NEC.
- Wire and Cable: Provide connectors and terminals, punch blocks, tie wraps, hangers, clamps, labels, etc. required to accomplish termination in an orderly installation.
- 3. Conduit, Cable Duct, and Cable Tray: Provide conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, cable tray installation in accordance with NEC and documents.
- Equipment Interface: Provide any items or quantity of equipment, cable, mounting hardware and materials to interface systems with identified sub-systems, according to OEM requirements and construction documents.
- 5. Labels: Provide any item or quantity of labels, tools, stencils, and materials to label each subsystem according to OEM requirements, asinstalled drawings, and construction documents.
- D. Cross-Connection System (CCS) Equipment Breakout, Termination Connector (or Bulkhead), and Patch Panels:
 - Connector Panels: Flat smooth 3.175 mm (1/8 inch) thick solid aluminum, custom designed, fitted and installed in cabinet. Install bulkhead equipment connectors on panel to enable cabinet equipment's signal, control, and coaxial cables to be connected through panel. Match panel color to cabinet installed.
 - a. Voice (or Telephone):
 - Provide industry standard Type 110 (minimum) punch blocks for voice or telephone, and control wiring instead of patch panels, each being certified for category 6.
 - IDC punch blocks (with internal RJ45 jacks) are acceptable for use in CCS when designed for Category 6 and the size and type of cable used.
 - 3) Secure punch block strips to OEM designed physical anchoring unit on a wall location in TRS; console, cabinet, rail, panel, etc. mounting is permitted at OEM recommendation and as accepted by COR. Punch blocks are not permitted for Class II or 120 VAC power wiring.
 - 4) Technical Characteristics:

a) Number of Horizontal Rows: Minimum 100.

- b) Number of Terminals per Row: Minimum 4.
- c) Terminal Protector: Required for each used or unused terminal.
- d) Insulation Splicing: Required between each row of terminals.
- b. Digital or High Speed Data:
 - Provide 480 mm (19 inches) horizontal EIA/ECA 310 rack mountable patch panel with EIA/ECA 310 standard spaced vertical mounting holes for digital or high-speed data service CSS, with modular female Category 5E (or on a case by case basis Category 6for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services, and COR) RJ45 jacks designed for size and type of UTP or F/UTP cable installed in rows.
 - 2) Technical Characteristics:
 - a) Number of Horizontal Rows: Minimum 2.
 - b) Number of Jacks Per Row: Minimum 24.
 - c) Type of Jacks: RJ45.
 - d) Terminal Protector: Required for each used or unused jack.
 - e) Insulation: Required between each row of jacks.

2.4 EXISTING WIRING

- A. Reuse existing wiring only where indicated on plans and accepted by SMCS 0050P2H3.
- B. Only existing wiring that conforms to specifications and applicable codes can be reused; existing wiring that does not meet these requirements cannot be reused and must be removed by contractor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - 1. Install wiring in cable tray or raceway.
 - Seal cable entering a building from underground, between wire and conduit where cable exits conduit, with non-hardening approved compound.
 - 3. Wire Pulling:
 - a. Provide installation equipment that prevents cutting or abrasion of insulation during pulling of cables.
 - b. Use ropes made of nonmetallic material for pulling feeders.

- c. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached to conductors, as accepted by COR.
- d. Pull multiple cables into a single conduit together.
- B. Installation in Maintenance or Man holes:
 - Install and support cables in maintenance holes on steel racks with porcelain or equal insulators.
 - 2. Train cables around maintenance hole walls, but do not bend to a radius less than six times overall cable diameter.
- C. Control, Communication and Signal Wiring Installation:
 - Unless otherwise specified in other sections, provide wiring and connect to equipment/devices to perform required functions as indicated.
 - Install separate cables for each system so that malfunctions in any system does not affect other systems, except where otherwise required.
 - 3. Group wires and cables according to service (i.e. AC, grounds, signal, DC, control, etc.); DC, control and signal cables can be included with any group.
 - 4. Form wires and cables to not change position in group throughout the conduit run. Bundle wires and cables in accepted signal duct, conduit, cable ducts, or cable trays neatly formed, tied off in 600 mm to 900 mm (24 inch to 36 inch) lengths to not change position in group throughout run.
 - 5. Concealed splices are not allowed.
 - Separate, organize, bundle, and route wires or cables to restrict EMI, channel crosstalk, or feedback oscillation inside any enclosure.
 - 7. Looking at any enclosure from the rear (wall mounted enclosures, junction, pull or interface boxes from the front), locate AC power, DC and speaker wires or cables on the left; coaxial, control, microphone and line level audio and data wires or cables, on the right.
 - Provide ties and fasteners that do not damage or distort wires or cables. Limit spacing between tied points to maximum 150 mm (6 inches).
 - 9. Wires or cables must be specifically accepted, on a case by case basis, to be installed outside of conduit. Bundled wires or cables must be tied at minimum 460 mm (18 inches) intervals to a solid

building structure; bundled wires or cables must have ultra violet protection and be waterproof (including all connections).

- 10. Laying wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not permitted.
- 11. Wires or cables installed outside of conduit, cable trays, wireways, cable duct, etc.:
 - a. Only when authorized, can wires or cables be identified and approved to be installed outside of conduit.
 - b. Provide wire or cable rated plenum and OEM certified for use in air plenums.
 - c. Provide wires and cables hidden, protected, fastened and tied at maximum 600 mm (24 inches) intervals, to building structure.
 - d. Provide closer wire or cable fastening intervals to prevent sagging, maintain clearance above suspended ceilings.
 - e. Remove unsightly wiring and cabling from view, and discourage tampering and vandalism.
 - f. Sleeve and seal wire or cable runs, not installed in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers, with an approved fire retardant sealant.
- D. AC Power:
 - Bond to ground contractor-installed equipment and identified Government-furnished equipment, to eliminate shock hazards and to minimize ground loops, common mode returns, noise pickup, crosstalk, etc. for total ground resistance of 0.1 Ohm or less.
 - 2. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted; use these items only for dissipation of internally generated static charges (not to be confused with externally generated lightning) that can be applied or generated outside mechanical and physical confines of system to earth ground. Discovery of improper system grounding is grounds to declare system unacceptable and termination of all system acceptance testing.
 - 3. Cabinet Bus: Extend a common ground bus of at least #10 AWG solid copper wire throughout each equipment cabinet and bond to system ground. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground busses together.
 - Equipment: Bond equipment to cabinet bus with copper braid equivalent to at least #12 AWG. Self-grounding equipment enclosures,

racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.

3.2 EQUIPMENT IDENTIFICATION

- A. Control, Communication and Signal System Identification:
 - 1. Install a permanent wire marker on each wire at each termination.
 - Identify cables with numbers and letters on the labels corresponding to those on wiring diagrams used for installing systems.
 - 3. Install labels retaining their markings after cleaning.
 - 4. In each maintenance hole (manhole) and handhole, install embossed brass tags to identify system served and function.

B. Labeling:

- 1. Industry Standard: ANSI/TIA-606-B.
- 2. Print lettering for voice and data circuits using laser printers; handwritten labels are not acceptable.
- 3. Cable and Wires (hereinafter referred to as "cable"): Label cables at both ends in accordance with industry standard. Provide permanent labels in contrasting colors. Identify cables matching system Record Wiring Diagrams.
- Equipment: Permanently labeled system equipment with contrasting plastic laminate or bakelite material. Label system equipment on face of unit corresponding to its source.
- 5. Conduit, Cable Duct, and Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying system. Label each enclosure according to this standard.
- Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and Record Wiring Diagrams.

3.3 TESTING

- A. Minimum test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on cables in frequency ranges specified.
- B. Tests required for data cable must be made to confirm operation of this cable at minimum 10 Mega (M) Hertz (Hz) full bandwidth, fully channel loaded and a Bit Error Rate of a minimum of 10-6 at maximum rate of speed.

- C. Provide cable installation and test records at acceptance testing to COR and thereafter maintain in facility's telephone switch room.
- D. Record changes (used pair, failed pair, etc.) in these records as change occurs.
- E. Test cables after installation and replace any defective cables.

- - - E N D - - -

SECTION 27 11 00 TELECOMMUNICATIONS ROOM FITTINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies equipment cabinets, interface enclosures, relay racks, and associated hardware in service provider DEMARC, computer and telecommunications rooms.
- B. Telephone system is defined as an Emergency Critical Care Communication System by the National Fire Protection Association (NFPA). Adhere to Seismic reference standards for systems connecting to or extending telephone system and cabling.

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

F. .

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATION.
- B. Separate submittal into sections for each subsystem containing the following:
 - Pictorial layouts of each Telecommunications Room and Cross Connection Space (VCCS, and HCCS termination cabinets), each distribution cabinet layout, and TCO as each is expected to be installed and configured.
 - Equipment technical literature detailing electrical and technical characteristics of each item of equipment to be furnished.
- C. Environmental Requirements: Identify environmental specifications for housing system as initial and expanded system configurations.
 - 1. Floor loading for batteries and cabinets.

- 2. Minimum floor space and ceiling height.
- 3. Minimum door size for equipment passage.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. Provide components of cabinet system (cabinet, thermal, cable and power management accessories) from a single manufacturer.
- B. Equipment Standards and Testing:
 - Equipment must be listed by a NRTL where a UL standard is in existence; active and passive equipment must conform with each UL standard in effect for equipment, on the submittal date.
 - Each item of electronic equipment must be labeled by a NRTL that warrants equipment has been tested in accordance with, and conforms to specified standards.
- C. Wall Mounted Distribution or System Interface Cabinet:
 - Construct of minimum 1.59 mm (16 gauge) cold rolled steel, with top, side and bottom panels.
 - Provide double-hinged front door and main cabinet body allowing access to all internal equipment and wiring; mount to solid walls or internal studs.
 - 3. Provide baked-on iron phosphate primer and baked enamel paint finish in a color to be selected by the using FMS Chief or COR.
 - 4. Provide integral and adjustable EIA/ECA 310 standard predrilled rack mounting rails to allow front panel equipment mounting and access.
 - 5. After equipment, doors and panels are installed, snap-in-place chrome trim strip covers all front panel screw fasteners.
 - 6. Provide full-length vertical piano hinge to allow entire front portion of cabinet to "swing out" from wall for access to installed equipment, wires and cable; maintain minimum OSHA Safety clearances and NFPA operational functions.
 - 7. Provide an OEM's fully assembled unit enclosure.
 - Equip these cabinets same as equipment cabinets, except mount UPS on floor below cabinet with AC power connection in conduit to AC service panel.
 - 9. Technical Characteristics:
 - a. Overall Height: Maximum 1,218 mm (48 inches).
 - b. Overall Depth: Maximum 558 mm (22 inches).
 - c. Overall Width: Maximum 610 mm (24 inches).
 - d. Front Panel Horizontal: Maximum width 483 mm (19 inches).

- e. Capacity: Maximum 180 kilograms (400 pounds).
- f. Lockable:
 - 1) Tubular lock with 7-pin security.
 - 2) Key cabinets alike.
- D. Stand Alone Open Equipment Rack:
 - Construct of minimum 1.59 mm (16 gauge) cold rolled steel with manufacturer's standard paint finish, in a color to be selected by COR with concurrence from facility's FMS Service Chief.
 - Floor-mount as directed by COR with concurrence from facility's FMS Service Chief.
 - Equip rack same as equipment cabinet, except mount UPS with additional support for weight and AC power connection in conduit to AC service panel.
 - 4. Provide an OEM fully assembled unit.
 - 5. Technical Characteristics:
 - a. Overall Height: Maximum 2,180 mm (85-7/8 inches).
 - b. Overall Width: Maximum 535 mm (21-1/16 inches).
 - c. Front Panel Opening: 483 mm (19 inches), EIA/ECA 310 horizontal width.
 - d. Hole Spacing: Per EIA/ECA 310.
 - e. Load Capacity: Maximum 680.4 kg (1,500 lbs).
 - f. Certifications:
 - 1) EIA/ECA: 310-E.
 - 2) NRTL (i.e. UL): OEM specific.
- E. Wire Management Equipment:
 - Provide an orderly horizontal and vertical interface between outside and inside wires and cables, distribution and interface wires and cables, interconnection wires and cables and associated equipment, jumper cables, and provide an uniform connection media for system fire-retardant wires and cables and other subsystems.
 - Interface to each cable tray, duct, wireway, or conduit used in the system.
 - 3. Interconnection or distribution wires and cables must enter system at top (or from a wireway in the floor) via overhead protection system and be uniformly routed down both sides at same time, of the frames side protection system, then laterally for termination on rear of each respective terminating assembly.
- F. Vertical Cable Managers:

- Use same make, style and size of vertical cable manager on rack/frame or in between racks/frames when more than one cable manager is used on a rack/frame or group of racks/frames.
- 2. Match color and cover style of racks/frames and cable managers.
- G. Horizontal Cable Managers:
 - Use same make and style of cable manager on rack/frame or racks/frames, when more than one horizontal cable manager is used on a rack/frame or group of racks/frames.
 - 2. Match color of racks/frames and cable managers.
- Η.
- I. Provide installation hardware when enclosures or racks are attached to structural floor.
- J. Provide noise filters and surge protectors for each equipment interface cabinet, switch equipment cabinet, control console, and local and remote active equipment locations to ensure protection from input primary AC power surges so as a consequence noise glitches are not induced into low voltage data circuits.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Equipment Cabinets:
 - Install cabinets in a manner that complies with OEM instructions, requirements of this specification, and in a manner which does not constitute a safety hazard.
- B. Grounding:
 - Bond equipment, including identified Government furnished equipment, to ground so total ground resistance measures maximum 0.1 Ohm.
 - a. Install lightning arrestors and grounding in accordance with NFPA.
 - b. Install gas protection devices at nearest point of entrance in buildings where protection is required and on same circuits as MDF in telephone switch room.
 - c. Do not use AC neutral, including in power panel or receptacle outlet, for system control, subcarrier or audio reference ground.
 - d. Use of conduit, signal duct or cable trays as system or electrical ground is not permitted.
 - 2. Connect each equipment grounding terminal to a separate mounting hole on equipment mounting rail, to right as one looks at it from

rear, with a minimum #12 AWG stranded copper wire with protective green jacket.

- 3. Extend common ground bus of minimum #10 AWG solid copper wire throughout each equipment cabinet and bond to TGB. Provide a separate isolated ground connection from each equipment cabinet ground bus to system ground. Do not tie equipment ground buses together.
- 4. Bond equipment to cabinet bus with copper braid equivalent to #12 AWG. Self-grounding equipment enclosures, racks or cabinets, that provide OEM certified functional ground connections through physical contact with installed equipment, are acceptable alternatives.
- 5. Bond cable shields to cabinet ground bus with minimum #12 AWG stranded copper wire at only one end of cable run. Insulate cable shields from each other, faceplates, equipment racks, consoles, enclosures or cabinets, except at system common ground point. Bond coaxial and audio cables only at source; in all cases, keep cable shield ground connections to a minimum.
- C. Equipment Assembly:
 - 1. Racks:
 - a. Assemble racks according to manufacturer's instructions.
 - b. Verify that equipment mounting rails are sized properly for rackmount equipment before attaching rack to floor.
 - c. Attach assembled racks to floor in four places using appropriate floor mounting anchors. When placed over a raised floor, threaded rods should pass through raised floor tile and be secured in structural floor below.
 - d. Bond racks to telecommunications grounding busbar using appropriate hardware provided by contractor.
 - e. Ladder rack may be attached to top of rack to deliver cables to rack. Do not drill rack to attach; use appropriate hardware from rack manufacturer.
 - f. Provide radius drops to guide cable where cable exits or enters side of overhead ladder rack to access a rack, frame, cabinet or wall-mounted rack, cabinet or termination field.
 - g. Evenly distribute equipment load on rack. Place large and heavy equipment towards bottom of rack. Secure equipment to rack with equipment mounting screws.
 - 2. Vertical Cable Managers:

- a. Provide vertical managers so number of cables in each manager does not exceed OEM fill capacity.
- b. Attach vertical cable managers to side of rack/frame using manufacturer's installation instructions and hardware.
- c. Attach vertical cable manager to both racks/frames when a single vertical cable manager is used between two racks/frames.
- d. Dress cables through openings in between T-shaped guides on manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
- e. Attach doors to cable manager in closed position after cabling is complete.
- 3. Horizontal Cable Managers:
 - Attach horizontal cable managers to rack/frame with minimum four screws according to manufacturer's installation instructions.
 Center each cable manager within allocated rack-mount space (RMU).
 - b. Provide horizontal managers located so number of cables each manager supports is less than cable manager's cable fill capacity.
 - c. Dress cables through openings in between T-shaped guides on cable manager so that cables make gradual bends as they exit or enter cable manager into rack-mount space (RMU). Do not twist, coil or make sharp bends in cables.
 - d. Attach covers to cable manager in closed position after cabling is complete.
- D. Labeling: Permanently label each enclosure in accordance with TIA-606-B using laser printers; handwritten labels are not acceptable.
 - 1. Equipment: Label system equipment with contrasting plastic laminate or bakelite material on face of unit corresponding to its source.
 - Conduit, Cable Duct, and/or Cable Tray: Label conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 m (10 feet), identifying system.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA /Medical Center building 5, here-inafter referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- E. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- F. .

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each telecommunications room, showing termination cabinets, each distribution rack, as each is expected to be installed and configured.
 - 2. List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
 - Pre-acceptance Certification: Submit in accordance with test procedures.

- Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.
- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
 - 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be

used in completion of this contract, equipment must bear approved NRTL label.

- C. System Performance: Provide complete system to meet or exceed TIA Category 6A requirements.
- D. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, and data, , including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- E. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- F. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
- G. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- H. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.
 - b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
 - c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable

carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.

- 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP, fiber optic, coaxial and analog backbone cables, terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels.
 - b. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
 - c. In TR's, which are only served by a UTP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.
- 3. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.
 - 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
- 4. Label and test complete riser cabling systemHorizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6A requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 500 MHz.
 - c. Provide four pair 0.205 mm2 (24 AWG) cable
 - d. Terminate all four pairs on same port at patch panel in TR.
 - e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 6A Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- B. Cross-Connect Systems (CCS):

- 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
- Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
- C. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic, coaxial and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.
 - Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- D. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - Provide current arrester for each copper or coaxial cable that enters from outside of a building regardless if cable is installed underground or aerial.
 - 2. Provide a gas surge protector/module and bond to earth ground.
- E. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper and fiber optic backbone system cables, and connections to the voice (telephone) and data cable systems.
- F. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - 2. Provide the following for each Category 6A for specialized powered systems technically accepted by SMCS 0050P2H3, (202) 461-5310, OI&T and FMS Services and COR) Cabling System termination; RJ-45 patch cord connector to RJ-45 patch cord connector .
 - a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
 - b. Provide removable designation strips or labels to allow for inspection of terminations.
 - c. Provide cable management system as a part of IDC.

- Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
- Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
- 5. Provide inputs from Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A blocks with RJ45 connections are acceptable alternates to IDC) of MCCS.
- Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS.
- Do not split pairs within cables between different jacks or connections.
- Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- G. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations and system ground with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.
 - c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- H. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber - these counts do not include 50 percent spare requirement. Provide cable management system for each panel.

- Provide panels for minimum 24 female ST connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.
- 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures.
- 3. Provide patch panels with highest OEM approved density of fiber ST termination's (maximum of 72 each), while maintaining a high level of manageability. Provide proper ST couplers installed for each pair of fiber optic cable ST connectors.
 - a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of connectors of same patch panel.
 - c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
- 4. Provide field installable connectors that are pre-polished.
 - a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic ST female connector terminated with a fiber optic cable.

b. Install a terminating cap for each unused ST connector.

- I. Horizontal Cabling (HC):
 - Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
 - Splitting of pairs within a cable between different jacks is not permitted.
 - 3. Fiber Termination Units: Provide at locations where fiber is to be terminated.
 - a. Provide for strain relief of incoming microducts.
 - b. Provide connector panels and connector couplings adequate to accommodate the number of fibers to be terminated.
 - c. Incorporate radius control mechanisms to limit bending of fibers to manufacturer's recommended minimum or 76 mm (3 inches), whichever is larger.

- d. Where rack-mount fiber termination hardware is required, provide wall-mount microduct distribution unit near rack and provide individual microducts to route and connect fiber bundle passing through microduct distribution units to fiber termination hardware.
- e. Provide LC connectors mounted on a coupler panel that snaps into patch panel housing assembly.
- 4. Fiber Bundles or Cables:
 - a. Provide fiber bundles or cables designed and manufactured to facilitate:
 - Rapid installation of fiber using air blown fiber installation process without risk or damage to fibers.
 - Re-installation without degradation of the optical specifications and performance of fiber.
 - Transition points from indoor to outdoor environments without splices.
 - b. Provide jacketed optical fibers manufactured so that the jacketed fiber strands meet GR409 and meet either UL 1666 for riser rated cables or UL 910 for plenum rated cables and are specific to the purpose of being blown throughout the bundled microduct system.
 - c. Provide fiber designed to be stripped and terminated with standard tools.
 - d. Provide fiber designed to be terminated with standard fiber optic connectors.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacksmounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections.
 Provide LC ferrule female type fiber optic connectors.
 - 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks

and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.

- Interface fiber optic LC jacks to appropriate patch panels in associated TR, but do not cross-connect fiber optic cables fiber optic equipment or install fiber optic equipment.
- B. Backbone Distribution Cables:
 - Meet TIA transmission performance requirements of Voice Grade Category 6A.
 - 2. Provide cable listed for environments where it is installed.
 - 3. Technical Characteristics:
 - a. Length: As required, in minimum 1 kilometer (3,000 ft.) reels.
 - b. Size:
 - 1) Minimum 0.326 mm2 (22 AWG) outside plant installation.
 - 2) Minimum 0.205 mm2 (24 AWG) interior installations.
 - c. Color Coding: American Telephone and Telegraph Company Standard; Bell System Practices Outside Plant Construction and Maintenance Section G50.607.3, Issue 2 February, 1959.
 - d. Minimum Bend Radius: 10X cable outside diameter.
 - e. Impedance: 120 Ohms + 15 percent.
 - f. DC Resistance: Maximum 8.00 ohms/100 m
 - g. Maximum attenuation for 100m at 20° C:

Frequency (MHz)		Category 6A (dB)
.772		_
1		2.1
4		3.8
8		5.3
10		5.9
16		7.5
20		8.4
25		9.4
31.25		10.5

Frequency (MHz)		Category 6A (dB)
62.5		15.0
100		19.1
200		27.6
250		31.1
300		34.3
400		40.1
500		45.3

4. Fiber Optic:

a. Multimode Fiber:

- Provide OM3 Type general purpose multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
- 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 50
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:
 - 1) 850 nanometer: Minimum 160 MHz.
 - 2) 1,300 nanometer: Minimum 500 MHz.
 - f) Connectors: Stainless steel.
- C. Outlet Connection Cables:
 - 1. Voice (Telephone):
 - a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).

- 2) Cable: Voice Grade.
- 3) Connector: RJ-11/45 compatible male on each end.
- 4) Size: Minimum 24 AWG.
- 5) Color Coding: Required, telephone industry standard.
- 2. Data:
 - a. Provide a connection cable for each TCO data jack in system with
 10 percent spares to connect a data instrument to TCO data jack.
 Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - Cable: Data grade Category 6A for specialized powered systems accepted by SMCS 0050P2H3 (202) 461-5310, IT and FMS Services and COR.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.
- 3. Fiber Optic:
 - a. Provide a connection cable for each TCO fiber optic connector in system with 10 percent spares. Provide data connection cable to connect a fiber optic instrument to TCO fiber optic jack. Do not provide fiber optic instruments/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Flexible single conductor with jacket.
 - 3) Connector: ST male on each end.
 - 4) Size: To fit OM3 multimode cable.
- D. System Connectors:
 - Modular (RJ-45/11 and RJ-45): Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.

- 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
- 5) Leakage: Maximum 100 µA.
- 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- E. Fiber Optic Terminators:
 - 1. Pre-polished crimp on type that has proper ferrule to terminate fiber optic cable.
 - 2. Technical Characteristics:
 - a. Frequency: Light wave.
 - b. Power Blocking: As required.
 - c. Return Loss: 25 dB.
 - d. Connectors: ST.
 - e. Construction: Ceramic.
- F. Conduit and Signal Ducts:
 - 1. Conduit:
 - Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 - e. Maximum 40 percent conduit fill for cable installation.
 - 2. Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install for ease of operation, maintenance, and testing.
- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission

Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.

- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - Print lettering of labels with laser printers; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - 4. Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
- Check each item of installed equipment to ensure appropriate NRTL label.

- Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for T568B pin assignments and cabling connections comply with TIA standards.
- Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
- 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
- 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
 - Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
 - 4.
- C. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.
 - Test utilizing approved test equipment to certify proof of performance.

- 4. Verify that total system meets the requirements of this section.
- 5. Include expected duration oftest time, with notification of the acceptance test.
- D. Verification Tests:
 - Test UTP copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
 - Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using Method A, Optical Power Meter and Light Source . Perform verification acceptance test.
- E. Performance Testing:
 - Perform Category 6A for specialized powered systems accepted by SMCS 0050F2H3, (202) 461-5310, IT and FMS Services and COR) tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
 - 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- F. Total System Acceptance Test: Perform verification tests for UTP copper cabling systems and multi-mode fiber optic cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.

- Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
- 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble call. Provide COR with sample copies of reports for review and approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 27 41 31 MASTER ANTENNA TELEVISION EQUIPMENT AND SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a complete and operating National Television Standards Committee (NTSC) High Definition (HDTV) Master Antenna Television (MATV) system, hardware and associated equipment for VA Medical Center, here-in-after referred to as the "facility".
- B. Provide complete system including RF amplification and distribution systems splitters, taps, cross-connection blocks including panels and associated hardware, telecommunication outlets (TCO), coaxial distribution wires, power supplies, cables, connectors, "patch" cables and internal communications system ground, required for reception and distribution of signals.

1.2 RELATED WORK

- A. System Tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Submittals (including samples, test reports, certificates, and manufacturers' literature): Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Sealant and caulking materials and their application around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- D. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- E. Wiring devices: Section 26 27 26, WIRING DEVICES.
- F. Lightning protection system: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- G. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- H. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- I. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- J. Low voltage cabling system infrastructure: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.

27 41 31 - 1

- K. Voice and data cable distribution system and associated equipment: Section 27 15 00, COMMUNICATIONS STRUCTURED CABLING.
- L. Nurse-Call and Code Blue Communication Systems and associated equipment: Section 27 52 23, NURSE CALL AND CODE BLUE SYSTEMS.

1.3 COORDINATION

A. Coordinate with Facility Chief of MMPS to establish circuits throughout facility and provide proper test equipment to ensure that cables meet each OEM's standard transmission requirements, and ensure cables carry video and audio transmissions at required speeds, frequencies, and fully loaded bandwidth.

1.4 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit PDF electronic copies for each of the following:
 - Engineering drawings of system, showing calculated signal levels at each input and output distribution point, used to determine proposed TCO values.
 - Calculated system layout drawing indicating cable types, amplifiers, taps, splitters, lengths of cable.
 - 3. Anticipated signal level at each coaxial cable TCO jack.
 - 4. RF Cabling Requirements/Column Explanation:

Column	Explanation
FLOOR	Identify floor by number (i.e. 1st, 2nd, etc.)
TR ROOM NUMBER	Identify room, by number, from which cabling will be installed
TO FLOOR TR	Identify building, by number or location, to which cabling will be installed
NUMBER OF CONDUCTORS	Identify the number of conductors in each run of RF cable
INSTALLATION METHOD	Identify the method of installation
NOTES	Identify note numbers for special features or equipment
BUILDING MTR	Identify building by number or title //

5. Analog Video (and Audio) Cabling Requirements/Column Explanation:

Column	Explanation
FROM BUILDING	Identify building, by number or location, from which cabling will be installed
TR ROOM NUMBER	Identify the room, by number, from which

Column	Explanation
	cabling will be installed
TO BUILDING IMR	Identifies building, by number or title, to which cabling will be installed
TR ROOM NUMBER	Identify the room, by number, to which cabling will be installed
NUMBER OF CONDUCTORS	Identify the number of conductors in each run of cable
INSTALLATION METHOD	Identify method of installation
NOTES	Identify a note number for special features or equipment
BUILDING MTR	Identifies the building by number or title

- 6. Antenna Signal Survey:
 - a. Submit RF signal survey from recognized industry source, derived mathematically from fixed information, showing radiated and received RF signals at project and approximation of signal levels expected using given antenna.
 - Record findings on a geographic map with facility residing in its center and outline coverage locations, radiating in a 360degree pattern. Depict primary, secondary, marginal and out of range areas of operation by different colors for each frequency of operation.
 - Include longitude and latitude of facility along with elevation above mean sea level using a Geostationary System (GPS) portable device.
 - 3) An on-site survey, using actual transmitting and receiving equipment of type contractor is submitting, is an acceptable alternative to recognized industry source.
- 7. List of test equipment required by Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit certification from OEM that MATV installation supervisor and maintenance provider are authorized representatives of OEM. Include each individual's legal name, address and OEM credentials in the certification that includes the most recent approval date.
 - Submit pre-acceptance certification in accordance with test procedures.

- C. Needs Assessment Report: Provide a summary report of the needs assessment meeting conducted with nursing manager of each unit, as required by this section.
- D. Provide sample copy of report format to be used for trouble calls; obtain COR approval of sample report before beginning total system acceptance test.

1.5 WARRANTY

A. In addition to compliance with FAR clause 52.246-21 provide OEM warranty documents certifying each item of equipment conforms to specifications and OEM installation recommendations.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Design Criteria:
 - Coordinate features to provide components forming an integrated system. Match components and interconnections for optimum performance of specified functions.
 - Provide system with capacity to increase quantity of TCOs by 40 percent above indicated without adding any internal or external components or main trunk cable conductors.
 - Distribute HDTV television signal to MATV TCOs to permit simple connection of A/53 ATSC Digital Television Standard Parts 1-6 HDTV receivers.
 - 4. Deliver at MATV TCOs HDTV television channel signals.
 - 5. Provide reception quality at each MATV TCO exceeding that received in area with individual antennas. Deliver minimum +6.0 dBmv (2,000 microvolts across 75 Ohms) and maximum of +20 dBmv (20,000 microvolts) for each HDTV channel at each MATV TCO.
 - 6. Only employ interfacing methods accepted by OEM and VACO'S AHJ (SMCS 0050P2H3). Selected interface or interconnecting methods require physical and mechanical connections, matching signal, voltage, processing levels and impedance that provides described signal levels and quality.
 - 7. Interface Nurse Call, and PA systems with system only as accepted by AHJ (SMCS 0050P2H3).
 - Provide passive distribution equipment to meet or exceed -80 dB radiation shielding specifications and provide screw type audio connectors.

- Terminate trunk, branch, and interconnecting cables and unused equipment ports or taps with terminating resistors designed for RF, audio, and digital cable systems without adapters.
- 10. Utilize microprocessor components for signaling and programming circuits and functions. Use non-volatile system program memory, or protected from erasure during power outages for a minimum of 24 hours.
- 11. Provide UPS for system (including each distribution cabinet/point) to allow normal operation and function in event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.
- 12. Use coaxial cable connections recommended by cable OEM and approved by equipment OEM for coaxial cable distribution points and RF transmission lines.
 - a. Utilize barrier terminal screw type connectors, minimum at base band cable systems.
 - b. Crimp type connectors installed with a ratchet type installation tool are acceptable alternative if cable dress, pairs, shielding, grounding, connections and labeling are same as barrier terminal strip connectors.
 - c. Tape of any type, wire nuts or solder type connections are not permitted.
- 13. Utilizing LAN/WAN cable systems for control, management and distribution of equipment and distribution of MATV signals is not permitted. Connect system ensuring NFPA Critical Care and Life Safety Circuit separation guidelines are satisfied. Connections to Telephone and LAN/WAN systems are not permitted.
- 14. Telephone cable to distribute MATV signals, carrying system or subsystem AC or DC voltage is not permitted.
- 15. Audio Level Processing: Provide control location equipment to ensure system produces audio channel capacity identified on drawings at each TV/speaker.
- 16. Provide weather-resistant equipment listed by National Recognized Testing Laboratory (NRTL) for installation outdoors or in damp locations.
- B. Performance Criteria:
 - 1. RF Service:

- a. "Off air" RF High Definition (HDTV) Television service (considered to be at RF (below 900 mHz in frequency bandwidth). RF television systems require backbone coaxial cable, from antenna farm to antenna head end room, and to each TR and distribution coaxial cable to each HDTV outlet location.
- b. Isolation (outlet-outlet): 14 dB.
- c. Impedance: 75 Ohms, unbalanced.
- d. Signal Level: 10 dBmV, +/- 5.0 dBmV.
- e. Bandwidth: Minimum 6.0 MHz per channel fully loaded.
- C. Provide accessories and miscellaneous equipment for a complete and operating HDTV system.
- D. Equipment:
 - 1. Modular type rated for continuous duty.
 - 2. Provide NRTL Listed equipment by OEM that is a commercial business enterprise manufacturing items of equipment and which:
 - a. Maintains replacement parts for equipment in stock,
 - b. Maintains engineering drawings, specifications, and operating manuals for equipment.
 - c. Published and distributed descriptive literature and equipment specifications on equipment submitted 30 days prior to Invitation for Bid.
- E. For protection from input power surges and to ensure noise is not induced into circuits, provide noise filters and surge protectors for each equipment interface, distribution and head end cabinet, control console, and local and remote amplifier locations. Provide lightning/surge suppression of the antenna farm and ground per NEC article 810.
- F. Provide stainless steel or AHJ (SMCS 0050P02H3) accepted faceplates.

2.2 DISTRIBUTION EQUIPMENT

- 1. Distribution Amplifiers:
 - a. Description: Broadband, very low distortion, cable television system quality, HDTV distribution amplifier.
 - b. Characteristics:
 - 1) Frequency Range: 49MHz to 1,000MHz.
 - 2) Channel Loading: 150.
 - 3) Flatness: +/-0.75dB.
 - 4) Gain: 32dB.
 - 5) Output Level: +40dBmV.

- 6) Gain Control Range: 10dB.
- 7) Slope Control Range: 8dB.
- 8) Plug in Equalizers: As needed.
- 9) Attenuator Options: As needed.
- 10) Programming: Minimum 35 HDTV channels.
- 11) Gain of the Preamplifier: 32dB, with an output level of 48dBmV for each HDTV channel processed.
- 12) Amplifier Module: Hybrid push-pull.
- 13) Gain and Slope Control Ranges: 8dB and 9dB, respectively.
- B. Combiners:
 - Provide 8-port passive combiner for combining RF signals into one main trunk run for distribution to building locations.
 - 2. Bandwidth of Combiner: 0 to 1,000 MHz.
- C. Cable:
 - Provide RG-6, RG-11, or appropriate hardline minimum 13 mm (1/2 inch) coaxial cable to achieve specified signal level.
 - a. Provide RG-11 or 13 mm (1/2 inch) hardline coaxial cable for runs over 45.72 m (150 feet) in length.
 - b. Provide plenum rated coaxial cable with a nominal characteristic impedance of 75 Ohms throughout entire frequency spectrum utilized in this system.
 - 2. Sweep-test and return-loss test each reel of cable, over frequency range 50 MHz to 750 MHz, at manufacturer prior to shipping.
 - 3. Trunk Cable:
 - a. Description: 13 mm (1/2 inch), semi-rigid coax, riser rated.
 - b. Maximum Attenuation:
 - 1) 2.92 dB/100ft at 700 MHz.
 - 2) 3.78 dB/100ft at 1000 MHz.
 - 3) Impedance: 75 Ohm.
 - 4. RG6 Cable:
 - a. Description: RG6 double shielded cable //CMR or// CMP Rated
 - b. Attenuation:
 - 1) 1.48 dB/100ft at 50 MHz.
 - 2) 7.45 dB/100ft at 1000 MHz.
 - 3) Impedance: 75 Ohm.
 - 5. General Purpose Analog RF:
 - a. Size:
 - 1) Minimum coaxial cable size RG-6 type (or equal).

- 2) Increase size (i.e. RG-ll, 13 mm (1/2 inch), 19 mm (3/4 inch), etc.) to meet system design signal level.
- 3) Use for baseband signals as approved by OEM.
- b. Technical Characteristics:
 - 1) Impedance: 75 Ohm, unbalanced.
 - Center Conductor: 20 AWG, solid or stranded copper, or copper plated steel or aluminum.
 - 3) Dielectric: Cellular polyethylene.
 - 4) Shield Coverage: 95 percent, copper braid.
 - 5) Connector Type: BNC or UHF.
 - 6) Attenuation:
 - a) Frequency 10 kHz: Maximum 0.20 dB/30.5 M (100 ft.)
 - b) Frequency 100 kHz: Maximum 0.22 dB/30.5 M (100 ft.)
 - c) Frequency 1 MHz: Maximum 0.25 dB/30.5 M (100 ft.)
 - d) Frequency 4.5 MHz: Maximum 0.85 dB/30.5 M (100 ft.)
 - e) Frequency 10 MHz: Maximum 1.40 dB/30.5 M (100 ft.)
 - f) Frequency 100 MHz: Maximum 5.00 dB/30.5 M (100 ft.)
- 6. RG11 Cable:
 - a. Description: RG11 cable //CMR or// CMP Rated.
 - b. Attenuation:
 - 1) 0.90 dB/100ft at 50 MHz.
 - 2) 5.04 dB/100ft at 1000 MHz.
 - 3) Impedance: 75 Ohm.
- D. Line Splitters:
 - Provide low-radiation line splitters with a flat frequency response from 50 MHz to 1,000 MHhz. Provide units of a hybrid design with a 75-ohm match on input and outputs and a VSWR no greater than 1.4:1.
 - Provide two-way line splitters with signal loss of not more than 3.5 dB at each output.
 - Provide four-way line splitters with signal loss of not more than
 7.2 dB at each output.
 - 4. Terminate unused splitter outputs with 75-Ohm terminations.
- E. RF signal splitters:
 - 1. Frequency Range: 5MHz to 900MHz.
 - 2. Outputs: 2, 3, 4 and 8.
 - 3. Splitter Loss: less than 12 dB.
 - 4. RFI Shielding: 120 dB.
- F. HDTV Outlets:

- Provide HDTV outlets at each location shown. Install outlets in 10.2 cm (4 inch) square, 5.1 cm (2 inch) deep minimum flush electrical boxes.
- 2. Incorporate provisions in the network to prevent 60 Hz AC or DC feedback into distribution lines.
- 3. Outlets:
 - a. Frequency Range: 10 MHz to 900 MHz, minimum
 - b. Insertion Loss: less than 1.0 dB at any frequency within designated frequency range for a 17 dB isolation network.
 - c. Back-matched from 10 to 1,000 MHz.
 - d. One BNC connector on front and two BNC connectors on rear.
 - e. Minimum Isolation Value between any Two Outlets: 24 dB.
- G. Taps:
 - 1. Description: Directional coupler type taps.
 - 2. Rated for installation in TR or accessible area of cable tray.
 - 3. Frequency Range: 5 MHz to 900 MHz.
 - 4. Outputs: 2, 4 and 8.
- H. Wall plates and Bulkhead Connectors:
 - 1. Provide wall plates for termination of CATV signals at television sets.
 - 2. Impedance: 75 Ohms.
 - 3. Frequency Band: SUB/VHF/CATV-HDTV/UHF.
- I. Combiners, Traps, and Filters; and Passive Devices such as Splitters, Couplers, "Patch" Cables, or Devices:
 - Use coaxial cable connections recommended by cable OEM and approved by system OEM for coaxial cable distribution points and RF transmission lines.
 - Utilize barrier terminal screw type connectors minimum at baseband cable systems.
 - b. Crimp type connectors installed with a ratchet type installation tool are an acceptable alternative if cable dress, pairs, shielding, grounding, connections and labeling are provided same as barrier terminal strip connectors.
 - c. Tape of any type, wire nuts, or solder type connections are not permitted.
 - 2. Analog RF terminating panels:
 - a. "Patch" Type:
 - 1) 48.26 cm (19 inches) EIA/ECA 310-E rack dimensions.

- 2) Minimum 12 double female "F" connector rows.
- Expansion capability of a maximum of 24 double row "F" slots that can be field activated.
- 4) In a lockable cabinet or enclosure. //Stacking of "patch" panels is permitted if installation guidelines are met. //
- 3. "Patch" Cords:
 - a. Analog RF:
 - Provide a connection cable for each TCO analog RF connector in system with 10 percent spares. Provide analog RF connection cable of length to connect analog RF instrument to TCO analog RF jack.
 - 2) Technical Characteristics:/
 - a) Length: Minimum 1.8M (6 ft.).
 - b) Cable: Minimum flexible RG-6.
- J. Analog Video:
 - Provide a connection cable for each TCO analog video jack in system with 10 percent spares. Provide analog video connection cable of length to connect analog video instrument to TCO analog RF jack.
 - 2. Technical Characteristics:
 - a. Length: Minimum 1.8M (6 ft.).
 - b. Cable: Minimum flexible RG-59/U.
 - c. Connector: BNC male on each end.
- K. System Connectors:
 - 1. Solderless (Forked Connector):
 - a. Crimp-on coupling for quick connect/disconnect of wires or cables.
 - b. Designed to fit wire or cable.
 - c. Insulated and color-coded connector barrel.
 - d. Technical Characteristics:
 - 1) Impedance: As required.
 - 2) Working Voltage: 500 V.
 - 2. Multipin:
 - a. Crimp-on coupling for quick connect/disconnect of wires or cables.
 - b. Designed to fit wire or cable.
 - c. Enclosed and shielded housing.
 - d. Secure to cable group by screw type compression sleeves.
 - e. Technical Characteristics:

27 41 31 - 10

- 1) Impedance: As required.
- 2) Working Voltage: 500 V.
- 3) Number of Pins: As required, Minimum 25 pairs.
- 3. "BNC" Type:
 - Bayonet locking coupling for quick connect/disconnect of coaxial cable/terminations.
 - b. Crimp-on (twist on are acceptable) connector designed to fit coaxial cable.
 - c. Technical Characteristics:
 - 1) Impedance: 50 or 75 Ohms, unbalanced.
 - 2) Working Voltage: 500 V.
- L. Terminators:
 - 1. Coaxial:
 - a. Description: 75-Ohm terminator.
 - b. Metal-housed precision types in frequency ranges selected. Screwon type that has low VSWR when installed and proper impedance to terminate system unit or coaxial cable.
 - c. Technical Characteristics:
 - 1) Frequency: 0-1 GHz.
 - 2) Power Blocking: As required.
 - 3) Return Loss: 25 dB.
 - 4) Connectors: Minimum "F", "BNC".
 - 5) Impedance: 75 Ohms, unbalanced.
 - 6) DC blocking.
 - 7) Bandwidth: 50 MHz-890 MHz.
- M. Mounting Strips and Blocks:
 - 1. Barrier Strips for AC Power, and Control Cable or Wires:
 - a. Accommodate size and type of audio spade (or fork type) lugs used with insulating and separating strips between terminals for securing separate wires in an orderly fashion.
 - b. Provide each cable or wire end with an audio spade lug, connected to individual screw terminal on barrier strip.
 - c. Surface secured to a console, cabinet, rail, panel, etc.
 - d. 120 VAC power wires are not permitted to be connected to signal barrier strips.
 - 2. Technical Characteristics:
 - a. Terminal Size: Minimum 6-32.
 - b. Terminal Count: Any combination.

- c. Wire size: Minimum 20 AWG.
- d. Voltage Handling: Minimum 100 V.
- e. Protective Connector Cover: Required for Class II and 120 VAC power connections.
- N. Coaxial Cable Kit: Coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish neat and secure installation.
 - Solderless Connectors: Install crimp-on connector using a standard F connector crimping tool.
 - 2. Cables: Connectors designed for specific size cable being used and installed with OEM's approved installation tool. Typical system cable connectors include; but, are not limited to F, N, BNC, etc.
- O. Communication Ground System: provide this system to conform to Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

2.3 TOPOLOGY "TREE"

- A. Provide Analog RF coaxial cable distribution system in a "home run" configuration from each associated riser TR to identified locations and as shown on drawings.
- B. Interface analog RF "F", video "BNC", and audio "XL" jacks to appropriate patch panels in associated TR. Do not cross-connect analog cables in TRs to analog equipment.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Coordinate with cabling trade contractor locations of faceplates and faceplate openings for MATV back boxes.
- B. Coordinate with cabling trade contractor locations of MATV equipment in the Telecommunications Rooms.
- C. Before beginning work, verify location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits required for equipment.
 - 2. Emergency and auxiliary AC power generator requirements.
 - Pull boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for systems.
 - 4. System components provided by others.
 - 5. Overhead supports and rigging hardware installed by others.
- D. Immediately notify COR and General Contractor of discrepancies.
- E. Needs Assessment:

- 1. Provide a one-on-one meeting with nursing manager of each unit affected by installation of new HDTV MATV system.
- Review floor plans, educate nursing manager with functions of the equipment that is being provided, and gather details specific to individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that affect system programming and training.

3.2 INSTALLATION

- A. General:
 - 1. Install for ease of operation, maintenance, and testing.
 - Install work neatly, plumb and square and in a manner consistent with standard industry practice.
 - Install system to prevent direct pickup of signals from building structure and follow FCC requirements regarding low radiation or interference of RF signals.
 - Protect work from dust, paint and moisture as dictated by site conditions.
 - 5. Contractor is responsible for protection of work during construction phase up until final acceptance by Government.
 - 6. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
 - Secure equipment firmly in place, including equipment racks, system cables, etc:
 - a. Install supports, mounts, fasteners, attachments and attachment points to support their loads with a safety factor of 5:1 or better.
 - b. Do not impose weight of equipment on supports provided for other trades or systems.
 - c. Suspended equipment or associated hardware must be certified by OEM for overhead suspension.
 - Locate overhead ceiling-mounted equipment as shown on drawings, with minor changes not to exceed 12 inches in any direction.
 - a. Mount transformers securely to brackets or enclosures using screws.
 - b. Adjust torsion springs as needed to securely support assembly.

- Install Analog RF coaxial cable distribution systems in a "home run" configuration from each associated riser TR to identified locations and as indicated on drawings.
- 10. Coordinate finishes for any exposed work such as plates, racks, panels, speakers, etc. with design professional, Government and 0050P3B.
- Coordinate cover plates with field conditions. Size and install cover plates to cover spaces between back boxes and surrounding wall.
- 12. Do not allow cable to leave or enter boxes without cover plates installed. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required.
- B. Equipment Racks:
 - 1. Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks.
 - 2. Provide security covers for devices not requiring routine operator control.
 - 3. Follow manufacturer's recommendations regarding ventilation space between amplifiers. Provide adequate ventilation space between equipment for cooling. Provide vent panels and cooling fans for operation of equipment within OEM specified temperature limits.
 - 4. Provide insulated connections of electrical raceway from equipment racks.
 - Provide continuous raceway and conduit for cable with no more than
 40 percent fill between wire troughs and equipment racks. Ensure
 systems are mechanically separated from each other in wireway.
- C. Wiring Practice:
 - Comply with requirements for raceways and boxes specified in Division 26, Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
 - 2. Where raceway is conduit, install wiring of differing classifications in separate conduits. Where raceway is to be in an enclosure (e.g. rack, tray, wire trough, utility box, install wiring of differing classifications, sharing same enclosure, with mechanical partition and separate by at least 4 inches. Where Wiring of differing classifications must cross, cross wires perpendicular to one another.

- 3. Do not splice cabling anywhere along entire length of run. Ensure cables are insulated and shielded from each other and from the raceway for entire length of run.
- Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- 5. Replace entire length of run of any wire or cable that is damaged or abraded during installation. There are no acceptable methods of repairing damaged or abraded wiring.
- 6. Use wire pulling lubricants suitable for cable jacket and do not exceed pulling tension recommended by OEM.
- 7. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 8. Do not use tape-based or glue-based cable anchors.
- 9. Bond shields and drain wires to ground.
- 10. Terminate field wiring entering equipment racks as follows:
 - a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops must be of length to allow plates, panels and equipment to be removed for service and inspection.
 - b. Where terminal blocks are not designed for rack mounting, utilize 19 mm (3/4 inch) plywood or 3 mm (1/8 inch) thick aluminum plates/blank panels as a mounting surface. Do not mount on bottom of rack.
 - c. Employ permanent strain relief for any cable with an outside diameter of 25 mm (1 inch) or greater.
- 11. Make connections using rosin-core solder or mechanical connectors appropriate to application.
 - a. For crimp-type connections, use only tools that are specified by manufacturer for the application.
 - b. Use only insulated spade lugs on screw terminals sized to fit wire gauge; do not exceed two lugs per terminal.
 - c. Twist-on wire connectors or electrical tape connections are not permitted for any application.
- D. Cable Installation:
 - Support cable on maximum 122 cm (4 feet) centers. Acceptable means of cable support are cable tray and conduit (EMT, Flexible Metallic Tubing, and Communications Raceway). Attach cable bundles loosely to

cable trays with plenum rated hook and loop straps. Tie wraps are not permitted as a means to bundle.

- 2. Run cables parallel to walls.
- 3. Do not lay cables on top of luminaires, ceiling tiles, mechanical equipment, or ductwork. Maintain minimum 61 cm (2 feet) clearance from shielded electrical apparatus.
- 4. Test cables after the total installation is complete. Test results must document cables pass test requirements and levels. Remedy cabling problems or defects to pass testing, including installation of new cable as required.
- 5. Terminate ends of cables on both ends, per industry and OEM's recommendations.
- Provide proper temporary protection of cable after pulling is complete and until final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie cables up off of the floor until ready to terminate.
- 7. Cover shield/drain wires with heat-shrink tubing extending back to overall jacket. Extend tubing 6 mm (1/4 inch) past end of unused wires, fold back over jacket and secure with cable tie.
- For each solder-type connection, cover bare wire and solder connection with heat-shrink tubing.
- Terminate conductors; no cable can contain unterminated elements. Make terminations only at outlets and terminals.
- 10. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables cannot be spliced.
- 11. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 12. Cold-Weather Installation: Bring cable to room temperature without using heat lamps before de-reeling.
- 13. Install cable without passing through structural members or in contact with pipes, ducts, or potentially damaging items.
- E. Labeling:
 - Permanently label outlets, connectors, jacks, electronics and other equipment.
 - Engrave and paint fill patch panel labels using minimum 3 mm (1/8 inch) high lettering and contrasting paint.

- 3. For rack-mounted equipment, use engraved Lamacoid labels with white minimum 3 mm (1/8 inch) high lettering on black background. Label front and back of rack-mounted equipment.
- Where multiple pieces of equipment reside in same rack group, label each indicating to which room, channel, outlet locations, etc. they correspond.
- 5. Permanently label cables at each end, including intra-rack connections. Cover labels by same, transparent heat-shrink tubing covering end of overall jacket. Alternatively, machine printed labels including a clear protective wrap can be used.
- Label racks with contractor's name no more than once on each continuous set of racks; do not label wall plates or portable equipment with contractor's name.
- 7. Ensure each piece of OEM equipment has permanently attached NRTL Label indicating service the equipment is to perform. Equipment not bearing NRTL marks will not be permitted as part of system.
- F. Protect HDTV network devices during unpacking and installation by wearing electrostatic discharge (ESD) wrist straps tied to chassis ground for prevention of electrical shock.
- G. Cutting and Patching:
 - Keep work area clear of debris and clean area daily at completion of work.
 - 2. Patch and paint any wall or surface that has been disturbed by execution of this work.
 - Provide any additional cutting, drilling, fitting or patching, not indicated as provided by others, to complete work or to make its parts fit together.
 - 4. Do not damage or endanger a portion of work of the Government or separate contractors by cutting, patching, excavation or otherwise altering such construction. Prior to cutting or otherwise altering such construction obtain written consent of COR and of such separate contractor. Do not unreasonably withhold from COR or a separate contractor, contractor's consent to cutting or otherwise altering MATV work.
 - 5. Where coring of in-place concrete is required, // including coring indicated under unit prices, // clearly identify location of such coring in the field and have location accepted by COR prior to commencement of coring.

- H. Fireproofing:
 - Where MATV cables penetrate rated walls, floors and ceilings, fireproof openings to restore rating.
 - 2. Provide conduit sleeves for cables that penetrate rated walls.
 - 3. After cabling installation is complete, install fire proofing material in and around conduit sleeves and openings to restore rating. Install fire proofing material thoroughly and neatly.
 - 4. Seal floor and ceiling penetrations. Use only materials and methods that preserve the integrity of fire stopping system and its rating.
- I. Grounding:
 - Ensure lightning protection system is in place per Section 26 41 00, FACILITY LIGHTNING PROTECTION. If not present, contact COR immediately for instructions.
 - Communication Ground: provide this system in accordance with Section
 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS, and:
 - a. Bond cable shields and equipment to ground to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments.
 - b. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.
 - c. Do not connect system ground to building's external lightning protection system.
 - d. Do not "mix grounds" of different systems. Do not use electrical system conductors for ground.
- J. Cleaning: Refer to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

3.3 FIELD QUALITY CONTROL

- A. Tests:
 - 1. Refer to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
 - HDTV MATV System is NFPA listed; therefore, testing provisions are the minimum to be performed and provided by contractor and warranted by OEM.
- B. Interim Inspection:
 - After completion of 25-30 percent of installation of head end cabinets and equipment, one wing of HDTV MATV outlets //and interconnection to corresponding Nurse Call (Code Blue) System //

Patient Head Wall Units // and prior to any further work, this portion of system must be pretested, inspected, and certified.

- Verify equipment provided adheres to installation requirements of this section.
- 3. Include a full operational test.
- Inspection and test must be conducted by a factory-certified contractor representative and witnessed by COR.
- 5. Conduct an identical inspection between 65 and 75 percent of system construction phase, at direction of COR.
- 6. Check each item of installed equipment to insure appropriate NRTL label.
- Confirm marking of cables, faceplates, patch panel connectors and patch cords.
- Perform inspection tests via continuity measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon test failure.
- 9. Notify COR, in writing, of estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date so interim inspection does not affect system completion date.
- 10. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting system installation to continue.
- 11. Do not proceed with installation until COR determination of additional inspection. In either case, re-inspection of deficiencies noted during interim inspections must be part of proof of performance test.
- C. Pretesting:
 - Upon completing installation of system, align, balance, and pretest entire system under full operating conditions.
 - 2. Pretesting Procedure:
 - a. During system pretest verify, utilizing accepted test equipment, system is operational and meets performance requirements.
 - b. Pretest and verify specification requirements are met and system functions are operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling

noise, etc. are present. At a minimum, pretest each of the following locations:

- 1) Local and Remote Control Units/Enunciation Panels.
- 2) Networked locations.
- 3) System interface locations (i.e.PA, Nurse Call, etc.).
- 4) System trouble reporting.
- 5) UPS operation.
- 6) Primary and emergency AC power requirements.
- 7) Extra auxiliary generator requirements.
- c. Provide recorded system pretest measurements and certification that system is ready for formal acceptance test to COR.
- D. Acceptance Test:
 - After system has been pretested and contractor has submitted pretest results and certification to COR, schedule an acceptance test dates and give COR 30 days written notice prior to date acceptance test is expected to begin. Include expected duration of time for test with notification of acceptance test.
 - 2. Test only in the presence of COR and AHJ (SMCS 0050P2H3).
 - 3. Test utilizing test equipment to certify proof of performance.
 - 4. Verify that total system meets requirements of this specification.
- E. Verification Tests:
 - Test copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield. Test cables after termination.
 - 2. Perform same tests appropriate to each coaxial cable accepted for use in system.
- F. Performance Testing: Test every video distribution outlet for clear picture and sound.
 - At each outlet with television, select each channel and view picture on television. Observe active channels. Verify picture is clear with no visual presence of interference of any kind and no audible variance in volume level between channels.
 - 2. Perform tests utilizing signal level meter to determine values and record.
- G. Total System Acceptance Test: Perform verification tests for copper cabling systems after complete video distribution system and workstation outlet are installed.
 - 1. Acceptance tests are performed on a "go-no-go" basis.

- Only perform operator adjustments required to show proof of performance.
- 3. Demonstrate and verify that installed system complies with requirements of specification under operating conditions.
- 4. Obtain rating of system as either acceptable or unacceptable from COR at conclusion of test.
- 5. Failure of any part of system that precludes completion of system testing, and which cannot be repaired in four hours, is cause for terminating acceptance test of system. Repeated failures that result in a cumulative time of eight hours to affect repairs can cause entire system to be declared unacceptable and require retest of entire system at the convenience of Government.
- H. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. Coordinate COR tour of major areas where system and sub-systems are installed to ensure they are operationally ready for proof of performance testing. Provide system inventory including available spare parts for COR to verify and check each item of installed equipment has appropriate NRTL certification labels affixed during tour.
 - b. Formally inventory and review system diagrams, record drawings, equipment manuals, Telecommunications Infrastructure Plant (TIP) AutoCAD files, intermediate, and pretest results formally inventoried and reviewed.
 - c. Failure of system to meet installation requirements of this specification is grounds for terminating testing.
 - 2. Operational Test:
 - a. After physical and mechanical inspection, verify //antennae//, head end terminating and control equipment meets performance requirements outlined herein. Utilize spectrum analyzer and signal level meter to accomplish this requirement.
 - b. Following // antennae and // head end equipment test, connect local // and remote // control unit to the head end equipment's output. Test tap to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
 - c. Check distribution system at each interface, junction, and distribution point, first, middle, and last leg to verify that

HDTV MATV video, audio and control signals meet system performance standards.

- d. Functionally test HDTV MATV outlets utilizing contractor's accepted hospital grade TV receiver and spectrum analyzer.
- e. //Check red system and volume stepper switches to ensure proper operation of pillow speaker, volume stepper and red system.//
- f. Once these tests have been completed, test each installed subsystem function as a unified, functioning and fully operating system.
- g. Individual Item Test: COR can select individual items of equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet specification.
- I. Acceptable Test Equipment:
 - Utilize test equipment with calibration tag of an acceptable calibration service dated not more than 12 months prior to test. Furnish test equipment list that includes make and model number of the following type of equipment as a minimum:
 - a. Spectrum Analyzer.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Oscilloscope.
 - e. Pillow Speaker Test Set (Pillow Speaker with appropriate load and cross connections instead of the set is acceptable).
- J. Non-Conforming Work:
 - Government, OEM and contractor must agree to results of Acceptance Test, create consensus punch lists, and reschedule testing for technical deficiencies and equipment shortages.
 - Any retests needed to reach agreement and validate results of punch lists, or to establish compliance with these specifications, are at contractor's expense.
 - These requirements must be met for contract compliance and Government acceptance of system.

3.4 TRAINING

- A. Provide thorough training of facility's engineering and maintenance staff on operation, performance and preventative maintenance of system.
- B. Schedule training at convenience of facility's Chief Engineer.
- C. MATV system will not be accepted without completion of training.

27 41 31 - 22

- D. Provide the following training at locations provided by Government:
 - Minimum eight hours for system operation and performance no less than 48 hours prior to opening of facility.
 - Minimum eight hours for system preventative maintenance no less than 24 hours before opening of facility.

3.5 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - 1. Response Time:
 - a. Standard work week is 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - b. Respond and correct on-site trouble calls, during standard work
 week:
 - Routine trouble call within one working day. Routine trouble is an inoperable system outlet.
 - Emergency trouble call within six hours. Emergency trouble is an inoperable subsystem or distribution point.
- B. Provide report itemizing each deficiency found and corrective actions performed, to COR, for each trouble call.

- - - E N D - - -

SECTION 27 51 16 PUBLIC ADDRESS AND MASS NOTIFICATION SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, training and services for, and incidental to, the complete installation of new and fully operating National Fire Protection Association (NFPA) - Life Safety Code 101.3-2 (a) Labeled and (b) Listed Emergency Service Public Address System (PAS) and associated equipment (here-in-after referred to as the System) in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting PAS communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 0050P3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, and tested, by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE. HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS, SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's PM, RE and TVE-0050P3B. The VA PM is the only approving authority for other amendments to this document that may be granted, on a case by case basis, in writhing with technical concurrencies by VA's RE, TVE-0050P3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure that all management, sales, engineering and installation personnel have read and understand the requirements of this specification before the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement attesting this requirement as a part of the technical submittal that includes each name and certification, including the OEMs.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- D. 27 05 11 Requirements for Communications Installations.
- E. 27 05 26 Grounding and Bonding for Communications Systems.
- F. 27 05 33 Raceways and Boxes for Communications Systems.
- G. 27 10 00 Control, Communication and Signal Wiring.
- H. 27 11 00 Communications Cabling Interface and Equipment Rooms Fittings.
- I. 27 15 00 Horizontal and Vertical Communications Cabling Equipment and Systems.

1.3 DEFINITIONS

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.
- D. Headquarters Technical Review, for National and VA communications and security, codes, frequency licensing, standards, guidelines compliance:

Office of Telecommunications Special Communications Team (0050P2B) 1335 East West Highway - 3rd Floor Silver Spring, Maryland 20910 (0) 301-734-0350, (F) 301-734-0360

E. Contractor: Radio Contractor; you; successful bidder

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology (NIST - formerly the National Bureau of Standards). Under Section 5131 of the Information Technology Management Reform Act of 1996 and the Federal Information Security Management Act of 2002 (Public Law 107-347), NIST develops - Federal Information Processing Standards Publication (FIPS) 140-2-Security Requirements for Cryptographic Modules.
 - b) Chapter XXIII, National Telecommunications and Information Administration (NTIA - aka 'Red Book') Chapter 7.8 / 9;
 CFR, Title 47 Federal communications Commission (FCC) Part 15, Radio Frequency Restriction of Use and Compliance in "Safety of Life" Functions & Locations
 - 2) FCC Communications Act of 1934, as amended, CFR, Title 47 -Telecommunications, in addition to Part 15 - Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/ Locations (also see CFR, Title 15 - Department of Commerce, Chapter XXIII - NTIA):
 - a) Part 15 Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/Locations.
 - b) Part 58 Television Broadcast Service.
 - c) Part 90 Rules and Regulations, Appendix C.
 - d) Form 854 Antenna Structure Registration.
 - 3) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a)(b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the

Medicare conditions of Participation by meeting Federal Directives:"

- All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 4) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 c's, for complete list, contact

(http://www.osha.gov/dts/otpca/nrtl/faq nrtl.html):

- 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.
 - h) 486D-02 Standard for Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
 - i) 486E-00 Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
 - j) 493-01 Standard for Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.
 - k) 514B-02 Standard for Fittings for Cable and Conduit.
 - 1) 1069 Hospital Signaling and Nurse Call Equipment.
 - m) 1333 Vertical (Riser) Fire Rating.
 - n) 1449 Standard for Transient Voltage Surge Suppressors.
 - o) 1479-03 Standard for Fire Tests of Through-Penetration Fire Stops.

27 51 16 - 4

- p) 1863 Standard for Safety, Communications Circuits Accessories.
- q) 2024 Standard for Optical Fiber Raceways.
- r) 60950-1/2 Information Technology Equipment -Safety.
- Canadian Standards Association (CSA): same tests as for UL.
- Communications Certifications Laboratory (CCL): same tests as for UL.
- Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Laboratory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.
- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 5) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.
 - b) Special Communications Proof of Performance Testing, VACO Compliance and Life Safety Certification(s).
 - b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - Wireless and Handheld Device Security Guideline Version
 3.2, August 15, 2005.
 - c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
 - d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
 - e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).

- 3) Equipment Guide List (PG-18-5.
- Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
- 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.
- Mission Critical Facilities Design Manual (Final Draft -2007).
- Life Safety Protected Design Manual (Final Draft -2007).
- Solicitation for Offerors (SFO) for Lease Based Clinics
 (05-2009).
- b. Federal Specifications (Fed. Specs.):
 - A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. United States National Codes:
 - American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
 - b. American National Standards Institute/Electronic Industries
 Association/Telecommunications Industry Association
 (ANSI/EIA/TIA):
 - 568-B Commercial Building Telecommunications Wiring Standards:
 - a) B-1 General Requirements.
 - b) B-2 Balanced twisted-pair cable systems.
 - c) B-3 Fiber optic cable systems.
 - 569 Commercial Building Standard for Telecommunications Pathways and Spaces.
 - 606 Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
 - 607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
 - 5) REC 127-49 Power Supplies.
 - 6) RS 160-51 Sound systems.

- RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
- 8) SE 101-A49 Amplifier for Sound Equipment
- 9) SE 103-49 Speakers for Sound Equipment
- c. American Society of Mechanical Engineers (ASME):
 - 1) Standard 17.4 Guide for Emergency Personnel.
 - 2) Standard 17.5 Elevator & Escalator Equipment (prohibition of installing non-elevator equipment in Elevator Equipment Room / Mechanical Penthouse).
- d. American Society of Testing Material (ASTM):
 - D2301-04 Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
- e. Building Industries Communications Services Installation (BICSI):
 - All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.
 - 3) In consort with ANSI/EIA/TIA.
- f. Institute of Electrical and Electronics Engineers (IEEE):
 - SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
 - 2) 0739-5175/08/©2008 IEEE Medical Grade Mission Critical -Wireless Networks.
 - 3) C62.41 Surge Voltages in Low-Voltage AC Power Circuits.
- g. NFPA:
 - 70 National Electrical Code (current date of issue) -Articles 517, 645 & 800.
 - 75 Standard for Protection of Electronic Computer Data-Processing Equipment.
 - 3) 77 Recommended Practice on Static Electricity.
 - 4) 99 Healthcare Facilities.
 - 5) 101 Life Safety Code.
 - 6) 1600 Disaster Management, Chapter 5.9 Communications and Warning
- 3. State Hospital Code(s).
- 4. Local Town, City and/or County Codes.

- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization
 (JCAHO) Section VI, Part 3a Operating Features.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of systems of comparable size and complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.
- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's PA equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.

C. The Contractor shall display all applicable national, state and local licenses and permits.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS

(Note: The Contractor is encouraged, but not required, to submit separate technical submittal(s) outlining alternate technical approach(s) to the system requirements stated here-in as long as each alternate technical document(s) is complete, separate, and submitted in precisely the same manner as outlined herein. VA will review and rate each received alternate submittal, which follows this requirement, in exactly the same procedure as outlined herein. Partial, add-on, or addenda type alternates will not be accepted or reviewed.)

- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.
- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.

- D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
- E. Provide interconnection methods, conduit (where not already installed), junction boxes (J-Boxes), cable, interface fixtures and equipment lists for the: ENR(s) (aka DMARC), TER, TCR, MCR, MCOR, PCR, ECR, Stacked Telecommunications Rooms (STR), Nurses Stations (NS), Head End Room (HER), Head End Cabinet (HEC), Head End Interface Cabinet (HEIC) and approved TCO locations Telecommunications Infrastructure Plant (TIP) interface distribution layout drawing, as they are to be installed and interconnected to teach other (REFER TO APPENDIX B - SUGGESTED TELECOMMUNI-CAITONS ONE LINE TOPOLOGY pull-out drawing).
- F. Headend and each interface distribution cabinet layout drawing, as they are expected to be installed.
- G. Equipment OEM technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- H. Engineering drawings of the System, showing calculated of expected signal levels at the headend input and output, each input and output distribution point, and signal level at each telecommunications outlet.
- I. Surveys Required as a Part of The Technical Submittal:
 - 1. The Contractor shall provide the following System survey(s) that depict various system features and capacities required <u>in addition</u> <u>to</u> the on-site survey requirements described herein. Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal Survey requirements), as a minimum:
 - a. PA Cable System Design Plan:
 - An OEM and contractor designed functioning PA System cable plan to populate the entire TIP empty conduit/pathway distribution systems provided as a part of Specification 27 11 00 shall be provided as a part of the technical proposal. A specific functioning PA: cable, interfaces, J-boxes and back boxes shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems' entire PA cable and accessory requirements and

engineer a functioning PA distribution system and equipment requirement plan of the following paragraph(s), at a minimum:

2) The required PA Equipment Locationsa) Extend existing PA system to pre-operative suite. Include separate zones for pre-operative care area and staff areas.

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floor plans shall be marked in pen to include the following:
 - 1. All device locations with UL labels affixed.
 - 2. Conduit locations.
 - 3. Head-end equipment and specific location.
 - 4. Each interface and equipment specific location.
 - Facility Entrance (aka DEMARC) Room(s) interface equipment and location(s).
 - Telephone Equipment Room (TER) interface equipment and specific location.
 - 7. Main Computer Room (MCR) interface equipment and specific location.
 - 8. Police Control Room (PCR) interface equipment and specific location.
 - 9. Engineering Control Room (ECR) interface equipment and specific location
 - 10. Telecommunication Outlet (s -TCO) equipment and specific location
 - 11. TIP Wiring diagram(s).
 - 12. Warranty certificate.
 - 13. System test results.
 - 14. System Completion Document(s) or MOU.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to grantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

A. Use of the site shall be at the GC's direction.

- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. Warranty certificate.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.0 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. Furnish and install a complete and fully functional and public address and mass notification system for each location shown on the contract drawings and TCOs WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 11 00.
- B. Coordinate features and select interface components to form an integrated PA system. Match components and interconnections between the systems for optimum performance of specified functions.

- C. Expansion Capability: The PA equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.
- D. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz.
- E. Meet all FCC requirements regarding low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- F. Deliver a fully functioning and operable PA in the specific locations shown on the drawings.

2.1 SYSTEM DESCRIPTION

- A. Furnish and install a complete and fully functional and operable public address and mass notification system. Provide additional required conduit(s) according to Specification 27 11 00.
- B. The Contractor is responsible for interfacing the MATV and nurse call systems with the System and shall be the interface points for connection of the radio interface cabling from the interface unit(s). The interface unit(s) shall be provided by the Contractor.
- C. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The total PA system shall be configured and installed so that the combination of equipment actually employed does not produce any undesirable visual or aural effects such as signal distortions, noise pulses, glitches, hum, transients, images, etc. The interface points must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- D. It is not acceptable to utilize the telephone cable system for the control of radio signals and equipment. The System Contractor shall connect the Telephone System Remote Control System to the Radio System Paging Control Unit ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the Telephone System. The Owner shall arrange for the interconnection

between the PA and Telephone Systems with the appropriate responsible parties.

- E. System hardware shall consist of a standalone (separate) PA communications network comprised of amplifiers, mixers, speakers, volume controls, test sets, telephone private branch exchange (PBX) interface equipment, equipment cabinets/racks, wiring and other options such as, sub zoning in addition to "all call" functions, computer interfaces, printer interfaces and wireless network interfaces, (when specifically approved by 0050P3B and VA Headquarters Spectrum Management 0050P2B herein after referred to as 0050P2B) as shown on drawings. All necessary equipment required to meet the intent of these specifications, whether or not enumerated within these specifications, shall be supplied and installed to provide a complete and operating nurse/patient communications network.
- F. Systems firmware shall be the product of a reputable firmware OEM of record with a proven history of product reliability and sole control over all source code. Manufacturer shall provide, free of charge, product firmware/software upgrades for a period of two (2) years from date of acceptance by VA for any product feature enhancements. System configuration programming changes shall not require any exchange of parts and shall be capable of being executed remotely via a modem connection (when specifically approved first by 0050P3B).
- G. The PA Head End Equipment shall expand to new speaker zones as required. The PA shall provide zoned, one-way voice paging through distributed, ceiling mounted loudspeakers. Voice input into the PA shall be by zone using the telephone system. The Nurse Call / Code Blue System may interface the PA system when specifically approved by VA Headquarters 0050P3B during the project approval process prior to contract bidding.
- H. The System shall utilize microprocessor components for all signaling and programming circuits and functions. Self contained or on board system program memory shall be non-volatile and protected from erasure from power outages for a minimum of 24 hours.
- I. Provide a backup battery or a UPS for the System (including each distribution cabinet/point, CRT, LCD and Monitor) to allow normal operation and function (as if there was no AC power failure) in the event of an AC power failure or during input power fluctuations for a minimum of two (2) Hours.

27 51 16 - 14

- J. The System is defined as Emergency Service and the Code Blue functions is defined as Life Safety/Support by NFPA (re Part 1.1.A) and so evaluated by JCAHCO.
 - Expand existing global (aka "all call") hard wired zone to every system speaker.
 - e. There shall be **3** hard-wired sub-zones designated as follows:
 - 1) Pre-Operative Department
 - 2) Pre-Operative Staff Zone
 - 3) Pre-Operative Dr Work Room
 - 6) Each 3 zones shall be capable of be programmed.
 - 7) The System shall have a minimum of three (3), unused zones.
 - 2. The System shall allow voice pages to be made within a single zone, across programmed multiple zones or a global page (all zones) by using preset codes entered into the keypad of any telephone instrument attached to the PBX.
- K. The System shall interface with the Facility's existing PAS so that a global page (aka "all call" page) is communicated to the existing PAS and the new System of this project. Arrangements for interconnection of the System and the telephone system(s) shall be coordinated with the owner and the PBX provider.
- L. The system shall be designed to provide continuous electrical supervision of the complete and entire system (i.e. light bulbs, wires, contact switch connections, master control stations, wall stations, circuit boards, data, audio, and communication busses, main and UPS power, etc.). All alarm initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and UPS power circuits shall be supervised for a change in state (i.e. primary to backup, low battery, UPS on line, etc.). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the main supervisory panel, nurse control station and all remote amplifier locations.
- M. When the System is approved to connect to a separate communications system (i.e. LAN, WAN, Telephone, Nurse Call, radio raging, wireless systems, etc) the connection point shall be at one location and shall meet the following minimum requirements for each hard wired connection (note each wireless system connection MUST BE APPROVED PRIOR TO CONTRACT BID BY VA HEADQUARTERS 0050P3B AND 0050P2B): 1. UL 60950-1/2.

2. FIPS 142.

- 3. FCC Part 15 Listed Radio Equipment is not allowed.
- N. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with screw type audio connectors.
- O. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- P. All trunk, branch, and interconnecting cables and unused equipment ports or taps shall be terminated with proper terminating resistors designed for RF, audio and digital cable systems without adapters.
- Q. Noise filters and surge protectors shall be provided for each equipment interface cabinet, headend cabinet, control console and local and remote amplifier locations to insure protection from input primary AC power surges and to insure noise glitches are not induced into low voltage data circuits.
- R. Plug-in connectors shall be provided to connect all equipment, except coaxial cables and RF transmission line interface points. Coaxial cable distribution points and RF transmission lines shall use coaxial cable connections recommended by the cable OEM and approved by the system OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.
- S. Audio Level Processing: The control equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each sub-zone in the system and distribute them into the System's RF interfacing distribution trunks and amplification circuits. It is acceptable to use identified Telephone System cable pairs designated for Two-Way Radio interface and control use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor. The use of telephone cable to distribute RF signals, carrying system or sub-system AC or DC voltage is not acceptable and will not be approved. Additionally, each control location shall be

provided with the equipment required to insure the system can produce its designed audio channel capacity at each speaker identified on the contract drawings. The Contractor shall provide: a spare set of telephone paging modules as recommended by the OEM (as a minimum provide one spare module for each installed module); one spare audio power amplifier, one spare audio mixer, one spare audio volume limiter and/or compressor, and one spare audio automatic gain adjusting device, and minimum RF equipment recommended by the OEM.

T. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.

2.2 SYSTEM PRFORMANCE:

- A. At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's PA system voice and data service as follows:
 - Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface, interconnection and terminating locations in the TERs.
 - Audio Input: The signal level of each audio input channel at each input point shall be a MINIMUM of zero decibels measured (dBm), +0.10 dBm across 150 Ohms, balanced.
 - 3. Audio Output: The audio signal level at each speaker shall be a MINIMUM of +0.25 Watt (W) and a maximum of +20 W, 600 Ohms balanced impedance, on a 70.7 V audio distribution line Contractor to determine and set each speaker's proper audio signal level (top) based on speaker location and the ambient noise level in speaker coverage area.
 - The system shall meet the following MINIMUM parameters at each speaker:
 - a. Cross Modulation: -46 dB
 - b. Hum Modulation: -55 dB
 - c. Isolation (outlet-outlet): 24 dB
 - d. Impedance:
 - 1) Distribution: 600 Ohm balanced @ 70.7 V audio line level.
 - 2) Speaker: Selectable, as required.

- e. Audio Gain: 10 dB minimum @ mid-range measured with a sound pressure level meter (SPL)
- f. Signal to noise (S/N) ratio: 35 dB, minimum
- B. Audio Level Processing: The head-end equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each zone or sub-zone in the system and distribute them into the system's distribution trunks. It is acceptable to use identified telephone system cable pairs designated for PA use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor.
 - 1. THE USE OF TELEPHONE CABLE TO DISTRIBUTE PA SIGNALS CARRYING AC OR DC VOLTAGE IS NOT ACCEPTABLE AND WILL NOT BE APPROVED.
 - Additionally, each remote location shall be provided with the equipment required to ensure the system supervision and designed audio channel capacity at each speaker identified on the contract drawings.

2.3 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by OEM of record. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,
 - Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
 - 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid (IFB).
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as an Emergency performing Public Safety Support

Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Public and Life Safety Codes

(which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.

- All supplies and materials shall be listed, labeled or certified by UL or a nationally recognized testing laboratory (NRTL) where such standards have been established for the supplies, materials or equipment.
- 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
- 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.4 PRODUCTS

- A. General.
 - Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
 - Each cabinet shall be provided with internal and external items to maintain a neat and orderly system of equipment, wire, cable and conduit connections and routing.
 - 3. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.

- b. The following equipment items are the minimum requirements of VA to provide an acceptable system described herein:
- B. TER, TCR, TR, SCC, PCR, STR, HER Rooms and Equipment: Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.
 - 1. Interface Equipment:
 - a. TER:
 - 1) Paging adaptor:
 - a) The Contractor shall coordinate the installation of the paging adapter(s) designed for use with the Facility's telephone system with the Facility Telephone Contractor or local telephone company.
 - b) The Contractor shall provide and install a paging adapter(s) for each zone and sub zone. The paging adapter(s) shall be accessible by dialing a telephone number provided by the Facility's Telephone Contractor. The Paging Adapter shall:
 - 1) Monitor each audio input and output on the unit.
 - Be provided with an electrical supervision panel to provide both audio and visual trouble alarms.
 - Be provided as part of the head end equipment and shall be located in the Telephone Switch Room
 - 4) Be provided with Executive (aka emergency) Paging Override of all routine paging calls in progress or being accessed to allow system "all call" (aka global) and radio paging calls designated as (Code One Blue) functions.
 - 5) Be capable of internal time out capability.
 - 6) Function completely with the interface module.
 - 7) Provide one spare adapter.
 - c) Time Out Device: A time out device/capability shall be provided to prevent system "hang-up" due to an off-hook telephone. The device shall be able to be preset from 30 seconds to two (2) minutes. Its function shall not interfere with or override the required "all call" (aka global) operational capability.

- 1) Central Processor Module:
- Controls system operations and holds all programmed parameters.
- 3) Data link connection to additional CPU modules.
- d) Power Module: Provides 12V DC @ 800mA to Central Processor Module.
- e) Minimum three (3) Zone Module:
 - Provides a minimum of three (3) paging zone outputs at 70V audio sound level.
 - 2) Background Music inhibit switch for each zone.
- 2) Audio Monitor Panel:
 - a) The panel shall be EIA/TIA standard for 483 mm (19") cabinet mounting.
 - b) It shall be provided in the upper portion of the head-end equipment cabinet.
 - c) Provide one (1) spare panel.
- 3) Trouble Annunciator Panel:
 - a) A trouble annunciator panel shall be provided in the headend cabinet, and at locations as designated on the contract drawings. The panel(s) shall be compatible with or generate electrical and/or electronic supervising signals to continuously monitor the operating condition for the System head-end audio power amplifier(s), remote power amplifier(s), microphone consoles and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects an amplifier or trunk-line is malfunctioning.
 - b) Provide one (1) spare panel.
- 4) Head-End Equipment
 - a) Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system listed herein. Headend components may be rack mounted or wall mounted in a metal enclosure.
 - b) Provide the head end equipment in the closed telecommunications closet where the PA system is installed to include the minimum equipment listed herein.

- c) Provide minimum of 30 minute battery back-up to system components.
- 5) Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies, amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions
 - a) Vertical Equipment Rack, Wall Mounted (to be included inside of the Equipment Cabinet):
 - b) 74" (48RU) rack space, Welded Steel construction, Minimum 20" usable depth, Adjustable front mounting rails.
 - Install the following products in rack provided by same manufacturer or as specified:
 - 2) Security screws w/ nylon isolation bushings.
 - 3) Textured blank panels.
 - 4) Custom mounts for components without rack mount kits.
 - 5) Security covers.
 - 6) Copper Bus Bar.
 - 7) Power Sequencer rack mounted power conditioner and (provide as needed) delayed sequencer(s) with two (2) inswitched outlets each and contact closure control inputs.
 - 8) Rack mounting: Provide rack mount kit.
- 6) Amplifier Equipment:
 - a) Paging (aka zone):
 - Inputs for 600-ohm balanced telephone line, LO-Z balanced microphone, and background music.
 - 2) Input Sensitivity: Compatible with master stations and central equipment so amplifier delivers full rated output with sound-pressure level of less than 10 dynes/sq. cm impinging on master stations speaker microphones, or handset transmitters
 - Automatic Level Control (ALC) for pages, adjustable background music muting level during page, wall or rack mountable.
 - 16-ohm, 25V, 25V center tapped (CT), and 70V outputs. Amplifier quantity and size (output power) as needed.

Continuous amplifier power rating shall exceed loudspeaker load on amplifier by at least 25%.

- 5) Output Power: 70-V balanced line. 80 percent of the sum of wattage settings of connected for each station and speaker connected in all-call mode of operation, plus an allowance for future stations.
- 6) Total Harmonic Distortion: Less than 5 percent at rated output power with load equivalent to quantity of stations connected in all-call mode of operation.
- 7) Minimum Signal-to-Noise Ratio: 45 dB, at rated output.
- Frequency Response: Within plus or minus 3 dB from 70 to 12,000 Hz.
- b) Output Regulation: Maintains output level within 2 dB from full to no load.
- c) Amplifier Protection: Prevents damage from shorted or open output.
- d) Be provided with electronic supervision function(s).
- e) Provide one spare amplifier.
- b. TCR:
 - 1) Electrical Supervision Trouble Annunciator Panel:
 - a) The Electrical Supervision Trouble Annunciation Panel shall be located in the TCR.
 - b) The panel(s) shall be compatible with the generated electrical and/or electronic supervising signals to continuously monitor the operating condition for the PA system head-end processing equipment, local/remote control consoles, audio power amplifier(s), UPS, power supplies, dome lights and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects a system trouble or trunk-line is malfunctioning.
 - c) TRs: Locate the PA floor distribution equipment within each TR as required by system design and OEM direction. Provide secured and lockable cabinet/rack(s) as required.
 - General Equipment: Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a

complete system listed herein. Equipment components may be rack mounted or wall mounted in a metal enclosure.

- 2) Amplifiers:
 - a) Panging Amplifier Equipment:
 - b) Refer to the Amplifier characteristics described herein Paragraph 2.4.G.f.
 - c) Provide one (1) spare amplifier in addition to the spare Head End Amplifier.
- 3) Distributed Amplifier:
 - a) Provide the type and number of the amplifier(S) required to meet the system design. Provide this unit as complete and separate technical submittal during the IFB review portion of the project.
 - b) Provide one spare amplifier for each 20% (or portion thereof) of amplifiers used in the system.
- 4) Provide the equipment in the nearest TER where the System is installed to include the minimum equipment listed herein.
- 5) Provide minimum of 30 minute battery (UPS) back-up to system components.
- Equipment Cabinet: Comply with cabinet requirements as aforementioned.
- Trouble Annunciator Panel: Comply with the panel characteristics identified herein.
- d. SCC, PCR, STR, HER: Refer to PG-18-10, Article 7 for specific required equipment and use minimum aforementioned specifications for population.

D. TIP DISTRIBUTION SYSTEM:

- 1. System Speakers:
 - a. Ceiling Cone-Type:
 - 1) Minimum Axial Sensitivity: 91 dB at one meter, with 1-W input.
 - 2) Frequency Response: Within plus or minus 3 dB from 70 to 15,000 Hz.
 - 3) Minimum Dispersion Angle: 100 degrees.
 - Line Transformer: Maximum insertion loss of 0.5 dB, power rating equal to speaker's, and at least four level taps.
 - 5) Enclosures: Steel housings or back boxes, acoustically dampened, with front face of at least 0.0478-inch steel and whole assembly rust proofed and factory primed; complete with

27 51 16 - 24

mounting assembly and suitable for surface ceiling, flush ceiling, pendant or wall mounting; with relief of back pressure.

- 6) Baffle: For flush speakers, minimum thickness of 0.032-inch aluminum with textured white finish. Completely fill the baffle with fiberglass.
- 7) Vandal-Proof, High-Strength Baffle: For flush-mounted speakers, self-aging cast aluminum with tensile strength of 44,000 psi, 0.025-inch minimum thickness; countersunk heattreated alloy mounting screws; and textured white epoxy finish.
- Size: 8 inches with 1-inch voice coil and minimum 5-oz. ceramic magnet.
- 9) Have a minimum of two (2) safety wires installed to a solid surface or use a flexible conduit from ceiling / wall back box to the speaker back box.
- 10) The speakers and mounting shall be self contained and wall mounted with flush back box at a minimum of 10 meter intervals and shall match (or contrast with, at the direction of the RE) the color of the adjacent surfaces.
- Provide one spare speaker, mount, and back box for each 50 speakers or portion thereof.
- Provide one spare speaker, mount, and back box for each 20 speakers or portion thereof.
- b. System Cables: In addition to the TIP provided under Specification Section 27 15 00 - TIP Horizontal and Vertical Communications Cabling, provide the following additional TIP installation and testing requirements, provide the following minimum System TIP cables & interconnections:
 - 1) Line Level Audio and Microphone Cable:
 - a) Line level audio and microphone cable for inside racks and conduit.
 - b) Shielded, twisted pair Minimum 22 American Wire Gauge (AWG), stranded conductors and 24 AWG drain wire with overall jacket.
 - 2) Speaker Level (Audio 70.7Volt [V]) Cable, Riser Rated:
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.

- c) UL-1333 listed.
- 3) Speaker Level Audio Cable, Plenum Rated (70.7V):
 - a) For use with 70.7 V audio speaker circuits.
 - b) 18 AWG stranded pair, minimum.
- 4) All cabling shall be riser //plenum// rated.
- Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.
- 2. Raceways, Back Boxes and conduit:
 - a. Raceways:
 - In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
 - 2) Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
 - Intercommunication System cable infrastructure: EMT above accessible ceilings, 24 inches on center.
 - Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
 - 5) Flexible metal conduit is prohibited unless specifically approved by 0050P3B.
 - b. System Conduit:
 - The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.
 - The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
 - 3) Conduit Sleeves:
 - a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the

drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.

- b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nursecall cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.
- 3. Device Back Boxes:
 - a. Furnish to the electrical contractor all back boxes required for the PA system devices.
 - b. The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
- 4. Telecommunication Outlets (TCO): Populate each TCO that is required to perform system operations in the locations that were provided and cabled as a part of Specifications Sections 27 11 00 and 27 15 00. Provide additional TCO equipment, interfaces and connections as required by System design. Provide secured pathway(s) and TCOs as required.
- 5. UPS:
 - a. Provide a backup battery or a UPS for the System to allow normal operation and function (as if there was no AC power failure) in the event of an AC power failure or during input power fluctuations for a minimum of four (4) hours.
 - b. As an alternate solution, the telephone system UPS may be utilized to meet this requirement at the headend location, as long as this function is specifically approved by the Telephone Contractor and the RE.
 - c. The PA Contractor shall not make any attachments or connection to the telephone system until specifically directed to do so, in writing, by the RE.
 - d. Provide UPS for all active system components including but not limited to:
 - 1) System Amplifiers.
 - 2) Microphone Consoles.

- 3) Telephone Interface Units.
- 4) TER, TR & Headend Equipment Rack(s).
- E. Installation Kit:
 - 1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation sub-kits:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields.
 - 2) Control Cable Shields.
 - 3) Data Cable Shields.
 - 4) Equipment Racks.
 - 5) Equipment Cabinets.
 - 6) Conduits.
 - 7) Duct.
 - 8) Cable Trays.
 - 9) Power Panels.
 - 10) Connector Panels.
 - 11) Grounding Blocks.
 - 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
 - 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire

wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.

- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P3B) at (301) 734-0350 to have a VA Certified Telecommunications COTR assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

A. Coordinate with the cabling contractor the location of the PA system faceplate and the faceplate opening for the PA system back boxes.

27 51 16 - 29

- B. Coordinate with the cabling contractor the location of TIP equipment in the TER, TCR, PA, PCR, SCC, ECR, STRs, NSs, HER and TCOs in order to connect to the TIP cable network that was installed as a part of Section Specification 27 11 00. Contact the RE immediately, in writing, if additional location(s) are discovered to be activated that was not previously provided.
- C. Before beginning work, verify the location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - 2. Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
- D. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies

3.3 NEEDS ASSESSMENT

Provide a one-on-one meeting with the particular manager of each unit affected by the installation of the new PA system. Review the floor plan drawing, educate the nursing manager with the functions of the equipment that is being provided and gather details specific to the individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that will affect system programming and training.

3.4 INSTALLATION

- A. General
 - Execute work in accordance with National, State and local codes, regulations and ordinances.
 - 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
 - 3. Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
 - Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.

- All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
- b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
- c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
- d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Locate overhead ceiling-mounted loudspeakers as shown on drawings, with minor changes not to exceed 12" in any direction.
 - a. Mount transformers securely to speaker brackets or enclosures using screws. Adjust torsion springs as needed to securely support speaker assembly.
 - b. Speaker back boxes shall be completely filled with fiberglass insulation.
 - c. Seal cone speakers to their enclosures to prevent air passing from one side of the speaker to the other.
- Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and 0050P3B.
- 7. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.
- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.
- 9. Color code all distribution wiring to conform to the PA Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.

- 10.Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 11. Product Delivery, Storage and Handling:
 - a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.
 - b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- 12.Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 13.Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- B. Equipment Racks:
 - Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks.
 - 2. Provide security covers for all devices not requiring routine operator control.
 - 3. Provide vent panels and cooling fans as required for the operation of equipment within the OEM' specified temperature limits. Provide adequate ventilation space between equipment for cooling. Follow manufacturer's recommendations regarding ventilation space between amplifiers.
 - 4. Provide insulated connections of the electrical raceway to equipment racks.
 - Provide continuous raceway/conduit with no more than 40% fill between wire troughs and equipment racks for all non-plenum-rated cable. Ensure each system is mechanically separated from each other in the wireway.
 - 6. Ensure a minimum of 36 inches around each cabinet and/or rack to comply with OSHA Safety Standards. Cabinets and/or Racks installed side by side - the 36" rule applies to around the entire assembly
- C. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms

Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:

- Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
- Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
- 3. Wiring shall be classified according to the following low voltage signal types:
 - Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
- 4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.
- 5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
- Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
- Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
- Use wire pulling lubricants and pulling tensions as recommended by the OEM.
- 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 10.Do not use tape-based or glue-based cable anchors.
- 11.Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12.Field wiring entering equipment racks shall be terminated as follows:

- a. Provide ample service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.
- b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
- c. If specified terminal blocks are not designed for rack mounting, utilize ¾" plywood or 1/8" thick aluminum plates/blank panels as a mounting surface. Do not mount on the bottom of the rack.
- d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.
- 13.Use only balanced audio circuits unless noted otherwise
- 14.Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.

15.Make all connections as follows:

- a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
- b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
- c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
- d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 16.Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.

- 17.Wires or cables previously approved to be installed outside of conduit, cable trays, wireways, cable duct, etc:
 - a. Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.
 - b. Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
 - c. Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
 - d. Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
 - e. Completely test all of the cables after installation and replace any defective cables.
 - f. Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- E. Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 -Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and

Vertical Cabling and the following additional practices shall be adhered too:

- Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable trays. Velcro wrap cable bundles loosely to the means of support with plenum rated Velcro straps. Plastic tie wraps are not acceptable as a means to bundle cables.
- 2. Run cables parallel to walls.
- 3. Install maximum of 10 cables in a single row. Provide necessary rows as required by the number of cables.
- Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
- 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
- Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
- 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
- Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10.Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11.Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12.Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13.Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring

runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

- 14.Serve all cables as follows:
 - a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
 - b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.
 - c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for PA circuits shall be stenciled using laser printers.
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - a. Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters

(10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

- 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
- 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
- 6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heatshrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
- Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked. SYSTEM EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.
- G. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow PA cables to be installed in partitioned cable tray with voice cables may be granted in writing by the RE if requested).

Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.

- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "interduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. Ensure that Critical Care PA Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.

d. All cable junctions and taps shall be accessible. Provide an 8" X 8" X 4" (minimum) junction box attached to the cable duct or raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.5 PROTECTION OF NETWORK DEVICES

Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

A. Where PA wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.

- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.
- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.
- F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground PA cable shields and equipment to eliminate shock hazard and to minimize ground loops, commonmode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26
 Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.
- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use "3rd or 4th" wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.

H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

PART 4 - TESTING / GUARANTY / TRAINING

4.0 SYSTEM LISTING

A. The PA System is NFPA listed as an "Emergency / Public Safety" Communications system. Where Code Blue signals are transmitted, that listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and OEM.

4.1 PROOF OF PERFORMANCE TESTING

- A. Intermediate Testing:
 - 1. After completion of 25 30% the installation and connection to the head end cabinet(s) and equipment, one microphone console, local and remote enunciation stations, two (2) zones, two (2) sub zones prior to any further work, this portion of the system must be pretested, inspected, and certified. Each item of installed equipment shall be checked to ensure appropriate UL Listing and Certification Labels are affixed as required by NFPA -Life Safety Code 101-3.2 (a) & (b) and JCHCO evaluation guidelines, and proper installation practices are followed. The intermediate test shall include a full operational test.
 - 2. All inspections and tests shall be conducted by an OEM-certified contractor representative and witnessed by TVE-005OP3B if there is no local Government Representative that processes OEM and VA approved Credentials to inspect and certify the system. The results of the inspection will be officially recorded by the Government Representative and maintained on file by the RE, until completion of the entire project. The results will be compared to the Acceptance Test results. An identical inspection may be conducted between the 65 - 75% of the system construction phase, at the direction of the RE.
- B. Pretesting:
 - Upon completing installation of the PA System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.
 - 2. Pretesting Procedure:

- a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.
- b. The Contractor shall pretest and verify that all PA System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) Central Control Cabinets.
 - 2) Local Control Stations.
 - 3) Zone Equipment/Systems.
 - 4) Sub-Zone Equipment/Systems.
 - Remote Control Panels.
 a.) TCR.
 - 6) All Networked locations.
 - 7) System interface locations (i.e. TELCO, two way radio, etc.).
 - 8) System trouble reporting.
 - 9) System Electrical Supervision.
 - 10) UPS operation.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test:
 - 1. After the PA System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 30 day's written notice prior to the date the acceptance test is expected to begin. The System shall be tested in the presence of TVE 0050P3B and an OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Emergency / Public Safety compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
 - 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance

shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable. Retesting of the entire System shall be rescheduled at the convenience of the Government.

- Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.
- D. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. The TVE 0050P3B Representative will tour all areas where the PA system and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
 - b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
 - c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
 - 2. Operational Test:
 - a. After the Physical and Mechanical Inspection, the system head end equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
 - b. Following the head end equipment test, each speaker (or on board speaker) shall be inspected to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.

- c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last speaker in each leg to verify the PA distribution system meets all system performance standards.
- d. If the RED system is a part of the system, each volume stepper switches shall be checked to insure proper operation of the pillow speaker, the volume stepper and the RED system (if installed).
- e. Additionally, each installed head end equipment, microphone console; amplifier, mixer, distributed speaker/amplifier, monitor speaker, telephone interface, power supply and remote amplifiers shall be checked insuring they meet the requirements of this specification.
- f. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: "all call," three sub-zoned, minimum of 15 minutes of UPS operation, electrical supervision, trouble panel, corridor speakers and audio paging.
- h. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.
- 3. Test Conclusion:
 - a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
 - b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum: 1. Spectrum Analyzer.

- 2. Signal Level Meter.
- 3. Volt-Ohm Meter.
- 4. Sound Pressure Level (SPL) Meter.
- 5. Oscilloscope.
- 6. Random Noise Generator.
- 7. Audio Amplifier with External Speaker.

4.2 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:
 - 1. The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of two (2) years from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability shall be provided by the Contractor and OEM at no additional cost to the VA.
 - 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
 - 4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time During the Two Year Guaranty Period:
 - The RE (or Facility Contracting Officer if the system has been turned over to the Facility) is the Contractor's ONLY OFFICIAL reporting and contact official for nurse call system trouble calls, during the guaranty period.
 - 2) A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the RE (or Facility Contracting Officer), Monday through Friday exclusive of Federal Holidays.

- The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which causes a power supply; one (1) master System control station, microphone console or amplifier to be inoperable.
 - b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call. The RE (or Facility Contracting Officer) shall notify the Contractor of this type of trouble call.
 - c) An emergency trouble call within four (4) hours of its report. An emergency trouble is considered a trouble which causes a sub-zone, zone, distribution point, terminal cabinet, or all call system to be inoperable at anytime.
- 4) If a PA System component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate System equipment. The alternate equipment/system shall be operational within a maximum of 12 hours after the four (4) hour trouble shooting time and restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or subsystem to full operational capability, as described herein, until repairs are complete.

b. Required On-Site Visits During the Two Year Guaranty Period

- The Contractor shall visit, on-site, for a minimum of eight

 (8) hours, once every 12 weeks, during the guaranty period, to
 perform system preventive maintenance, equipment cleaning, and
 operational adjustments to maintain the System according the
 descriptions identified in this document.
- The Contractor shall arrange all Facility visits with the RE (or Facility Contracting Officer) prior to performing the required maintenance visits.
- Preventive maintenance procedure(s) shall be performed by the Contractor in accordance with the OEM's recommended practice

and service intervals during non-busy time agreed to by the RE (or Facility Contracting Officer) and Contractor.

- The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE (or Facility Contracting Officer).
- 5) The Contractor shall provide the RE (or Facility Contracting Officer) a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:
 - a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to RE (or Facility Contracting Officer) by the fifth (5th) working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.
 - b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The RE (or Facility Contracting Officer) shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE (or Facility Contracting Officer) shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.
- C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor,

contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render an official opinion in writing concerning the supplied information.

4.3 TRAINING

- A. Provide thorough training of all biomed engineering and electronic technical staff assigned to those nursing units receiving new networked nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.
- B. Provide the following minimum training times and durations:
 - 48 hours prior to opening for BME / Electronic Staff (in 8-hour increments) - split evenly over 3 weeks and day and night shifts. Coordinate schedule with Owner.
 - 2. 24 hours for supervisors and system administrators.

- - - E N D - - -

SECTION 27 51 23 INTERCOMMUNICATIONS AND PROGRAM SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies a new and fully operating Intercom (IC) System.
- B. Conform to VAAR 852.236.91 and intent of the construction documents, recognizing that it may be impracticable to detail all items because of variances in manufacturers to achieve indicated intent.

1.2 RELATED WORK

- A. Connection to Electronic Access Control at doors: Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEM.
- B. Door hardware and operation of doors: 08 71 00 DOOR HARDWARE
- C. Conduit and boxes: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- D. Electrical conductors and cables: Section 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING.
- E. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of SECTION 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit:
 - Written certification from OEM proposed provider of contract maintenance is an authorized representative of OEM. Include provider's legal name, address, and OEM credentials.
 - Submit names, locations and point of contact for three installations employing proposed OEM IC Systems of comparable size and complexity performing for at least one year after final acceptance by user.
- B. Certifications:
 - Submit documentation that supplier has been an authorized distributor and service organization for OEM for a minimum of three years and is authorized by OEM to pass thru OEM's warranty of installed equipment to Government.
 - Submit certificate of successful completion of OEM's installation and training program for each installing technician of equipment being proposed. Provide current OEM certifications for installers to be approved by COR before being allowed to commence work on system.

- Provide current OEM certification documenting maintenance and supervisory personnel are authorized by OEM to service installed equipment during warranty.
- 4. Furnish copies of applicable national, state and local licenses.
- C. Warranty: Submit OEM warranty.

1.4 QUALITY ASSURANCE

- A. Assign only technicians trained, qualified, and certified by OEM on engineering, installation, operation and testing of system.
- B. Provide system firmware from OEM with a proven history of product reliability and sole control over all source code.

1.5 WARRANTY

- A. Comply with FAR clause 52.246-21, except that warranty must be as follows:
 - Manufacturer shall warranty their equipment and certified installation for a minimum of two years from date of installation and final acceptance by the Government.
 - Provide, free of charge, product firmware and software upgrades for a period of one year from date of final acceptance by Government for any product feature enhancements.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Provide voice communication between wall-mounted intercom stations and desk or wall-mounted master stations.
- B. Provide accessories and miscellaneous appurtenances required for a complete and operating communications system and network.
- C. Coordinate features and select components to form an integrated IC system. Match components and interconnections for optimum performance of specified functions.
- D. Expansion Capability: Increase number of Room Speaker-Microphone stations in future by 25 percent above those indicated without adding any internal or external components or trunk cable conductors.
- E. Equipment: Modular type, continuous duty rated.

2.2 PERFORMANCE CRITERIA

A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, the minimum requirements for each system are:

- Wired IC systems approved to connect to separate communications system (i.e. SMS, WAN, LAN includes: Telephone, Nurse Call, radio paging) minimum requirements:

 a. NIST FIPS Pub 140/2.
 - a. Nibi 1115 145 140/2.
 - b. UL 60950-1, edition 2.

2.3 EQUIPMENT ITEMS

- A. Microprocessor-Switched System:
 - 1. Master Station Features:
 - a. Communicate selectively with other master and speaker-microphone stations by dialing station's number on a 12-digit keypad.
 - b. Communicate simultaneously with all other stations by dialing a designated number on a 12-digit key-pad.
 - c. Communicate with individual stations in privacy.
 - d. Include other master-station connections in a multiple-station conference call.
 - e. Access separate paging speakers or groups of paging speakers by dialing designated numbers on a 12-digit keypad.
 - f. Override any conversation by a designated master station.
 - g. Display selected station.
 - h. Volume Control: Regulate incoming-call volume.
 - LED: Identify calling stations and stations in use. Remains illuminated until call is answered.
 - j. Momentary audible tone signal: Announce incoming calls.
 - k. Handset with Hook Switch: Telephone type with 61 cm (24-inch) long, permanently coiled cord. Hook switch to disconnect speaker when handset is lifted.
 - 1. Reset Control: Cancels call and resets system for next call.
 - 2. Room Speaker-Microphone Station Features:
 - a. Privacy from remote monitoring with a warning tone signal and visual indication at monitored station.
 - b. Privacy switches at designated speaker-microphone stations to prevent another station from listening and to permit incoming calls.
 - c. Communicate hands free.
 - d. Call master station by actuating call switch.
 - e. Return busy signal to indicate that station is already in use.
 - f. Free of noise and distortion during operation and when in standby mode.

2.4 HEAD END EQUIPMENT

- A. Provide required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system.
- B. Head end components can be rack mounted or wall mounted in a metal enclosure.
- C. Provide head end equipment in telecommunications room where IC system is installed.
- D. Provide minimum 30 minute battery back-up (or UPS) to system components.

2.5 SYSTEM CABLES

- A. Comply with SECTION 27 10 00, CONTROL, COMMUNICATION AND SIGNAL WIRING for specific installation and testing requirements.
- B. Conductors: Jacketed, twisted pair and twisted multipair, untinned solid copper; sizes as recommended by system manufacturer, but no smaller than No. 22 AWG.
- C. Insulation: Thermoplastic; minimum 0.8 mm (1/32 inch) thick.
- D. Shielding: For speaker-microphone leads and elsewhere where recommended by manufacturer; No. 34 AWG, tinned, soft-copper strands formed into a braid or equivalent foil.
- E. Minimum Shielding Coverage on Conductors: 60 percent.
- F. Cabling must be riser rated

2.6 RACEWAYS

- A. Raceways and Boxes: Comply with requirements in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.
- B. Each open top raceway must be NRTL listed for telecommunications systems and partitioned with metal partitions in order to comply with NEC Parts 517 and 800 to "mechanically separate" telecommunications systems of different service, protect installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.
- C. IC System Cable Infrastructure: EMT and cable tray NRTL classified for suitability and NRTL listed for telecommunications.
- D. Pull boxes must be minimum 63.5 mm (2-1/2 inches) deep and 152.4 mm (6 inches) wide by 152.4 (6 inches) long.

2.7 SYSTEM CONDUIT

A. Provide separate 25.4 mm (1 inch) minimum diameter conduit, for system installation.

1.

2.8 FINISHES

A. Provide finishes for exposed work such as plates, racks, panels, speakers, etc. accepted by design professional, COR and 0050P3B.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Review and coordinate with telecommunications cabling installer for location of intercom equipment in Telecommunications Rooms.
- B. Verification of Conditions: Before beginning work, verify location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - 2. Pull boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
- C. Installer must immediately notify COR, general contractor and design professional in writing of any discrepancies.
- D. Needs Assessment:
 - Provide a one-on-one meeting with nursing manager of each unit affected by installation of system.
 - Review floor plans and drawings, educate nursing manager on functions of the equipment and gather details specific to individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that affect system programming and training.
 - 3. Prepare a summary report of the assessment.

3.2 INSTALLATION

- A. General:
 - Install work plumb and square and in a manner consistent with standard industry practice.
 - Protect work from dust, paint and moisture as dictated by site conditions. Contractor is responsible for protection of work until final acceptance by Government.
 - 3. Install equipment according to OEM's recommendations.
 - Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for complete assembly and installation.
 - 5. Secure equipment firmly in place, including IC stations, speakers, equipment racks, system cables, etc.:

- a. Supports, mounts, fasteners, attachments and attachment points must support loads with a safety factor of at least 5:1.
- b. Do not impose weight of equipment on supports provided for other trades or systems.
- c. Any suspended equipment or associated hardware must be certified by OEM for overhead suspension.
- d. Contractor is responsible for means and methods in design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Coordinate cover plates with field conditions. Size and install cover plates to hide joints between back boxes and surrounding wall. Do not allow cable to leave or enter boxes without cover plates installed.
- 7. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required.
- B. Wiring Practice: In addition to requirements in Section 27 10 00, STRUCTURED CABLING, adhere to the following additional practices:
 - Execute wiring in strict adherence to National Electrical Code, applicable local building codes and standard industry practices.
 - 2. Where raceway and wire way are EMT (conduit), wiring of differing classifications must be run in separate conduit.
 - 3. Where raceway and wire way are an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share same enclosure must be mechanically partitioned and separated by 102 mm (four inches). Where wiring of differing classifications must cross, they must cross perpendicular to one another.
 - 4. Do not splice wiring anywhere along entire length of run.
 - 5. Make sure cables are insulated and shielded from each other and from raceway for entire length of run.
 - 6. Do not pull wire through any enclosure where a change of raceway alignment or direction occurs.
 - 7. Do not bend wires to less than radius recommended by manufacturer.
 - Replace entire length of run of any wire or cable that is damaged or abraded during installation. There are no acceptable methods of repairing damaged or abraded wiring.
 - 9. Do not apply wire pulling lubricants unless specifically recommended by cable OEM.

- Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 11. Do not use tape-based or glue-based cable anchors.
- 12. Bond shields and drain wires to ground.
- 13. Use only balanced audio circuits unless indicated otherwise.
- 14. Make connections as follows:
 - a. Use rosin-core solder or mechanical connectors appropriate to application.
 - b. For crimp-type connections, use only crimp tool specified by manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs must be sized to fit wire gauge; do not exceed two lugs per terminal.
 - d. Twist on wire connectors and electrical tape are not permitted for any application.
- C. Cable Installation: In addition to requirements in Section 27 10 00, STRUCTURED CABLING, comply to the following practices.
 - Acceptable means of cable support are cable tray, wire way, and conduit. Hook and loop wrap cable bundles loosely to cable tray with plenum rated Velcro straps. Plastic tie wraps are not permitted as a means to bundle or support cables.
 - 2. Run cables parallel to walls.
 - 3. Do not lay cables on top of luminaires, ceiling tiles, mechanical equipment, or ductwork.
 - 4. Maintain minimum 61 cm (2'-0'') clearance from all shielded electrical apparatus.
 - 5. Test cables after the total installation is complete. Document test results. Remedy any cabling problems or defects in order to pass or comply with testing. This includes re-pull of new cable as required.
 - Terminate both ends of cables per industry and OEM's recommendations.
 - 7. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until ready to terminate.
 - Cover end of overall jacket with minimum 25.4 mm (1 inch) length of transparent heat-shrink tubing.
 - a. Cut unused insulated conductors minimum 50.8 mm (2 inches) passed heat-shrink, fold back over jacket and secure with cable-tie.

- b. Cut unused shield/drain wires minimum 50.8 mm (2 inches) passed heat-shrink cover shield/drain wires with heat-shrink tubing extending to overall jacket. Extend tubing 6 mm (1/4 inch) passed end of unused wires, fold back over jacket and secure with cable tie.
- 9. For each solder-type connection, cover bare wire and solder connection with heat-shrink tubing.
- Terminate conductors; no cable must contain unterminated elements. Make terminations only at outlets and terminals.
- 11. Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables cannot be spliced.
- 12. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- Cold-Weather Installation: Bring cable to room temperature before de-reeling. Heat lamps are not permitted.
- 14. Cable must not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 15. Separation of Wires: (Refer to Raceway Installation)
 - a. Separate speaker-microphone, line-level, speaker-level, and power wiring runs.
 - b. Install in separate raceways or, where exposed or in same enclosure, separate conductors at minimum 30.5 cm (12 inches) apart for speaker microphones and adjacent parallel power and telephone wiring.
 - c. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.
- D. System Conduit: Install manufactured conduit sweeps and long radius elbows according to wire and cable OEM instructions.
- E. Labeling:
 - Permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - Engrave and paint fill receptacle panels using minimum 3.17 mm (1/8 inch) high lettering and contrasting paint.
 - 3. For rack-mounted equipment, use engraved Lamacoid labels with white minimum 3.17 mm (1/8 inch) high lettering on black background. Label front and back of rack-mounted equipment.

- Where multiple pieces of equipment reside in same rack group, label each indicating to which room, channel, receptacle location, etc. they correspond.
- 5. Permanently label cables at each end, including intra-rack connections. Labels must be covered by same, transparent heat-shrink tubing covering end of overall jacket. Alternatively, provide computer generated labels of type which include a clear protective wrap.
- Contractor's name cannot appear more than once on each continuous set of racks. Contractor's name cannot appear on wall plates or portable equipment.
- 7. Ensure each piece of OEM supplied equipment has appropriate NRTL labels for the service equipment is performing. Equipment installed not bearing NRTL label will not be permitted. Contractor is responsible to provide listed replacement equipment with approved NRTL label.
- F. Protection during Installation:
 - Protect electronic devices during unpacking and installation by wearing electrostatic discharge (ESD) wrist straps tied to chassis ground.
 - Wrist straps must meet OSHA requirements for prevention of electrical shock, if technician comes in contact with high voltage.
- G. Cutting and Patching:
 - Keep work area clear of debris and clean area daily at completion of work.
 - 2. Patch and paint any wall or surface that has been disturbed by execution of this work.
 - Provide any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete work or to make its parts fit together properly.
 - 4. Do not damage or endanger fully or partially completed construction of Government or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. Contractor cannot cut or otherwise alter such construction by facility or separate contractor except with written consent of Government or of such separate contractor; such consent cannot be unreasonably withheld. Contractor cannot unreasonably withhold consent to cutting or otherwise altering work, by facility or a separate contractor.

- 5. Where coring of in-place concrete is specified or required, including coring indicated under unit prices, location of such coring must be identified in the field and accepted by COR prior to commencement of coring work.
- H. Fireproofing:
 - Fireproof openings where IC cables penetrate fire rated walls, floors and ceilings.
 - 2. Provide conduit sleeves (if not already provided) for cables that penetrate fire rated walls and floors and ceilings. After cabling installation is complete, install fire proofing material in and around conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal floor and ceiling penetrations.
 - 3. Use only materials and methods that preserve integrity of fire stopping system and its rating.
- I. Grounding:
 - Provide grounding system per Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
 - Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments.
 - 3. Signal Ground Terminal: Locate at main equipment cabinet. Isolate from power system and equipment grounding.
 - Install grounding electrodes as specified in Section 27 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 5. Do not use "3rd or 4th" wire internal electrical system conductors for ground.
 - Do not connect system ground to building's external lightning protection system.
 - 7. Do not "mix grounds" of different systems.

3.3 FIELD QUALITY CONTROL

- A. Assign only technicians trained, qualified, and certified by OEM on engineering, installation, operation, and testing of system.
- B. Performance Testing:
 - 1. Intermediate Testing:
 - a. After completion of 25 percent of installation of equipment, including one master station, and remote station, and prior to any further work, this portion of system must be pretested, inspected, and certified. Check each item of installed equipment

to ensure appropriate NRTL labels are affixed, NFPA, Life Safety, and Joint Commission guidelines are followed, and proper installation practices are followed. Include a full operational test.

- b. Arrange for inspection and test conducted by a factory-certified representative to be witnessed by Government and SMCS 0050P2H3 at a minimum and COR. An identical inspection can be conducted between 65 and 75 percent of system construction phase, at direction of COR.
- 2. Pretesting:
 - a. Upon completing installation of system:
 - Align, balance, and completely pretest entire system under full operating conditions.
 - Verify (utilizing approved test equipment) system is operational and meets performance requirements of this standard.
 - 3) Verify that system functions are operational, and no unwanted aural effects, (e.g. signal distortion, noise pulses, glitches, audio hum, poling noise, etc.) are present. At a minimum, pretest each of the following locations:
 - a) Networked locations.
 - b) System trouble reporting.
 - c) System electrical supervision.
 - d) UPS operation.
 - b. Provide recorded system pretest measurements and written certification that system is ready for formal acceptance test to COR.
- 3. Acceptance Test:
 - a. Schedule acceptance test date giving COR 30 days' written notice prior to date acceptance test is expected to begin. System must be tested in the presence of a Government representative and OEMcertified representative. System must be tested utilizing approved test equipment to certify proof of performance and emergency compliance. Test must verify that the total system meets specification requirements. Notification of acceptance test must include expected duration of time of the test.
- 4. Acceptance Test Procedure:
 - a. Physical and Mechanical Inspection:

- Government representative may tour areas where system and subsystems are completely and properly installed to ensure they are operationally ready for proof of performance testing.
 Prepare system inventory including available spare parts. Each item of installed equipment must be checked to ensure appropriate NRTL labels are affixed.
- System diagrams, record drawings, equipment manuals, Auto CAD Disks, intermediate, and pretest results must be inventoried and reviewed.
- 3) Failure of system to meet installation requirements of this specification can be grounds for terminating all testing.
- b. Operational Test:
 - Contractor must demonstrate full functionality of system including:
 - a) Station to master calls.
 - b) Station to station calls.
 - c) Broadcast calls.
 - d) Location identification of stations at intercom master station.
- c. Test Conclusion: Government will accept results of the test or require additional testing on deficiencies and shortages. Retesting to comply with these specifications must be done at Government's convenience and contractor's expense.

3.4 TRAINING

- A. Provide training of facility-identified staff assigned to units receiving communications by an IC system. Implement training from master console operator's perspective, and likewise, for any person whose specific responsibilities include answering IC calls and dispatching an appropriate response, provide operational training from their perspective. A separate training room may be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of new system.
- B. Provide the following minimum training times and durations:1. 24 hours prior to facility opening,

3.5 MAINTENANCE

A. Provide Government personnel with ability to contact contractor and OEM for maintenance and logistic assistance, remote diagnostic testing, and

27 51 23 - 12

assistance in resolving technical problems at any time, during warranty period.

- B. Response Time during Warranty Period:
 - COR is contractor's only official reporting and contact official for IC system trouble calls, during the warranty period.
 - A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by COR, Monday through Friday exclusive of Federal holidays.
 - 3. Respond and correct on-site trouble calls, during the standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes one IC station, or master IC station to be inoperable.
 - b. An emergency trouble call within four hours of its report.
 - An emergency trouble is considered a trouble which causes a IC sub system or equipment cabinet, to be inoperable at any time.
 - Emergency trouble calls include routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.). COR must notify contractor of this type of trouble call.
 - If an IC component failure cannot be corrected within four hours (exclusive of the standard work time limits), provide alternate IC equipment.
 - 5. Complete installation of alternate equipment/system within sixteen hours after the four hour trouble shooting time and restore operation of effected location to system performance standards.
 - 6. Replace any sub-system or major system that cannot be corrected within one working day, with compatible temporary equipment returning system or sub-system to full operational capability, until repairs are complete.

- - - E N D - - -

SECTION 27 52 23 NURSE CALL AND CODE BLUE SYSTEMS

PART 1 - GENERAL

1.1 SECTION SUMMARY

- A. Work covered by this document includes design, engineering, labor, material and products, equipment warranty and system warranty, training and services for, and incidental to, the complete installation of new and fully operating National Fire Protection Association (NFPA) - Life Safety Code 101.3-2 (a) Labeled and (b) Listed, Emergency Service Nurse-Call and/or Life Safety listed Code Blue Communication System and associated equipment (here-in-after referred to as the System) provided in approved locations indicated on the contract drawings. These items shall be tested and certified capable of receiving, distributing, interconnecting and supporting Nurse-Call and/or Code Blue communications signals generated local and remotely as detailed herein.
- B. Work shall be complete, Occupational Safety and Health Administration (OSHA), National Recognized Testing Laboratory (NRTL - i.e. Underwriters Laboratory [UL]) Listed and Labeled; and VA Central Office (VACO), Telecommunications Voice Engineering (TVE 0050P3B) tested, certified and ready for operation.
- C. The System shall be delivered free of engineering, manufacturing, installation, and functional defects. It shall be designed, engineered and installed for ease of operation, maintenance, and testing.
- D. The term "provide", as used herein, shall be defined as: designed, engineered, furnished, installed, certified, tested, and warranty by the Contractor.
- E. Specification Order of Precedence: In the event of a conflict between the text of this document and the Project's Contract Drawings outlined and/or cited herein; THE TEXT OF THIS DOCUMENT TAKES PRECEDENCE. HOWEVER, NOTHING IN THIS DOCUMENT WILL SUPERSEDE APPLICABLE EMERGENCY LAWS AND REGULATIONS, SPECIFICALLY NATIONAL AND/OR LOCAL LIFE AND PUBLIC SAFETY CODES. The Local Fire Marshall and/or VA Public Safety Officer are the only authorities that may modify this document's EMERGENCY CODE COMPLIANCE REQUIREMENTS, on a case by case basis, in writing and confirmed by VA's Project Manager (PM), Resident Engineer (RE) and TVE-0050P3B. <u>The VA PM is the only approving authority</u> for other amendments to this document that may be granted, on a case by

case basis, in writhing with technical concurrencies by VA's PM, RE, TVE-0050P3B and identified Facility Project Personnel.

F. The Original Equipment Manufacturer (OEM) and Contractor shall ensure <u>that all</u> management, sales, engineering and installation personnel have read and understand the requirements of this specification <u>before</u> the system is designed, engineered, delivered and provided. The Contractor shall furnish a written statement stating this requirement as a part of the technical submittal that includes each name and certification, including the OEMs. The Contractor is cautioned to obtain <u>in writing</u>, <u>all approvals for system changes relating to the published contract</u> <u>specifications and drawings, from the PM and/or the RE before</u> proceeding with the change.

1.2 RELATED SECTIONS

- A. 01 33 23 Shop Drawings, Product Data and Samples.
- B. 07 84 00 Firestopping.
- C. 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- D. 26 41 00 Facility Lightning Protection.
- E. 27 05 11 Requirements for Communications Installations.
- F. 27 05 26 Grounding and Bonding for Communications Systems.
- G. 27 05 33 Raceways and Boxes for Communications Systems.
- H. 27 10 00 CONTROL, COMMUNICATION AND SIGNAL WIRING.
- I. 27 11 00 Telecommunications Room Fittings.
- J. 27 15 00 -Communications Structured Cabling.

K. 27 51 16 - Public Address & Mass Notification System (PA).

1.3 DEFINITION

- A. Provide: Design, engineer, furnish, install, connect complete, test, certify and warranty.
- B. Work: Materials furnished and completely installed.
- C. Review of contract drawings: A service by the engineer to reduce the possibility of materials being ordered which do not comply with contract documents. The engineer's review shall not relieve the Contractor of responsibility for dimensions or compliance with the contract documents. The reviewer's failure to detect an error does not constitute permission for the Contractor to proceed in error.

D. Headquarters (aka VACO) Technical Review, for National and VA Communications and Security, Codes, Frequency Licensing Standards, Guidelines and Compliance:

> Office of Telecommunications Special Communications Team (0050P3B) 1335 East West Highway - 3rd Floor Silver Spring, Maryland 20910, (0) 301-734-0350, (F) 301-734-0360

E. Contractor: Systems Contractor; you; successful bidder.

1.4 REFERENCES

- A. The installation shall comply fully with all governing authorities, laws and ordinances, regulations, codes and standards, including, but not limited to:
 - 1. United States Federal Law:
 - a. Departments of:
 - Commerce, Consolidated Federal Regulations (CFR), Title 15 Under the Information Technology Management Reform Act (Public Law 104-106), the Secretary of Commerce approves standards and guidelines that are developed by the:
 - a) Chapter II, National Institute of Standards Technology (NIST - formerly the National Bureau of Standards). Under Section 5131 of the Information Technology Management Reform Act of 1996 and the Federal Information Security Management Act of 2002 (Public Law 107-347), NIST develops - Federal Information Processing Standards Publication (FIPS) 140-2-Security Requirements for Cryptographic Modules.
 - b) Chapter XXIII, National Telecommunications and Information Administration (NTIA - aka 'Red Book') Chapter 7.8 / 9;
 CFR, Title 47 Federal communications Commission (FCC) Part 15, Radio Frequency Restriction of Use and Compliance in "Safety of Life" Functions & Locations.
 - 2) FCC Communications Act of 1934, as amended, CFR, Title 47 -Telecommunications, in addition to Part 15 - Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/ Locations (also see CFR, Title 15 - Department of Commerce, Chapter XXIII - NTIA):

- a) Part 15 Restrictions of use for Part 15 listed Radio Equipment in Safety of Life / Emergency Functions / Equipment/Locations.
- b) Part 58 Television Broadcast Service.
- c) Part 90 Rules and Regulations, Appendix C.
- 3) Health, (Public Law 96-88), CFR, Title 42, Chapter IV Health & Human Services, CFR, Title 46, Subpart 1395(a) (b) JCAHO "a hospital that meets JCAHO accreditation is deemed to meet the Medicare conditions of Participation by meeting Federal Directives:"
 - a) All guidelines for Life, Personal and Public Safety; and, Essential and Emergency Communications.
- 4) Labor, CFR, Title 29, Part 1910, Chapter XVII Occupational Safety and Health Administration (OSHA), Occupational Safety and Health Standard:
 - a) Subpart 7 Definition and requirements (for a NRTL 15 Laboratory's, for complete list, contact (http://www.osha.gov/dts/otpca/nrtl/faq nrtl.html):
 - 1) UL:
 - a) 44-02 Standard for Thermoset-Insulated Wires and Cables.
 - b) 65 Standard for Wired Cabinets.
 - c) 83-03 Standard for Thermoplastic-Insulated Wires and Cables.
 - d) 467-01 Standard for Electrical Grounding and Bonding Equipment
 - e) 468 Standard for Grounding and Bonding Equipment.
 - f) 486A-01 Standard for Wire Connectors and Soldering Lugs for Use with Copper Conductors
 - g) 486C-02 Standard for Splicing Wire Connectors.
 - h) 486D-02 Standard for Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations.
 - i) 486E-00 Standard for Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors.
 - j) 493-01 Standard for Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable.
 - k) 514B-02 Standard for Fittings for Cable and

Conduit.

- 1) 1069 Hospital Signaling and Nurse Call Equipment.
- m) 1449 Standard for Transient Voltage Surge Suppressors.
- n) 1479-03 Standard for Fire Tests of Through-Penetration Fire Stops.
- o) 1666 Standard for Wire/Cable Vertical (Riser) Tray Flame Tests.
- p) 1863 Standard for Safety, Communications Circuits Accessories.
- q) 2024 Standard for Optical Fiber Raceways.
- r) 60950-1/2 Information Technology Equipment -Safety.
- Canadian Standards Association (CSA): same tests as for UL.
- Communications Certifications Labatory (CCL): same tests as for UL.
- Intertek Testing Services NA, Inc. (ITSNA formerly Edison Testing Laboratory [ETL]): same tests as for UL.
- b) Subpart 35 Compliance with NFPA 101 Life Safety Code.
- c) Subpart 36 Design and construction requirements for exit routes.
- d) Subpart 268 Telecommunications.
- e) Subpart 305 Wiring methods, components, and equipment for general use.
- 5) Veterans Affairs (Public Law No. 100-527), CFR, Title 38, Volumes I & II:
 - a) Office of Telecommunications:
 - 1) Handbook 6100 Telecommunications.
 - a) Spectrum Management FCC & NTIA Radio Frequency Compliance and Licensing Program.
 - b) Special Communications Proof of Performance Testing, VACO Compliance and Life Safety Certification(s).
 - b) Office of Cyber and Information Security (OCIS):
 - 1) Handbook 6500 Information Security Program.
 - Wireless and Handheld Device Security Guideline Version
 3.2, August 15, 2005.

27 52 23 - 5

- c) VA's National Center for Patient Safety Veterans Health Administration Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- d) VA's Center for Engineering Occupational Safety and Health, concurrence with warning identified in VA Directive 7700.
- e) Office of Construction and Facilities Management (CFM):
 - 1) Master Construction Specifications (PG-18-1).
 - 2) Standard Detail and CAD Standards (PG-18-4).
 - 3) Equipment Guide List (PG-18-5).
 - Electrical Design Manual for VA Facilities (PG 18-10), Articles 7 & 8.
 - 5) Minimum Requirements of A/E Submissions (PG 18-15):
 - a) Volume B, Major New Facilities, Major Additions; and Major Renovations, Article VI, Paragraph B.
 - b) Volume C Minor and NRM Projects, Article III, Paragraph S.
 - c) Volume E Request for Proposals Design/Build Projects, Article II, Paragraph F.
 - Mission Critical Facilities Design Manual (Final Draft -2007).
 - Life Safety Protected Design Manual (Final Draft -2007).
 - Solicitation for Offerors (SFO) for Lease Based Clinics
 (05-2009).
- b. Federal Specifications (Fed. Specs.):
 - A-A-59544-00 Cable and Wire, Electrical (Power, Fixed Installation).
- 2. National Codes:
 - American Institute of Architects (AIA): Guidelines for Healthcare Facilities.
 - b. American National Standards Institute/Electronic Industries
 Association/Telecommunications Industry Association
 (ANSI/EIA/TIA):
 - 568-B Commercial Building Telecommunications Wiring Standards:
 - a) B-1 General Requirements.
 - b) B-2 Balanced twisted-pair cable systems.

c) B-3 - Fiber optic cable systems.

- 569 Commercial Building Standard for Telecommunications Pathways and Spaces.
- 606 Administration Standard for the Telecommunications Infrastructure of Communications Buildings.
- 607 Commercial Building Grounding and Bonding Requirements for Telecommunications.
- 5) REC 127-49 Power Supplies.
- RS 270 Tools, Crimping, Solderless Wiring Devices, Recommended Procedures for User Certification.
- c. American Society of Mechanical Engineers (ASME):
 - 1) Standard 17.4 Guide for Emergency Personnel.
 - Standard 17.5 Elevator & Escalator Equipment (prohibition of installing non-elevator equipment in Elevator Equipment Room / Mechanical Penthouse).
- d. American Society of Testing Material (ASTM):
 - D2301-04 Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape.
- e. Building Industries Communications Services Installation (BICSI):
 - All standards for smart building wiring, connections and devices for commercial and medical facilities.
 - 2) Structured Building Cable Topologies.
 - 3) In consort with ANSI/EIA/TIA.
- f. Institute of Electrical and Electronics Engineers (IEEE):
 - SO/TR 21730:2007 Use of mobile wireless communication and computing technology in healthcare facilities -Recommendations for electromagnetic compatibility (management of unintentional electromagnetic interference) with medical devices.
 - 0739-5175/08/©2008 IEEE Medical Grade Mission Critical -Wireless Networks.
 - 3) C62.41 Surge Voltages in Low-Voltage AC Power Circuits.
- g. NFPA:
 - 70 National Electrical Code (current date of issue) -Articles 517, 645 & 800.
 - 75 Standard for Protection of Electronic Computer Data-Processing Equipment.
 - 3) 77 Recommended Practice on Static Electricity.

- 4) 99 Healthcare Facilities.
- 5) 101 Life Safety Code.
- 3. State Hospital Code(s).
- 4. Local Town, City and/or County Codes.
- 5. Accreditation Organization(s):
 - a. Joint Commission on Accreditation of Hospitals Organization (JCAHO) - Section VI, Part 3a - Operating Features.

1.5 QUALIFICATIONS

- A. The OEM shall have had experience with three (3) or more installations of Nurse Call systems of comparable size and interfacing complexity with regards to type and design as specified herein. Each of these installations shall have performed satisfactorily for at least one (1) year after final acceptance by the user. Include the names, locations and point of contact for these installations as a part of the submittal.
- B. The Contractor shall submit certified documentation that they have been an authorized distributor and service organization for the OEM for a minimum of three (3) years. The Contractor shall be authorized by the OEM to pass thru the OEM's warranty of the installed equipment to VA. In addition, the OEM and Contractor shall accept complete responsibility for the design, installation, certification, operation, and physical support for the System. This documentation, along with the System Contractor and OEM certifications must be provided in writing as part of the Contractor's Technical submittal.
- C. The Contractor's Communications Technicians assigned to the System shall be fully trained, qualified, and certified by the OEM on the engineering, installation, operation, and testing of the System. The Contractor shall provide formal written evidence of current OEM certification(s) for the installer(s) as a part of the submittal or to the RE before being allowed to commence work on the System.
- D. The Contractor shall display all applicable national, state and local licenses.
- E. The Contractor shall submit copy (s) of Certificate of successful completion of OEM's installation/training school for installing technicians of the System's Nurse Call and/or Code Blue equipment being proposed.

1.6 CODES AND PERMITS

- A. Provide all necessary permits and schedule all inspections as identified in the contract's milestone chart, so that the system is proof of performance tested, certified and approved by VA and ready for operation on a date directed by the Owner.
- B. The contractor is responsible to adhere to all codes described herein and associated contractual, state and local codes.

1.7 SCHEDULING

- A. After the award of contract, the Contractor shall prepare a detailed schedule (aka milestone chart) using "Microsoft Project" software or equivalent. The Contractor Project Schedule (CPS) shall indicate detailed activities for the projected life of the project. The CPS shall consist of detailed activities and their restraining relationships. It will also detail manpower usage throughout the project.
- B. It is the responsibility of the Contractor to coordinate all work with the other trades for scheduling, rough-in, and finishing all work specified. The owner will not be liable for any additional costs due to missed dates or poor coordination of the supplying contractor with other trades.

1.8 REVIEW OF CONTRACT DRAWINGS AND EQUIPMENT DATA SUBMITTALS (AKA TECHNICAL SUBMITTAL[S])

- (Note: The Contractor is encouraged, but not required, to submit separate technical submittal(s) outlining alternate technical approach(s) to the system requirements stated here-in as long as each alternate technical document(s) is complete, separate, and submitted in precisely the same manner as outlined herein. VA will review and rate each received alternate submittal, which follows this requirement, in exactly the same procedure as outlined herein. Partial, add-on, or addenda type alternates will not be accepted or reviewed.)
- A. Submit at one time within 10 days of contract awarding, drawings and product data on all proposed equipment and system. Check for compliance with contract documents and certify compliance with Contractor's "APPROVED" stamp and signature.
- B. Support all submittals with descriptive materials, i.e., catalog sheets, product data sheets, diagrams, and charts published by the manufacturer. These materials shall show conformance to specification and drawing requirements.

- C. Where multiple products are listed on a single cut-sheet, circle or highlight the one that you propose to use. Provide a complete and through equipment list of equipment expected to be installed in the system, with spares, as a part of the submittal. Special Communications (TVE-0050P3B) will not review any submittal that does not have this list.
- D. Provide four (4) copies to the PM for technical review. The PM will provide a copy to the offices identified in Paragraph 1.3.C & D, at a minimum for compliance review as described herein where each responsible individual(s) shall respond to the PM within 10 days of receipt of their acceptance or rejection of the submittal(s).
- E. Provide interconnection methods, conduit (where not already installed), junction boxes (J-Boxes), cable, interface fixtures and equipment lists for the: ENR(s) (aka DMARC), TER, TCR, MCR, MCOR, PCR, ECR, Stacked Telecommunications Rooms (STR), Nurses Stations (NS), Head End Room (HER), Head End Cabinet (HEC), Head End Interface Cabinet (HEIC) and approved TCO locations TIP interface distribution layout drawing, as they are to be installed and interconnected to teach other (REFER TO APPENDIX B - SUGGESTED TELECOMMUNI-CAITONS ONE LINE TOPOLOGY pull-out drawing).
- F. Equipment technical literature detailing the electrical and technical characteristics of each item of equipment to be furnished.
- G. Engineering drawings of the System, showing calculated of expected signal levels at the headend input and output, each input and output distribution point, and signal level at each telecommunications outlet.
- H. Surveys Required as a Part of The Technical Submittal:
 - 1. The Contractor shall provide the following System surveys that depict various system features and capacities required <u>in addition</u> <u>to</u> the on-site survey requirements described herein (see Specification Paragraph 2.4.3). Each survey shall be in writing and contain the following information (the formats are suggestions and may be used for the initial Technical Submittal Survey requirements), as a minimum:
 - a. Nurse Call Cable System Design Plan:
 - An OEM and contractor designed functioning Nurse Call System cable plan to populate the entire TIP empty conduit/pathway distribution systems provided as a part of Specification 27 11
 o0 shall be provided as a part of the technical proposal. A

specific functioning Nurse Call: cable, interfaces, J-boxes and back boxes shall coincide with the total growth items as described herein. It is the Contractor's responsibility to provide the Systems' entire Nurse Call cable and accessory requirements and engineer a functioning Nurse Call distribution system and equipment requirement plan of the following paragraph(s), at a minimum:

2)

1.9 PROJECT RECORD DOCUMENTS (AS BUILTS)

- A. Throughout progress of the Work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
- B. The floorplans shall be marked in pen to include the following:
 - 1. Each device specific locations with UL labels affixed.
 - 2. Conduit locations.
 - 3. Each interface and equipment specific location.
 - 4. Head-end equipment and specific location.
 - 5. Wiring diagram.
 - 6. Labeling and administration documentation.
 - 7. Warranty certificate.
 - 8. System test results.

1.10 WARRANTIES / GUARANTY

- A. The Contractor shall warrant the installation to be free from defect in material and workmanship for a period of two (2) years from the date of acceptance of the project by the owner. The Contractor shall agree to remedy covered defects within four (4) hours of notification of major failures or within twenty-four (24) hours of notification for individual station related problems.
- B. The Contractor shall agree to grantee the system according to the guidelines outlined in Article 4 herein.

1.11 USE OF THE SITE

- A. Use of the site shall be at the GC's direction.
- B. Coordinate with the GC for lay-down areas for product storage and administration areas.
- C. Coordinate work with the GC and their sub-contractors.
- D. Access to buildings wherein the work is performed shall be directed by the GC.

27 52 23 - 11

1.12 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Coordinate with the GC for product storage. There may be little or no storage space available on site. Plan to potentially store materials off site.
- D. Do not install damaged products. Remove damaged products from the site and replaced with new product at no cost to the Owner.

1.13 PROJECT CLOSE-OUT

- A. Prior to final inspection and acceptance of the work, remove all debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from the project site and thoroughly clean your work area.
- B. Before the project closeout date, the Contractor shall submit:
 - 1. OEM Equipment Warranty Certificates.
 - 2. Evidence of compliance with requirements of governing authorities such as the Low Voltage Certificate of Inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that is a part of the system.
 - 5. System Guaranty Certificate.
- C. Contractor shall submit written notice that:
 - 1. Contract Documents have been reviewed.
 - 2. Project has been inspected for compliance with contract.
 - 3. Work has been completed in accordance with the contract.

PART 2 - PRODUCTS / FUNCTIONAL REQUIREMENTS

2.0 GENERAL REQUIREMENTS FOR EQUIPMENT AND MATERIALS

- A. Furnish and install a complete and fully functional and operable Nurse Call System for each location shown on the contract drawings and TCOs WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 11 00.
- B. Coordinate features and select interface components to form an integrated Nurse Call system. Match components and interconnections between the systems for optimum performance of specified functions.
- C. Expansion Capability: The Nurse Call equipment interfaces and cables shall be able to increase number of enunciation points in the future by a minimum of 50 percent (%) above those indicated without adding any internal or external components or main trunk cable conductors.

- D. Equipment: Active electronic type shall use solid-state components, fully rated for continuous duty unless otherwise indicated. Select equipment for normal operation on input power usually supplied between 110 to 130 VAC, 60 Hz supplied from the Facility's Emergency Electrical Power System.
- E. Meet all FCC requirements regarding equipment listing, low radiation and/or interference of RF signal(s). The system shall be designed to prevent direct pickup of signals from within and outside the building structure.
- F. Weather/Water Proof Equipment: Listed and labeled by an OSHA certified NRTL (i.e. UL) for duty outdoors or in damp locations.

2.1 SYSTEM DESCRIPTION

- A. Furnish and install a complete and fully functional and operable Nurse Call and/or Code Blue System WHOSE EMPTY CONDUIT SYSTEM WAS PROVIDED AS A PART OF SPECIFICATION 27 11 00.
- B. The Contractor is responsible for interfacing the PA, and MATV systems with the nurse call system.
- C. The Contractor shall continually employ interfacing methods that are approved by the OEM and VA. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection, but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The interface point must adhere to all standards described herein for the full separation of Critical Care and Life Safety systems.
- D. The System Contractor shall connect the System ensuring that all NFPA and UL Critical Care and Life Safety Circuit and System separation guidelines are satisfied. The System Contractor is not allowed to make any connections to the Telephone System. VA shall arrange for the interconnection between the PA, and MATV systems with the appropriate responsible parties.
- E. System hardware shall consist of a standalone (separate) nurse call Code Blue patient communications network comprised of nurse consoles, control stations, staff and duty stations, room and corridor dome lights, pillow speakers/call cords, pull cord and/or emergency push button stations, wiring. And, other options such as, pocket page interfaces, computer interfaces, printer interfaces, wireless / telephone network interfaces, and nurse locating system interface (when specifically approved first by TVE 0050P3B) and as shown on drawings.

All necessary equipment required to meet the intent of these specifications, whether or not enumerated within these specifications, shall be supplied and installed to provide a complete and operating nurse call, Code Blue patient communications network. It is not acceptable to utilize the telephone cable system for the control and distribution of nurse call (code Blue) signals and equipment.

- F. System firmware shall be the product of a reputable firmware OEM of record with a proven history of product reliability and sole control over all source code. Manufacturer shall provide, free of charge, product firmware/software upgrades for a period of two (2) years from date of acceptance by VA for any product feature enhancements. System configuration programming changes shall not require any exchange of parts and shall be capable of being executed remotely via a modem connection (when specifically approved first by TVE 0050P3B).
- G. The Nurse Call Head End Equipment shall be located in Telecommunications Room as noted on drawings. The Nurse Call Code Blue System may interface the PA system when specifically approved by VA Headquarters T VE 0050P3B during the project approval process prior to contract bidding.
- H. The System shall utilize microprocessor components for all signaling and programming circuits and functions. Self contained or on board system program memory shall be non-volatile and protected from erasure from power outages for a minimum of 12 hours.
- I. Provide a backup battery or a UPS for the System (including each distribution cabinet/point, CRT and Monitor) to allow normal operation and function (as if there was no AC power failure) in the event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.
- J. The System is defined as Critical Service and the Code Blue functions is defined as Life Safety/Support by NFPA (re Part 1.1.A) and so evaluated by JCAHCO. Therefore, the system shall have a minimum of two (2) additional remote enunciation points in order to satisfy NFPA's Life Safety Code 101 (the typical secondary locations are Telephone Operators Room, MAS ER Desk, Boiler Plant, etc.
 - These two (2) additional remote locations shall be fully manned:
 a. 24/7/365 for certified Hospital.
 - b. As long as other identified VA Medical / Servicing Facilities are open for servicing patients.

- c. At a minimum, Code Blue Functions shall be provided in all Recovery (Medical and Surgical) Rooms.
- d. The minimum remote enunciation locations shall be:
 - 1) The Telephone / PBX Operator Room.
 - 2) The Police Control / Operations Room.
 - 3) Other location(s) that is specifically approved by VA Headquarters TVE - 0050P3B DURING THE PROJECT DEVELOPMENT STAGES AND PRIOR TO EQUIPMENT PURCHASE.
- 2. In addition to the two (2) remote locations afore described, the following locations are the minimum required for additional Nurse Call /Code Blue Annunciation:
 - a. "On Call" Rooms.
 - b. Each Nurse Master Station.
 - c. Each Staff Station.
 - d. Each Duty Station.
- 3. The MAXIMUM enunciation time period from placement of the Code Blue Call to enunciation at each remote locations is 10 seconds; and, 15 seconds to the subsequent enunciating media stations (i.e. PA, Radio Paging, Emergency Telephone or Radio Backup, etc.).
- K. Each Code Blue System shall be designed to provide continuous electrical supervision of the complete and entire system (i.e. dome light bulbs [each light will be considered supervised if they use any one or a combination of (UL) approved electrical supervision alternates, as identified in UL-1069, 1992 revision], wires, contact switch connections, circuit boards, data, audio, and communication busses, main and UPS power, etc.). All alarm initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and UPS power circuits shall be supervised for a change in state (i.e. primary to backup, low battery, UPS on line, etc.). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the nurse control station and all remote locations.
- L. When the System is approved to connect to a separate communications system (i.e. LAN, WAN, Telephone, Public Address, radio raging, wireless systems, etc) the connection point shall meet the following minimum requirements for each hard wired / wireless connection (note each wireless system connection MUST BE APPROVED PRIOR TO CONTRACT BID

BY VA HEADQUARTERS TVE - 0050P3B AND SPECTRUM MANAGEMENT - 0050P2B - hereinafter referred to as SM - 0050P2B):

- 1. UL 60950-1/2.
- 2. FIPS 142.
- 3. FCC Part 15 Listed Radio Equipment restriction compliance approved by SM 0050P2B.
- M. All passive distribution equipment shall meet or exceed -80 dB radiation shielding (aka RFI) shielding specifications and be provided with connectors specified by the OEM.
- N. All equipment face plates utilized in the system shall be stainless steel, anodized aluminum or UL approved cycolac plastic for the areas where provided.
- O. Noise filters and surge protectors shall be provided for each equipment interface cabinet, headend cabinet, control console and local and remote amplifier locations to insure protection from input primary AC power surges and to insure noise glitches are not induced into low voltage data circuits.
- P. Plug-in connectors shall be provided to connect all equipment, except coaxial cables. Coaxial cable distribution points shall use coaxial cable connections recommended by the cable OEM and approved by the system OEM. Base band cable systems shall utilize barrier terminal screw type connectors, at a minimum. As an alternate, crimp type connectors installed with a ratchet type installation tool are acceptable provided the cable dress, pairs, shielding, grounding, connections and labeling are the same as the barrier terminal strip connectors. Tape of any type, wire nuts or solder type connections are unacceptable and will not be approved.
- R. Audio Level Processing: The control equipment shall consist of audio mixer(s), volume limiter(s) and/or compressor(s), and power amplifier(s) to process, adjust, equalize, isolate, filter, and amplify each audio channel for each sub-zone in the system and distribute them into the System's RF interfacing distribution trunks and amplification circuits. It is acceptable to use identified Telephone System cable pairs designated for Two-Way Radio interface and control use or identified as spare telephone cable pairs by the Facility's Telephone System Contractor. The use of telephone cable to distribute RF signals, carrying system or sub-system AC or DC voltage is not acceptable and will not be approved. Additionally, each control location shall be

provided with the equipment required to insure the system can produce its designed audio channel capacity at each speaker identified on the contract drawings. The Contractor shall provide: a spare set of telephone paging modules as recommended by the OEM (as a minimum provide one spare module for each installed module); one spare audio power amplifier, one spare audio mixer, one spare audio volume limiter and/or compressor, and one spare audio automatic gain adjusting device, and minimum RF equipment recommended by the OEM.

- S. Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. Unless otherwise noted in this Part, equipment quantities shall be as indicated on the drawings.
- R. System Performance:
 - At a minimum, each distribution, interconnection, interface, terminating point and TCO shall be capable of supporting the Facility's Nurse Call and/or Code Blue System voice and data service as follows:
 - a. Shall be compliant with and not degrade the operating parameters of the Public Switched Telephone Network (PSTN) and the Federal Telecommunications System (FTS) at each PSTN and FTS interface (if attachment is permitted by TVE 0050P3B), interconnection and TCO terminating locations detailed on the contract drawings.
 - b. The System shall provide the following minimum operational functions:
 - Code Blue calls shall be cancelable at the calling station only. The nurse call master station (s) that a managing Code Blue functions shall not have the ability to cancel Code Blue calls.
 - Each Code Blue system shall be able to receive audio calls from all bedside stations simultaneously.
 - 3) Calls placed from any Code Blue station shall generate Code Blue emergency type audible and visual signals at each associated nurse control and duty station, respective dome lights and all local and remote annunciator panels. Calls placed from a bedside station shall generate emergency type visual signals at the bedside station and associated dome light(s) in addition to the previous stated stations and panels.

- Activating the silencing device at any location, while a Code Blue call or system fault is occurring shall mute the audible signals at the alarm location.
 - a) The audible alarm shall regenerate at the end of the selected time-out period until the call or fault is corrected.
 - b) The visual signals shall continue until the call is canceled and/or a fault is corrected. When the fault is corrected, all signals generated by the fault shall automatically cease, returning the System to a standby status.
 - c) Audible signals shall be regenerated in any local or remote annunciator panel that is in the silence mode, in the event an additional Code Blue call is placed in any Code Blue system.
 - d) The additional Code Blue call shall also generate visual signals at all annunciators to identify the location of the call.
- Each System Nurse Call location shall generate a minimum of distinct calls:
 - Routine: single flashing dome lights & master station color and audio tone,
 - b. Staff Assist: rapid flashing dome lights & master station color and audio tone,
 - c. Emergency: Red flashing done lights & master station color and audio tone,
 - d. Code Blue (if equipped): Blue flashing dome lights and master station color and audio tone,
 - e. Each generated call shall be cancelable at ONLY the originating location,
 - f. Staff Locator: Green Flashing dome lights & master station color and audio tone, and

2.3 MANUFACTURERS

- A. The products specified shall be new, FCC and UL Listed, labeled and produced by Rauland Borg, Responder 5 series. An OEM of record shall be defined as a company whose main occupation is the manufacture for sale of the items of equipment supplied and which:
 - 1. Maintains a stock of replacement parts for the item submitted,

- Maintains engineering drawings, specifications, and operating manuals for the items submitted, and
- 3. Has published and distributed descriptive literature and equipment specifications on the items of equipment submitted at least 30 days prior to the Invitation for Bid.
- B. Specifications contained herein as set forth in this document detail the salient operating and performance characteristics of equipment in order for VA to distinguish acceptable items of equipment from unacceptable items of equipment. When an item of equipment is offered or furnished for which there is a specification contained herein, the item of equipment offered or furnished shall meet or exceed the specification for that item of equipment.
- C. Equipment Standards and Testing:
 - The System has been defined herein as connected to systems identified as Critical Service performing various Emergency and Life Support Functions. Therefore, at a minimum, the system shall conform to all aforementioned National and/or Local Life Safety Codes (which ever are the more stringent), NFPA, NEC, this specification, JCAHCO Life Safety Accreditation requirements, and the OEM recommendations, instructions, and guidelines.
 - All supplies and materials shall be listed, labeled or certified by UL or a NRTL where such standards have been established for the supplies, materials or equipment.
 - 3. The provided equipment required by the System design and approved technical submittal must conform with each UL standard in effect for the equipment, as of the date of the technical submittal (or the date when the RE approved system equipment necessary to be replaced) was technically reviewed and approved by VA. Where a UL standard is in existence for equipment to be used in completion of this contract, the equipment must bear the approved UL seal.
 - 4. Each item of electronic equipment to be provided under this contract must bear the approved UL seal or the seal of the testing laboratory that warrants the equipment has been tested in accordance with, and conforms to the specified standards. The placement of the UL Seal shall be a permanent part of the electronic equipment that is not capable of being transportable from one equipment item to another.

2.4 PRODUCTS

A. General.

- Contractor is responsible for pricing all accessories and miscellaneous equipment required to form a complete and operating system. The equipment quantities provided herein shall be as indicated on the drawings with the exception of the indicated spare equipment.
- 2. Contractor Furnished Equipment List (CFEs):
 - a. The Contractor is required to provide a list of the CFE equipment to be furnished. The quantity, make and model number of each item is required. Select the required equipment items quantities that will satisfy the needs of the system as described herein and with the OEM's concurrence applied to the list(s), in writing.
- B. NS Room(s):

Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.

- C. TER, SCC, PCR, STR, HER Rooms and Equipment:
 - Refer to CFM Physical Security Manual (07-2007) for VA Facilities, Chapters 9.3 & 1) and PG 18-10, EDM, Chapters 7- Table 7-1, 8 & Appendix B, Telecommunications One Line Topology for specific Room and TIP Connection Requirements.
- D. Telecommunications Room(s) (TR):
 - Locate the Nurse Call and/or Code Blue floor distribution equipment as required by system design and OEM direction. Provide secured and lockable cabinet/rack(s) as required.
 - 2. Head-End Equipment:
 - a. Provide all required power supplies, communications hubs, network switches, intelligent controllers and other devices necessary to form a complete system. Head-end components may be rack mounted or wall mounted in an enclosed metal enclosure.
 - b. Provide the head end equipment in the closest Telecommunications Room where the System is installed.
 - c. Provide the System UPS inside the cabinet or in a separate cabinet adjacent to the head end cabinet that shall maintain a minimum of 30 minute battery back-up to all system components.
 - d. Equipment Cabinet: Comply with TIA/EIA-310-D. Lockable, ventilated metal cabinet houses terminal strips, power supplies,

amplifiers, system volume control, and other switching and control devices required for conversation channels and control functions. See Paragraph 2.5.E for the Cabinet's minimum internal items that are in addition to the installed System equipment.

- e. Vertical Equipment Rack, Wall Mounted (to be included inside of the Equipment Cabinet) containing the following minimum items:
 1) 36" (28RU) internal rack space, welded steel construction,
 - minimum 20" usable depth, adjustable front mounting rails.
 - Install the following products in rack provided by same manufacturer or as specified:
 - a) Security screws w/ nylon isolation bushings.
 - b) Textured blank panels.
 - c) Custom mounts for components without rack mount kits.
 - d) Security covers.
 - e) Internal system ground copper buss (may be substituted with a bare #0 AWG copper wire or equivalent size copper mesh strip connected to ONLY THE FACILITY'S SIGNAL GROUNDING SYSTEM.
 - f) Power Sequencer- rack-mounted power conditioner and (provide as-needed) delayed sequencer(s) with (2) unswitched outlets each and contact closure control inputs. Connect the conditioner to one of the dual duplex outlets.
 - g) Two (2) each 120VAC @ 20A dual duplex outlets, connected via conduit to the nearest Electrical Service Panel that is supplied by the Facility's Essential Electrical System.
 - h) One (1) each 120VAC @ 15A Power Distribution Strip(s).Connect each strip to the unstitched outlet on the power conditioner.
- 3. HL7 Interface:
 - a. The system may support downloading and updating of patient data from the hospital admission system (or other database) via the HL7 standard. The data only has to travel one way, i.e. from the admission system to the nurse-call system.
 - b. Coordinate with the Owner the exact fields that will be populated from the admissions system in the nurse-call system.

- c. The Facility's LAN/WAN is not allowed for Nurses Call/Code Blue main wiring / function that must be a "stand alone primary cable infrastructure" as described herein.
- d. Connections to the VA LAN/WAN for functional or operable conditions will be allowed ONLY when the LAN/WAN system has been demonstrated and NFPA (at a minimum by TVE-0050P3B) Certified meeting Life Safety Standards.
- e. Provide one (1) spare HL Interface unit.
- 4. Wireless:
 - a. Radio Paging Equipment / Systems
 - The nurse call/code blue system shall have the ability to interface ONLY with VA Certified and Licensed radio paging system (FCC Part 15 listed pagers and transmitters are not allowed for "Safety of Life" functions or installed in those specific areas - VA Headquarters TVE - 0050PB2 and SM -0050PB2 are the ONLY approving authorities for this function) and must have the following minimum system features:
 - a) Ability to pass-through location information (such as a room number) and call-type as well as other text messages simultaneously to shift supervisor identified staff members
 - b) System shall allow the operator to select staff members by name and pager number and to select a message consisting of a room number and a condition code (aka priority level).
 Operator may also choose to type in a unique alpha-numeric text message (the text message shall meet or exceed all HIPA and VA OCIS Communications Security Guidelines for the transmission of Patient or Staff Specific information [aka PII] VA Headquarters TVE 0050P2B is the approving authority for this function) into the system to be read by the holder of the pager unit.
 - c) While a patient station is connected to the nurse's master station, the system shall allow the operator to automatically page the staff member assigned to that room. An alternate staff member may be selected for paging purposes in place of the primary staff member. The System must allow an alternate staff member to be paged when the primary staff member is unable to respond to patient's needs within a specified period of time. The System must

27 52 23 - 22

have the ability to assign any bed to any pager or pager group, and to assign an unlimited amount of pagers to any patient bed.

- d) System shall have the ability to send all code blue calls to staff members by predetermined group (as required) automatically by simply pressing one "Code Blue" button. Pager shall indicate room number of code call, and state "Code Blue" in plain English format on pagers (FCC Part 15 listed pagers are not allowed to be use as "Safety of Life" functions or those specific locations - VA Headquarters TVE
 - 0050P2B is the approving authority for this requirement).
- When pagers are approved, provide a minimum of ten (10) spare pagers with one spare pager for each 10 issued.
- 5. Personal Wireless Communicator
 - a. The System will only be allowed to connect to the personal wireless communications system, pass text data and provide a 2way communication between the Telephone Interface and the personal wireless communicator as long as it is not a FCC Part 15 listed device(s), meets or exceeds UL 60950-1/2, meets OCIS Guide Lines for FIPS 140-2 certification and the using staff shows an extensive training program along with recertification(s) according to the Facility Emergency Plan concerning HIPA requirements.
 - b. VA Headquarters TVE 005OP3B and SM 005OP2B are the approving authority for this requirement.
 - c. When communicators are approved, provide a minimum of ten (10) spare communicators for each 10 communicators issued.//
- 6. Other Wireless Equipment / Systems
 - a. Each proposed wireless system and/or equipment to be connected to or be a part of the System, each shall meet the minimum requirements outlines in Paragraph 2.7.A.
 - b. Contact TVE 005OP3B and SM 005OP2B for specific required PRE approvals (full or conditional) as described herein.
 - c. When approved, TVE-0050P3B and SM-0050P2B will provide the spare equipment requirements.
 - d. When other wireless components are approved, provide ten (10) components with one spare components for each 10 issued.//
- F. TIP Cable Systems:

Connect the system to the TIP system provided as a part of Speciation Section 27 15 00. Provide additional TIP equipment, interfaces and connections as required by System design. Provide secured pathway(s) and lockable cabinet/rack(s) as required.

- G. Interface Equipment:
 - 1. TCR:
 - a. Code Blue Annunciation Station:
 - 1) The Code Blue Remote Annunciation Station shall be located in the Telephone Operators Room, or Police Control Center.
 - 2) The Annunciation Station shall be connected to the System via hard wire connection(s) that shall contain all the electrical supervisory tone signals, visual bulbs, read out panel to indicate the location of the Code and system troubles.
 - 3) The System shall not be connected to the Telephone system unless specifically APPROVED BY VA HEADQUARTERS (0050P3B) and (0050P2B) PRIOR TO CONTRACT BID.
 - The Annunciation Station shall be installed in a location directly viewable and the readout is completely readable from the Public Address Microphone Control Console.
 - 5) Provide one (1) spare panel.
 - b. Electrical Supervision Trouble Annunciator Panel:
 - The Electrical Supervision Trouble Annunciation Panel shall be located in the Telephone Operators Room, Police Control Center, and associate Nurses Station(s).
 - 2) The panel(s) shall be compatible with the generated electrical and/or electronic supervising signals to continuously monitor the operating condition for the System head-end processing equipment, master stations, staff stations, patient stations, duty stations, audio power amplifier(s), UPS, power supplies, dome lights and interconnecting trunks. The panels shall generate an audible and visual signal when the System's supervising system detects a system and equipment trouble or trunk-line is malfunctioning.
 - 3) Provide one (1) spare panel.
 - 2. Hospital Bed Interface (s):
 - a. Provide a multi-pin receptacle for bed connection.

- b. Connect cable from the multi-pin receptacle to the nurse-call system, so that alarms, such as bed exit, shall be monitored by the nurse-call system.
- c. Connect cable from the multi-pin receptacle to the nurse-call system, so that the bedside control buttons, such as nurse call, and television controls are functional and monitored.
- d. Provide one (1) spare interface for each ten (10) interfaces installed.
- 3. Nurse (aka Staff) Locator Interface:
 - a. The System must be capable of performing nurse-locator functions.
 - b. The System must be capable of performing staff-locator functions
 - c. These functions may be combined into one operation.
 - d. Provide two (2) spare interfaces.
- 4. Lighting Interface Module:
 - a. Provide an interface module for the pillow speakers to control up to 2 lights. Coordinate with the electrical contractor the exact voltage requirements.
 - b. Provide one (1) spare module for each ten (10) modules installed.
- 5. Pillow Speaker Interfaces:
 - a. See functional requirements herein.
 - b. Provide (1) pillow speaker for each patient station.
- c. Provide one (1) spare pillow speaker for each twenty (20)
- 6. TER
 - a. Paging adaptor (When connections are specifically approved by TVE 0050P3B):
 - The Contractor shall coordinate the installation of the paging adapter(s) designed for use with the Facility's telephone system with the Facility Telephone Contractor or local telephone company.
 - 2) The Contractor shall provide and install a paging adapter(s) for each zone and sub zone. The paging adapter(s) shall be accessible by dialing a telephone number provided by the Facility's Telephone Contractor. The Paging Adapter shall:
 - a) Monitor each audio input and output on the unit.
 - b) Be provided with an electrical supervision panel to provide both audio and visual trouble alarms.
 - c) Be provided as part of the headend equipment and shall be located in the Telephone Switch Room.

- d) Be provide with Executive Paging Override of all routine paging calls in progress or being accessed to allow system "all call" (aka global) and radio paging calls designated as Code One Blue) functions.
- e) Be capable of internal time out capability.
- f) Function completely with the interface module.
- g) Provide one spare adapter.
- 3) Time Out Device:

A time out device/capability shall be provided to prevent system "hang-up" due to an off-hook telephone. The device shall be able to be preset from 30 seconds to two (2) minutes. Its function shall not interfere with or override the required "all call" (aka global) operational capability.//

- H. Call Initiation, Annunciation and Response:
 - 1. Light and Tones:
 - a Calls may be initiated through:
 - 1) Patient station.
 - 2) Staff station.
 - 3) Code Blue station.
 - 4) Toilet Emergency Station pull cord / push button.
 - 5) Shower Emergency Station pull cord.
 - 6) Bed Pillow speaker.
 - 7) Bed Push-button cordset.
 - 8) Hospital Bed Integrated controls.
 - b Once a call is initiated, it must be annunciated at the following locations:
 - The Corridor, Intersectional and Room dome light associated with the initiating device.
 - A local master control station indicating the call location and priority.
 - 3) Each duty station.
 - 4) Each staff station.
 - 5) Each remote location.
 - c) All calls must be displayed until they are cleared by the nursing staff ONLY from the initiating device location.
 - 2. Voice:
 - a Calls may be initiated through:
 - 1) Patient station.

- 2) Staff station.
- 3) Code Blue station.
- 4) Toilet Emergency pull cord / push button station.
- 5) Shower Emergency pull cord station.
- 6) Pillow speaker.
- 7) Push-button cordset.
- 8) Integrated bed controls.
- 9) Master Station.
- 3. Provide two-way voice communication between a master station and patient, staff, duty and each of the two (2) remote stations.
- 4. Failure of voice intercom portion of system shall not interfere with visual and audible signal systems.
- 5. All calls must be displayed on the master station until they are cleared by the nursing staff at ONLY the originating station. If multiple calls are received at the master station within a short period of time, they shall be stacked based on priority and wait time. If there are more calls than the master station screen can display at one time (four [4] minimum), the system must provide a simple scrolling feature. The nurse must be able to answer any call in any order at the master station. The nurse must also be able to forward calls to staff members. If a call is not answered within a programmable time period, then the system must forward the call to appropriate back-up staff identified by each shift supervisor in a manner technically approved by VA Headquarters 0050P3B.
- I. Auxiliary Alarm Monitoring:
 - 1. Each patient station must have the ability to connect a separate and isolated auxiliary alarm to it such as an infusion pump or data tracking / recording device (patient life support units ARE NOT allowed to be connected to these units. The System must support naming the device that is being monitored as well as display its alarms at the master station and via the room / corridor dome light(s).
 - 2. Provide (2) alarm jacks at each patient station.
 - 3. The above requirements may ONLY be allowed when the system has been approved by VA Headquarters TVE - 0050P3B and TVE - 0050P2B and concurred by the appropriate Medical Service(s) indicates it meets the minimum guidelines and requirements of Paragraph 2.8.A.
- J. Patient and Staff Assignment:

27 52 23 - 27

- System may provide for transfer of one or more individual or groups of stations from one master station to another without mechanical switches or additional wiring of the stations. The transfer may be initiated manually be the nurse or automatically at certain times of the day.
- 2. The Facility's LAN/WAN IS NOT ALLOWED for Nurses Call/Code Blue main wiring which must be a "stand alone primary cable infrastructure." <u>Connections to the VA LAN/WAN will be allowed ONLY when the LAN/WAN</u> <u>system has been demonstrated and certified by TVE - 0050P3B meeting</u> <u>the minimum guidelines and requirements of the Life Safety Code.</u>
- K. Reports:
 - The system's generated reports logging all calls, alarms, response time, bed, and staff assignments may be allowed to transmit these reports to a central archiving entity.
 - Reports function shall be limited by passwords and security tier level access, so that only supervisors may access it when desired.
 - 3. Provide instructions to the owner on how to enable/disable the reporting functions.
 - 4. The Facility's LAN/WAN IS NOT ALLOWED for Nurses Call/Code Blue main wiring that must be a "stand alone primary cable infrastructure." Connections to the VA LAN/WAN will be allowed ONLY when the system has been demonstrated and certified by 0050P2B meeting the minimum guidelines and requirements of the Life Safety Code.
- L. System/Management Software:
 - Provide and install system/management software on minimum of three
 (3) owner-provided computers.
 - a. The management software shall at a minimum provide all historical reporting features of the system as well as real-time monitoring of events.
 - b. The system software shall at a minimum provide the system's operating and functioning parameters and script. The OEM shall provide VA with access to the software's script writing and functions.
 - 2. Provide two (2) spare CD's with the software installed and operable.
 - 3. Rights in Data: VA shall have the right to all script and programming language of system management software. If commercial off the shelf (COTS) or a memorandum of understanding (MOU) is required for follow-on maintenance, the Contractor is required to

accomplish the COTS Acquisition document supplied in Part 5 Attachments herein.

M. System Functional Station:

- 1. Master Control:
 - a. Simple Tone and Light:
 - 1) The Visual Display Panel shall be a digital readout touch screen to visually announce the location of incoming calls placed in the System including room and bed number and priority of the call. Identify each calling station with an individual display, including separate displays for each patient sharing a dual bedside station. If a digital readout touch screen standard is not required or approved by the Facility during the project design phase, an alpha - numeric scheme shall be provided that identifies the: ward, room and bed (i.e. Ward 2a, Room 201, Bed A (or 1) shall read 2A201A or- 2A201-1. Equivalent readouts are acceptable as long as TVE 0050P3B and the Facility approve the readout).
 - a) Calls placed at emergency stations located in toilets and baths inside bedrooms shall be displayed for the bed closest to the nurse control station. Beds in multi-bed bedrooms shall be identified in a clock-wise pattern upon entering the bedroom.
 - b) It shall display a minimum of four incoming calls. Additional placed calls shall be stored in order of placement and priority.
 - 4) The visual / aural (tone only) system shall be installed according to the same Procedures, guidelines and standards outlined for a regular Nurse Call System for emergency NOT CODE BLUE OPERATION.
 - 5) Speakerphone and handset communication.
 - Provide one (1) spare station for each ten (1) stations installed.
 - b. Touch Screen:
 - Provide a touch screen master station with 15" minimum monitor size.

- 2) The master station shall have a full control capability over staff assignment to patients and beds as well as pagers and wireless personal communication devices (when specifically approved by 0050P3B on a case by case basis).
- 3) Speakerphone and handset communication.
- Provide one (1) spare station for each ten (1) stations installed.
- 2. Staff:
 - a. Light and Tine Only.
 - b. Voice Communications Enabled.
 - c. Provide one (1) spare station for each twenty (20) stations installed.
- 3. Duty:
 - a. Light and Tine Only.
 - b. Voice Communications Enabled.
 - c. Provide one (1) spare station for each twenty (20) stations installed.
- 4. Patient:
 - a. Single & Dual:
 - 1) Provide each patient station with the following minimum Feature.
 - a) Call button.
 - b) Call answered button.
 - c) Pillow speaker jack.
 - d) Auxiliary alarm monitoring jack.
 - e) Hospital bed interface jack (when specially approved by TVE- 0050P3B).
 - f) Provide one (1) spare station for each twenty (20) stations installed.
- N. Distribution System: Refer to Specification Sections 27 11 00, Structured TIP Communications Cables; 27 11 00, TIP Communications Interface and Equipment Rooms Fittings and 27 15 00, HORIZONTAL and Vertical TIP Communications Cabling for additional specific TIP wire and cable standards and installation requirements used to install the Facility's TIP network.
 - In addition to the TIP provided under the aforementioned Specification Sections, the contractor shall provide the following additional TIP installation and testing requirements, provide the

following minimum additional System TIP requirements, cables & interconnections:

- a. Each wire and cable used in the System shall be specifically OEM certified by tags on each reel and recommended and approved for installation in the Facility.
- b. The Contractor shall provide the RE a 610 mm (2 foot) sample of each wire and/or cable actually employed in the System <u>and each</u> certification tag for approval before continuing with the installation as described herein.
- c. Fiberoptic Cables: Refer to Specification Section 27 15 00, Horizontal and Vertical TIP Communications Cabling; Paragraph 2.4.C12.d. Fiberoptic Cables - for minimum technical standards and requirements for additional System cables.
- d. Copper Cables: Refer to Specification Section 27 15 00, Horizontal and Vertical TIP Communications Cabling; Paragraph 2.4.C12.c. Copper Cables - for minimum technical standards and requirements for additional System voice and data cables.
- e. Line Level Audio and Microphone Cable:
 - 1) Line level audio and microphone cable for inside racks and conduit.
 - Shielded, twisted pair Minimum 22AWG, stranded conductors and 24AWG drain wire with overall jacket.
- f. Speaker Level Audio (70.7Volt RMS):
 - 1) For use with 70.7V speaker circuits.
 - 2) 18AWG stranded pair, minimum.
- g. All cabling shall be plenum rated.
- h. Provide one (1) spare 1,000 foot roll of approved System (not microphone) cable only.
- 2. Raceways, Back Boxes and conduit:
 - a. In addition to the Raceways, Equipment Room Fittings provided under Specification Sections 27 15 00 TIP Communication Room Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling, provide the following additional TIP raceway and fittings:
 - b. Each raceway that is open top, shall be: UL certified for telecommunications systems, partitioned with metal partitions in order to comply with NEC Parts 517 & 800 to "mechanically separate telecommunications systems of different service, protect

the installed cables from falling out when vertically mounted and allow junction boxes to be attached to the side to interface "drop" type conduit cable feeds.

- c. Intercommunication System cable infrastructure: EMT above accessible ceilings, 24 inches on center.
- d. Junction boxes shall be not less than 2-1/2 inches deep and 6 inches wide by 6 inches long.
- e. Flexible metal conduit is prohibited unless specifically approved by 0050P3B.
- f. System Conduit:
 - The PA system is NFPA listed as Emergency / Public Safety Communication System which requires the entire system to be installed in a separate conduit system.
 - The use of centralized mechanically partitioned wireways may be used to augment main distribution conduit on a case by case basis when specifically approved by VA Headquarters (0050P3B).
 - 3) Conduit Sleeves:
 - a) The AE has made a good effort to identify where conduit sleeves through full-height and fire rated walls on the drawings, and has instructed the electrician to provide the sleeves as shown on the drawings.
 - b) While the sleeves shown on the drawings will be provided by others, the contractor is responsible for installing conduit sleeves and fire-proofing where necessary. It is often the case, that due to field conditions, the nursecall cable may have to be installed through an alternate route. Any conduit sleeves required due to field conditions or those omitted by the engineer shall be provided by the cabling contractor.
- g. Device Back Boxes:
 - Furnish to the electrical contractor all back boxes required for the PA system devices.
 - The electrical contractor shall install the back boxes as well as the system conduit. Coordinate the delivery of the back boxes with the construction schedule.
- 3. UPS:
 - a. Provide a backup battery or a UPS for the System to allow normal operation and function (as if there was no AC power failure) in

the event of an AC power failure or during input power fluctuations for a minimum of 30 minutes.

- b. As an alternate solution, the telephone system UPS may be utilized to meet this requirement at the headend location, as long as this function is specifically approved by the Telephone Contractor and the RE.
- c. The Nurse Call Contractor shall not make any attachments or connection to the telephone system until specifically directed to do so, in writing, by the RE.
- d. Provide UPS for all active system components including but not limited to:
 - 1) System Amplifiers.
 - 2) Microphone Consoles.
 - 3) Telephone Interface Units.
 - 4) TER, TR & Headend Equipment Rack(s).

O. Patient Bedside Prefabricated Units (PBPU):

- 1. Where PBPU's exist in the Facility; the Contractor shall identify the "gang box" location on the PBPU designated for installation of the telephone jack. This location shall here-in-after be identified as the unit's TCO. The Contractor shall be responsible for obtaining written approval and specific instructions from the PBPU OEM regarding the necessary disassembly and reassembly of each PBPU to the extent necessary to pull wire from above the TIP ceiling junction box to the PBPU's reserved gang box for the unit's TCO. A Contractor provided stainless steel cover plate approved for use by the PBPU OEM and Facility IRM Chief shall finish out the jack installation.
- 2. Under no circumstances shall the Contractor proceed with the PBPU installations without the written approval of the PBPU OEM and the specific instructions regarding the attachment to or modifying of the PBPU. The RE shall be available to assist the Contractor in obtaining approvals and instructions in a timely manner as related to the project's time constraints.
- 3. It is the responsibility of the Contractor to maintain the UL integrity of each PBPU. If the Contractor violates that integrity, it shall be the responsibility of the Contractor to obtain on site UL re-certification of the violated PBPU at the direction of the RE and at the Contractor's expense.

27 52 23 - 33

- P. Installation Kit:
 - 1. General: The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. Turn over to the RE all unused and partially opened installation kit boxes, coaxial, fiberoptic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware. The following are the minimum required installation sub-kits:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All radio equipment shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Fiberoptic Optic Cable Armor/External Braid
 - 2) Coaxial Cable Shields.
 - 3) Control Cable Shields.
 - 4) Data Cable Shields.
 - 5) Equipment Racks.
 - 6) Equipment Cabinets.
 - 7) Conduits.
 - 8) Cable Duct.
 - 9) Cable Trays.
 - 10) Interduct
 - 11) Power Panels.
 - 12) Connector Panels.
 - 15) Grounding Blocks.
 - 3. Fiberoptic Cable: The fiberoptic cable kit shall include all fiberoptic connectors, cable tying straps, interduct, heat shrink tubing, hangers, clamps, etc. required to accomplish a neat and secure installation.

- Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tubing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- 5. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 6. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 7. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to completely and correctly label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 9. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to completely and correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 PROJECT MANAGEMENT

- A. Assign a single project manager to this project who will serve as the point of contact for the Owner, the General Contractor, and the Engineer.
- B. The Contractor shall be proactive in scheduling work at the hospital, specifically the Contractor will initiate and maintain discussion with the general contractor regarding the schedule for ceiling cover up and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2B) at (301) 734-0350 to have a VA Certified Telecommunications COTR assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and OCIS Teams.

3.2 COORDINATION WITH OTHER TRADES

- A. Coordinate with the cabling contractor the location of TIP equipment in the TER, TCR, PCR, SCC, ECR, STRs, NSs, and TCOs in order to connect to the TIP cable network that was installed as a part of Section Specification 27 11 00. Contact the RE immediately, in writing, if additional location(s) are discovered to be activated that was not previously provided.
- B. Before beginning work, verify the location, quantity, size and access for the following:
 - 1. Isolated ground AC power circuits provided for systems.
 - Primary, emergency and extra auxiliary AC power generator requirements.
 - Junction boxes, wall boxes, wire troughs, conduit stubs and other related infrastructure for the systems.
 - 4. System components installed by others.
 - 5. Overhead supports and rigging hardware installed by others.
- C. Immediately notify the Owner, GC and Consultant(s) in writing of any discrepancies.

3.3 NEEDS ASSESSMENT

Provide a one-on-one meeting with the particular nursing manager of each unit affected by the installation of the new nurse call/code blue system. Review the floor plan drawing, educate the nursing manager with the functions of the equipment that is being provided and gather details specific to the individual units; coverage and priorities of calls; staffing patterns; and other pertinent details that will affect system programming and training.

3.4 INSTALLATION

- A. General:
 - Execute work in accordance with National, State and local codes, regulations and ordinances.
 - 2. Install work neatly, plumb and square and in a manner consistent with standard industry practice. Carefully protect work from dust, paint and moisture as dictated by site conditions. The Contractor will be fully responsible for protection of his work during the construction phase up until final acceptance by the Owner.
 - Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.

- Secure equipment firmly in place, including receptacles, speakers, equipment racks, system cables, etc.
 - All supports, mounts, fasteners, attachments and attachment points shall support their loads with a safety factor of at least 5:1.
 - b. Do not impose the weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by the OEM for overhead suspension.
 - d. The Contractor is responsible for means and methods in the design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
- Finishes for any exposed work such as plates, racks, panels, speakers, etc. shall be approved by the Architect, Owner and TVE 0050P3B.
- 6. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.
- Active electronic component equipment shall consist of solid state components, be rated for continuous duty service, comply with the requirements of FCC standards for telephone and data equipment, systems, and service.
- 8. Color code all distribution wiring to conform to the Nurse Call Industry Standard, EIA/TIA, and this document, whichever is the more stringent. At a minimum, all equipment, cable duct and/or conduit, enclosures, wiring, terminals, and cables shall be clearly and permanently labeled according to and using the provided record drawings, to facilitate installation and maintenance.
- 9. Connect the System's primary input AC power to the Facility' Critical Branch of the Emergency AC power distribution system as shown on the plans or if not shown on the plans consult with RE regarding a suitable circuit location prior to bidding.
- 10. Product Delivery, Storage and Handling:
 - a. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and

equipment catalog numbers, model and serial identification numbers. The RE may inventory the cable, patch panels, and related equipment.

- b. Storage and Handling: Store and protect equipment in a manner, which will preclude damage as directed by the RE.
- 11.Where TCOs are installed adjacent to each other, install one outlet for each instrument.
- 12. Equipment installed outdoors shall be weatherproof or installed in weatherproof enclosures with hinged doors and locks with two keys.
- B. Equipment Racks/Cabinets:
 - Fill unused equipment mounting spaces with blank panels or vent panels. Match color to equipment racks/cabinets.
 - 2. Provide security covers for all devices not requiring routine operator control.
 - 3. Provide vent panels and cooling fans as required for the operation of equipment within the OEM' specified temperature limits. Provide adequate ventilation space between equipment for cooling. Follow manufacturer's recommendations regarding ventilation space between amplifiers.
 - 4. Provide insulated connections of the electrical raceway to equipment racks.
 - 5. Provide continuous raceway/conduit with no more than 40% fill between wire troughs and equipment racks/cabinets for all nonplenum-rated cable. Ensure each system is mechanically separated from each other in the wireway.
 - Ensure a minimum of 36 inches around each cabinet and/or rack to comply with OSHA Safety Standards. Cabinets and/or Racks installed side by side - the 36" rule applies to around the entire assembly
- C. Distribution Frames.
 - 1. A new stand-alone (i.e., self supporting, free standing) PA rack/frame may be provided in each TR to interconnect the TCR, PCR, SCC, NS, STRs & ECRs. Rack/frames shall be wired in accordance with industry standards and shall employ "latest state-of-the-art" modular cross-connect devices. The PA riser cable shall be sized to satisfy all voice/digital requirements plus not less than 50% spare (growth) capacity in each TR which includes a fiber optic backbone.
 - 2. The frames/racks shall be connected to the TER/MCR system ground.

- D. Wiring Practice in addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - TIP Structured Communications Cabling, 27 11 00 - TIP Communications Rooms Fittings and 27 15 00 - TIP Horizontal and Vertical Communicators Cabling, the following additional practices shall be adhered too:
 - Comply with requirements for raceways and boxes specified in Division 26 Section "Raceway and Boxes for Electrical Systems."
 - Execute all wiring in strict adherence to the National Electrical Code, applicable local building codes and standard industry practices.
 - 3. Wiring shall be classified according to the following low voltage signal types:
 - a. Balanced microphone level audio (below -20dBm) or Balanced line level audio (-20dBm to +30dBm)
 - b. 70V audio speaker level audio.
 - c. Low voltage DC control or power (less than 48VDC)
 - 4. Where raceway is to be EMT (conduit), wiring of differing classifications shall be run in separate conduit. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share the same enclosure shall be mechanically partitioned and separated by at least four (4) inches. Where Wiring of differing classifications must cross, they shall cross perpendicular to one another.
 - 5. Do not splice wiring anywhere along the entire length of the run. Make sure cables are fully insulated and shielded from each other and from the raceway for the entire length of the run.
 - Do not pull wire through any enclosure where a change of raceway alignment or direction occurs. Do not bend wires to less than radius recommended by manufacturer.
 - Replace the entire length of the run of any wire or cable that is damaged or abraided during installation. There are no acceptable methods of repairing damaged or abraided wiring.
 - Use wire pulling lubricants and pulling tensions as recommended by the OEM.
 - 9. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
 - 10. Do not use tape-based or glue-based cable anchors.

- 11. Ground shields and drain wires to the Facility's signal ground system as indicated by the drawings.
- 12. Field wiring entering equipment racks shall be terminated as follows:
 - a. Provide OEM directed service loops at harness break-outs and at plates, panels and equipment. Loops should be sufficient to allow plates, panels and equipment to be removed for service and inspection.
 - b. Line level and speaker level wiring may be terminated inside the equipment rack using specified terminal blocks (see "Products.") Provide 15% spare terminals inside each rack. Microphone level wiring may only be terminated at the equipment served.
 - c. If specified terminal blocks are not designed for rack mounting, utilize ¾" plywood or 1/8" thick aluminum plates/blank panels as a mounting surface. Do not mount on the bottom of the rack.
 - d. Employ permanent strain relief for any cable with an outside diameter of 1" or greater.
- Use only balanced audio circuits unless noted otherwise directed and indicated on the drawings.
- 14. Make all connections as follows:
 - a. Make all connections using rosin-core solder or mechanical connectors appropriate to the application.
 - b. For crimp-type connections, use only tools that are specified by the manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Spade lugs shall be sized to fit the wire gauge. Do not exceed two lugs per terminal.
 - d. Wire nuts, electrical tape or "Scotch Lock" connections are not acceptable for any application.
- 15.Noise filters and surge protectors shall be provided for each equipment interface cabinet, switch equipment cabinet, control console, local, and remote active equipment locations to ensure protection from input primary AC power surges and noise glitches are not induced into low Voltage data circuits.
- 16.Wires or cables previously approved to be installed outside of conduit, cable trays, wireways, cable duct, etc:
 - a Only when specifically authorized as described herein, will wires or cables be identified and approved to be installed outside of

conduit. The wire or cable runs shall be UL rated plenum and OEM certified for use in air plenums.

- b Wires and cables shall be hidden, protected, fastened and tied at 600 mm (24 in.) intervals, maximum, as described herein to building structure.
- c Closer wire or cable fastening intervals may be required to prevents sagging, maintain clearance above suspended ceilings, remove unsightly wiring and cabling from view and discourage tampering and vandalism. Wire or cable runs, not provided in conduit, that penetrate outside building walls, supporting walls, and two hour fire barriers shall be sleeved and sealed with an approved fire retardant sealant.
- d Wire or cable runs to system components installed in walls (i.e.: volume attenuators, circuit controllers, signal, or data outlets, etc.) may, when specifically authorized by the RE, be fished through hollow spaces in walls and shall be certified for use in air plenum areas.
- e Completely test all of the cables after installation and replace any defective cables.
- f Wires or cables that are installed outside of buildings shall be in conduit, secured to solid building structures. If specifically approved, on a case by case basis, to be run outside of conduit, the wires or cables shall be installed, as described herein. The bundled wires or cables must: Be tied at not less than 460 mm (18 in.) intervals to a solid building structure; have ultra violet protection and be totally waterproof (including all connections). The laying of wires or cables directly on roof tops, ladders, drooping down walls, walkways, floors, etc. is not allowed and will not be approved.
- E. Cable Installation Cable Installation In addition to the MANDATORY infrastructure requirements outlined in VA Construction Specifications 27 10 00 - Structured TIP Communications Cabling, 27 11 00 - TIP Communications Rooms and Fittings and 27 15 00 - TIP Communications Horizontal and Vertical Cabling and the following additional practices shall be adhered too:
 - Support cable on maximum 2'-0" centers. Acceptable means of cable support are cable trays. Velcro wrap cable bundles loosely to the

means of support with plenum rated Velcro straps. Plastic tie wraps

are not acceptable as a means to bundle cables.

- 2. Run cables parallel to walls.
- 3. Install maximum of 10 cables in a single row. Provide necessary rows as required by the number of cables.
- Do not lay cables on top of light fixtures, ceiling tiles, mechanical equipment, or ductwork. Maintain at least 2'-0" clearance from all shielded electrical apparatus.
- 5. All cables shall be tested after the total installation is fully complete. All test results are to be documented. All cables shall pass acceptable test requirements and levels. Contractor shall remedy any cabling problems or defects in order to pass or comply with testing. This includes the re-pull of new cable as required at no additional cost to the Owner.
- Ends of cables shall be properly terminated on both ends per industry and OEM's recommendations.
- Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off of the floor until you are ready to terminate.
- Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
- 9. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
- 10. Bundle, lace, and train conductors to terminal points without exceeding OEM's limitations on bending radii. Install lacing bars and distribution spools.
- 11. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- 12. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- 13. Separation of Wires: (REFER TO RACEWAY INSTALLATION) Separate speaker-microphone, line-level, speaker-level, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches apart for speaker microphones and adjacent parallel power and telephone wiring.

Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

- 14. Serve all cables as follows:
 - a. Cover the end of the overall jacket with a 1" (minimum) length of transparent heat-shrink tubing. Cut unused insulated conductors 2" (minimum) past the heat-shrink, fold back over jacket and secure with cable-tie. Cut unused shield/drain wires 2" (minimum) past the Heatshrink and serve as indicated below.
 - b. Cover shield/drain wires with heat-shrink tubing extending back to the overall jacket. Extend tubing ¼" past the end of unused wires, fold back over jacket and secure with cable tie.
 - c. For each solder-type connection, cover the bare wire and solder connection with heat-shrink tubing.
- F. Labeling: Provide labeling in accordance with ANSI/EIA/TIA-606-A. All lettering for Nurse Call and/or Code Blue circuits shall be stenciled using laser printers .
 - Cable and Wires (Hereinafter referred to as "Cable"): Cables shall be labeled at both ends in accordance with ANSI/EIA/TIA-606-A. Labels shall be permanent in contrasting colors. Cables shall be identified according to the System "Record Wiring Diagrams."
 - Equipment: System equipment shall be permanently labeled with contrasting plastic laminate or Bakelite material. System equipment shall be labeled on the face of the unit corresponding to its source.
 - Clearly, consistently, logically and permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - b. Engrave and paint fill all receptacle panels using 1/8" (minimum) high lettering and contrasting paint.
 - c. For rack-mounted equipment, use engraved Lamacoid labels with white 1/8" (minimum) high lettering on black background. Label the front and back of all rack-mounted equipment.
 - 3. Conduit, Cable Duct, and/or Cable Tray: The Contractor shall label all conduit, duct and tray, including utilized GFE, with permanent marking devices or spray painted stenciling a minimum of 3 meters (10 ft.) identifying it as the System. In addition, each enclosure shall be labeled according to this standard.

- 4. Termination Hardware: The Contractor shall label TCOs and patch panel connections using color coded labels with identifiers in accordance with ANSI/EIA/TIA-606-A and the "Record Wiring Diagrams."
- 5. Where multiple pieces of equipment reside in the same rack group, clearly and logically label each indicating to which room, channel, receptacle location, etc. they correspond.
- 6. Permanently label cables at each end, including intra-rack connections. Labels shall be covered by the same, transparent heatshrink tubing covering the end of the overall jacket. Alternatively, computer generated labels of the type which include a clear protective wrap may be used.
- Contractor's name shall appear no more than once on each continuous set of racks. The Contractor's name shall not appear on wall plates or portable equipment.
- 8. Ensure each OEM supplied item of equipment has appropriate UL Labels / Marks for the service the equipment is performed permanently attached / marked to a <u>non-removal</u> board in the unit. EQUIPMENT INSTALLED NOT BEARING THESE UL MARKS WILL NOT BE ALLOWED TO BE A PART OF THE SYSTEM. THE CONTRACTOR SHALL BEAR ALL COSTS REQUIRED TO PROVIDE REPLACEMENT EQUIPMENT WITH APPROVED UL MARKS.
- G. Conduit and Signal Ducts: When the Contractor and/or OEM determines additional system conduits and/or signal ducts are required in order to meet the system minimum performance standards outlined herein, the contractor shall provide these items as follows:
 - 1. Conduit:
 - a. The Contractor shall employ the latest installation practices and materials. The Contractor shall provide conduit, junction boxes, connectors, sleeves, weather heads, pitch pockets, and associated sealing materials not specifically identified in this document as GFE. Conduit penetrations of walls, ceilings, floors, interstitial space, fire barriers, etc., shall be sleeved and sealed.
 - b. All cables shall be installed in separate conduit and/or signal ducts (exception from the separate conduit requirement to allow Nurse Call and/or Code Blue cables to be installed in partitioned cable tray with voice cables may be granted in writing by the RE if requested). Conduits shall be provided in accordance with Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS,

and NEC Articles 517 for Critical Care and 800 for Communications systems, at a minimum.

- c. When metal, plastic covered, etc., flexible cable protective armor or systems are specifically authorized to be provided for use in the System, their installation guidelines and standards shall be as specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- d. When "interduct" flexible cable protective systems is specifically authorized to be provided for use in the System, it's installation guidelines and standards shall be as the specified herein, Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS, and the NEC.
- e. Conduit fill (including GFE approved to be used in the system) shall not exceed 40%. Each conduit end shall be equipped with a protective insulator or sleeve to cover the conduit end, connection nut or clamp, to protect the wire or cable during installation and remaining in the conduit. Electrical power conduit shall be installed in accordance with the NEC. AC power conduit shall be run separate from signal conduit.
- f. Ensure that Critical Care Nurse Call and/or Code Blue Systems (as identified by NEC Section 517) are completely separated and protected from all other systems.
- 2. Signal Duct, Cable Duct, or Cable Tray:
 - a. The Contractor shall use GFE signal duct, cable duct, and/or cable tray, when identified and approved by the RE.
 - b. Approved signal and/or cable duct shall be a minimum size of 100 mm x 100 mm (4 in. X 4 in.) inside diameter with removable tops or sides, as appropriate. Protective sleeves, guides or barriers are required on all sharp corners, openings, anchors, bolts or screw ends, junction, interface and connection points.
 - c. Approved cable tray shall be fully covered, mechanically and physically partitioned for multiple electronic circuit use, and be UL certified and labeled for use with telecommunication circuits and/or systems. The RE shall approve width and height dimensions.
 - d. All cable junctions and taps shall be accessible. Provide an 8" X8" X 4" (minimum) junction box attached to the cable duct or

raceway for installation of distribution system passive equipment. Ensure all equipment and tap junctions are accessible

3.5 PROTECTION OF NETWORK DEVICES

A. Contractor shall protect network devices during unpacking and installation by wearing manufacturer approved electrostatic discharge (ESD) wrist straps tied to chassis ground. The wrist strap shall meet OSHA requirements for prevention of electrical shock, should technician come in contact with high voltage.

3.6 CUTTING, CLEANING AND PATCHING

- A. It shall be the responsibility of the contractor to keep their work area clear of debris and clean area daily at completion of work.
- B. It shall be the responsibility of the contractor to patch and paint any wall or surface that has been disturbed by the execution of this work.
- C. The Contractor shall be responsible for providing any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete the Work or to make its parts fit together properly.
- D. The Contractor shall not damage or endanger a portion of the Work or fully or partially completed construction of the Owner or separate contractors by cutting, patching or otherwise altering such construction, or by excavation. The Contractor shall not cut or otherwise alter such construction by the Owner or a separate contractor except with written consent of the Owner and of such separate contractor; such consent shall not be unreasonably withheld. The Contractor shall not unreasonably withhold from the Owner or a separate contractor the Contractor's consent to cutting or otherwise altering the Work.
- E. Where coring of existing (previously installed) concrete is specified or required, including coring indicated under unit prices, the location of such coring shall be clearly identified in the field and the location shall be approved by the Project Manager prior to commencement of coring work.

3.7 FIREPROOFING

- A. Where Nurse Call and/or Code Blue wires, cables and conduit penetrate fire rated walls, floors and ceilings, fireproof the opening.
- B. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls and Telecommunications Rooms floors and ceilings. After the cabling

installation is complete, install fire proofing material in and around all conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal all floor and ceiling penetrations.

- C. Use only materials and methods that preserve the integrity of the fire stopping system and its rating.
- D. Install fireproofing where low voltage cables are installed in the same manholes with high voltage cables; also cover the low voltage cables with arc proof and fireproof tape.
- E. Use approved fireproofing tape of the same type as used for the high voltage cables, and apply the tape in a single layer, one-half lapped or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (one inch) into each duct.
- F. Secure the tape in place by a random wrap of glass cloth tape.

3.8 GROUNDING

- A. Ground Nurse Call and/or Code Blue cable shields and equipment to eliminate shock hazard and to minimize ground loops, commonmode returns, noise pickup, cross talk, and other impairments as specified in CFM Division 27, Section 27 05 26 - Grounding and Bonding for Communications Systems.
- B. Facility Signal Ground Terminal: Locate at main room or area signal ground within the room (i.e. head end and telecommunications rooms) or area(s) and indicate each signal ground location on the drawings.
- C. Extend the signal ground to inside each equipment cabinet and/or rack. Ensure each cabinet and/or rack installed item of equipment is connected to the extended signal ground. Isolate the signal ground from power and major equipment grounding systems.
- D. When required, install grounding electrodes as specified in CFM Division 26, Section 26 05 26 -Grounding and Bonding for Electrical Systems.
- E. Do not use "3rd or 4th" wire internal electrical system conductors for communications signal ground.
- F. Do not connect the signal ground to the building's external lightning protection system.
- G. Do Not "mix grounds" of different systems.
- H. Insure grounds of different systems are installed as to not violate OSHA Safety and NEC installation requirements for protection of personnel.

4.0 SYSTEM LISTING

The Nurses Call System is NFPA listed as an "Emergency" Communication system. Where Code Blue signals are transmitted, that listing is elevated to "Life Support/Safety." Therefore, the following testing and guaranty provisions are the minimum to be performed and provided by the contractor and Warranted by the OEM.

4.1 PROOF OF PERFORMANCE TESTING

- A. Intermediate Testing:
 - 1. After completion of 30 40% of the installation of a head end cabinet(s) and interconnection to the corresponding System Patient Head Wall Units and equipment, one master stations, local and remote stations, treatment rooms, and prior to any further work, this portion of the system must be pretested, inspected, and lcertified. Each item of installed equipment shall be checked to ensure appropriate UL Listing and Certification Labels are affixed as required by NFPA -Life Safety Code 101-3.2 (a) & (b), UL Nurse Call Standard 1069 and JCHCO evaluation guidelines, and proper installation practices are followed. The intermediate test shall include a full operational test.
 - 2. All inspections and tests shall be conducted by an OEM-certified contractor representative and witnessed by TVE-0050P3B if there is no local Government Representative that processes OEM and VA approved Credentials to inspect and certify the system. The results of the inspection will be officially recorded by the Government Representative and maintained on file by the RE, until completion of the entire project. The results will be compared to the Acceptance Test results. An identical inspection may be conducted between the 65 - 75% of the system construction phase, at the direction of the RE.
- B. Pretesting:
 - Upon completing installation of the Nurse Call and/or Code Blue System, the Contractor shall align, balance, and completely pretest the entire system under full operating conditions.
 - 2. Pretesting Procedure:
 - a. During the System Pretest the Contractor shall verify (utilizing approved test equipment) that the System is fully operational and meets all the System performance requirements of this standard.

- b. The Contractor shall pretest and verify that all PSM System functions and specification requirements are met and operational, no unwanted aural effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise, etc. are present. At a minimum, each of the following locations shall be fully pretested:
 - 1) Central Control Cabinets.
 - 2) Nurse Control Stations.
 - a) Master Stations
 - b) Patient Stations
 - c) Staff Stations
 - d) Emergency Stations
 - e) Code Blue Stations
 - 3) Dome Lights.
 - a) Patient Rooms
 - b) Corridors
 - c) Intersectional
 - 4) STRs
 - 5) Local and Remote Enunciation Panels (code blue).
 - 6) Electrical Supervision Panels/Functions/locations.
 - 7) All Networked locations.
 - System interface locations (i.e. wireless, PA, telephone, etc.).
 - 9) System trouble reporting.
 - 10) System electrical supervision.
 - 11) UPS operation.
 - 12) Primary / Emergency AC Power Requirements
 - 13) Extra Auxiliary Generator Requirements.
 - 14) NSs.
- 3. The Contractor shall provide four (4) copies of the recorded system pretest measurements and the written certification that the System is ready for the formal acceptance test shall be submitted to the RE.
- C. Acceptance Test:
 - After the Nurse Call and/or Code Blue System has been pretested and the Contractor has submitted the pretest results and certification to the RE, then the Contractor shall schedule an acceptance test date and give the RE 15 working days written notice prior to the

date the acceptance test is expected to begin. The System shall be tested in the presence of a TVE 0050P3B and OEM certified representatives. The System shall be tested utilizing the approved test equipment to certify proof of performance and Life Safety / Critical Service compliance. The tests shall verify that the total System meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.

- 2. The acceptance test shall be performed on a "go-no-go" basis. Only those operator adjustments required to show proof of performance shall be allowed. The test shall demonstrate and verify that the installed System does comply with all requirements of this specification under operating conditions. The System shall be rated as either acceptable or unacceptable at the conclusion of the test. Failure of any part of the System that precludes completion of system testing, and which cannot be repaired in four (4) hours, shall be cause for terminating the acceptance test of the System. Repeated failures that result in a cumulative time of eight (8) hours to affect repairs shall cause the entire System to be declared unacceptable.
- Retesting of the entire System shall be rescheduled at the convenience of the Government and costs borne by the Contractor at the direction of the SRE.
- D. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. The TVE 0050P3B Representative will tour all major areas where the Nurse Call and/or Code Blue System and all sub-systems are completely and properly installed to insure they are operationally ready for proof of performance testing. A system inventory including available spare parts will be taken at this time. Each item of installed equipment shall be checked to ensure appropriate UL certification labels are affixed.
 - b. The System diagrams, record drawings, equipment manuals, TIP Auto CAD Disks, intermediate, and pretest results shall be formally inventoried and reviewed.
 - c. Failure of the System to meet the installation requirements of this specification shall be grounds for terminating all testing.
 - 2. Operational Test:

- a. After the Physical and Mechanical Inspection, the central terminating and nurse call master control equipment shall be checked to verify that it meets all performance requirements outlined herein. A spectrum analyzer and sound level meter may be utilized to accomplish this requirement.
- b. Following the central equipment test, a pillow speaker (or on board speaker) shall be connected to the central terminating and nurse call master control equipment's output tap to ensure there are no signal distortions such as intermodulation, data noise, popping sounds, erratic system functions, on any function.
- c. The distribution system shall be checked at each interface, junction, and distribution point, first, middle, and last intersectional, room, and bed dome light in each leg to verify that the nurse call distribution system meets all system performance standards.
- d. The RED system and volume stepper switches shall be checked to insure proper operation of the pillow speaker, the volume stepper and the RED system (if installed).
- e. Additionally, each installed emergency, patient, staff, duty, panic station, intersectional, room, and bed dome light, power supply, code one, and remote annunciator panels shall be checked insuring they meet the requirements of this specification.
- f. Once these tests have been completed, each installed sub-system function shall be tested as a unified, functioning and fully operating system. The typical functions are: nurse follower, three levels of emergency signaling (i.e. flashing red emergency, flashing white patient emergency, flashing white or combination lights for staff emergency, separate flashing code blue), minimum of 10 minutes of UPS operation, memory saving, minimum of ten station audio paging, canceling emergency calls at each originating station only, and storage and prioritizing of calls.
- g. Individual Item Test: The TVE 0050P3B Representative will select individual items of equipment for detailed proof of performance testing until 100% of the System has been tested and found to meet the contents of this specification. Each item shall meet or exceed the minimum requirements of this document.
- 3. Test Conclusion:

10-18

- a. At the conclusion of the Acceptance Test, using the generated punch list (or discrepancy list) the VA and the Contractor shall jointly agree to the results of the test, and reschedule testing on deficiencies and shortages with the RE. Any retesting to comply with these specifications will be done at the Contractor's expense.
- b. If the System is declared unacceptable without conditions, all rescheduled testing expenses will be borne by the Contractor.
- E. Acceptable Test Equipment: The test equipment shall furnished by the Contractor shall have a calibration tag of an acceptable calibration service dated not more than 12 months prior to the test. As part of the submittal, a test equipment list shall be furnished that includes the make and model number of the following type of equipment as a minimum:
 - 1. Spectrum Analyzer.
 - 2. Signal Level Meter.
 - 3. Volt-Ohm Meter.
 - 4. Sound Pressure Level (SPL) Meter.
 - 5. Oscilloscope.
 - 6. Pillow Speaker Test Set (Pillow Speaker with appropriate load and cross connections in lieu of the set is acceptable).
 - 7. Patient Push Button Cord Test Set.
 - 8. Patient Bed with connecting multiple conductor cord.

4.2 WARRANTY

- A. Comply with FAR 52.246-21, except that warranty shall be as follows:
- B. Contractor's Responsibility:
 - 1. The Contractor shall warranty that all provided material and equipment will be free from defects, workmanship and will remain so for a period of one year from date of final acceptance of the System by the VA. The Contractor shall provide OEM's equipment warranty documents, to the RE (or Facility Contracting Officer if the Facility has taken procession of the building), that certifies each item of equipment installed conforms to OEM published specifications.
 - 2. The Contractor's maintenance personnel shall have the ability to contact the Contractor and OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time. This contact capability

the VA.

- 3. All Contractor maintenance and supervisor personnel shall be fully qualified by the OEM and must provide two (2) copies of current and qualified OEM training certificates and OEM certification upon request.
- 4. Additionally, the Contractor shall accomplish the following minimum requirements during the two year guaranty period:
 - a. Response Time during the Two Year Guaranty Period:
 - The RE (or Facility Contracting Officer if the system has been turned over to the Facility) is the Contractor's ONLY OFFICIAL reporting and contact official for nurse call system trouble calls, during the guaranty period.
 - 2) A standard work week is considered 8:00 A.M. to 5:00 P.M. or as designated by the RE (or Facility Contracting Officer), Monday through Friday exclusive of Federal Holidays.
 - The Contractor shall respond and correct on-site trouble calls, during the standard work week to:
 - a) A routine trouble call within one (1) working day of its report. A routine trouble is considered a trouble which causes a pillow speaker or cordset, one (1) master nurse control station, patient station, emergency station, or dome light to be inoperable.
 - b) Routine trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) shall also be deemed as an emergency trouble call. The RE (or Facility Contracting Officer) shall notify the Contractor of this type of trouble call.
 - c) An emergency trouble call within four hours of its report. An emergency trouble is considered a trouble which causes a sub-system (ward), distribution point, terminal cabinet, or code one system to be inoperable at anytime.
 - 4) If a Nurse Call and/or Code Blue/ component failure cannot be corrected within four (4) hours (exclusive of the standard work time limits), the Contractor shall be responsible for providing alternate nurse call equipment. The alternate equipment/system shall be operational within a maximum of 20 hours after the four (4) hour trouble shooting time and

restore the effected location operation to meet the System performance standards. If any sub-system or major system trouble cannot be corrected within one working day, the Contractor shall furnish and install compatible substitute equipment returning the System or sub-system to full operational capability, as described herein, until repairs are complete.

- b. Required On-Site Visits during the <u>Two Year</u> Guaranty Period
 - The Contractor shall visit, on-site, for a minimum of eight

 hours, once every 12 weeks, during the guaranty period, to
 perform system preventive maintenance, equipment cleaning, and
 operational adjustments to maintain the System according the
 descriptions identified in this document.
 - The Contractor shall arrange all Facility visits with the RE (or Facility Contracting Officer) prior to performing the required maintenance visits.
 - 3) Preventive maintenance shall be performed by the Contractor in accordance with the OEM's recommended practice and service intervals during non-busy time agreed to by the RE (or Facility Contracting Officer) and Contractor.
 - The preventive maintenance schedule, functions and reports shall be provided to and approved by the RE (or Facility Contracting Officer).
 - 5) The Contractor shall provide the RE (or Facility Contracting Officer) a type written report itemizing each deficiency found and the corrective action performed during each required visit or official reported trouble call. The Contractor shall provide the RE with sample copies of these reports for review and approval at the beginning of the Acceptance Test. The following reports are the minimum required:
 - a) The Contractor shall provide a monthly summary all equipment and sub-systems serviced during this warranty period to RE (or Facility Contracting Officer) by the fifth (5th) working day after the end of each month. The report shall clearly and concisely describe the services rendered, parts replaced and repairs performed. The report shall prescribe anticipated future needs of the equipment and systems for preventive and predictive maintenance.

- b) The Contractor shall maintain a separate log entry for each item of equipment and each sub-system of the System. The log shall list dates and times of all scheduled, routine, and emergency calls. Each emergency call shall be described with details of the nature and causes of emergency steps taken to rectify the situation and specific recommendations to avoid such conditions in the future.
- 6) The RE (or Facility Contracting Officer) shall convey to the Facility Engineering Officer, two (2) copies of actual reports for evaluation.
 - a) The RE (or Facility Contracting Officer) shall ensure a copy of these reports is entered into the System's official acquisition documents.
 - b) The Facility Chief Engineer shall ensure a copy of these reports is entered into the System's official technical record documents.
- C. Work Not Included: Maintenance and repair service shall not include the performance of any work due to improper use; accidents; other vendor, contractor, or owner tampering or negligence, for which the Contractor is not directly responsible and does not control. The Contractor shall immediately notify the RE or Facility Contracting Officer in writing upon the discovery of these incidents. The RE or Facility Contracting Officer will investigate all reported incidents and render

4.3 TRAINING

- A. Provide thorough training of all nursing staff assigned to those nursing units receiving new networked nurse/patient communications equipment. This training shall be developed and implemented to address two different types of staff. Floor nurses/staff shall receive training from their perspective, and likewise, unit secretaries (or any person whose specific responsibilities include answering patient calls and dispatching staff) shall receive operational training from their perspective. A separate training room will be set up that allows this type of individualized training utilizing in-service training unit, prior to cut over of the new system.
- B. Provide the following minimum training times and durations:
 - 48 hours prior to opening for nursing staff (in 8-hour increments) split evenly over 3 weeks and day and night shifts. Coordinate schedule with Owner.

2. 24 hours for supervisors and system administrators.

5.0 ATTACHMENTS

- A. The following items are required as a part of the system:
 - 1. COTS Documents:

a.

CHECKLIST FOR SOFTWARE LICENSING AGREEMENTS

(For use in commercial item acquisition [COTS] conforming to - FAR Part 12)

Is the license (check all that apply):	Yes	No
Exclusive		
Non-exclusive		
Perpetual		
Limited term		
If limited term, state the period (months or years):		
If limited term, is there an automatic renewal provision?		
CPU based		
If CPU based, state number of machines and whether simultaneous use is permitted:		
Site license		
If site license, state the site/location:		
Network license		
Other basis (e.g., # of users, # of transactions, etc.)		
(state specifics)		
Applicable to only the current version (doesn't apply to future versions)		
Software maintenance included at no extra cost		
Allow for office relocation or transfer		
Allow copying for backup or archival purpose		
Allow no cost copy at disaster recovery site		
Restricted on Use: (see note below)		
Restricted on the processing of data by or for user's subsidiaries and affiliates		
Restricted on processing of third party data (or use in service bureau)	_	
Restricted on network use	_	
Restricted on site and equipment limitations		
Restricted on number of users (e.g., cannot exceed # of users)		
Terms and Conditions that may need to be negotiated:	Yes	N
Does the license prohibit use of the software outside of the Government?		
If yes, this needs to be deleted/modified if other Government contractors need access to the software (as GFP) to fulfill		
obligations of their own contracts.	-	
Does license state that the software is Year 2000 compliant or include a Year 2000 warranty?		
If no, must ensure it is compliant per FAR 39 or include a Y2K warranty. Does the license state that it provides no warranties or guarantees of any kind?	-	
If yes, need to determine whether additional warranty would be in the best interest of the Government.		
Does the license warrant that the software does not contain any code (e.g., virus) that will disable the software, and if such code		
exists, that Licensor agrees to indemnify the licensee (user) for all damages suffered as a result of such code?		
In o, ned to regotiate for such warranty.		
Does the license allow access to source code?		
If no, negotiate for access if software will be modified or customized for the Government's needs or if the Government intends to		
maintain the software itself.		
Does the license require Licensor to deposit source code in escrow account?		
f no and source code is needed, consider negotiating for this provision, and state what "release conditions" are.		
Does the license allow the Government to hold the rights to customized code and to the data that the software manipulates?		
If no, negotiate for the rights if the Government (customer) requires them.		
Does the license authorize us to copy user manuals for internal purposes?		
If no, negotiate for authorization if multiple copies must be made for our internal use or ensure that the vendor supplies		
adequate number of copies. May also negotiate for updated manuals at periodic intervals, e.g., with each major update.	_	
Does the license state that licensee modifications to the software void all warranties?		
If yes, ensure that the vendor still warrants the unmodified portions.	+	-
Does the license include clauses that prohibit needed uses of software, restrict the use of output from the software, or		
inappropriately burden the operation of the computer facilities?		
If yes, need to negotiate better terms and conditions.	+	-
Is the dispute clause in the license consistent with FAR 52.233-1, Disputes Clause? If no, then need to modify license to be consistent with FAR.		
	+	
Does the default clause in the license allow for the Government to terminate for convenience or for cause, consistent with FAR 52.212-4(I) or FAR 52.212-4(m)?		

OLICITATION/CONTRACT/	ORDER FOR COMMER	CIAL ITEM	s	1. REQU	ISIT:	ION NUMBER	PAGE 1 OF
OFFEROR TO COMPLE							7
2. CONTRACT NO.	3. AWARD/EFFECTI VE DATE SEE BLOCK 31C	4. ORDER		5. SOL:	ICITA	TION NO.	6. SOLICITATION ISSUE DATE
7. FOR OLICITATION INFORMATION	a. NAME			b. TELE (No col		E NUMBER calls)	8. OFFER DUE DATE/ LOCAL TIME
9. ISSUED BY:	CODE		10. THI ACQUISIT UNRES SET 100 % F BUSINE USINE	CION IS STRICTED ASIDE: OR ALL SS	FOR DES BLC	DELIVERY FOB TINATION UNLESS OCK IS MARKED SEE HEDULE	12. DISCOUNT TERMS
			SMALL SMALL 8 (A) NAICS: SIZE ST.		RA	☐ 13a. THIS CONTRACT IS RATED ORDER UNDER DPAS (15 CFR 7 13b. RATING	
						RFP RFQ	F SOLICITATION
15. DELIVER TO	CODE		16. AD	MINISTE	RED	BY	CODE
			See #	9 above			
17a. CONTRACTOR/ DE	FACILI TY		18a. P. MADE BY	AYMENT N	VILL	BE	CODE
OFFEROR	CODE			Departm FMS P.O. Bo	ent o x 14	ES OF AMERI of Veterans 9971 78714-8971	
TELEPHONE NO: 703 17b. CHECK IF ND PUT SUCH ADDRESS I	'REMITTANCE IS DI N	FFERENT	18b. SU 18a. UNI	LESS BLO	CK BE	LOW	S SHOWN IN BLOCK
19.	OFFER 20.		<u> </u>	IS C 21.	HECKE	D 🛛 SEE AI 23.	DDENDUM 24.
ITEM NO. SCH	EDULE OF SUPPLIE	S/SERVICE	S	QUANTI	UNI	UNIT	AMOUNT

			-		-	
19.	20.		21.	22.	23.	24.
ITEM NO.	SCHEDULE OF SUPPLIES/SERVICE:	5	QUANTI	UNI	UNIT	AMOUNT
			ΤY	Т	PRICE	

	/or (Attach Addition as Necessary)	nal					
25. ACCOUNTING AND APPRC	PRIATION DATA					AWARD AMOUNT Use Only)	
 27a. SOLICITATION INCOR FAR 52.212-3 AND 52.212-5 ARE 27b. CONTRACT/PURCHASE C 52.227-14, 52.227-16, and 52.2 	ATTACHED. ADDENDA RDER INCORPORATES BY				ARE	ATTACHED.	
28. CONTRACTOR IS REQU DOCUMENT AND RETURN <u>1</u> COPIES TO ISSUING OF AGREES TO FURNISH AND DELIVEF ALL ITEMS SET FORTH IDENTIFIED ABOVE AND ON ANY F SHEETS SUBJECT TO TH CONDITIONS SPECIFIED HEREIN.	☐ 29. AWARD OF CONTRACT: REF. OFFER OFFER OFFER ON SOLICITATION (BLOCK 5), INCLUDING ANY ADDITIONS OR CHANGES WHICH ARE SET FORTH HEREIN, IS ACCEPTED AS TO ITEMS:						
30A. SIGNATURE OF OFFERG	PR/CONTRACTOR	CONT	RACTING	OFFIC	CER)	ICA (SIGNATURE (ЭF
30b. NAME AND TITLE OF S (Type or Print)	31b. NAME OF CONTRACTING OFFICER (Type or Print)31c. DATE SIGNEDContracting Officer					1	
AUTHORIZED FOR LOCAL	ENERATE	D		STANDARD			
REPRODUCTION PREVIOUS EDITION IS NOT				(REV. 4/2)	002) rescribed By GS <i>I</i>	Δ	
USABLE						CFR) 53.212	7
19. ITEM NO. SCHEDULE OF	20. SUPPLIES/SERVICES		21. QUANTI TY	22. UNI T	23. UNIT PRICE	24. AMOUNT	

This Contract is Firm Fixed Price (FFP). The Contractor is required to provide the software, software license, and software maintenance services for the computer software identified below. Distribution of maintenance copies shall be accomplished by using an appropriate magnetic, electronic or printed media. Software maintenance includes periodic updates, enhancements and corrections to the software, and reasonable technical support, all of which are customarily provided by the Contractor to its customers.

The name of the software is: Match Existing License Type: Perpetual or Term to match existing Software Manufacturer: Match Existing

Governing Law. Federal law and regulations, including the Federal Acquisition Regulations ("FAR"), shall govern this Contract or Order (Contract/Order). Commercial license agreements may be made a part of this Contract/Order but only if both parties expressly make them an addendum. If the commercial license agreement is not made an addendum, it shall not apply, govern, be a part of or have any effect whatsoever on this Contract/Order; this includes, but is not limited to, any agreement embedded in the computer software (clickwrap) or any agreement that is otherwise delivered with or provided to the Government with the commercial computer software or documentation (shrinkwrap), or any other license agreement otherwise referred to in any document. If a commercial license agreement is made an addendum, only those provisions addressing data rights regarding the Government's use, duplication and disclosure of data (e.g., restricted computer software) are included and made a part of this Contract/Order, and only to the extent that those provisions are not duplicative or inconsistent with Federal law, Federal regulation or the incorporated FAR clauses; those provisions in the commercial license agreement that do not address data rights regarding the Government's use, duplication and disclosure of data shall not be included or made a part of the Contract/Order. Federal law and regulation, including without limitation, the Contract Disputes Act (41 U.S.C. §601-613), the Anti-Deficiency Act (31 U.S.C. §1341 et seq.), the Competition in Contracting Act (41 U.S.C. §251, et seq), the Prompt Payment Act (31 U.S.C. \$3901, et seq.) and FAR clauses 52.212-4, 52.227-14, 52.227-19 shall supersede, control and render ineffective any inconsistent, conflicting or duplicative provision in any commercial license agreement. In the event of conflict between this clause and any provision in the Contract/Order or the commercial license agreement or elsewhere, the terms of this clause shall prevail. Claims of patent or copyright infringement brought against the Government as a party shall be defended by the U.S. Department of Justice (DOJ). 28 U.S.C. § 516. At the discretion of DOJ, the Contractor may be allowed reasonable participation in the defense of 52 23 litigation. Anv additional changes to the Contract/Order must be made by contract modification (Standard Form 30). Nothing in this Contract/Order or any commercial license aball be construed as a waiwer of coversion agraamant

		oft Word 2008 Sof 01-7069.	tware License,	Part						
	Software may be installed on four separate									
	personal computers and be used by any VA									
-		ee or support ser		or.			\$10,000.0			
1		es are perpetual. ths of Standard M			4	EA	0	\$40,000.00		
		re Maintenance ar		ipport						
		es for the softwa								
2	under (CLIN 1; Part No.	9891-7069.		4	EA	\$2,500.00	\$10,000.00		
	Total							\$50,000.00		
32a. QUA	ANTITY :	IN COLUMN 21 HAS	BEEN							
	RECEIVEI		INSPECTED	ACC	CEPTED,	AND C	ONFORMS TO) THE CONTRACT,		
EXCEPT AS N	NOTED:									
201 070						D T 1100	-			
32b. SIC GOVT. REPRE		OF AUTHORIZED	32c. DATE				GOVERNMEN	O TITLE OF		
00VI. IUIIU					110 11101		RESENTATIV			
32e. MAII	LING ADI	DRESS OF AUTHORIZ	ZED GOVERNMENT		32f. TELEPHONE NO. OF AUTHORIZED					
REPRESENTAT	TIVE				GOVERNMENT REPRESENTATIVE					
					32g. E-MAIL OF AUTHORIZED GOVERNMENT REPRESENTATIVE					
						TUTUT				
33. SHIP		34. VOUCHER	35. AMOUNT VE	RIFIED	36. P	AYMEN	Т	37. CHECK		
NUMBER		NUMBER	CORRECT	FOR	СОМ	PLETE		NUMBER		
			•		PARTIA	L	- FINAL	'		
_ PART	IAL									
FINAL			1							
38. S/R		39. S/R VOUCHER	40. PAID BY							
ACCOUNT NUMB	EK	NUMBER								
41a.	. I CEH	RTIFY THIS ACCOUN	I NT IS CORRECT	42a.	RECEIVE	D BY	(Print)			
AND PROPER							(,			
41b. SIG	GNATURE	AND TITLE OF	41c. DATE							
CERTIFYING	OFFICE	R								
				42b.	RECEIVE	d At	(Location)			
				12c	DATE RE	с і р	12d TC	TAL CONTAINERS		
				(YY/MM			120, 10			
			1	1				STANDARD FORM		
								BACK		
	DENDUM DER#	A -ADDITIONAL TE	RMS AND CONDIT	IONS FO	OR CONTR	ACT #		OR		
UR										

A.1 Federal Acquisition Regulation (FAR) Incorporated by Reference. The Contractor agrees to comply with the following FAR clauses, which the Contracting Officer has indicated as being incorporated in this Contract/Order by reference, to implement provisions of law or executive orders applicable to acquisitions of this nature, to implement department policy or to clarify the Government's requirement. Copies of clauses in full text will be provided on request. FAR Clauses can be viewed at http://www.arnet.gov/far/.

- 1) FAR 52.212-4, Contract Terms and Conditions-Commercial Items (Oct 2003)
- 2) FAR 52.227-14, Rights in Data-General (Dec 2007), Alt III
- 3) FAR 52.227-16, Additional Data Requirements (Jun 1987)
- 4) FAR 52.227-19, Commercial Computer Software License (Dec 2007)

A.2 Contracting Officer's Authority. The Contracting Officer is the only person authorized to make or approve any changes in any of the requirements of this Contract, and notwithstanding any provisions contained elsewhere in this Contract/Order, the said authority remains solely within the Contracting Officer. In the event the Contractor makes any changes at the direction of any person other than the Contracting Officer, the changes will be considered to have been made without authority and no adjustment will be made in the contract price to cover any increase in costs incurred as a result thereof.

A.3 VAAR 852.270-1 Representatives of Contracting Officers (APR 1984). The Contracting Officer reserves the right to designate representatives to act for him/her in furnishing technical guidance and advice or generally supervise the work to be performed under this Contract/Order. Such designation will be in writing and will define the scope and limitations of the designee's authority. A copy of the designation shall be furnished the Contractor.

A.4 VAAR 852.270-4 Commercial Advertising (NOV 1984). The Contractor will not advertise the award of this Contract/Order in his/her commercial advertising in such a manner as to state or imply that the Department of Veterans Affairs endorses a product, project or commercial line of endeavor.

A.5 VAAR 852.237-70 Contractor Responsibilities (APR 1984) The Contractor shall obtain all necessary licenses and/or permits required to perform this work. He/she shall take all reasonable precautions necessary to protect persons and property from injury or damage during the performance of the Contract/Order. He/she shall be responsible for any injury to himself/herself, his/her employees, as well as for any damage to personal or public property that occurs during the performance of the Contract/Order that is caused by his/her employees fault or negligence, and shall maintain personal liability and property damage insurance having coverage for a limit as required by the laws of the state where services are performed. Further, it is agreed that any negligence of the Government, its officers, agents, servants and employees, shall not be the responsibility of the Contractor hereunder with the regard to any claims, loss, damage, injury, and liability resulting there from.

A.6 Indemnification. The Contractor shall save and hold harmless and indemnify the Government against any and all liability claims, and cost of whatsoever kind and nature for injury to or death of any person or persons and for loss or damage to any Contractor property or property owned by a third party occurring in connection with or in any way incident to or arising out of the occupancy, use service, operation, or performance of work under the terms of the Contract/Order, resulting in whole or in part from the acts or omissions of the Contractor, any subcontractor, or any employee, agent, or representative of the Contractor or subcontractor.

A.7 Government's Liability. The Government shall not be liable for any injury to the Contractor's personnel or damage to the Contractor's property unless such injury or damage is due to negligence on the part of the

Government and is recoverable under the Federal Torts Claims Act, or pursuant to other Federal statutory authority.

A.10 Uniform Computer Information Transaction Act (UCITA). UCITA is not applicable to the Contract/Order.

A.11 Software License and Software Maintenance Subscription and Technical Support.

- (1) Definitions.
 - (a) Licensee. The term "licensee" shall mean the U.S. Department of Veterans Affairs ("VA") and is synonymous with "Government."
 - (b) Licensor. The term "licensor" shall mean the software manufacturer of the computer software being acquired. The term "Contractor" is the company identified in Block 17a on the SF1449. If the Contractor is a reseller and not the Licensor, the Contractor remains responsible for performance under this Contract.
 - (c) Software. The term "software" shall mean the licensed computer software product(s) cited in the Schedule of Supplies (Page 2).
 - (d) Maintenance. The term "maintenance" is the process of enhancing and optimizing software, as well as remedying defects. It shall include all new fixes, patches, releases, updates, versions and upgrades, as further defined below.
 - (e) Technical Support. The term "technical support" refers to the range of services providing assistance for the software via the telephone, email, a website or otherwise.
 - (f) Release or Update. The term "release" or "update" are terms that refer to a revision of software that contains defect corrections, minor enhancements or improvements of the software's functionality. This is usually designated by a change in the number to the right of the decimal point (e.g., from Version 5.3 to 5.4). An example of an update is the addition of new hardware.
 - (g) Version or Upgrade. The term "version" or "upgrade" are terms that refer to a revision of software that contains new or improved functionality. This is usually designated by a change in the number to the left of the decimal point (e.g., from Version 5.4 to 6).
- (2) License. Grant of License and Term.
 - (a) See also Addendum B.
 - (b) Unless otherwise stated in the Schedule of Supplies/Services, the software license provided to the Government is a perpetual, nonexclusive license to use the software.
 - (c) The license authorizes the Government to use the software in processing data for other federal agencies.
 - (d) If the licensed software requires a password (or license key) to be operational, it shall be delivered with the software media and have no expiration date.
 - (e) If the Government decides to outsource or contract its services, the Government may allow the outsourcer to use the licensed software solely to provide the services on its behalf. The outsourcer shall be bound by the provisions of this Contract relating to the use of the software.

- (f) If the software is for use in a networked environment, as may be reflected by the number of servers or users described in the Contract/Order, the license grant provided by the Contractor includes the Government's use of the software in such environment.
- (g) Any dispute regarding the license grant or usage limitations shall be resolved in accordance with the Disputes Clause incorporated in FAR 52.212-4(d).
- (h) If the Government purchases additional licenses, the terms and conditions for those additional licenses (including technical support and upgrade subscription) shall be the same as agreed to in this Contract/Order, unless negotiated otherwise by mutual agreement of the parties.
- (i) The licensed software contains critical product functionality that meets the minimum needs of the Government and is the basis for the Government's procurement of the software; consequently, the Contractor agrees that the Government has the right to successor products at no additional cost when functionality is later unbundled from the product licensed herein and bundled into a new or different product, provided the Government is current on maintenance.
- (j) If the Contractor is a reseller for the computer software being acquired under this Contract/Order, it is permissible for the actual software manufacturer (Licensor) to deliver the software directly to the Government.
- (k) All limitations of software usage are expressly stated in the SF 1449 and Addendum A and Addendum B.
- (3) Software Maintenance Subscription and Technical Support.
 - (a) See also Addendum B.
 - (b) Software maintenance and technical support are included at the agreed upon price. However, if additional charges are assessed during the maintenance and technical support period as a result of negotiated changes in the license (e.g., CPU upgrades), the fee shall be by mutual agreement of the parties and any dispute thereof shall be resolved in accordance with the Disputes Clause incorporated herein at FAR 52.212-4(g).
 - (c) If the Government desires to continue software maintenance and support beyond the period identified in this Contract/Order, the Government will issue a separate contract or order to renew annual maintenance and technical support. Conversely, if an order or contract to renew software maintenance and technical support is not received, no assumption by the Contractor shall be made that it has been renewed. It shall not be automatically renewed.
 - (d) Unless otherwise agreed, for any new additional software that may be licensed, the Contractor shall provide for software maintenance and technical support for the first year of the license at no additional cost.
 - (e) Unless otherwise agreed, the Contractor shall provide VA with software maintenance, which includes periodic updates, upgrades, enhancements and corrections to the software, and reasonable technical support, all of which are customarily provided by the Contractor to its customers so as to cause the software to perform according to its specifications, documentation or demonstrated claims.

- (f) Any telephone support provided by Contractor shall be at no additional cost.
- (g) All technical support services will be provided in a timely manner in accordance with the Contractor's customary practice. However, prolonged delay in resolving software problems will be noted in the Government's various past performance records on the Contractor (e.g., www.ppirs.gov).
- (h) If the Government allows the maintenance and/or technical support to lapse and subsequently wishes to reinstate maintenance and technical support, any reinstatement fee charged shall not exceed the amounts that would have been charged if the Government had not allowed it to lapse.

A.12 Disabling Software Code. The Government requires delivery of computer software that does not contain any code that will, upon the occurrence or the nonoccurrence of any event, disable the software. Such code includes but is not limited to a computer virus, restrictive key, node lock, time-out or other function, whether implemented by electronic, mechanical, or other means, which limits or hinders the use or access to any computer software based on residency on a specific hardware configuration, frequency of duration of use, or other limiting criteria. If any such code is present, the Contractor agrees to indemnify the Government for all damages suffered as a result of a disabling caused by such code, and the Contractor agrees to remove such code upon the Government's request at no extra cost to the Government. Inability of the Contractor to remove the disabling software code will be considered an inexcusable delay and a material breach of contract, and the Government may exercise its right to terminate for cause. In addition, the Government is permitted to remove the code as it deems appropriate and charge the Contractor for consideration for the time and effort in removing the code.

A.13 Disaster Recovery Clause. Government hereby certifies to Contractor that it has a bona fide disaster plan with respect to the computer software programs used in its operations. The Contract/Order authorizes the Government's operation to maintain a second copy of software on tape for use at loading at sites that are not live (e.g. subscription-based disaster recovery services) for the sole purpose of duplicating or mirroring the software environment of the "primary" licenses at the designated licensed site and as described herein. Additionally, use of the software at the contingency sites must not include general access or any processing for program development or production. Contractor shall permit operation and testing of all licensed programs at the contingency sites as designated by the Government without prior approval and at no additional cost to the Government solely for the purpose of maintaining or implementing disaster recovery readiness including continuity of business operations. CPU's, MIPS or MSU's at these contingency sites are excluded from the total CPU's, MIPS or MSU's count included elsewhere in the Contract/Order and are not separately billable. Activation of operations at a contingency site shall be at Government's discretion. Government is authorized to install all software at the contingency sites for testing, problem resolution purposes, and to ensure there will be no operational delays in association with transition of workload from the designated licensed site to the contingency sites. Use of the software at the contingency sites in the event of a disaster shall continue until such time as normal processing can be resumed at the "primary" site regardless of the duration required. Nothing in the Contract/Order diminishes the Government's rights in accordance with the data rights clause(s). Any license keys, codes, or passwords required by the Contractor in order to use the software at the contingency sites shall be provided to the Government within 10 days of the Government's request.

A.14 NOTICE OF THE FEDERAL ACCESSIBILITY LAW AFFECTING ALL ELECTRONIC AND INFORMATION TECHNOLOGY PROCUREMENTS (SECTION 508)

On August 7, 1998, Section 508 of the Rehabilitation Act of 1973 was amended to require that when Federal departments or agencies develop, procure, maintain, or use Electronic and Information Technology, that they shall ensure it allows Federal employees with disabilities to have access to and use of information and data that is comparable to the access to and use of information and data by other Federal employees.

Section 508 required the Architectural and Transportation Barriers Compliance Board (Access Board) to publish standards setting forth a definition of electronic and information technology and the technical and functional criteria for such technology to comply with Section 508. These standards have been developed were published with an effective date of December 21, 2000. Federal departments and agencies must develop all Electronic and Information Technology requirements to comply with the standards found in 36 CFR 1194 ._____ in performing this contract. (*Fill in Section Number and Title*)

ADDENDUM	в	-	STATEMENT	OF	WORK	FOR	CONTRACT	#	or
ORDER#									

B.1 *License.* BROADLY DESCRIBE COMPUTING ENVIRONMENT AND HOW VA INTENDS TO USE THE SOFTWARE, HOW ITS LICENSED, WHAT THE SOFTWARE IS EXPECTED TO DO, ETC. TO GET YOU STARTED: The Department of Veterans Affairs (VA) has a need for the computer software identified on the Schedule of Supplies/Services (page 2) (software media and license) and software support services. The software will be installed **onto multiple servers** at the ITAC in Austin Texas for support/training/staging of the _______ Project. These are processor-based licenses that allow for unlimited users utilizing the processor(s). Contractor shall grant the Government the necessary license to accommodate this need. VA may move the software to any other location or hardware at any time.

B.2 Maintenance. The Contractor will provide software maintenance services, which includes periodic updates, enhancements and corrections to the software, and reasonable technical support, all of which are customarily provided by the Contractor to its customers so as to cause the software to perform according to its specifications, documentation or demonstrated claims. Add detailed, specific maintenance and support information here. The Contractor will distribute maintenance updates or releases by using an appropriate magnetic, electronic, or printed media to the address in Block 15 of page one, but to the attention of <u>the COR</u>. Alternatively, the Contractor may offer access to maintenance copies through its website. All maintenance services will be provided in a timely manner in accordance with the Contractor's customary practice. However, prolonged delay in resolving software problems will be noted in the Government's various past performance records on the Contractor (e.g., www.ppirs.gov).

2. MOU

Department of Veterans Affairs

Memorandum

Date: (Current Date)

- From: Department of Veterans Affairs Office of Telecommunications (005OP) Spectrum Management (005OP2H3 – Room 047)) Telecommunications Voice Engineering (005OP2H2) 810 Vermont Avenue, NW Washington, DC 20420
- Subj: Memorandum of Understanding (MOU) for Non VA Licensed Wireless Operations
- To: Facility Director (00) (Address) (Address)
 - The following circumstances are the minimum necessary for conditional use of Wireless Equipment / System (s) in VA Owned or Leased Facilities (here-in after referred to as 'the Facility'). VA Headquarters OI&T's (005) Spectrum Management (005OP2H3), Telecommunications Voice Engineering, Special Communications (TVE - 005OP2H2) and Office of Cyber Security (OCIS – 0050P2) are the responsible entities insuring conformity of each requirement:
 - Each item of equipment or system whose Radio Frequency (RF) equipment is listed under Consolidated Federal Regulations (CFR), Title 47 Federal Communications Commission (FCC), Part 15, Chapter 7, <u>Use of Non Licensed Devices</u> must be installed and operated in a manner consistent with Part 15's "<u>Safety of Life</u>" restrictions. This information is re-emphasized in CFR, Title 15 Department of Commerce, Under the Information Technology Management Reform Act (Public Law 104-106), National Telecommunications Information Administration (NTIA) <u>Manual of Regulations and Procedures for Federal Radio Frequency Management</u> (aka 'The Red Book').
 - b. FCC Part 15 listed RF devices *shall not* be Installed or used in areas where "<u>Safety</u> <u>of Life</u>" functions / operations are accomplished or where a 'Code Blue' enunciation may occur. A list of the minimum areas affected by this statement is provided as Attachment One.
 - c. If external or internal interference is detected and cannot be corrected, <u>the FCC Part</u> <u>15 Listed RF Equipment affected must be turned off until corrections and/or</u> <u>substitutions can be made</u>. Contact VA's Office of Spectrum Management (OSM – 005OP2H3), 202 461-5301 for specific conditional approval(s) concerning this issue.

Memorandum

3. Risk Assessment

Department of

Veterans Affairs

Date: (current date)

From: Director (XXXXX) Address Address Address

- Subj: VA Headquarters (VACO) Memorandum of Understanding (MOU) for Federal Communications Commission (FCC) Part 15 Listed "Non-Regulated Equipment Wireless Operations"
- To: Department of Veterans Affairs Office of Telecommunications (0050P) Spectrum Management (0050P2H3) Telecommunications Voice Engineering (0050P2H2) 1335 East West Highway, 3rd Floor Silver Spring, Maryland 20420

1. We have received the subject VACO MOU (signed copy attached), and are pleased to provide the following information and comments for your review that includes our risks and risk-mitigation factors that prompted our Facility's decision:

- a. RISK ASSESSMENT AND MITIGATION:
 - (1) Background:

(name) VAMC (here-in-after referred to as "the (a) Facility") has used (OEM Mdl Nr©) for over 10 years to allow nurses in the telemetry studio to communicate with nurses at the patients' bedside. This communication medium is a vital patient safety tool that allows for rapid response to the development of a potentially fatal arrhythmia such as ventricular tachycardia. The only information the telemetry technician states on the phone is "bed 109-2 Smith has an alarm for XXXXX." Last four is never communicated. In terms of the pager we have limited the information on the pager to sector, bed number and last name. We must include the last name as occasionally the patients are moved without the knowledge of the telemetry technician, if we were to have a patient mix up the page must contain the last name for safety reasons. Facility Management Services (FMS) has restricted paging access to the telemetry system only. Because pager access is restricted, only an administrator from Technology and Information Management (TIM) or FMS can troubleshoot a pager malfunction.

VAMC (City), (State - ZIP Code), Unregulated FCC Equipment Use, Risk Assessment and Mitigation, Page Two

(b) Because the phones are used 24X7 and have exceeded their life expectancy, many of them have begun to fail which creates a need to purchase newer models that will continue to insure system integrity.

(c) Our Facility has been prevented from purchasing replacement phones because VACO now has updated security and Information Technology (IT) connection controls along with continuing FCC Part 15 restrictions (described in the attached MOU) on devices of which these wireless phones are but one example. These updated security and connection controls are in place to address risks related life safety, information security, personal privacy and IT system integrity. The FCC restrictions continue to warn against the use of "non-regulated radio / wireless based equipment in safety of life locations and functions." Of note, these controls are intended to prevent use of these devices in areas especially where a code-blue annunciation might occur, yet our devices have been used in such areas for over 10 years and so far has not prevented a code-blue annunciation from happening.

(d) Because the Facility does not have a near-term alternative to the current wireless phones, it now faces a set of competing risks. On the one hand are the risks of privacy, connection and interference or security breach(s) that are behind the controls in place for these devices. On the other hand are risks to patient safety if the current phones were to fail and telemetry nurses would lose the ability to rapidly communicate with nurses at the bedside. Our Facility does have a Life Safety approved Nurses Call / Code Blue hardwired system that is installed in those affected areas as the primary Code Blue Enunciation media.

(2) SECURITY:

(a) NEC provides a proprietary scrambling algorithm that is applied to handset registration / authentication and all communications. Every time a (OEM Mdl Nr©) user enters a designated area within the systems' coverage; an automatic user authentication process is performed to confirm the device is authorized for service on the system. This information is scrambled using a proprietary coding scheme to prevent duplication. All voice conversations are also scrambled to enhance security.

(b) The (OEM Mdl Nr©) has several built in security features in each of the wireless handsets are administered through the Facility's Telephone Private Branch Exchange (PBX) administration tool; therefore, the PBX Administrator has full control over the (OEM Mdl Nr©) wireless phones, if one gets lost or stolen it can be disabled immediately. Because of this feature you cannot purchase a similar wireless phone and have it work on our network. These phones have a 50 ft radius from the Zone radio frequency (RF) transceiver; they can only be used within the hospital as there is no handoff via other cellular networks.

(c) These items are not NIST FIPS compliant; but based on the aforementioned facts, we feel patient / staff privacy and HIPAA instructions have been and will continue to be met.

(d)Our Facility will work with (OEM) and VACO's Office of Cyber Security (Name and Phone Nr) to secure the appropriate NIST FIPS certifications will allow VA to issue a Official Approvals from the onset in the IT equipment / system procurement process.

VAMC (City), (State - ZIP Code), Unregulated FCC Equipment Use, Risk Assessment and Mitigation, Page Three

(3) RADIO FREQUENCY (RF) INTERFERENCE:

(a) (OEM) engineers provided us with extensive information on the potential for RF along with electromagnetic (EM) interference to medical equipment within our Facility from the (OEM System) Wireless radio transceivers.

1) Field Experience: Since introduction of the (OEM System) Wireless product in 1996, NEC has installed this system at many health care institutions across the spectrum of medical departments. In all this time there have been zero reports of either suspected or actual RF and EM interference. This includes the experience using these devices at Portland VAMC and our continued testing documentation is available for review if requested.

2) Potential interference called Near Field Coupling: In these cases, an EM field emanating from one device may cause another device within its field area to malfunction. Typically the distances for these fields are less than six (6) inches. In attempts to mitigate these sources of interference, standards have been put in place, namely IEC 60601. This standard calls for devices susceptible to interference to provide shielding against fields of up to three (3) Volts per Meter. In contrast, the (OEM System) wireless products are classified under the FCC Part 15 rules as Class B unlicensed devices, and as such must meet very tight restrictions regarding field emissions of a maximum of from 100 to 500 micro (μ) Volts per Meter across the band of RFs from 30 Hz to 18 gHz. Thus, any medical device even marginally meeting the IEC Standard has not had problems with any near field emissions.

3) Potential phenomenon known as Far Field Induced RFI: should be considered when studying RF and EM interference sources. In this case, a part of the device subject to interference (e.g., a wire, probe, or the casing itself) can inadvertently act as a receiving antenna for a signal transmitted from another device within close proximity (within 6 to 18 inches, depending on the source power levels). To realize this type of interference, the source transmitter power must be fairly strong to conduct through the inefficient nature of the unintended antenna of the receiving device, and the material acting as the antenna must be of a shape and length that matches or is a near multiple of the wavelength of the transmitted RF signal. Finally, this unintentional antenna must not have the typical shielding between it and the subject device's electronics, which if present would prevent such a received signal from causing interference. In the case of the (OEM System) Wireless transmission, which operates between 1,920 mHz and 1,930 mHz, a probe or such piece of any medical device measuring at about six (6) inches would match the wavelength of the RF carrier, and if not properly shielded from

the units electronics may indeed conduct the RF energy within. However, even in this case, one must consider the power level at the so-called antenna receiving the signal. The average output of the (OEM Mdl Nr©) handset is approximately 10 mili (m) Watts when in use. This very low power, even further reduced by the distance between any handset in use and the subject receiving equipment, considered along with the high loss of the "antenna", results in a very low probability of actual interference. These facts, along with the standard procedures of your engineering department's efforts to check the medical equipment for such shielding and filtering defects, should mitigate this potential source.

4) Potential interference between intentional radiators operating in the RF band. Known as either in-band or out-of-band interference, these are cases where a transmitter broadcasts a signal of significant power at the other device's receiver to either overload the receiving radio or mix with the subject's transmitted signal to cause an interfered signal to be received. In-band interference

VAMC (City), (State - ZIP Code), Unregulated FCC Equipment Use, Risk Assessment and Mitigation, Page Four

in the Unlicensed PCS band of which the (OEM System) Wireless system operates is prevented by the FCC rules requiring our equipment to monitor the carrier on which a device intends to transmit on before doing so, so as to sense any current use by another device. If such a signal is received during monitoring, we move to another carrier and try again. This protocol has been demonstrated many times within the FCC labs as well as at many industry trade shows where 5 or more vendors with U-PCS devices have operated in booths close to each other without interference. As for out-of-band interference, because of the extremely low power our devices operate with and the very strict outof-band emission requirements placed upon the U-PCS devices, and the additional factor of a wide separation in the operating frequencies of our system and the typical radio telemetry equipment used in many hospital environments, such interference is very remote and would require extremely close proximity of the two devices.

5) All of our (OEM Mdl Nr©) are FCC listed and has not interfered with other traffic within the same band. We expect the FCC listed (OEM Mdl Nr©) equipment will perform in the same manner.

(b) Our Facility will work with (OEM) and VACO's Spectrum Management (0050P2H3) to find a RF band that can be utilized for this operation that will allow VA to issue a formal and Official Radio Use Permit that will negate the "unregulated equipment use" issues.

(4) CONNECTION TO IT/CABLE NETWORKS:

(a) Each item or system that attaches to a VA IT Network (telephone or data) must be Department of Commerce's National Recognized Testing Laboratory (NRTL) Underwriters Laboratory (UL) 60950-1/2; <u>Information Technology Equipment - Safety</u> listed and bears UL's mark. 1) Paragraph 1.1.1; <u>Equipment Covered by this Standard</u> specifically identifies these systems / networks as one affected system.

2) Paragraph 1.1.2; <u>Additional Requirements</u> further identifies this requirement for <u>electomedical applications with</u> physical connections to the patient be met.

(b) This requirement is paramount since the Facility's Telephone PABX and associated system is listed by the National Fire Protection Association as <u>Critical Service</u>. Additionally, since it carries our Code Blue Radio and Overhead Audio Paging Signals, VA elevates it to Life Safety Service.

(c) Presently the (OEM Mdl Nr©) wireless phones are UL Listed but does not have the aforementioned specific UL certification. Our Facility is working with (The OEM) in this arena to have them meet or exceed this UL requirement. In the meantime we will abide within the confines outlined in the attached MOU for insuring an approved IT Network / System connection is maintained until the appropriate UL certification has been obtained allowing it to be directly connected to our telephone system.

b. The Facility Director after careful review of the attached MOU and consultation with the Facility's CIO, (OEM) engineers, Biomedical and NFPA Engineers, ISO, HIPAA / Privacy Officer, Clinical Staff and JACHAO Officials has decided this risk-benefit analysis strongly favors purchasing replacement (OEM Mdl Nr) phones.

VAMC (City), (State - ZIP Code), Unregulated FCC Equipment Use, Risk Assessment and Mitigation, Page Four

2. Please feel free to contact me concerning the contents of this document.

DIRECTOR'S NAME IN CAPS

cc: Office of General Counsel Office of Telecommunications (05) VA Enterprise Infrastructure Engineering Telecommunications Engineering and Design Office of Cyber Security

Attachment: VACO MOU

- - - E N D - - -

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Common Work Results for Electronic Safety and Security (ESS), applies to all sections of Division 28.
- B. Furnish and install fully functional electronic safety and security cabling system(s), equipment and approved accessories in accordance with the specification section(s), drawing(s), and referenced publications. Capacities and ratings of cable and other items and arrangements for the specified items are shown on each system's required Bill of Materials (BOM) and verified on the approved system drawing(s). If there is a conflict between contract's specification(s) and drawings(s), the contract's specification requirements shall prevail.
- C. The Contractor shall provide a fully functional and operating ESS, programmed, configured, documented, and tested as required herein and the respective Safety and Security System Specification(s). The Contractor shall provide calculations and analysis to support design and engineering decisions as specified in submittals. The Contractor shall provide and pay all labor, materials, and equipment, sales and gross receipts and other taxes. The Contractor shall secure and pay for plan check fees, permits, other fees, and licenses necessary for the execution of work as applicable for the project. Give required notices; the Contractor will comply with codes, ordinances, regulations, and other legal requirements of public authorities, which bear on the performance of work.
- D. The Contractor shall provide an ESS, installed, programmed, configured, documented, and tested. The security system shall include but not limited to: intercommunication system, fire alarm interface,. Operator training shall not be required as part of the Security Contractors scope and shall be provided by the Owner. The Security Contractor shall still be required to provide necessary maintenance and troubleshooting manuals as well as submittals as identified herein. The work shall include the procurement and installation of electrical wire and cables, the installation and testing of all system components. Inspection, testing, demonstration, and acceptance of equipment, software,

materials, installation, documentation, and workmanship, shall be as specified herein. The Contractor shall provide all associated installation support, including the provision of primary electrical input power circuits.

- E. Repair Service Replacement Parts On-site service during the warranty period shall be provided as specified under "Emergency Service". The Contractor shall guarantee all parts and labor for a term of one (1) year, unless dictated otherwise in this specification from the acceptance date of the system as described in Part 5 of this Specification. The Contractor shall be responsible for all equipment, software, shipping, transportation charges, and expenses associated with the service of the system for one (1) year. The Contractor shall provide 24-hour telephone support for the software program at no additional charge to the owner. Software support shall include all software updates that occur during the warranty period.
- F. Section Includes:
 - 1. Description of Work for Electronic Security Systems,
 - 2. Electronic security equipment coordination with relating Divisions,
 - 3. Submittal Requirements for Electronic Security,
 - Miscellaneous Supporting equipment and materials for Electronic Security,
 - 5. Electronic security installation requirements.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- G. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- K. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- L. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- M. Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- P. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.

- Q. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- R. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

1.3 DEFINITIONS

- A. AGC: Automatic Gain Control.
- B. Basket Cable Tray: A fabricated structure consisting of wire mesh bottom and side rails.
- C. BICSI: Building Industry Consulting Service International.
- D. CCD: Charge-coupled device.
- E. Central Station: A PC with software designated as the main controlling PC of the security access system. Where this term is presented with initial capital letters, this definition applies.
- F. Channel Cable Tray: A fabricated structure consisting of a one-piece, ventilated-bottom or solid-bottom channel section.
- G. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- H. CPU: Central processing unit.
- L. EMI: Electromagnetic interference.
- M. EMT: Electric Metallic Tubing.
- O. File Server: A PC in a network that stores the programs and data files shared by users.
- P. GFI: Ground fault interrupter.
- S. I/O: Input/Output.
- U. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- V. LAN: Local area network.
- W. LCD: Liquid-crystal display.
- X. LED: Light-emitting diode.
- Y. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.

- Z. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling powerlimited circuits.
- CC. NEC: National Electric Code
- DD. NEMA: National Electrical Manufacturers Association
- EE. NFPA: National Fire Protection Association
- GG. NRTL: Nationally Recognized Testing Laboratory.
- HH. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. RCDD: Registered Communications Distribution Designer.
- NN. RFI: Radio-frequency interference.
- OO. RIGID: Rigid conduit is galvanized steel tubing, with a tubing wall that is thick enough to allow it to be threaded.
- PP. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- QQ. RS-485: An TIA/EIA standard for multipoint communications.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.
- VV. UPS: Uninterruptible Power Supply
- WW. UTP: Unshielded Twisted Pair
- XX. Workstation: A PC with software that is configured for specific limited security system functions.

1.4 QUALITY ASSURANCE

A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.

28 05 00 - 4

B. Product Qualification:

- Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
- The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within [60] <insert number> miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- D. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 GENERAL ARANGEMENT OF CONTRACT DOCUMENTS

- A. The Contract Documents supplement to this specification indicates approximate locations of equipment. The installation and/or locations of the equipment and devices shall be governed by the intent of the design; specification and Contract Documents, with due regard to actual site conditions, recommendations, ambient factors affecting the equipment and operations in the vicinity. The Contract Documents are diagrammatic and do not reveal all offsets, bends, elbows, components, materials, and other specific elements that may be required for proper installation. If any departure from the contract documents is deemed necessary, or in the event of conflicts, the Contractor shall submit details of such departures or conflicts in writing to the owner or owner's representative for his or her comment and/or approval before initiating work.
- B. Anything called for by one of the Contract Documents and not called for by the others shall be of like effect as if required or called by all, except if a provision clearly designed to negate or alter a provision contained in one or more of the other Contract Documents shall have the intended effect. In the event of conflicts among the Contract Documents, the Contract Documents shall take precedence in the following order: the Form of Agreement; the Supplemental General Conditions; the Special Conditions; the Specifications with attachments; and the drawings.

1.6 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- D. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- E. Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - Design Submittal Procedures, which outline basic

".

submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.

- The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
- 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
- 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for COR and Contractor review stamps.
- 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards CAD Standard Application Guide, and VA BIM Guide. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the COR for approval before the initiation of work.
- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data; correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential

information for communication of proper operation and/or maintenance of the component or system.

- Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
- b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
- c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
- d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
- e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.
 - Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - Inscribe the following identification on the cover: the words
 "MAINTENANCE AND OPERATION MANUAL," the name and location of

28 05 00 - 9

the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.

- 3) The manuals shall include:
 - a) Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b) A control sequence describing start-up, operation, and shutdown.
 - c) Description of the function of each principal item of equipment.
 - d) Installation and maintenance instructions.
 - e) Safety precautions.
 - f) Diagrams and illustrations.
 - g) Testing methods.
 - h) Performance data.
 - i) Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
 - j) Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and

telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.

- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.
- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical

sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.

- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.
- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- F. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA CAD Standards Guide. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.

- b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
- c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
- d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:
 - 1) Security devices by symbol,
 - The associated device point number (derived from the loading sheets),
 - 3) Wire & cable types and counts
 - 4) Conduit sizing and routing
 - 5) Conduit riser systems
 - 6) Device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for EECS and IDS, Intrusion Detection system (motion sensor, vibration, microwave Motion Sensor and Camera mounting,
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the SMS throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., electronic entry control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram

shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.

i. COR

CORCORCORCOR3. System Configuration and Data Entry:

- a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 4) Intercom systems components,
 - 5)
- CORCORJ. Group V Technical Data Package: Final copies of the manuals shall be delivered to the CORCOR as part of the acceptance test. The draft copy used during site testing shall be updated with any changes required prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each sub-contractor installing equipment or systems, as well as the nearest service representatives for each item of equipment for each system. The manuals shall include a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the endurance test shall include all modifications made during installation, checkout, and acceptance. one (1) soft copy on CD of each item listed below shall be delivered as a part of final systems acceptance.
 - Functional Design Manual: The functional design manual shall identify the operational requirements for the entire system and explain the theory of operation, design philosophy, and specific

28 05 00 - 14

functions. A description of hardware and software functions, interfaces, and requirements shall be included for all system operating modes. Manufacturer developed literature may be used; however, shall be produced to match the project requirements.

- Equipment Manual: A manual describing all equipment furnished including:
 - a. General description and specifications; installation and checkout procedures; equipment electrical schematics and layout drawings; system schematics and layout drawings; alignment and calibration procedures; manufacturer's repair list indicating sources of supply; and interface definition.
- 3. Software Manual: The software manual shall describe the functions of all software and include all other information necessary to enable proper loading, testing, and operation. The manual shall include:
 - a. Definition of terms and functions; use of system and applications software; procedures for system initialization, start-up, and shutdown; alarm reports; reports generation, database format and data entry requirements; directory of all disk files; and description of all communications protocols including data formats, command characters, and a sample of each type of data transfer.
- 4. Operator's Manual: The operator's manual shall fully explain all procedures and instructions for the operation of the system, including:
 - a. Computers and peripherals; system start-up and shutdown procedures; use of system, command, and applications software; recovery and restart procedures; graphic alarm presentation; use of report generator and generation of reports; data entry; operator commands' alarm messages, and printing formats; and system access requirements.
- 5. Maintenance Manual: The maintenance manual shall include descriptions of maintenance for all equipment including inspection, recommend schedules, periodic preventive maintenance, fault diagnosis, and repair or replacement of defective components.
- 6. Spare Parts & Components Data: At the conclusion of the Contractor's work, the Contractor shall submit to the COR a complete list of the manufacturer's recommended spare parts and components

required to satisfactorily maintain and service the systems, as well as unit pricing for those parts and components.

- 7. Operation, Maintenance & Service Manuals: The Contractor shall provide two (2) complete sets of operating and maintenance manuals in the form of an instructional manual for use by the VA Security Guard Force personnel. The manuals shall be organized into suitable sets of manageable size. Where possible, assemble instructions for similar equipment into a single binder. If multiple volumes are required, each volume shall be fully indexed and coordinated.
- 8. Equipment and Systems Maintenance Manual: The Contractor shall provide the following descriptive information for each piece of equipment, operating system, and electronic system:
 - a. Equipment and/or system function.
 - b. Operating characteristics.
 - c. Limiting conditions.
 - d. Performance curves.
 - e. Engineering data and test.
 - f. Complete nomenclature and number of replacement parts.
 - g. Provide operating and maintenance instructions including assembly drawings and diagrams required for maintenance and a list of items recommended to stock as spare parts.
 - h. Provide information detailing essential maintenance procedures including the following: routine operations, trouble shooting guide, disassembly, repair and re-assembly, alignment, adjusting, and checking.
 - i. Provide information on equipment and system operating procedures, including the following; start-up procedures, routine and normal operating instructions, regulation and control procedures, instructions on stopping, shut-down and emergency instructions, required sequences for electric and electronic systems, and special operating instructions.
 - j. Manufacturer equipment and systems maintenance manuals are permissible.
- 9. Project Redlines: During construction, the Contractor shall maintain an up-to-date set of construction redlines detailing current location and configuration of the project components. The redline documents shall be marked with the words 'Master Redlines' on the cover sheet and be maintained by the Contractor in the

project office. The Contractor will provide access to redline documents anytime during the project for review and inspection by the COR or authorized Office of Protection Services representative. Master redlines shall be neatly maintained throughout the project and secured under lock and key in the contractor's onsite project office. Any project component or assembly that is not installed in strict accordance with the drawings shall be so noted on the drawings. Prior to producing Record Construction Documents, the contractor will submit the Master Redline document to the COR for review and approval of all changes or modifications to the documents. Each sheet shall have COR initials indicating authorization to produce "As Built" documents. Field drawings shall be used for data gathering & field changes. These changes shall be made to the master redline documents daily. Field drawings shall not be considered "master redlines".

- 10. Record Specifications: The Contractor shall maintain one (1) copy of the Project Specifications, including addenda and modifications issued, for Project Record Documents. The Contractor shall mark the Specifications to indicate the actual installation where the installation varies substantially from that indicated in the Contract Specifications and modifications issued. (Note related Project Record Drawing information where applicable). The Contractor shall pay particular attention to substitutions, selection of product options, and information on concealed installations that would be difficult to identify or measure and record later. Upon completion of the mark ups, the Contractor shall submit record Specifications to the COR. As with master relines, Contractor shall maintain record specifications for COR review and inspection at anytime.
- 11. Record Product Data: The Contractor shall maintain one (1) copy of each Product Data submittal for Project Record Document purposes. The Data shall be marked to indicate the actual product installed where the installation varies substantially from that indicated in the Product Data submitted. Significant changes in the product delivered to the site and changes in manufacturer's instructions and recommendations for installation shall be included. Particular attention will be given to information on concealed products and installations that cannot be readily identified or recorded later.

28 05 00 - 17

Note related Change Orders and mark up of Record Construction Documents, where applicable. Upon completion of mark up, submit a complete set of Record Product Data to the COR.

- 12. Miscellaneous Records: The Contractor shall maintain one (1) copy of miscellaneous records for Project Record Document purposes. Refer to other Specifications for miscellaneous record-keeping requirements and submittals concerning various construction activities. Before substantial completion, complete miscellaneous records and place in good order, properly identified and bound or filed, ready for use and reference. Categories of requirements resulting in miscellaneous records include a minimum of the following:
 - a. Certificates received instead of labels on bulk products.
 - b. Testing and qualification of tradesmen. ("Contractor's
 Qualifications")
 - c. Documented qualification of installation firms.
 - d. Load and performance testing.
 - e. Inspections and certifications.
 - f. Final inspection and correction procedures.
 - g. Project schedule
- 13. Record Construction Documents (Record As-Built)
 - a. Upon project completion, the contractor shall submit the project master redlines to the COR prior to development of Record construction documents. The COR shall be given a minimum of a thirty (30) day review period to determine the adequacy of the master redlines. If the master redlines are found suitable by the COR, the COR will initial and date each sheet and turn redlines over to the contractor for as built development.
 - b. The Contractor shall provide the COR a complete set of "as-built" drawings and original master redlined marked "as-built" blue-line in the latest version of AutoCAD drawings unlocked on CD or DVD. The as-built drawing shall include security device number, security closet connection location, data gathering panel number, and input or output number as applicable. All corrective notations made by the Contractor shall be legible when submitted to the COR. If, in the opinion of the COR, any redlined notation is not legible, it shall be returned to the Contractor for resubmission at no extra cost to the Owner. The Contractor shall

04-18

organize the Record Drawing sheets into manageable sets bound with durable paper cover sheets with suitable titles, dates, and other identifications printed on the cover. The submitted as built shall be in editable formats and the ownership of the drawings shall be fully relinquished to the owner.

- c. Where feasible, the individual or entity that obtained record data, whether the individual or entity is the installer, sub-contractor, or similar entity, is required to prepare the mark up on Record Drawings. Accurately record the information in a comprehensive drawing technique. Record the data when possible after it has been obtained. For concealed installations, record and check the mark up before concealment. At the time of substantial completion, submit the Record Construction Documents to the COR. The Contractor shall organize into bound and labeled sets for the COR's continued usage. Provide device, conduit, and cable lengths on the conduit drawings. Exact in-field conduit placement/routings shall be shown. All conduits shall be illustrated in their entire length from termination in security closets; no arrowed conduit runs shall be shown. Pull box and junction box sizes are to be shown if larger than 100mm (4 inch).
- L. Approvals will be based on complete submission of manuals together with shop drawings.
- M. After approval and prior to installation, furnish the COR with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
- N. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

O. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI) / International Code Council (ICC): A117.1....Standard on Accessible and Usable Buildings and

```
Facilities
```

- C. American National Standards Institute (ANSI)/ Security Industry Association (SIA):
 - AC-03.....Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards
 - CP-01-00.....Control Panel Standard-Features for False Alarm Reduction
 - PIR-01-00.....Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity
 - TVAC-01.....CCTV to Access Control Standard Message Set for System Integration
- D. American National Standards Institute (ANSI)/Electronic Industries
 Alliance (EIA):

330-09.....Electrical Performance Standards for CCTV Cameras

- 375A-76.....Electrical Performance Standards for CCTV Monitors
- E. American National Standards Institute (ANSI): ANSI S3.2-99.....Method for measuring the Intelligibility of Speech over Communications Systems
- F. American Society for Testing and Materials (ASTM)

B3-07..... Standard Specification for Soft or Annealed Copper Wire

B8-04.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

C1238-97 (R03).....Standard Guide for Installation of Walk-Through Metal Detectors

D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape

G. Architectural Barriers Act (ABA), 1968

H. Department of Justice: American Disability Act (ADA) 28 CFR Part 36-2010 ADA Standards for Accessible Design

Wire

- I. Department of Veterans Affairs: VHA National CAD Standard Application Guide, 2006 VA BIM Guide, V1.0 10
- J. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
- K. Federal Information Processing Standards (FIPS): FIPS-201-1..... Personal Identity Verification (PIV) of Federal

Employees and Contractors

- L. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation)
- M. Government Accountability Office (GAO): GAO-03-8-02.....Security Responsibilities for Federally Owned and Leased Facilities
- N. Homeland Security Presidential Directive (HSPD): HSPD-12..... Policy for a Common Identification Standard for

Federal Employees and Contractors

- O. Institute of Electrical and Electronics Engineers (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System
 - 802.3af-08.....Power over Ethernet Standard

802.3at-09Power over Ethernet (PoE) Plus Standard C2-07.....National Electrical Safety Code C62.41-02.....IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits C95.1-05.....Standards for Safety Levels with Respect to Human Exposure in Radio Frequency Electromagnetic Fields P. International Organization for Standardization (ISO): 7810..... Identification cards - Physical characteristics 7811.....Physical Characteristics for Magnetic Stripe Cards 7816-1.....Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2.....Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3.....Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4.....Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10.....Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443.....Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693.....Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance 19794.....Information technology - Biometric data interchange formats Q. National Electrical Contractors Association

303-2005..... Installing Closed Circuit Television (CCTV) Systems R. National Electrical Manufactures Association (NEMA): Maximum) TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable S. National Fire Protection Association (NFPA): 70-11..... National Electrical Code (NEC) 731-08.....Standards for the Installation of Electric Premises Security Systems 99-2005.....Health Care Facilities T. National Institute of Justice (NIJ) 0601.02-03.....Standards for Walk-Through Metal Detectors for use in Weapons Detection 0602.02-03.....Hand-Held Metal Detectors for Use in Concealed Weapon and Contraband Detection U. National Institute of Standards and Technology (NIST): IR 6887 V2.1.....Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-37.....Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-63.....Electronic Authentication Guideline Special Pub 800-73-3.... Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1....Biometric Data Specification for Personal Identity Verification

28 05 00 - 23

Special Pub 800-78-2....Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1....Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1...DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2...PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96.....PIV Card Reader Interoperability Guidelines Special Pub 800-104A....Scheme for PIV Visual Card Topography V. Occupational and Safety Health Administration (OSHA): 29 CFR 1910.97.....Nonionizing radiation W. Section 508 of the Rehabilitation Act of 1973 X. Security Industry Association (SIA): AG-01Security CAD Symbols Standards Y. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 44-05..... Thermoset-Insulated Wires and Cables 50-07.....Enclosures for Electrical Equipment 83-08..... Thermoplastic-Insulated Wires and Cables 294-99.....The Standard of Safety for Access Control System Units 305-08..... Standard for Panic Hardware 360-09.....Liquid-Tight Flexible Steel Conduit 444-08.....Safety Communications Cables 464-09.....Audible Signal Appliances 467-07..... Electrical Grounding and Bonding Equipment 486A-03..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations 486E-00......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514A-04.....Metallic Outlet Boxes

514B-04.....Fittings for Cable and Conduit
51-05....Schedule 40 and 80 Rigid PVC Conduit
634-07....Standards for Connectors with Burglar-Alarm
Systems
651-05....Schedule 40 and 80 Rigid PVC Conduit
651A-07....Type EB and A Rigid PVC Conduit and HDPE
Conduit
797-07....Electrical Metallic Tubing
1635-10....Digital Alarm Communicator System Units
1479-03....Fire Tests of Through-Penetration Fire Stops
60950....Safety of Information Technology Equipment
60950-1...Information Technology Equipment - Safety Part 1: General Requirements
Z. Uniform Federal Accessibility Standards (UFAS) 1984
AA. United States Department of Commerce:

```
Special Pub 500-101 ....Care and Handling of Computer Magnetic Storage Media
```

1.8 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.9 MAINTENANCE & SERVICE

A. General Requirements

- 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, and panel firmware.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COR shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work
 - The work shall be performed during regular working hours, Monday through Friday, excluding federal holidays.
- E. System Inspections
 - 1. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the

CPU, switcher, peripheral equipment, recording devices, monitors, picture quality from each camera; check, walk test, and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.

- F. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- G. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- H. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- I. Work Request
 - The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying

the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of

commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.

- J. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- K. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.10 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.11 DELIVERY, STORAGE, & HANDLING

- A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
 - Damaged equipment shall be, as determined by the COR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 3. Painted surfaces shall be protected with factory installed removable heavy craft paper, sheet vinyl or equal.
 - 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.
- B. Central Station, Workstations, and Controllers:
 - Store in temperature and humidity controlled environment in original manufacturer's sealed containers. Maintain ambient temperature between 10 to 30 deg C (50 to 85 deg F), and not more than 80 percent relative humidity, non-condensing.
 - Open each container; verify contents against packing list, and file copy of packing list, complete with container identification for inclusion in operation and maintenance data.
 - Mark packing list with designations which have been assigned to materials and equipment for recording in the system labeling schedules generated by cable and asset management system.
 - 4. Save original manufacturer's containers and packing materials and deliver as directed under provisions covering extra materials.

1.12 PROJECT CONDITIONS

- A. Environmental Conditions: System shall be capable of withstanding the following environmental conditions without mechanical or electrical damage or degradation of operating capability:
 - Interior, Controlled Environment: System components, except central-station control unit, installed in temperature-controlled interior environments shall be rated for continuous operation in ambient conditions of 2 to 50 deg C (36 to 122 deg F) dry bulb and 20 to 90 percent relative humidity, non-condensing. NEMA 250, Type 1 enclosure.

C. Console: All console equipment shall, unless noted otherwise, be rated for continuous operation under ambient environmental conditions of 15.6 to 29.4 deg C (60 to 85 deg F) and a relative humidity of 20 to 80 percent.

1.13 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.14 ELECTRICAL POWER

A. Electrical power of 120 Volts Alternating Current (VAC) shall be indicated on the Division 26 drawings. Additional locations requiring primary power required by the security system shall be shown as part of these contract documents. Primary power for the security system shall be configured to switch to emergency backup sources automatically if interrupted without degradation of any critical system function. Alarms shall not be generated as a result of power switching, however, an indication of power switching on (on-line source) shall be provided to the alarm monitor. The Security Contractor shall provide an interface (dry contact closure) between the PACS and the Uninterruptible Power Supply (UPS) system so the UPS trouble signals and main power fail appear on the PACS operator terminal as alarms.

- B. Failure of any on-line battery shall be detected and reported as a fault condition. Battery backed-up power supplies shall be provided sized for 8 hours of operation at actual connected load. Requirements for additional power or locations shall be included with the contract to support equipment and systems offered. The following minimum requirements shall be provided for power sources and equipment.
 - 1. Emergency Generator
 - a. Report Printers: Unit Control Room
 - c. Intercom Stations
 - e. Lights: Unit Control Room, Equipment Rooms, & Security Offices
 - f. Outlets: Security Outlets dedicated to security equipment racks or security enclosure assemblies.
 - 1. Intercom Master Control System
 - m. Fiber Optic Receivers/Transmitters
 - n. Security office Weapons Storage
 - o. Outlets that charge handheld radios

1.16 COMPONENT ENCLOSURES

- A. Construction of Enclosures
 - Control units, wiring gutters, and other component housings, collectively referred to as enclosures, shall be so formed and assembled as to be sturdy and rigid.
 - Thickness of metal in-cast and sheet metal enclosures of all types shall not be less than those in Tables I and II, UL 611. Sheet steel used in fabrication of enclosures shall be not less than 14 gauge. Consoles shall be 16-gauge.
 - 3. Doors and covers shall be flanged. Enclosures shall not have prepunched knockouts. Where doors are mounted on hinges with exposed pins, the hinges shall be of the tight pin type or the ends of hinge pins shall be tack welded to prevent removal. Doors having a latch

edge length of less than 609.6 mm (24 in) shall be provided with a single construction core. Where the latch edge of a hinged door is more than 609.6 mm (24 in) or more in length, the door shall be provided with a three-point latching device with construction core; or alternatively with two, one located near each end.

- 4. Any ventilator openings in enclosures and cabinets shall conform to the requirements of UL 611. Unless otherwise indicated, sheet metal enclosures shall be designed for wall mounting with tip holes slotted. Mounting holes shall be in positions that remain accessible when all major operating components are in place and the door is open, but shall be in accessible when the door is closed.
- 5. Covers of pull and junction boxes provided to facilitate initial installation of the system shall be held in place by tamper proof Torx Center post security screws. Stenciled or painted labels shall be affixed to such boxes indicating they contain no connections. These labels shall not indicate the box is part of the Electronic Security System (ESS).
- Β.

1.17 ELECTRONIC COMPONENTS

A. All electronic components of the system shall be of the solid-state type, mounted on printed circuit boards conforming to UL 796. Boards shall be plug-in, quick-disconnect type. Circuitry shall not be so densely placed as to impede maintenance. All power-dissipating components shall incorporate safety margins of not less than 25 percent with respect to dissipation ratings, maximum voltages, and currentcarrying capacity.

1.18 SUBSTITUTE MATERIALS & EQUIPMENT

- A. Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. In addition to this Section the Security Contractor shall also reference Section II, Products and associated divisions. The COR shall have final authority on the authorization or refusal of substitutions. If there are no proposed substitutions, a statement in writing from the Contractor shall be submitted to the COR stating same. In the

preparation of a list of substitutions, the following information shall be included, as a minimum:

- Identity of the material or devices specified for which there is a proposed substitution.
- Description of the segment of the specification where the material or devices are referenced.
- Identity of the proposed substitute by manufacturer, brand name, catalog or model number and the manufacturer's product name.
- 4. A technical statement of all operational characteristic expressing equivalence to items to be substituted and comparison, feature-byfeature, between specification requirements and the material or devices called for in the specification; and Price differential.
- C. Materials Not Listed: Furnish all necessary hardware, software, programming materials, and supporting equipment required to place the specified major subsystems in full operation. Note that some supporting equipment, materials, and hardware may not be described herein. Depending on the manufacturers selected by the COR, some equipment, materials and hardware may not be contained in either the Contract Documents or these written specifications, but are required by the manufacturer for complete operation according to the intent of the design and these specifications. In such cases, the COR shall be given the opportunity to approve the additional equipment, hardware and materials that shall be fully identified in the bid and in the equipment list submittal. The COR shall be consulted in the event there is any question about which supporting equipment, materials, or hardware is intended to be included.
- D. Response to Specification: The Contractor shall submit a point-bypoint statement of compliance with each paragraph of the security specification. The statement of compliance shall list each paragraph by number and indicate "COMPLY" opposite the number for each paragraph where the Contractor fully complies with the specification. Where the proposed system cannot meet the requirements of the paragraph, and does not offer an equivalent solution, the offers shall indicate "DOES NOT COMPLY" opposite the paragraph number. Where the proposed system does not comply with the paragraph as written, but the bidder feels it will accomplish the intent of the paragraph in a manner different from that described, the offers shall indicate "COMPARABLE". The offers shall include a statement fully describing the "comparable" method of

satisfying the requirement. Where a full and concise description is not provided, the offered system shall be considered as not complying with the specification. Any submission that does not include a pointby-point statement of compliance, as described above, shall be disqualified. Submittals for products shall be in precise order with the product section of the specification. Submittals not in proper sequence will be rejected.

1.19 LIKE ITEMS

A. Where two or more items of equipment performing the same function are required, they shall be exact duplicates produced by one manufacturer.All equipment provided shall be complete, new, and free of any defects.

1.20 WARRANTY

A. The Contractor shall, as a condition precedent to the final payment, execute a written guarantee (warranty) to the COR certifying all contract requirements have been completed according to the final specifications. Contract drawings and the warranty of all materials and equipment furnished under this contract are to remain in satisfactory operating condition (ordinary wear and tear, abuse and causes beyond his control for this work accepted) for one (1) year from the date the Contactor received written notification of final acceptance from the COR. Demonstration and training shall be performed prior to system acceptance. All defects or damages due to faulty materials or workmanship shall be repaired or replaced without delay, to the COR's satisfaction, and at the Contractor's expense. The Contractor shall provide quarterly inspections during the warranty period. The contractor shall provide written documentation to the COR on conditions and findings of the system and device(s). In addition, the contractor shall provide written documentation of test results and stating what was done to correct any deficiencies. The first inspection shall occur 90 calendar days after the acceptance date. The last inspection shall occur 30 calendar days prior to the end of the warranty. The warranty period shall be extended until the last inspection and associated corrective actions are complete. When equipment and labor covered by the Contractor's warranty, or by a manufacturer's warranty, have been replaced or restored because of it's failure during the warranty period, the warranty period for the replaced or repaired equipment or restored work shall be reinstated for a period equal to the original warranty period, and commencing with the

date of completion of the replacement or restoration work. In the event any manufacturer customarily provides a warranty period greater than one (1) year, the Contractor's warranty shall be for the same duration for that component.

1.22 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

- A. B. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of [8] <insert hours> hours of run time in the event of a loss of primary power to the facility.
- C. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- D. All equipment and materials for the system will be compatible to ensure correct operation.

2.2 EQUIPMENT ITEMS

- C. Intercom Systems
 - Suppressors shall be installed on the AC power at the point of service and shall meet the following criteria:
 - a. UL 1449 Listed
 - b. UL 1449 S.V.R. of 400 Volts or lower
 - c. Diagnostic Indicator Light(s)
 - d. Integrated ground terminating post (where case/chassis ground exists)
 - e. Minimum Surge Current Capacity of 13,000 Amps (8 x 20 µSec)
 - Suppressors shall be installed on incoming central office lines and shall meet the following criteria:
 - a. UL 497A Listed
 - b. Multi Stage protection design

28 05 00 - 35

- c. Auto-reset current protection not to exceed 2 Amps per pair
- d. Minimum Surge Current of 500 Amps per pair (8 x 20 µSec)
- 3. Suppressors shall be installed on all telephone/intercom circuits that enter or leave separate buildings and shall meet the following criteria:
 - a. UL 497A Listed (where applicable)
 - b. UL 497B Listed (horns, strobes, speakers or communication circuits over 300 feet)
 - c. Multi Stage protection design
 - d. Auto-reset over-current protection not to exceed 5 Amps per pair
 - e. Minimum Surge Current of 1000 Amps per pair (8 x 20 µSec)
- F. Grounding and Surge Suppression
 - The Security Contractor shall provide grounding and surge suppression to stabilize the voltage under normal operating conditions. This is to ensure the operation of over current devices, such as fuses, circuit breakers, and relays, undergroundfault conditions.
 - The Contractor shall engineer, provide, ad install proper grounding and surge suppression as required by local jurisdiction and prevailing codes and standards, referenced in this document.
 - Principal grounding components and features shall include: main grounding buses, grounding, and bonding connections to service equipment.
 - 4. The Contractor shall provide detail drawings of interconnection with other grounding systems including lightning protection systems.
 - 5. The Contractor shall provide details of locations and sizes of grounding conductors and grounding buses in electrical, data, and communication equipment rooms and closets.
 - 6. AC power receptacles are not to be used as a ground reference point.
 - Any cable that is shielded shall require a ground in accordance with applicable codes, the best practices of the trade, and all manufactures' installation instructions.
- G. 120 VAC Surge Suppression
 - 1. Continuous Current: Unlimited (parallel connection)
 - 2. Max Surge Current: 13,500 Amps
 - 3. Protection Modes: L N, L G, N G
 - 4. Warranty: Ten Year Limited Warranty
 - 5. Dimension: 73.7 x 41.1 x 52.1 mm (2.90 x 1.62 x 2.05 in)

- 6. Weight: 2.88 g (0.18 lbs)
- 7. Housing: ABS

2.5 INSTALLATION KIT

- A. General:
 - 1. The kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, audio spade lugs, barrier strips, punch blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, conduit, cable duct, and/or cable tray, etc., required to accomplish a neat and secure installation. All wires shall terminate in a spade lug and barrier strip, wire wrap terminal or punch block. Unfinished or unlabeled wire connections shall not be allowed. All unused and partially opened installation kit boxes, coaxial, fiber-optic, and twisted pair cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, physical installation hardware shall be turned over to the Contracting Officer. The following sections outline the minimum required installation sub-kits to be used:
 - 2. System Grounding:
 - a. The grounding kit shall include all cable and installation hardware required. All head end equipment and power supplies shall be connected to earth ground via internal building wiring, according to the NEC.
 - b. This includes, but is not limited to:
 - 1) Coaxial Cable Shields
 - 2) Control Cable Shields
 - 3) Data Cable Shields
 - 4) Equipment Racks
 - 5) Equipment Cabinets
 - 6) Conduits
 - 7) Cable Duct blocks
 - 8) Cable Trays
 - 9) Power Panels
 - 10) Grounding
 - 11) Connector Panels
 - 3. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.

- 4. Wire and Cable: The wire and cable kit shall include all connectors and terminals, audio spade lugs, barrier straps, punch blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- 5. Conduit, Cable Duct, and Cable Tray: The kit shall include all conduit, duct, trays, junction boxes, back boxes, cover plates, feed through nipples, hangers, clamps, other hardware required to accomplish a neat and secure conduit, cable duct, and/or cable tray installation in accordance with the NEC and this document.
- 6. Equipment Interface: The equipment kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface the systems with the identified sub-system(s) according to the OEM requirements and this document.
- 7. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this document.
- 8. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 COMMON REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATION

- A. Comply with NECA 1.
- B. Measure indicated mounting heights to bottom of unit for suspended items and to center of unit for wall-mounting items.
- C. Headroom Maintenance: If mounting heights or other location criteria are not indicated, arrange and install components and equipment to provide maximum possible headroom consistent with these requirements.
- D. Equipment: Install to facilitate service, maintenance, and repair or replacement of components of both electronic safety and security equipment and other nearby installations. Connect in such a way as to facilitate future disconnecting with minimum interference with other items in the vicinity.
- E. Right of Way: Give to piping systems installed at a required slope.

- F. Equipment location shall be as close as practical to locations shown on the drawings.
- G. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

3.2 FIRESTOPPING

A. Apply firestopping to penetrations of fire-rated floor and wall assemblies for electronic safety and security installations to restore original fire-resistance rating of assembly. Firestopping materials and installation requirements are specified in Division 07 Section 07 84 00 "Firestopping."

3.3 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISIONIN OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 28 08 00 -COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 DEMONSTRATION AND TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COR at least 30 days prior to the planned training.
- D. Provide services of manufacturer's technical representative for <insert hours> hours to instruct VA personnel in operation and maintenance of units.

E. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

3.5 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure electronic safety and security service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and conduit with other trades to minimize interferences. See the GENERAL CONDITIONS.

3.6 SYSTEM PROGRAMMING

- A. General Programming Requirements
 - 1. This following section shall be used by the contractor to identify the anticipated level of effort (LOE) required setup, program, and configure the Electronic Security System (ESS). The contractor shall be responsible for providing all setup, configuration, and programming to include data entry for the Security Management System (SMS) and subsystems [(e.g., video matrix switch, intercoms, digital video recorders, intrusion devices, including integration of subsystems to the SMS (e.g., camera call up, time synchronization, intercoms)]. System programming for existing or new SMS servers shall not be conducted at the project site.
- B. Level of Effort for Programming
 - 1. The Contractor shall perform and complete system programming (including all data entry) at an offsite location using the Contractor's own copy of the SMS software. The Contractor's copy of the SMS software shall be of the Owners current version. Once system programming has been completed, the Contractor shall deliver the data to the COR on data entry forms and an approved electronic medium, utilizing data from the contract documents. The completed forms shall be delivered to the COR for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires

it. The Contractor shall not upload system programming until the COR has provided written approval. The Contractor is responsible for backing up the system prior to uploading new programming data. Additional programming requirements are provided as follows:

- a. Programming for New SMS Server: The contractor shall provide all other system related programming. The contractor will be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, personnel photos, access schedules, personnel groupings) along with coordinating with COR for device configurations, standards, and groupings. VA shall provide database to support Contractor's data entry tasks. The contractor shall anticipate a weekly coordination meeting and working with COR to ensure data uploading is performed without incident of loss of function or data loss.
- b. Programming for Existing SMS Servers: The contractor shall perform all related system programming except for personnel data as noted. The contractor will not be responsible for uploading personnel information (e.g., ID Cards backgrounds, names, access privileges, access schedules, personnel groupings). The contractor shall anticipate a weekly coordination meeting and working alongside of COR to ensure data uploading is performed without incident of loss of function or data loss. System programming for SMS servers shall be performed by using the Contractor's own server and software. These servers shall not be connected to existing devices or systems at any time.
- The Contractor shall identify and request from the COR, any additional data needed to provide a complete and operational system as described in the contract documents.
- 3. Contractor and COR coordination on programming requires a high level of coordination to ensure programming is performed in accordance with VA requirements and programming uploads do not disrupt existing systems functionality. The contractor shall anticipate a minimum a weekly coordination meeting. Contractor shall ensure data uploading is performed without incident of loss of function or data loss. The following Level of Effort Chart is provided to communicate the expected level of effort required by contractors on VA ESS projects. Calculations to determine actual levels of effort shall be confirmed by the contractor before project award.

	Description of Tasks						
Descr iptio n of Syste ms	Develop System Loading Sheets	Coordina tion	Initial Set-up Configur ation	Graphic Maps	Syst em Prog ramm ing	Final Checks	Level of Effort (Typical Tasks)
Inter coms Syste ms	e.g., programm ing events & call-ups	e.g., confirmi ng device configur ations, naming conventi ons, event descript ion and narrativ es	e.g., enter data from loading sheets; configur e componen ts, link events, cameras, and graphics		e.g. , prog ramm ing even ts & call -ups	e.g., confir m operat ion, SMS event genera tion and camera call- up	e.g., setup linkages, events for activations, device troubles, land devices on graphic maps
Note: Programming tasks are supported through the contractor's development of the Technical Data Package Submittals.							

Table 1 Contractor Level of Effort

3.7 TESTING AND ACCEPTANCE

- A. Performance Requirements
 - 1. General:
 - a. The Contractor shall perform contract field, performance verification, and endurance testing and make adjustments of the completed security system when permitted. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing. Written notification of planned testing shall be given to the COR at least 60 calendar days prior to the test and after the Contractor has received written approval of the specific test procedures.
 - b. The COR shall witness all testing and system adjustments during testing. Written permission shall be obtained from the COR before proceeding with the next phase of testing. Original copies of all data produced during performance verification and endurance testing shall be turned over to the COR at the conclusion of each phase of testing and prior to COR approval of the test.
 - 2. Test Procedures and Reports: The test procedures, compliant w/ VA standard test procedures, shall explain in detail, step-by-step actions and expected results demonstrating compliance with the requirements of the specification. The test reports shall be used to document results of the tests. The reports shall be delivered to the COR within seven (7) calendar days after completion of each test.
- D. The inspection and test will be conducted by a factory-certified contractor representative and witnessed by a Government Representative. The results of the inspection will be officially recorded by a designated Government Representative and maintained on file by the COR (RE), until completion of the entire project. The results will be compared to the Acceptance Test results.
- E. Contractor's Field Testing (CFT)
 - The Contractor shall calibrate and test all equipment, verify DTM operation, place the integrated system in service, and test the integrated system. Ground rods installed by this Contractor within the base of camera poles shall be tested as specified in IEEE STD 142. The Contractor shall test all security systems and equipment, and provide written proof of a 100% operational system before a date

is established for the system acceptance test. Documentation package for CFT shall include completed (fully annotated details of test details) for each device and system tested, and annotated loading sheets documenting complete testing to COR approval. CFT test documentation package shall conform to submittal requirements outlined in this Section. The Contractor's field testing procedures shall be identical to the COR's acceptance testing procedures. The Contractor shall provide the COR with a written listing of all equipment and software indicating all equipment and components have been tested and passed. The Contractor shall deliver a written report to theCOR stating the installed complete system has been

calibrated, tested, and is ready to begin performance verification testing; describing the results of the functional tests, diagnostics, and calibrations; and the report shall also include a copy of the approved acceptance test procedure. Performance verification testing shall not take place until written notice by contractor is received certifying that a contractors field test was successful.

F. Performance Verification Test (PVT)

- 1. Test team:
 - a. After the system has been pretested and the Contractor has submitted the pretest results and certification to the COR, then the Contractor shall schedule an acceptance test to date and give the COR written, notice as described herein, prior to the date the acceptance test is expected to begin. The system shall be tested in the presence of a Government Representative, an OEM certified representative, representative of the Contractor and other approved by the COR. The system shall be tested utilizing the approved test equipment to certify proof of performance, FCC, UL and Emergency Service compliance. The test shall verify that the total system meets all the requirements of this specification. The notification of the acceptance test shall include the expected length (in time) of the test.
- 2. The Contractor shall demonstrate the completed Physical Access Control System PACS complies with the contract requirements. In addition, the Contractor shall provide written certification that the system is 100% operational prior to establishing a date for starting PVT. Using approved test procedures, all physical and

functional requirements of the project shall be demonstrated and shown. The PVT will be stopped and aborted as soon as 10 technical deficiencies are found requiring correction. The Contractor shall be responsible for all travel and lodging expenses incurred for outof-town personnel required to be present for resumption of the PVT. If the acceptance test is aborted, the re-test will commence from the beginning with a retest of components previously tested and

- 3. The PVT, as specified, shall not begin until receipt of written certification that the Contractors Field Testing was successful. This shall include certification of successful completion of testing as specified in paragraph "Contractor's Field Testing", and upon successful completion of testing at any time when the system fails to perform as specified. Upon termination of testing by the COR or Contractor, the Contractor shall commence an assessment period as described for Endurance Testing Phase II.
- Upon successful completion of the acceptance test, the Contractor shall deliver test reports and other documentation, as specified, to the COR prior to commencing the endurance test.
- 5. Additional Components of the PVT shall include:
 - a. System Inventory

accepted.

- 1) All Device equipment
- 2) All Software
- 3) All Logon and Passwords
- 4) All Cabling System Matrices
- 5) All Cable Testing Documents
- 6) All System and Cabinet Keys
- b. Inspection
 - Contractor shall record an inspection punch list noting all system deficiencies. The contractor shall prepare an inspection punch list format for CORs approval.
 - 2) As a minimum the punch list shall include a listing of punch list items, punch list item location, description of item problem, date noted, date corrected, and details of how item was corrected.
- 6. Partial PVT At the discretion of COR, the Performance Verification Test may be performed in part should a 100% compliant CFT be performed. In the event that a partial PVT will be performed

instead of a complete PVT; the partial PVT shall be performed by testing 10% of the system. The contractor shall perform a test of each procedure on select devices or equipment.

G. Endurance Test

- 1. The Contractor shall demonstrate the specified probability of detection and false alarm rate requirements of the completed system. The endurance test shall be conducted in phases as specified below. The endurance test shall not be started until the COR notifies the Contractor, in writing, that the performance verification test is satisfactorily completed, training as specified has been completed, and correction of all outstanding deficiencies has been satisfactorily completed. VA shall operate the system 24 hours per day, including weekends and holidays, during Phase I and Phase III endurance testing. VA will maintain a log of all system deficiencies. The COR may terminate testing at any time the system fails to perform as specified. Upon termination of testing, the Contractor shall commence an assessment period as described for Phase II. During the last day of the test, the Contractor shall verify the appropriate operation of the system. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the COR prior to acceptance of the system.
- 2. Phase I (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR. If the system experiences no failures, the Contractor may proceed directly to Phase III testing after receiving written permission from the COR.
- 3. Phase II (Assessment):
 - a. After the conclusion of Phase I, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - b. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and

recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after the COR receives the report. As part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase I be repeated.

- 4. Phase III (Testing): The test shall be conducted 24 hours per day for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized in writing by the COR.
- 5. Phase IV (Assessment):
 - After the conclusion of Phase III, the Contractor shall identify all failures, determine causes of all failures, repair all failures, and deliver a written report to the COR. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and recommend the point at which testing should be resumed.
 - 2. After delivering the written report, the Contractor shall convene a test review meeting at the job site to present the results and recommendations to the COR. The meeting shall not be scheduled earlier than five (5) business days after receipt of the report by the COR. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by repeating appropriate portions for the performance verification test. Based on the review meeting the test should not be scheduled earlier than five (5) business days after the COR receives the report. As a part of this test review meeting, the Contractor shall demonstrate all failures have been corrected by repeating appropriate portions of the performance verification test. Based on the Contractor's report and the test review meeting, the COR will provide a written determine of either the restart date or require Phase III be repeated. After the conclusion of any re-testing which the COR may require, the Phase IV assessment shall be repeated as if Phase III had just been completed.

- H. Exclusions
 - 1. The Contractor will not be held responsible for failures in system performance resulting from the following:
 - a. An outage of the main power in excess of the capability of any backup power source provided the automatic initiation of all backup sources was accomplished and that automatic shutdown and restart of the PACS performed as specified.
 - b. Failure of an Owner furnished equipment or communications link, provided the failure was not due to Contractor furnished equipment, installation, or software.
 - c. Failure of existing Owner owned equipment, provided the failure was not due to Contractor furnished equipment, installation, or software.

- - - E N D - - -

SECTION 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification the conductors and cables required for a fully functional for electronic safety and security (ESS) system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- D. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SECURITY AND SAFETY. Requirements for infrastructure.
- F. Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. EMI: Electromagnetic interference.
- C. IDC: Insulation displacement connector.
- D. Ladder Cable Tray: A fabricated structure consisting of two longitudinal side rails connected by individual transverse members (rungs).
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control and signaling power-limited circuits.
- F. Open Cabling: Passing telecommunications cabling through open space (e.g., between the studs of a wall cavity).
- G. RCDD: Registered Communications Distribution Designer.
- I. Trough or Ventilated Cable Tray: A fabricated structure consisting of integral or separate longitudinal rails and a bottom having openings sufficient for the passage of air and using 75 percent or less of the plan area of the surface to support cables.

J. UTP: Unshielded twisted pair.

1.4 QUALITY ASSURANCE

A. See section 28 05 00, Paragraph 1.4.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the Resident Engineer/COR four copies of the certification that the material is in accordance with the drawings and specifications and diagrams for cable management system.
 - 3. Shop Drawings: Cable tray layout, showing cable tray route to scale, with relationship between the tray and adjacent structural, electrical, and mechanical elements. Include the following: a. Vertical and horizontal offsets and transitions.
 - b. Clearances for access above and to side of cable travs.
 - c. Vertical elevation of cable trays above the floor or bottom of ceiling structure.
 - d. Load calculations to show dead and live loads as not exceeding manufacturer's rating for tray and its support elements.
 - e. System labeling schedules, including electronic copy of labeling schedules that are part of the cable and asset identification system of the software specified in Parts 2 and 3.
 - Wiring Diagrams. Show typical wiring schematics including the following:
 - a. Workstation outlets, jacks, and jack assemblies.
 - b. Patch cords.
 - c. Patch panels.
 - 5. Cable Administration Drawings: As specified in Part 3 "Identification" Article.
 - 6. Project planning documents as specified in Part 3.
 - 7. Maintenance Data: For wire and cable to include in maintenance manuals.

1.6 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.

B. American Society of Testing Material (ASTM): D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape C. Federal Specifications (Fed. Spec.): A-A-59544-08.....Cable and Wire, Electrical (Power, Fixed Installation) D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-05..... Thermoset-Insulated Wires and Cables 83-08..... Thermoplastic-Insulated Wires and Cables 467-07.....Electrical Grounding and Bonding Equipment 486A-03..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-04.....Splicing Wire Connectors 486D-05..... for Underground Use or in Damp or Wet Locations 486E-00..... Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-04.....Fittings for Cable and Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops//

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - Test optical fiber cable to determine the continuity of the strand end to end. Use [optical-fiber flashlight] [or] [optical loss test set] <Insert test>.
 - Test optical fiber cable on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector; include the loss value of each. Retain test data and include the record in maintenance data.
 - 3. Test each pair of UTP cable for open and short circuits.

1.8 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install UTP, optical fiber, and coaxial cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Support of Open Cabling: NRTL labeled for support of Category 6 cabling, designed to prevent degradation of cable performance and pinch points that could damage cable.
 - 1. Support brackets with cable tie slots for fastening cable ties to brackets.
 - 2. Lacing bars and spools.
 - 3. Straps and other devices.
- B. Conduit and Boxes: Comply with requirements in Division 28 Section "Conduits and Backboxes for Electrical Systems."[Flexible metal conduit shall not be used.]
 - Outlet boxes shall be no smaller than 2 inches (50 mm) wide, 3 inches (75 mm) high, and 2-1/2 inches (64 mm) deep.

2.2 BACKBOARDS

A. Backboards: Plywood, [fire-retardant treated,] 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels in Division 06 Section "Rough Carpentry".

2.3 UTP CABLE

- A. Description: 100-ohm, 4-pair UTP, formed into 25-pair binder groups covered with a blue thermoplastic jacket.
 - 1. Comply with ICEA S-90-661 for mechanical properties.
 - 2. Comply with TIA/EIA-568-B.1 for performance specifications.
 - 3. Comply with TIA/EIA-568-B.2, [Category 5e] [Category 6].
 - 4. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444 and NFPA 70 for the following types:
 - a. Communications, General Purpose: Type CM or CMG or CMP.
 - b. Communications, Plenum Rated: Type CMP, complying with NFPA 262.
 - c. Communications, Riser Rated: Type CMR, complying with UL 1666.
 - d. Communications, Limited Purpose: Type CMX.

2.4 UTP CABLE HARDWARE

- A. UTP Cable Connecting Hardware: IDC type, using modules designed for punch-down caps or tools. Cables shall be terminated with connecting hardware of the same category or higher.
- B. Connecting Blocks: 110-style for Category 6. Provide blocks for the number of cables terminated on the block, plus 25 <Insert percentage>

percent spare. Integral with connector bodies, including plugs and jacks where indicated.

2.11 LOW-VOLTAGE CONTROL CABLE

- A. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- B. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with NFPA 262.
- C. Paired Lock Cable: NFPA 70, Type CMG.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1581.
- D. Plenum-Rated, Paired Lock Cable: NFPA 70, Type CMP.
 - 1. 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors.
 - 2. Fluorinated ethylene propylene insulation.
 - 3. Unshielded.
 - 4. Plastic jacket.
 - 5. Flame Resistance: NFPA 262, Flame Test.

2.12 CONTROL-CIRCUIT CONDUCTORS

- A. Class 1 Control Circuits: Stranded copper, Type THHN-THWN, in raceway complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, [Type THHN-THWN, in raceway] [power-limited cable, concealed in building finishes] [power-limited tray cable, in cable tray] complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type TW or TF, complying with UL 83.

10 - 18

2.13 FIRE ALARM WIRE AND CABLE

- A. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- B. Signaling Line Circuits: Twisted, shielded pair, [not less than] [No. 18 AWG] [<Insert wire size> AWG] [size as recommended by system manufacturer].
 - Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a 2-hour rating.
- C. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation.
 - 1. Low-Voltage Circuits: No. 16 AWG, minimum.
 - 2. Line-Voltage Circuits: No. 12 AWG, minimum.
 - 3. Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor[with outer jacket] with red identifier stripe, NTRL listed for fire alarm and cable tray installation, plenum rated, and complying with requirements in UL 2196 for a 2-hour rating.

2.14 IDENTIFICATION PRODUCTS

A. Comply with UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.15 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test UTP and optical fiber cables on reels according to TIA/EIA-568-B.1.
- C. Factory test UTP cables according to TIA/EIA-568-B.2.
- D. Factory test multimode optical fiber cables according to TIA/EIA-526-14-A and TIA/EIA-568-B.3.
- E. Factory sweep test coaxial cables at frequencies from 5 MHz to 1 GHz. Sweep test shall test the frequency response, or attenuation over frequency, of a cable by generating a voltage whose frequency is varied through the specified frequency range and graphing the results.
- F. Cable will be considered defective if it does not pass tests and inspections.
- G. Prepare test and inspection reports.

2.16 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.17 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION OF CONDUCTORS AND CABLES

- A. Comply with NECA 1.
- B. General Requirements for Cabling:
 - 1. Comply with TIA/EIA-568-B.1.
 - 2. Comply with BICSI ITSIM, Ch. 6, "Cable Termination Practices."
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - Terminate all conductors; no cable shall contain un-terminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
 - 5. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 6. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
 - 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 8. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 9. Pulling Cable:
 - a. Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

- b. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
- c. Use ropes made of nonmetallic material for pulling feeders.
- d. Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the Resident Engineer/COTR.
- e. Pull in multiple cables together in a single conduit.
- C. Splice cables and wires where necessary only in outlet boxes, junction boxes, or pull boxes.
 - Splices and terminations shall be mechanically and electrically secure.
 - Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.
- D. Seal cable and wire entering a building from underground, between the wire and conduit where the cable exits the conduit, with a non-hardening approved compound.
- E. Unless otherwise specified in other sections install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- F. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- G. Where separate power supply circuits are not shown, connect the systems to the nearest panel boards of suitable voltages, which are intended to supply such systems and have suitable spare circuit breakers or space for installation.
- H. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- I. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.
- J. UTP Cable Installation:
 - 1. Comply with TIA/EIA-568-B.2.
 - 2. Do not untwist UTP cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
- L. Open-Cable Installation:
 - Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.

- 2. Suspend copper cable not in a wireway or pathway a minimum of 8 inches (200 mm) above ceilings by cable supports not more than [60 inches (1525 mm)] <Insert dimension> apart.
- 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- O. Separation from EMI Sources:
 - Comply with BICSI TDMM and TIA/EIA-569-A recommendations for separating unshielded copper voice and data communication cable from potential EMI sources, including electrical power lines and equipment.
 - Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 - 4. Separation between communications cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (75 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
 - Separation between Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
 - Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

3.2 FIRE ALARM WIRING INSTALLATION

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal raceway according to Division 28 Section CONDUITS AND BACKBOXES FOR ELECTRICAL SYSTEMS."
 - Install plenum cable in environmental air spaces, including plenum ceilings.
 - Fire alarm circuits and equipment control wiring associated with the fire alarm system shall be installed in a dedicated raceway system. This system shall not be used for any other wire or cable.
- C. Wiring Method:
 - Cables and raceways used for fire alarm circuits, and equipment control wiring associated with the fire alarm system, may not contain any other wire or cable.
 - Fire-Rated Cables: Use of 2-hour, fire-rated fire alarm cables, NFPA 70, Types MI and CI, is[not] permitted.
 - 3. Signaling Line Circuits: Power-limited fire alarm cables [may] [shall not] be installed in the same cable or raceway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with the fire alarm system to terminal blocks. Mark each terminal according to the system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes, cabinets, or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarmindicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent the receipt or transmission of signals from other floors or zones.

H. Wiring to Remote Alarm Transmitting Device: 1-inch (25-mm) conduit between the fire alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.3 CONTROL CIRCUIT CONDUCTORS

- A. Minimum Conductor Sizes:
 - 1. Class 1 remote-control and signal circuits, No. 14 AWG.
 - 2. Class 2 low-energy, remote-control and signal circuits, No. 16 AWG.
 - 3. Class 3 low-energy, remote-control, alarm and signal circuits, No. 12 AWG.

3.4 CONNECTIONS

- A. Comply with requirements in Division 28 Section, PHYSICAL ACCESS CONTROL for connecting, terminating, and identifying wires and cables.
- B. Comply with requirements in Division 28 Section "INTRUSION DETECTION" for connecting, terminating, and identifying wires and cables.
- C. Comply with requirements in Division 28 Section "VIDEO SURVEILLANCE" for connecting, terminating, and identifying wires and cables.
- D. Comply with requirements in Division 28 Section "ELECTRONIC PERSONAL PROTECTION SYSTEMS" for connecting, terminating, and identifying wires and cables.
- E. Comply with requirements in Division 28 Section "FIRE DETECTION AND ALARM" for connecting, terminating, and identifying wires and cables.

3.5 FIRESTOPPING

- A. Comply with requirements in Division 07 Section "PENETRATION FIRESTOPPING."
- B. Comply with TIA/EIA-569-A, "Firestopping" Annex A.
- C. Comply with BICSI TDMM, "Firestopping Systems" Article.

3.6 GROUNDING

- A. For communications wiring, comply with ANSI-J-STD-607-A and with BICSI TDMM, "Grounding, Bonding, and Electrical Protection" Chapter.
- B. For low-voltage wiring and cabling, comply with requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY."

3.7 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA/EIA-606-A.
- B. Install a permanent wire marker on each wire at each termination.
- C. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- D. Wire markers shall retain their markings after cleaning.
- E. In each handhole, install embossed brass tags to identify the system served and function.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Visually inspect UTP and optical fiber cable jacket materials for UL or third-party certification markings. Inspect cabling terminations to confirm color-coding for pin assignments, and inspect cabling connections to confirm compliance with TIA/EIA-568-B.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - Test UTP cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA/EIA-568-B.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- D. Document data for each measurement. Print data for submittals in a summary report that is formatted using Table 10.1 in BICSI TDMM as a guide, or transfer the data from the instrument to the computer, save as text files, print, and submit.
- E. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.9 EXISITNG WIRING

A. Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

- - - E N D - - -

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of the grounding and bonding required for a fully functional Electronic Safety and Security (ESS) system.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- C. Section 28 05 00 REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS. For general electrical requirements, quality assurance, coordination, and project conditions that are common to more than one section in Division 28.
- D. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for low voltage power and lighting wiring.
- E. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning.

1.3 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Shop Drawings:
 - Clearly present enough information to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the //Resident Engineer// //COTR//:
 - Certification that the materials and installation are in accordance with the drawings and specifications.
 - 2. Certification by the contractor that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only. B. American Society for Testing and Materials (ASTM): B1-07.....Standard Specification for Hard-Drawn Copper Wire B3-07.....for Soft or Annealed Copper Wire B8-04.....for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft C. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983..... IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System C2-07.....National Electrical Safety Code D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 99-2005.....Health Care Facilities E. Underwriters Laboratories, Inc. (UL): 44-05Thermoset-Insulated Wires and Cables 83-08Thermoplastic-Insulated Wires and Cables 467-07Grounding and Bonding Equipment 486A-486B-03Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.3 SPLICES AND TERMINATION COMPONENTS

- A. Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).2.4 ground connections
- B. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- C. Below Grade: Exothermic-welded type connectors.
- D. Above Grade:
 - Bonding Jumpers: Compression-type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Ground Busbars: Two-hole compression type lugs, using tin-plated copper or copper alloy bolts and nuts.
 - 4. Rack and Cabinet Ground Bars: One-hole compression-type lugs, using zinc-plated or copper alloy fasteners.
 - 5. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - a) Pipe Connectors: Clamp type, sized for pipe.
 - Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide (3/8 inch x ¾ inch).

2.5 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.6 SPLICE CASE GROUND ACCESSORIES

A. Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as specified herein.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - 2. Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic structures, including ductwork and building steel, enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 CORROSION INHIBITORS

A. When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.4 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.

3.6 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).

- 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
- 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.9 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- Β.

3.12 LABELING

- A. Comply with requirements in Division 26 Section "ELECTRICAL IDENTIFICATION" Article for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer.
 - Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.13 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical

treatment or other artificial means of reducing natural ground resistance.

- b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:1. Power Distribution Units or Panel boards Serving Electronic Equipment: 3 ohm(s).
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

- - - E N D - - -

SECTION 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing certification of the conduit, fittings, and boxes to form a complete, coordinated, raceway system(s). Conduits and when approved separate UL Certified and Listed partitioned telecommunications raceways are required for a fully functional Electronic Safety and Security (ESS) system. Raceways are required for all electronic safety and security cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 06 10 00 ROUGH CARPENTRY. Requirements for mounting board for communication closets.
- C. Section 07 84 00 FIRESTOPPING. Requirements for sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 60 00 FLASHING AND SHEET METAL. Requirements for fabrications for the deflection of water away from the building envelope at penetrations.
- E. Section 07 92 00 JOINT SEALANTS. Requirements for sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- F. Section 09 91 00 PAINTING. Requirements for identification and painting of conduit and other devices.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general electrical requirements, general arrangement of the contract documents, coordination, quality assurance, project conditions, equipment and materials, and items that is common to more than one section of Division 28.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- I. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- J. Section 31 20 00 EARTH MOVING. For bedding of conduits.

1.3 DEFINITIONS

- A. EMT: Electrical metallic tubing.
- B. ENT: Electrical nonmetallic tubing.
- C. EPDM: Ethylene-propylene-diene terpolymer rubber.
- D. FMC: Flexible metal conduit.
- E. IMC: Intermediate metal conduit.
- F. LFMC: Liquidtight flexible metal conduit.
- G. LFNC: Liquidtight flexible nonmetallic conduit.
- H. NBR: Acrylonitrile-butadiene rubber.
- I. RNC: Rigid nonmetallic conduit.

1.4 QUALITY ASSURANCE

A. Refer to Paragraph 1.4 Quality Assurance, in Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

1.5 SUBMITTALS

- A. Submit in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Furnish the following:
- B. Shop Drawings:
 - 1. Size and location of main feeders;
 - 2. Size and location of panels and pull boxes
 - 3. Layout of required conduit penetrations through structural elements.
 - The specific item proposed and its area of application shall be identified on the catalog cuts.
- C. Certification: Prior to final inspection, deliver to the Resident Engineer/COR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.
- E. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- F. Shop Drawings: For the following raceway components. Include plans, elevations, sections, details, and attachments to other work.

SPEC WRITER NOTE: Retain subparagraph

- below for custom enclosures only.
- 1. Custom enclosures and cabinets.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

TC-3-04.....PVC Fittings for Use with Rigid PVC Conduit and Tubing FB1-07.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable C. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) D. Underwriters Laboratories, Inc. (UL): 1-05.....Flexible Metal Conduit 5-04.....Surface Metal Raceway and Fittings 6-07.....Rigid Metal Conduit 50-07..... Enclosures for Electrical Equipment 360-09.....Liquid-Tight Flexible Steel Conduit 467-07.....Grounding and Bonding Equipment 514A-04.....Metallic Outlet Boxes 514B-04.....Fittings for Cable and Conduit 514C-02......Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-05.....Schedule 40 and 80 Rigid PVC Conduit 651A-07..... Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07.....Electrical Metallic Tubing 1242-06.....Intermediate Metal Conduit

PART 2 - PRODUCTS

2.1 GENERAL

A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown.

2.2.CONDUIT

- A. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
- B. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
- C. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
- D. Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 volts or less.
- E. Flexible galvanized steel conduit: Shall Conform to UL 1.
- F. Liquid-tight flexible metal conduit: Shall Conform to UL 360.

2.3.WIREWAYS AND RACEWAYS

A. Surface metal raceway: Shall Conform to UL 5.

2.4.CONDUIT FITTINGS

- A. Rigid steel and IMC conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - 3. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - 5. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 6. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- B. Rigid aluminum conduit fittings:
 - Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - 2. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - 3. Set screw fittings: Not permitted for use with aluminum conduit.
- C. Electrical metallic tubing fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - 3. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
 - 4. Indent type connectors or couplings are prohibited.

- Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- D. Flexible steel conduit fittings:
 - 1. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - 2. Clamp type, with insulated throat.
- E. Liquid-tight flexible metal conduit fittings:
 - 1. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - 2. Only steel or malleable iron materials are acceptable.
 - Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- G. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- H. Expansion and deflection couplings:
 - 1. Conform to UL 467 and UL 514B.
 - Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - 4. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.

2.5 CONDUIT SUPPORTS

- A. Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
- B. Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- C. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- D. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.

2.6 OUTLET, JUNCTION, AND PULL BOXES

- A. UL-50 and UL-514A.
- B. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
- C. Nonmetallic Outlet and Device Boxes: NEMA OS 2.
- D. Metal Floor Boxes: Cast or sheet metal, semi-adjustable, rectangular.
- E. Sheet metal boxes: Galvanized steel, except where otherwise shown.

F. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.

2.7 CABINETS

- A. NEMA 250, Type 1, galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- B. Hinged door in front cover with flush latch and concealed hinge.
- C. Key latch to match panelboards.
- D. Metal barriers to separate wiring of different systems and voltage.
- E. Accessory feet where required for freestanding equipment.

2.8 WIREWAYS

A. Equip with hinged covers, except where removable covers are shown. rete] [cast iron] [hot-dip galvanized-steel diamond plate] [fiberglass].

2.11 SLEEVES FOR RACEWAYS

A. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized steel, plain ends.

2.12 SLEEVE SEALS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and cable.
 - Sealing Elements: EPDM, NBR interlocking links shaped to fit surface of cable or conduit. Include type and number required for material and size of raceway or cable.
 - Pressure Plates: Stainless steel. Include two for each sealing element.
 - Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.13 GROUT

A. Nonmetallic, Shrinkage-Resistant Grout: ASTM C 1107, factory-packaged, nonmetallic aggregate grout, noncorrosive, nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the Resident Engineer/COTR prior to drilling through structural sections.

- 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the Resident Engineer/COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electronic safety and security raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

3.2 INSTALLATION, GENERAL

A. Install conduit as follows:

- 1. In complete runs before pulling in cables or wires.
- 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
- 5. Mechanically continuous.
- Independently support conduit at 2.4 m (8 foot) on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
- Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, "FLASHING AND SHEET METAL".
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.

- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the Resident Engineer/COTR.
- D. Fire Alarm:
 - Fire alarm conduit shall be painted red (a red "top-coated" conduit from the conduit manufacturer may be used in lieu of painted conduit) in accordance with the requirements of Section 28 31 00, "FIRE DETECTION AND ALARM".

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer/COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inch) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:

- a. Rigid steel or rigid aluminum.
- b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
- 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
- Align and run conduit parallel or perpendicular to the building lines.
- Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (6 feet) of flexible metal conduit extending from a junction box to the fixture.
- 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, "PAINTING".
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, "PAINTING" for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a

copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.

C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes).
- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

3.8 ELECTRONIC SAFETY AND SECURITY CONDUIT

- A. Install the electronic safety and security raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communications closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.

I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit	Radius of Conduit Bends
Trade Size	mm, Inches
34	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00, "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 28.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility electronic safety and security systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 28 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 28, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility exterior closure systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Electronic Safety and Security systems will require inspection of individual elements of the electronic safety and security systems throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule electronic safety and security systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 28 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 28 Sections for additional Contractor training requirements.

----- END -----

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS, compatible with the existing Johnson Controls International (JCI)P2000 System on the VA campus.

Β.

- PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- C.Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,
 - 2. Physical Access Control System and Database Management Software,
 - 3. Credential validation software/hardware,
 - 4. Field installed controllers,
 - 5. Card readers,
 - 6. PIV cards,
 - 7. Door locks and sensors,
 - 8. Power supplies,
 - 9. Interfaces with:
 - a. Automatic door operators,

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 19 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.

- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- L. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1.

1.4 SUBMITTALS

A. Refer to 25 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.5 APPLICABLE PUBLICATIONS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.6 DEFINITIONS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.7 COORDINATION

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1//

1.8 MAINTENANCE & SERVICE

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.9 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a door

1.10 EQUIPMENT AND MATERIALS

A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:
 - 1. Physical Access Control System
 - 2. Surge and Tamper Protection
 - 3. Card Readers

- 4. Credential Cards
- 5. System Sensors and Related Equipment
- 6. Push Button Switches
- 7. Interfaces
- 8. Door and Gate Hardware interface
- 9. Cables
- 10. Transformers

2.2 SURGE AND TAMPER PROTECTION

A. Refer to 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY

2.3 CARD READERS

- A. Power: Card reader shall be powered from its associated Controller, including its standby power source.
- B. Response Time: Card reader shall respond to passage requests by generating a signal that is sent to the Controller. Response time shall be 800ms or less, from the time the card reader finishes reading the credential card until a response signal is generated.
- C. Enclosure: Suitable for surface, semiflush, or pedestal mounting. Mounting types shall additionally be suitable for installation in the following locations:
 - 1. Indoors, controlled environment.
 - 2. Indoors, uncontrolled environment.
- D. Display: LED or other type of visual indicator display shall provide visual[and audible] status indications and user prompts. Indicate power on/off, whether user passage requests have been accepted or rejected, and whether the door is locked or unlocked.
- E. Shall be utilized for controlling the locking hardware on a door and allows for reporting back to the main control panel with the time/date the door was accessed, the name of the person accessing the point of entry, and its location.
- F. Will be fully programmable and addressable, locally and remotely, and hardwired to the system.
- G. Shall be individually home run to the main panel.
- H. Shall be installed in a manner that they comply with:
 - 1. The Uniform Federal Accessibility Standards (UFAS)
 - 2. The Americans with Disabilities Act (ADA)
 - 3. The ADA Standards for Accessible Design

- I. Shall contain read head electronics, and a sender to encode digital door control signals.
- J. LED's shall be utilized to indicate card reader status and access status.
- K. Shall be able to support a user defined downloadable off-line mode of operation (e.g. locked, unlocked), which will go in effect during loss of communication with the main control panel.
- L. Shall provide audible feedback to indicate access granted/denied decisions. Upon a card swipe, two audible tones or beeps shall indicate access granted and three tones or beeps shall indicate access denied. All keypad buttons shall provide tactile audible feedback.

2.4 CREDENTIAL CARDS

- A. Personal Identity Verification (PIV) credential cards shall comply to Federal Information Processing Standards Publication (FIPS) 201.
- B. Visual Card Topography shall be compliant with NIST 800-104.

2.5 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - 1. Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1) Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (± 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25×1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached

wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

C. Delayed Egress (DE)

- 1. General:
 - a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
- The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode
 - 1) The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this

output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.

- 2) Delayed egress doors will have bond sensors.
- 3) Delayed egress activation shall also trigger CCTV call -up.
- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
 - The delay egress device shall automatically reset upon fire alarm system reset.
 - 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.
- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.
- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door

above and within 304 mm (12 in) of the panic bar. The sign shall read: EMERGENCY EXIT. PUSH UNTIL ALARM SOUNDS DOOR CAN BE OPENED, IN 30 SECONDS.

- Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system. This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.

D. Crash Bar:

- 1. Emergency Exit with Alarm (Panic):
 - a. Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.

- c. The panic bar shall include a conspicuous warning sign with one(1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
- d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
- e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
- f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
- g. Normal Exit:
 - Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - 3) Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.
 - 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
 - 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.
- E. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - Door closing force shall be adjustable to ensure adequate closing control.

- 3. Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
- Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.
- 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
- Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.
 - f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
 - g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
 - h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.

F. Door Status Indicators:

- 1. Shall monitor and report door status to the SMS.
- 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.

- b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
- c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.
- d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
- e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.6 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:
 - a. Minimum continuous current rating of 10A at 120 V ac.
 - b. Contacts that will make 720 VA at 60A and that will break at 720 VA 10A.
 - 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
 - 3. Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - b. Indoors, uncontrolled environment.
 - 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.7 INTERFACES

- A. Power Supplies:
 - 1. Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.

2.22 WIRES AND CABLES

A. Refer to section 280513 "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY".

28 13 00 - 11

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - For each Location, record setup of Controller features and access requirements.
 - Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 - 7. Prepare and install alarm graphic maps.
 - 8. Develop user-defined fields.
 - 9. Develop screen layout formats.
 - 10. Propose setups for guard tours and key control.
 - 11. Discuss badge layout options; design badges.
 - 12. Complete system diagnostics and operation verification.
 - Prepare a specific plan for system testing, startup, and demonstration.
 - 14. Develop acceptance test concept and, on approval, develop specifics of the test.
 - 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

- A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."
- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."

- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- D. Install LAN cables using techniques, practices, and methods that are consistent with Category 6 rating of components and that ensure Category 6 performance of completed and linked signal paths, end to end.
- E. Install cables without damaging conductors, shield, or jacket.
- F. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- G. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.
- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed 250 feet (75 m).

G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of 25 feet (8 m).

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.
- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:1. CCTV:

- a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
- b. Be able to monitor, control and record cameras on a 24 hours basis.
- c. Be programmed automatically call up a camera when an access point is but into an alarm state.
- d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.
- 2. IDS:
 - a. Be able monitor door control sensors.
 - b. Be able to monitor and control the IDS on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.
 - d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.
- 3. Security Access Detection:
 - a. Be able to monitor all objects that have been screened with an xray machine and be able to monitor all data acquired by the bomb detection unit.
 - b. For additional PACS system requirements as they relate to the Security Access Detection, refer to Section 28 13 53, SECURITY ACCESS DETECTION.
- 4. EPPS:
 - a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
 - b. For additional PACS requirements as they relate to the EPPS, refer to Section 28 26 00, ELECTRONIC PERSONAL PROTECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.

- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.E. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- F. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- G. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- H. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- I. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.
 - Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- J. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.

- 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
- 3. Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2'' (5 cm).
- K. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- L. System Start-Up:
 - The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.
 - b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - c. System wiring has been tested and verified as correctly connected as indicated.
 - d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
 - Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
 - 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- M. Supplemental Contractor Quality Control:

- The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
- The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect[, test, and adjust] field-assembled components and equipment installation, including connections[, and to assist in field testing]. Report results in writing.

3.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.12 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

28 13 00 - 19

C. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 16 00 INTRUSION DETECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Intrusion Detection System, hereinafter referred to as IDS, as specified in this section.
- B. This Section includes the following:
 - Intrusion detection with [hard-wired] [multiplexed], modular, microprocessor-based controls, intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions.
 - Responsibility for integrating electronic and electrical systems and equipment is specified in the following Sections, with Work specified in this Section:
 - a. Division 08 Section "DOOR HARDWARE".
 - b. Division 14 Section "ELECTRIC TRACTION ELEVATORS".
 - c. Division 27 Section "INTERCOMMUNICATIONS AND PROGRAM SYSTEMS".
 - d. Division 28 Section "PHYSICAL ACCESS CONTROL".
 - e. Division 28 Section "FIRE DETECTION AND ALARM".
 - f. Division 28 Section "VIDEO SURVEILLANCE".
 - g. Division 32 Section "CHAIN LINK FENCES AND GATES".
- C. Related Sections include the following:
 - Division 28 Section "VIDEO SURVEILLANCE" for closed-circuit television cameras that are used as devices for video motion detection.
 - Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY" for cabling between central-station control units and field-mounted devices and controllers.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.

- F. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- G. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- H. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- I. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- J. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning - systems readiness checklists, and training.
- K. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.
- L. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- M. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the IDS as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.

1.4 DEFINITIONS

- A. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- B. I/O: Input/Output.
- C. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors

28 16 00 - 2

assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.

- D. LED: Light-emitting diode.
- E. NEC: National Electric Code
- F. NEMA: National Electrical Manufacturers Association
- G. NFPA: National Fire Protection Association
- H. NRTL: Nationally Recognized Testing Laboratory.
- I. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- J. PIR: Passive infrared.
- K. RF: Radio frequency.
- L. Standard Intruder: A person who weighs 45 kg (100 lb.) or less and whose height is 1525 mm (60 in) or less; dressed in a long-sleeved shirt, slacks, and shoes.
- M. Standard-Intruder Movement: Any movement, such as walking, running, crawling, rolling, or jumping, of a "standard intruder" in a protected zone.
- N. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- O. UPS: Uninterruptible Power Supply
- P. UTP: Unshielded Twisted Pair

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a shop drawing and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.

- c. Reference all general notes that are utilized within the design package.
- d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
- Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.

- c. Identify wire types utilized for connection, interconnection with associate security subsystems.
- d. Show device locations that correspond to the floor plans.
- e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the IDS, provide the sensor ID, sensor type and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Shop drawing packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

<pre>the extent referenced. The publications are referenced in the text by the basic designation only.</pre> B. American National Standards Institute (ANSI)/Security Industry Association (SIA): PIR-01-00Passive Infrared Motion Detector Standard - Features for Enhancing False Alarm Immunity CP-01-00Control Panel Standard-Features for False Alarn ReductionC. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/SystemsE. National Electrical Manufactures Association (NEMA):	Α.	The publications listed below (including amendments, addenda,
<pre>the basic designation only. B. American National Standards Institute (ANSI)/Security Industry Association (SIA): PIR-01-00Passive Infrared Motion Detector Standard - Features for Enhancing False Alarm Immunity CP-01-00Control Panel Standard-Features for False Alarn Reduction C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volt: Maximum) F. National Fire Protection Association (NFFA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>		revisions, supplement, and errata) form a part of this specification to
 B. American National Standards Institute (ANSI)/Security Industry Association (SIA): PIR-01-00Passive Infrared Motion Detector Standard - Features for Enhancing False Alarm Immunity CP-01-00Control Panel Standard-Features for False Alarn Reduction C. Department of Justice American Disability Act (ADA) 28 CFR Fart 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volt: Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standards for Intrusion Detection Units 1037-09		the extent referenced. The publications are referenced in the text by
Association (SIA): PIR-01-00Passive Infrared Motion Detector Standard - Features for Enhancing False Alarm Immunity CP-01-00Control Panel Standard-Features for False Alarn Reduction C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volt: Maximum) F. National Fire Protection Association (NFFA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standards for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		the basic designation only.
PIR-01-00	В.	American National Standards Institute (ANSI)/Security Industry
<pre>Features for Enhancing False Alarm Immunity CP-01-00Control Panel Standard-Features for False Alarn Reduction</pre> C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volts Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Local Burglar Alarm Units and Systems 634-07Standards for Intrusion Detection Units 1037-09Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		Association (SIA):
CP-01-00		PIR-01-00 Passive Infrared Motion Detector Standard -
Reduction C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volt: Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standards for Anti-theft Alarms and Devices 1635-10Standard for Anti-theft Alarms and Devices 1635-10Standards (UFAS), 19841.		Features for Enhancing False Alarm Immunity
C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volt: Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Local Burglar Alarm Units and Systems 634-07Standards for Intrusion Detection Units 1037-09Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		CP-01-00Control Panel Standard-Features for False Alarm
<pre>28 CFR Part 36</pre>		Reduction
 D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volts Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Local Burglar Alarm Units and Systems 634-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841. 	С.	Department of Justice American Disability Act (ADA)
<pre>(47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Volts Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>		28 CFR Part 362010 ADA Standards for Accessible Design
Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Voltamaximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Intrusion Detection Units 1037-09Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.	D.	Federal Communications Commission (FCC):
 E. National Electrical Manufactures Association (NEMA): 250-08Enclosures for Electrical Equipment (1000 Voltantian Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841. 		(47 CFR 15) Part 15Limitations on the Use of Wireless
<pre>250-08Enclosures for Electrical Equipment (1000 Volta- Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>		Equipment/Systems
Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.	Ε.	National Electrical Manufactures Association (NEMA):
F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		250-08Enclosures for Electrical Equipment (1000 Volts
 70-11National Electrical Code 731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841. 		Maximum)
<pre>731-08Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>	F.	National Fire Protection Association (NFPA):
Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		70-11National Electrical Code
G. Underwriters Laboratories, Inc. (UL): 464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		731-08of Electric
<pre>464-09Audible Signal Appliances 609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>		Premises Security Systems
<pre>609-96Local Burglar Alarm Units and Systems 634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>	G.	Underwriters Laboratories, Inc. (UL):
634-07Standards for Connectors with Burglar-Alarm Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		464-09Audible Signal Appliances
Systems 639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		609-96 And Systems
639-07Standards for Intrusion Detection Units 1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		634-07 Standards for Connectors with Burglar-Alarm
<pre>1037-09Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.</pre>		Systems
1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.		639-07Detection Units
H. Uniform Federal Accessibility Standards (UFAS), 19841.		1037-09 And Devices
-		1635-10System Units
1.7 COORDINATION	Н.	Uniform Federal Accessibility Standards (UFAS), 19841.
	1.7 C	OORDINATION

- A. Coordinate arrangement, mounting, and support of intrusion detection system equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 EQUIPMENT AND MATERIALS

- A. General
 - All equipment associated within the IDS shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
 - 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 96 hours of run time in the event of a loss of primary power to the facility.
 - 3. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
 - 4. All IDS components located in designated "HAZARDOUS ENVIRONMENT" areas where fire or explosion could occur due to the presence of natural gases or vapors, flammable liquids, combustible residue, or ignitable fibers or debris, shall be rated Class II, Division I, Group F, and installed in accordance with National Fire Protection Association (NFPA) 70 National Electric Code, Chapter 5.
 - 5. All equipment and materials for the system will be compatible to ensure functional operation in accordance with requirements.

1.9 WARRANTY OF CONSTRUCTION.

- A. Warrant IDS work subject to the Article "Warranty of Construction" of FAR 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 FUNCTIONAL DESCRIPTION OF SYSTEM

- A. System and system components shall be compatibly with LYNX Security.
- B. Supervision: System components shall be continuously monitored for normal, alarm, supervisory, and trouble conditions. Indicate deviations from normal conditions at any location in system. Indication includes identification of device or circuit in which deviation has occurred and whether deviation is an alarm or malfunction.
 - 1. Alarm Signal: Display at central-station control unit and actuate audible and visual alarm devices.
 - Trouble Condition Signal: Distinct from other signals, indicating that system is not fully functional. Trouble signal shall indicate system problems such as battery failure, open or shorted transmission line conductors, or controller failure.
 - Supervisory Condition Signal: Distinct from other signals, indicating an abnormal condition as specified for the particular device or controller.

SPEC WRITER NOTE: Select one of the first two paragraphs below.

- B. System Control: Central-station control unit shall directly monitor intrusion detection units and connecting wiring.
- C. System shall automatically reboot program without error or loss of status or alarm data after any system disturbance.
- D. Operator Commands:
 - Help with System Operation: Display all commands available to operator. Help command, followed by a specific command, shall produce a short explanation of the purpose, use, and system reaction to that command.
 - Acknowledge Alarm: To indicate that alarm message has been observed by operator.

- Place Protected Zone in Access: Disable all intrusion-alarm circuits of a specific protected zone. Tamper circuits may not be disabled by operator.
- 4. Place Protected Zone in Secure: Activate all intrusion-alarm circuits of a protected zone.
- 5. Protected Zone Test: Initiate operational test of a specific protected zone.
- 6. System Test: Initiate system-wide operational test.
- 7. Print Reports.
- E. Timed Control at Central-Station Control Unit: Allow automatically timed "secure" and "access" functions of selected protected zones.
- F. Automatic Control of Related Systems: Alarm or supervisory signals from certain intrusion detection devices control the following functions in related systems:
 - 1. Switch selected lights.
 - 2. Shift elevator control to a different mode.
 - 3. Open a signal path between certain intercommunication stations.
 - 4. Shift sound system to "listening mode" and open a signal path to certain system speakers.
 - 5. Switch signal to selected monitor from closed-circuit television camera in vicinity of sensor signaling an alarm.
- G. Response Time: 2 seconds between actuation of any alarm and its indication at central-station control unit.
- H. Circuit Supervision: Supervise all signal and data transmission lines, links with other systems, and sensors from central-station control unit. Indicate circuit and detection device faults with both protected zone and trouble signals, sound a distinctive audible tone, and illuminate an LED. Maximum permissible elapsed time between occurrence of a trouble condition and indication at central-station control unit is 20 seconds. Initiate an alarm in response to opening, closing, shorting, or grounding of a signal or data transmission line.
- H. Programmed Secure-Access Control: System shall be programmable to automatically change status of various combinations of protected zones between secure and access conditions at scheduled times. Status changes may be preset for repetitive, daily, and weekly; specially scheduled operations may be preset up to a year in advance. Manual secure-access control stations shall override programmed settings.

2.2 SYSTEM COMPONENT REQUIREMENTS

- A. Compatibility: Detection devices and their communication features, connecting wiring, and central-station control unit shall be selected and configured with accessories for full compatibility with the following equipment:
 - Data Gathering Panel, Output Module, Input Module, 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
 - Minimum Protection for Power Lines 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS.
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Lines: Comply with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS as recommended by manufacturer for type of line being protected.
- C. Interference Protection: Components shall be unaffected by radiated RFI and electrical induction of 15 V/m over a frequency range of 10 to 10,000 MHz and conducted interference signals up to 0.25-V RMS injected into power supply lines at 10 to 10,000 MHz.
- D. Tamper Protection: Tamper switches on detection devices, controllers, annunciators, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled and when entering conductors are cut or disconnected. Central-station control-unit alarm display shall identify tamper alarms and indicate locations.
- E. Self-Testing Devices: Automatically test themselves periodically, but not less than once per hour, to verify normal device functioning and alarm initiation capability. Devices transmit test failure to centralstation control unit.
- F. Antimasking Devices: Automatically check operation continuously or at intervals of a minute or less, and use signal-processing logic to detect blocking, masking, jamming, tampering, or other operational

dysfunction. Devices transmit detection of operational dysfunction to central-station control unit as an alarm signal.

- G. Addressable Devices: Transmitter and receivers shall communicate unique device identification and status reports to central-station control unit.
- H. Remote-Controlled Devices: Individually and remotely adjustable for sensitivity and individually monitored at central-station control unit for calibration, sensitivity, and alarm condition.

2.3 ENCLOSURES

- A. Interior Sensors: Enclosures that protect against dust, falling dirt, and dripping noncorrosive liquids.
- B. Interior Electronics: NEMA 250, Type 12.
- C. Exterior Electronics: NEMA 250, Type 4X [fiberglass] [stainless steel].
- D. Corrosion Resistant: NEMA 250, Type 4X [PVC] [stainless steel].
- E. Screw Covers: Where enclosures are accessible to inmates, secure with security fasteners of type appropriate for enclosure.

2.5 EQUIPMENT ITEMS

- A. General:
 - 1. All requirements listed below are the minimum specifications that need to be met in order to comply with the IDS.
 - 2. All IDS sensors shall conform to UL 639, Intrusion Detection Standard.
 - 3. Ensure that IDS is fully integrated with other security subsystems as required to include, but not limited to, the CCTV, PACS, EPPS, and Physical Access Control System and Database Management. The IDS provided shall not limit the expansion and growth capability to a single manufacturer and shall allow modular expansion with minimal equipment modifications.
- B. IDS Components: The IDS shall consist of, but not be limited to, the following components:
 - 1. Control Panel
 - 2. Exterior Detection Devices (Sensors)
 - 3. Interior Detection Devices (Sensors)
 - 4. Power Supply
 - 5. Enclosures

2.6 CONTROL PANEL

- A. The Control panel shall be the main point of programming, monitoring, accessing, securing, and troubleshooting the IDS. Refer to American National Standards Institute (ANSI) CP-01 Control Panel Standard-Features for False Alarm Reduction.
- B. The Control Panel shall provide a means of reporting alarms to a Physical Access Control System and Database Management via a computer interface or direct connection to an alarm control monitoring panel.
- C. The Control panel shall utilize a Multifunctional Keypad, Input and Output Modules for expansion of alarm zones, interfacing with additional security subsystems, programming, monitoring and controlling the IDS.
- D. The Control panel shall meet or exceed the following minimum functional requirements for programming outputs, system response, and user interface:
 - 1. Programming Outputs:
 - a. 2 Amps alarm power at 12 VDC
 - b. 1.4 Amps auxiliary power at 12 VDC
 - c. Four alarm output patterns
 - d. Programmable bell test
 - e. Programmable bell shut-off timer
 - 2. System Response:
 - a. Selectable point response time
 - b. Cross point capability
 - c. Alarm verification
 - d. Watch mode
 - Scheduled events arm, disarm, bypass and un-bypass points, control relays, and control authority levels
 - 3. User Interface:
 - a. Supervises up to eight command points (e.g. Up to 16 unsupervised keypads can be used)
 - b. Provides custom keypad text
 - c. Addresses full function command menu including custom functions
 - d. Allows user authority by defined area and 16-character name
 - e. Provides for 14 custom authority control levels allowing user's authority to change, add, delete pass codes, disarm, bypass points, and start system tests.

 The Control panel shall meet or exceed the following technical characteristics:

Input Voltage via 110 VAC or 220 VAC Step-down Transformer	16 or 18 VAC
Operating Voltage	12 VDC
Output Voltage	12 VDC @ 2 A max
Direct Hardwire Zones	7
Partitions	8
Multifunctional Keypads	16 (2 per partition)
Communications Port	RJ-11

- E. A multifunctional keypad shall be utilized as a user interface for arming, disarming, monitoring, troubleshooting, and programming the alarm control panel.
- F. Keypads shall have the following features:
 - Multiple function keypads suitable for remote mounting, no greater than 1333 m (4000 ft), shall be provided from the control panel and have a light emitting diode (LED) readout of alarm and trouble conditions by zone.
 - An alphanumeric English language display, with keypad programmability, and EE-PROM memory, shall also be provided.
 - 3. Trouble alarm indicators shall be distinguishable from intrusion alarms.
 - 4. A minimum of four (4) zones selectable as entry and exit with programmable time delay.
 - 5. Complete system test activated capability at the keypad.
 - 6. Capability for opening and closing reports to a remote monitoring location.
 - 7. Adjustable entry and exit delay times.
 - 8. Capability for a minimum of two (2) multiple function keypads.
 - 9. Capability to shunt or bypass selected interior zones while arming perimeter protection and remaining interior zones.
 - Capability for a minimum of seven assignable pass-codes that are keypad programmable from a suppressed master code.
 - 11. The control panel shall have a communications port that will allow for communications with a computer for programming, monitoring, and troubleshooting purposes. The communications port will be, at a minimum, and RJ-11 or better.

- 12. The control panel will have a systems success probability of 95% or better, and shall include the following success considerations:
 - a. False Alarm: Shall not exceed one (1) false alarm per 30 days per sensor zone.
 - b. Nuisance Alarm: Shall not exceed a rate of one (1) alarm per seven (7) days per zone within the first 60 days after installation and acceptance. Sensor adjustments will be made and then shall not exceed one (1) alarm per 30 days.
- 13. The Control Panel will be able to detect either a line fault or power loss for all supervised data cables.
 - a. Line Fault Detection: Communication links of the IDS shall have an active mode for line fault detection. Fault isolation at the systems level shall have the same geographic resolutions as provided for intrusion detection. The line fault alarm shall be clearly distinguishable from other alarms.
 - b. Power Loss Detection: Provide the capability to detect when critical components experience temporary or permanent loss of power and annunciate to clearly identify the component experiencing power loss.

2.7 KEYPADS

A. Keypads shall meet or exceed the following technical characteristics:

Connections	4-wire flying lead for data and power
Operating Temperature	0°C to +50°C (+32°F to +122°F)
Display Window	8-point LED
Indicators: Illuminated keys	Armed Status-LED
	Point Status-LED
	Command Mode-LED
	Power-LED
Voltage	Nominal 12 VDC

2.8 INPUT MODULE

A. An input module shall be utilized to connect additional detection devices to the control panel. This module will meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Zone Inputs	Style A (Class B) Supervised

Operating Temperature	0 to 40 degrees C (32 to 140 degrees F)	
-1		

2.9 OUTPUT MODULE

A. An output module shall be utilized to interface the control panel with other security subsystems. The output module shall meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Output Relays	"Form C" Dry Relay Contracts
Relay Contact Rating	4A @ 24 VDC
	4A @ 24 VAC
	1A @ 70 VAC
Operating Temperature	0 to 40 degrees C F (32 to 140 degrees)

2.10 INTERIOR DETECTION DEVICES (SENSORS)

- A. The IDS shall consist of interior, exterior, and other detection devices that are capable of:
 - Locating intrusions at individually protected asset areas or at an individual portal;
 - 2. Locating intrusions within a specific area of coverage;
 - 3. Locating failures or tampering of individual sensors or components.
- B. Provide and adjust for devices so that coverage is maximized in the space or area it is installed in. For large rooms where multiple devices are required, ensure device coverage is overlapping.
- C. Detection sensitivity shall be set up to ensure maximum coverage of the secure area is obtained while at the same time limiting excessive false alarms due to the environment and impact of small animals. All detection devices shall be anti-masking with exception of video motion detection.
- D. Dual sensor technology shall be used when possible. Sensor technology shall not be of the same type that is easily defeated by a single method. This will reduce the amount of false alarms.
- E. Interior Environmental Conditions: Systems shall be able to operate in environmentally protected interior areas and shall meet operational performance requirements for the following ambient conditions:
 - 1. If components are installed in unheated areas they shall be able to operate in temperatures as low as -17 C (0 F);

2. Interior Sensor Environmental Characteristics:

Temperatures	0 to 50 C (32F to 120 F)
Pressure	Sea Level to 4573m (15,000 ft.) above sea level
Humidity	5% - 95%
Fungus	Components of non-fungus nutrient materials
Acoustical Noise	Suitable for high noise environments above 100db

- F. Window Intrusion Detection
 - These IDS devices shall detect intrusions thru inertia (shock) or by sound, and shall utilize either a Breakwire Sensor or Acoustic and Seismic Sensor.
 - 2. Break wire Sensors (wire trap):
 - a. Detect intrusion thru shock or breakage of window glazing. Also used for the protection of utility openings.
 - b. Sensors shall consist of fine wire embedded in or affixed to interior of glazing. Breakage of protected glazing shall result in wire breakage.
 - c. Wire shall be hard-drawn copper up to #26 AWG diameter.
 - d. If sensors are affixed to glazing the sensor shall be protected by a clear coating which shall not affect sensor functioning.
 - e. Sensor shall be terminated in insulated connectors which are concealed and tamper resistant.
 - f. Protection of inlet openings:
 - 1) Shall consist of up to 26 AWG hard-drawn copper wire with a tensile strength of 17.8 N 4 pounds maximum.
 - Wire shall be interlaced throughout the opening such that no opening between wires shall be larger than 100 mm (4 in.. on center.
 - Sensors shall be terminated so that attempts to cut the wire or otherwise enlarge openings between wires shall cause an alarm.
 - Sensors shall be terminated in insulated connectors which are concealed and tamper resistant.
- G. Acoustic and Seismic Glass Break Detectors

- Detects intrusion thru the use of audible sound and vibration emitted from the breaking of glass using a tuned frequency range and sound pattern recognition. This initiates an alarm when glass they protect is broken or cracked.
- Detectors shall be installed in strict conformance with manufacture's installation instructions.
- 3. The detector's power circuit shall be switched via an output relay on the control panel to provide latching alarm LED reset capability.
- 4. Sensors shall be contained in a fire-resistant ABS plastic housing and must be mounted in contact with a window.
- 5. Sensing shall be accomplished through the use of a mechanical filtered piezoelectric element.
- Sensors shall have a sensitivity adjustment controlling output voltage from the piezoelectric element which triggers a solid-state latching device.
- Sensors shall selectively filter input to minimize false alarms and not initiate alarm in response to ambient seismic vibrations or other ambient stimuli.
- 8. A manufacture's test unit will be used to validate the sensor by simulating glass breakage.
- The Contractor shall provide sensors for adjusting sensitivity and two-sided polyurethane tape with acrylic adhesive for window attachment.
- Sensor shall include exterior label to protect adhesive tape from direct sunlight.

Power	Auxiliary power supply 12 VDC @ 25 mA (+/-) 10%
Power Input	10 - 15 VDC at 16mA protected against reverse polarity, 20 mA during relay closure
Relay Output Rating	Minimum of 25 VDC mA
Coverage Audio	6,000 Square ft.
Coverage Glass Break	7.5 m (25 ft.) wide by 7.5 m wide (25 ft.)
	Minimum: 7.62 m (25 feet) from the detector to the furthest point on protected glass.
Audio Output	300 - 12,000 HZ

11. Window Intrusion Detection Sensor Technical Specifications:

Alarm Output	Relay NO or NC selectable
Interconnection	12 pin Panduit connector, 22 AWG
Radio Frequency Interface	No alarm or setup on between frequencies 26 - 100 MHz 50 v/m
	Immunity to mobile RF interference 100 watts 3 m @ (9.8 Ft.) in 27-100 MHz range
Alarm period	Two (2) to three (3)
Mounting	Ceiling, same wall, adjacent wall, opposite wall
Features	Test and alarm LEDs for acoustic seismic and alarm condition latching, Alarm LED and tamper switch on cover.
Alarm verification	Digital signal processing or dual acoustic processing technologies
Detection ability	Single and multi-pane glass, wired glass, tempered and laminated glass to 6 mm (¼ inch) or thickness

- H. Passive Infrared Motion Sensors (PIR)
 - These sensors shall detect an intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone and meet ANSI PIR-01 Passive Infrared Motion Detector Standards Features for Enhancing False Alarm Immunity. An alarm shall be initiated when motion and temperature changes within set patterns are detected as follows.
 - The detector shall provide multiple detection zones distributed at a variety of angles and distance.
 - 3. Sensors shall be passive in nature; no transmitted energy shall be required for detection.
 - Sensors shall be sensitive to infrared energy emitted at wavelengths corresponding to human body and other objects at ambient temperatures.
 - Sensors shall not alarm in response to general area thermal variations and shall be immune to radio frequency interference.
 - Sensors shall not be susceptible to changes in temperature due to an air conditioner being turned on or off.
 - 7. Sensors shall be housed in a tamper-alarmed enclosure.

- Sensor detectors shall include motion analyzer processing, adjustable lens, and walk test LED's visible from any angle.
- 9. Sensors shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indication shall be provided within the sensor enclosure.
- 10. Sensor detectors shall include a motion monitoring verification circuit that will signal trouble or alarm if the detector fails to detect motion for an extended period.
- 11. PIR Technical Characteristics:

Power	Six (6) - 12 VDC 25 mA continuous current draw 38 mA peaks
Alarm Velocity	1500 mm (Five (5) ft.) at a velocity of 30 mm (0.1 ft.) per second, and one (1) step per second, assuming 150 mm (6 in.) per step. Also, faster than 30 mm (1 foot) per second, up to 3000 mm (10 feet) per second
Maximum detection range	10.6 m (35 ft.)
Frequency range- non activation or setup use	26 to 950 MHz using a 50 watt transmitter located 1 ft. from the unit or attached wiring
Infrared detection	1 1/2°C (3°F) different from the background temperature
Detection Pattern	180 degrees for volumetric units, non PIR 360
PIR 360°Detection Pattern	Programmable 60 detection zones including one directly below
Mounting	Ceiling and walls
Ceiling heights	2.4 m (Eight (8) ft.) - 5.4 m (18 ft)
Sensitivity adjustments	Three (3) levels

H. Photoelectric Sensors

 The sensor devices shall be able to detect an intruder presence by sending out a series of infrared or ultraviolet beams. Intrusion is based on disruption of the signal beams as follows.

- a. Sensors shall consist of a modulating transmitter, focusing lenses, mirrors, demodulating receiver, power supply, and interconnecting lines.
- b. Beam transmitters shall be designed to emit light. Beams may be reflected by one (1) or more mirrors before being received and amplified.
- c. The photoelectric sensor shall initiate an alarm when the beam is interrupted with monitoring controls set at midrange.
- d. Transmitted beams shall be uniquely modulated to prohibit defeat of the IDS system by shining another light source into the receiver.
- e. Sensors shall provide a means of local alarm indication on the detector for use at the protected zone during installation and calibration.
- f. Sensors shall include an indicator-disabling device within the sensor enclosure.
- g. Sensors shall utilize automatic gain control or be provided with sensitivity adjustments to allow for various beam lengths.
- h. Sensor controls shall be inaccessible to operating personnel.
- i. Sensors that use multiple beams shall be tested by attempting to crawl under and jump through and over beams. Each system sensor shall provide cutoffs of at least 90% to handle a high percentage of light cutoffs prior to initiating an alarm.
- j. Sensor components shall be housed in tamper-alarmed enclosure.
- 2. Photoelectric Sensor Technical Characteristics:

Power requirements	Nine (9)-16 VDC, protected against reverse polarity
Relay output	Normally closed. 18 ohm resister in series with contacts. 0.5 amperes resistance/24 VDC
Current	Transmitter 15 mA, Receiver 15 mA
LED	Alignment, walk-test alarm, off
Range	Indoor: 39 m (130 ft.) Outdoor19.5 m: (65 ft.)
Alarm relay contacts	Two (2) amperes at 120 VAC minimum
Enclosure	High impact acrylic
Туре	Dual beam
Mounting	Wall, corner, flush

Beam width	Six (6) degrees
Receiver field of view	Six (6) degrees horizontal and vertical
Adjustments	Vertical +10 - 20 degrees Horizontal 30 degrees
Alarm period	Two (2) - three (3) sec
Infrared source	Long-life Gallium Arsenide LED
Infrared sensor	PIN photodiode
Transmitter Frequency	One (1) kHz 10 microsecond pulse width
IR Wavelength	950 nm

N. CCTV Video Motion Detection Sensors: Refer to Section 28 23 00 VIDEO SURVEILLANCE that outlines related video motion detection requirements.

2.11 TAMPER ALARM SWITCHES

- A. The following IDS sensors shall be used to monitor and detect potential tampering of sensors, control panels and enclosures.
 - Tamper Switches: All enclosures including cabinets, housings, boxes, raceways, and fittings with hinged doors or removable covers containing circuits and power supplies related to the IDS shall include corrosion-resistant tamper switches.
 - 2. Tamper alarms shall be annunciated to be clearly distinguishable from IDS alarms.
 - 3. Tamper switches will not be in a viewable from a direct line of sight perspective. The minimum amount of time the tamper switch becomes active and sends a signal after an enclosure is opened or panel removable is attempted, shall be one (1) second.
 - 4. Tamper switches will initiate when enclosure doors or covers is removed as little as 6.35 mm (1/4 inch) from the closed position unless otherwise indicated. Tamper switches shall be:
 - a. Push/pull automatic reset type;
 - b. Inaccessible until switch is activated;
 - c. Spring-loaded and held in closed position by door or cover; and
 - d. Wired to break a circuit when door or cover is removed with each sensor annunciated individually at a central reporting processor.
 - 5. Fail-Safe Mode: Shall provide the capability to detect and annunciate diminished functional capabilities and perform self-

tests. Fail-safe alarms shall be annunciated to be clearly distinguishable from other types of alarms.

2.13 POWER SUPPLY

- A. A power supply shall only be utilized if the control panel is unable to support the load requirements of the IDS system.
- B. All power supplies shall be UL rated and able to adequately power two entry control devices on a continuous base without failure.
- C. Power supplies shall meet the following minimum technical characteristics:

INPUT POWER	110 VAC 60 HZ 2 amp
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to [insert number]Ah, rechargeable
OUTPUT CURRENT	4 amp max. @ 13.8 VDC
	3 amp max. @ 27.6 VDC
BATTERY FUSE SIZE	3.5 A @ 250 VAC
CHARGING CIRCUIT	Built-in standard

2.14 AUDIBLE AND VISUAL ALARM DEVICES

- A. Bell: Central-station control unit 10 inches (254 mm) in diameter, rated to produce a minimum sound output of 84 dB at 10 feet (3 m) from central-station control unit.
 - 1. Enclosure: Weather-resistant steel box equipped with tamper switches on cover and on back of box.
- B. Weatherproof Motor-Driven Hooter: UL listed, rated to produce a minimum sound output of 120 dB at 3 feet (1 m), plus or minus 3 dB, at a frequency of 470 Hz. Rated for intermittent use: two minutes on and five minutes off.
 - Designed for use in industrial areas and in high noise, severe weather marine environments.
- C. Siren: 30-W speaker with siren driver, rated to produce a minimum sound output of 103 dB at 10 feet (3 m) from central-station control unit.
 - Enclosure: Weather-resistant steel box with tamper switches on cover and on back of box.

- D. Strobe: Xenon light complying with UL 1638, with a clear polycarbonate lens.
 - 1. Light Output: 115 cd, minimum.
 - 2. Flash Rate: 60 per minute.

2.15 SECURITY FASTENERS

- A. Security fasteners shall be operable only by tools produced for use on specific type of fastener by fastener manufacturer or other licensed fabricator. Drive system type, head style, material, and protective coating as required for assembly, installation, and strength.
- B. Drive System Types: Pinned Torx or pinned hex (Allen).
- C. Socket Flat Countersunk Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- D. Socket Button Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- E. Socket Head Cap Fasteners:
 - 1. Heat-treated alloy steel, ASTM A 574 (ASTM A 574M).
 - 2. Stainless steel, ASTM F 837 (ASTM F 837M), Group 1 CW.
- F. Protective Coatings for Heat-Treated Alloy Steel:
 - 1. Zinc chromate, ASTM F 1135, Grade 3 or 4; for exterior applications and interior applications where indicated.
 - 2. Zinc phosphate with oil, ASTM F 1137, Grade I, or black oxide.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. IDS installation shall be in accordance with Underwriters Laboratories (UL) 639 Standards for Intrusion Detection Units and UL 634 Standards for Connectors with Burglar Alarm Systems, and appropriate manufacture's installation manuals for each type of IDS.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including VA furnished equipment, and appurtenances in accordance with the manufacturer's instructions and shall furnish all necessary connectors,

terminators, interconnections, services, and adjustments required for a complete and operable system.

- D. The IDS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or designed as a computer network.
- E. The IDS shall be able to be integrated with other security subsystems. Integration with these security subsystems shall be achieved by computer programming and the direct hardwiring of the systems. Determination for methodology shall be outlined when the system(s) is/are being designed and engineered. For installation purposes, the IDS shall utilize an output module for integration with other security subsystems. The Contractor will ensure all connections are per the OEM and that any and all software upgrades required to integrate the systems are installed prior to system start-up.
- F. For programming purposes, the Contractor shall refer to the manufacturer's requirements and Contracting Officer instructions for correct system operations. This includes ensuring computers being utilized for system integration meet or exceeds the minimum system requirements outlined in the IDS software packages.
- G. Lightening and power surges to the central alarm reporting and display unit shall be protected at both ends against excessive voltages. This requirement shall apply for circuits that are routed both in underground conduits and overhead runs.
- H. At a minimum, the Contractor shall install primary detection devices, such as three electrode gas-type surge arresters, and secondary protectors to reduce dangerous voltages to levels that will cause no damage. Fuses shall not be permitted as protection devices.
- I. The Contractor shall provide fail-safe gas tube type surge arresters on exposed IDS data circuits. In addition, transient protection shall protect against spikes up to 1000 volts peak voltage with a onemicrosecond rise time and 100-microsecond decay time, without causing false alarms. The protective device shall be automatic and selfrestoring. Also, circuits shall be designed or selected assuming a maximum of 25 ohms to ground.
- J. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name, equipment

model and serial identification numbers, and UL logo. The Contracting Officer may inventory the IDS equipment at the time of delivery and reject items that do not conform to this requirement.

- 2. Storage and Handling: Store and protect equipment in a manner that will preclude damage as directed by the Contracting Officer.
- K. Cleaning and Adjustments:
 - Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
 - Prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or synchronization. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.
- L. Tamper Switches
 - Install tamper switches to initiate an alarm signal when a panel, box, or component housing door or cover is moved as little as 6.35 mm (1/4 inch) from the normally closed position unless otherwise specified.
 - Locate tamper switches within enclosures, cabinets, housings, boxes, raceways, and fittings to prevent direct line of sight to any internal components and to prevent tampering with switch or circuitry.
 - 3. Conceal tamper switch mounting hardware so that the location of the switch within the enclosure cannot be determined from the exterior.
- M. Unique IDS Installation Components:
 - 1. BMS Surface Mounted:
 - a. Surface mounted BMS housing for the switch element shall have the capability to receive threaded conduit. Housing covers for surface mounted BMS, if made of cast aluminum, shall be secured by stainless steel screws. Magnet housing cover shall not be readily removable and BMS housings shall be protected from unauthorized access by a cover operated, corrosion-resistant tamper device.
 - b. Conductors running from a door to alarm circuits shall be contained within a flexible armored cord constructed from corrosion-resistant metal. Each end of the armored cord shall terminate in a junction box or other enclosure. Armored cord ends

shall be mechanically secured to the junction boxes by clamps or bushings. Conductors within the armored cord shall be provided with lug terminals at each end. Conductors and the armored cord

shall experience no mechanical strain as the door is removed from fully open to closed position. Switch circuits shall initiate an alarm if a short circuit is applied to the door cord.

- c. For exterior application on double gates, both BMS elements must be mounted on the gate. Flexible armored cord constructed from corrosion-resistant metal shall be used to provide electrical connection.
- 2. BMS Recessed Mounted:
 - a. Ball bearing door trips shall be mounted within vault door headers such that when the locking mechanism is secured, the door bolt engages an actuator, mechanically closing the switch.
 - b. Door bolt locking mechanisms shall be fully engaged before the ball bearing door trip is activated. Also, circuit jumpers from the door shall be provided.
- 3. Passive Infrared Detectors: (PIR)
 - a. The protective beam shall be focused in a straight line.
 - b. Installed beam distance from transmitter to receiver shall not exceed 80% of the manufacturer's maximum recommended rating.
 - c. Mirrors may be used to extend the beam or to establish a network of beams. Each mirror used shall not lower the rated maximum system range by more than 50%.
 - d. Mirrors and photoelectric sources used in outdoor applications shall have self-heating capability to eliminate condensation and shall be housed in weatherproof enclosures.
- 4. Taut-Wire:
 - a. Housing for switch assembly shall be covered by a neoprene cap to retain the center bolt (lever arm), which functions as a lever to translate movement of the attached horizontal wire into contact closure. When the neoprene cap is firmly seated on the cup-shaped polycarbonate housing, it shall function as the fulcrum for the lever (bolt).
 - b. Upper exposed end of the lever shall be threaded to accommodate clamping to the horizontal wire. The lower end of the lever, which is fashioned to serve as the movable electrical contact,

shall be held suspended in a small cup-shaped contact that floats in a plastic putty material.

- c. Plastic putty used shall retain a degree of elasticity under varying temperature conditions and provide the sensor switch with a self-adjusting property. This provides the switch with a builtin compensating mechanism that ignores small, very slow changes in lever alignment (i.e. which may result from environmental changes such as extreme temperature variations and ground seepage due to weather conditions) and to react to fast changes only, as caused by manual deflection or cutting of the wires.
- d. Contractor shall provide metal slider strips having slots through which the barbed wires pass. Wires shall be prevented from leaving the slots by rivets. A slider strip shall be used to translate normal forces to the barbed wire and to the horizontal displacement of the sensor.
- e. Install one (1) slider strip pair, upper and lower, on every fence post except where sensor posts or anchor strips are installed.
- f. Separation between slider elements along the fence shall be 3000 mm (10 feet).
- g. Attach wires of sensor to existing, specially installed fence posts, called anchor posts, located equidistant on both sides of sensor posts and at ends of sensor zone run.
- h. Anchor strip shall be a strip of steel plate on which fastening plates are installed. Weld or otherwise attach the strip to anchor post and ends of tensed barbed wires wrapped around the fastening plates. Attempts to climb on fastening plates or on the attached barbed wires shall cause plates to break off, creating an alarm and making it impossible to defeat the system by climbing at the anchor post.
- i. The use of barbed wire as part of the IDS system shall be suitable for installation under a preload tension of approximately 392 N 88 pounds and be flexible enough for convenient manipulation during tensioning. Double-strand 15 1/2gage barbed wire shall be the minimum acceptable.
- 5. Microwave: Do not install microwave sensors where fluorescent lights may pose a problem due to radiated ionization from lights.

3.2 WIRING INSTALLATION

- A. Wiring Method: Install wiring in metal raceways according to Section 28 05 28.33 "CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY." Conceal raceway except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- B. Wiring Method: Install wiring in raceways except in accessible indoor ceiling spaces and in interior hollow gypsum board partitions where cable may be used. Conceal raceways and wiring except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- C. Wiring Method: Cable, concealed in accessible ceilings, walls, and floors when possible.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Wires and Cables:
 - Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.
 - 120-V Power Wiring: Install according to Division 26 Section "LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES," unless otherwise indicated.
 - 3. Control and Signal Transmission Conductors: Install unshielded, twisted-pair cable, unless otherwise indicated or if manufacturer recommends shielded cable, according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
 - 4. Computer and Data-Processing Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."

- 5. Television Signal Transmission Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- F. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- G. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.
- H. Identify components with engraved, laminated-plastic or metal nameplate for central-station control unit and each terminal cabinet, mounted with corrosion-resistant screws.

3.3 GROUNDING

- A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding. Provide [5] <Insert selected maximum value>-ohm ground. Measure, record, and report ground resistance.
- C. Install grounding electrodes of type, size, location, and quantity indicated. Comply with installation requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY SYSTEMS."

3.4 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.5 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -

28 16 00 - 29

3.6 TESTS AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide services of manufacturer's technical representative for [insert number] hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

----END----

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras, data transmission wiring, with associated equipment to connect to an existing VASS system; a Milestone system with network based storage in the VA data center.
- C. Video surveillance system Video assessment & surveillance system shall be integrated with monitoring and control system specified in Division 28 Section PHYSICAL ACCESS CONTROL SYSTEM that specifies systems integration.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION. Requirements for underground installation of wiring.
- G. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- h. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- J. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- K. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.

- L. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for commissioning, systems readiness checklists, and training.
- M. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.
- N. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).
- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): a encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the

installation work is being conducted. All head end work shall be coordinated with the existing VASS service provider and the COR.

- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The

facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00, Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.

- d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
- 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.

- e. All general and drawing specific notes shall be included with the system drawings.
- A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

A. T	he publications listed below (including amendments, addenda,
r	evisions, supplement, and errata) form a part of this specification to
t	he extent referenced. The publications are referenced in the text by
t	he basic designation only.
B. A	merican National Standards Institute (ANSI)/Electronic Industries
A	lliance (EIA):
3	30-09 Electrical Performance Standards for CCTV
	Cameras
3	75A-76Electrical Performance Standards for CCTV
	Monitors
C. I	nstitute of Electrical and Electronics Engineers (IEEE):
С	62.41-02
	Low-Voltage AC Power Circuits
8	02.3af-08Power over Ethernet Standard
D. F	ederal Communications Commision (FCC):
(47	CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems
E. N.	ational Electrical Contractors Association (NECA):
3	03-2005
	Systems
F. N	ational Fire Protection Association (NFPA):
7	0-08Code Article 780-National Electrical Code
G. F	ederal Information Processing Standard (FIPS):
1	40-2-02Security Requirements for Cryptographic Modules
H. U:	nderwriters Laboratories, Inc. (UL):
9	83-06 Camera Units
3	044-01Closed Circuit
Television Equipment	
1.7 COORDINATION	

- A. Coordinate arrangement, mounting, and support of video surveillance equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.

- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Video signal format shall comply with the NTSC standard composite video, interlaced. Composite video signal termination shall be 75 ohms.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- C. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- D. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

A. All Cameras will be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.

- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.
 - 3. Shall be powered by either 12 volts direct current (VDC) or 24 volts alternate current (VAC). Power supplies shall be Class 2 and UL compliant and have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.
 - 4. Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
 - Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
 - 6. Shall come with built-in video motion detection that shall automatically monitor and process information from each camera. The camera motion detection shall detect motion within the camera's field of view and provide automatic visual, remote alarms as a result of detected motion.
 - 7. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.
 - Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
 - P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
 - 10. Dummy or fake cameras will not be utilized at any time.
 - 11. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 DIGITAL BASED VIDEO MANAGEMENT SYSTEM

A. Contactor shall expand existing VASS Milestone to include new surveillance devices. Coordinate all head end work with existing VASS

28 23 00 - 9

service provider and COR. Contractor to provide additional recording and archiving servers to incorporate surveillance devices added in this project.

- B. Key Features
 - Open Platform: Open API/SDK, supports seamless integration with third party applications.
 - Multi-server and multi-site video surveillance solution: Unlimited recording of video from IP cameras, IP video encoders and selected DVRs with analog cameras.
 - Optimized Recording Storage Management: Unique data storage and archiving solution that combines superior performance and scalability and cost efficient long-term video storage
 - Wide IP camera and device support: Supports connection of more than 839 IP cameras, IP video encoders and selected DVR models from over 79 different vendors through dedicated device integration
 - 5. ONVIF™ and PSIA compliant: Supports ONVIF™ and PSIA compliant cameras and devices
 - Wide compression technology support: Supports the news compression methods; MPEG4 ASP, MxPEG and H.264, besides MJEPG and MPEG4
 - System configuration wizards: Guides the user through the process of adding cameras, configuring video and recording, adjustment of motion detection and user configuration
 - 8. Sequence Explorer: Displaying sequences and time intervals in thumbnail pre-views, the Sequence Explorer gives unparalleled visual overview of recorded video combined with smooth navigation
 - 9. Overlay buttons: Intuitive control of cameras, camera-integrated devices and other integrated systems- directly from the camera view
 - 10. Independent Playback: Instant and independent playback function allows you to independently playback recorded video for one or more cameras, while in live viewing or playback mode
 - 11. Built-in Video Motion Detection: Independent of camera model and supporting up to 64 cameras simultaneously per server
 - 12. Multiple language support: Let operators use the system in their native language with support for 20 different languages
 - 13. Multi-channel, two-way audio: Communicate with people at gates/entrances or broadcast messages to many people at once with multichannel, two-way audio

- 14. Fast evidence export: Quickly deliver authentic evidence to public authorities by exporting video to various formats, including video from multiple cameras with viewer, logs, and user notes included
- C. Administration Features
 - Single Management Application: A new Management Application provides
 a consolidated single point management access to Recording Servers.
 - System configuration wizards: Guides the user through the process of adding cameras, configuring video and recording, adjustment of motion detection and user configuration.
 - Automated device discovery: Enables fast discovery of camera devices using methods such as Universal Plug And Play, Broadcast and IP Range scanning.
 - Smart bulk configuration option: Change settings across multiple devices simultaneously and in a very few clicks.
 - 5. Adaptable application behavior: Guides novice users, while expert users can optimize the application for efficient use.
 - 6. Export/import of system and user configuration data: System backup for reliable system operation and fast system recovery. System cloning for efficient rollout of multiple systems with the same, or similar, configuration.
 - 7. Import of off-line configuration data: Enabling off-line editing of configuration data, including camera and device definitions.
 - Automatic system restore points: A 'Restore Point' is created each time a configuration change is confirmed.
 - Enables easy rollback to previously defined system configuration points and enables cancelation of undesired configuration changes and restoration of earlier valid configurations.
- D. Integration Options
 - Open Software Development Kit (SDK) makes it possible to video enable your business processes, through seamless integration of third party applications, such as video analytics, access systems, etc.
 - Compatible with Central for alarm overviews and operational status in larger video surveillance installations.
 - 3. Integrate with physical access control systems, alarms, gates, building management systems, etc. using hardware I/O, internal events and TCP/IP events

- 4. Create, import and use HTML pages for navigation between views or to trigger a Smart Wall preset
- 5. Develop third party plug-ins for the Smart Client to expand with new functionality
- E. Server Modules
 - 1. Recording Server
 - a. Simultaneous digital multi-channel video and audio recording and live viewing (relaying).
 - b. Two-way audio enables integrated control of microphones and speakers connected to IP devices.
 - c. Bandwidth optimized multi-streaming by splitting a single camera video stream to differentiated streams for live view and recording, where each can be optimized independently with respect to frame rate and resolution.
 - d. Connectivity to cameras, video encoders and selected DVRs supports MJPEG, MPEG4, MPEG4 ASP*, H.264* and MxPEG.
 - e. Auto-detect camera models during setup.
 - Flexible multi-site, multi-server license structure charged per camera.
 - Unlimited number of installed cameras; simultaneous recording and live view of up to 64 cameras per server.
 - 4. Recording technology: secure high speed database holding JPEG images or MPEG4 and MxPEG streams including audio.
 - 5. Recording speed: 30+ frames per second per camera, limited only by hardware.
 - Recording quality depends entirely on camera and video encoder capabilities: no software limitation.
 - 7. Start cameras on live view requests from clients.
 - Unlimited recording capacity with multiple archives possible per day.
 - 9. Hourly to daily database archiving with optional automatic move to network drive saves storage capacity on the local server - with images still available transparently for playback
 - 10. Built-in, real-time, camera independent motion detection (VMD); fully adjustable sensitivity, zone exclusions, recording activation with frame rate speed up, and alert activation through email or SMS.
 - 11. Start recording on event.

- 12. Client initiated start of recording based on pre-defined recording time and access privileges.
- 13. Pan Tilt Zoom (PTZ) preset positions, up to 50 per camera.
- 14. Absolute* and relative PTZ positioning.
- 15. PTZ go-to preset position on events.
- 16. Combine PTZ patrolling and go-to positions on events.
- Set multiple patrolling schedules per camera per day: i.e. different for day/night/weekend.
- 18. PTZ scanning on supported devices: viewing or recording while moving slowly between PTZ positions.
- 19. VMD-sensitive PTZ patrolling among selected presets allows sending of Wipe and Wash commands to supported PTZ models.
- 20. On pre-defined events Matrix remote commands are automatically sent to display live video remotely on computers running the Matrix Monitor or the Smart
- 21. Client with Matrix Plug-in.
 - a. Flexible notification (sound, e-mail and SMS) and camera patrolling scheduling, triggered by time or event.
- F. Recording Server Manager
 - Local console management of the Recording Server accessible from the notification area.
 - 2. Start and stop Recording Server service.
 - 3. Access to Recording Server configuration settings.
 - 4. Access to Recording Server help system.
 - 5. View system status and log information.
- G. Image Server
 - 1. Remote access for Smart and Remote Clients.
 - 2. Built-in web server for download and launch of clients and plug-ins.
 - 3. Set up one Master and multiple Slave Servers.
 - Authenticate access based on Microsoft Active Directory user account, or user name and password.
 - Authorize access privileges per Microsoft Active Directory user account/group, user profile or grant full access.
 - 6. User profiles control access to: Live view, PTZ, PTZ presets, Output control, Events, Listen to microphone, Talk to speaker, Manual recording; Playback, AVI export, JPG export, DB export, Sequences, Smart Search and audio. As well as Set up views, Edit private views and Edit shared public views.

- 7. Audit logs of exported evidence by user and file.
- 8. Audit logs of client user activity by time, locations and cameras.
- H. Recording Viewer
 - 1. Playback recorded video and audio locally on the security screening workstations.
- I. Recording Server.
 - 1. View up to 16 cameras time-synched during playback.
 - 2. Scrollable activity timeline with magnifying feature.
 - Instant search on recordings based on date/time and activity/alarm (Video Motion Detection).
 - 4. 'Smart Search' for highlighted image zones and objects.
 - 5. Evidence can be generated as a printed report, a JPEG image, an AVI film or in the native database format.
 - 6. Export audio recordings in WAV or AVI format.
 - Export video digitally zoomed to view area of interest only and to minimize export footprint size.
 - 8. Export 'Evidence CD' containing native database and Recording Viewer for instant, easy viewing by authorities.
 - 9. Encryption & password protection option for exported recordings and files.
 - 10. Ability to add comments to exported evidence, also encrypted.
 - 11. Option to send email.
 - 12. De-interlacing of video from analog cameras.
 - 13. IPIX technology for PTZ in 360° recorded images.
- J. PDA Server
 - 1. Remote access for PDA Client.
 - Handle login and session requests between PDA clients and Image Server.
 - Resize video surveillance images to fit the screen layout of PDA Client.
- K. Smart Client Module
 - 1. Smart Client includes all the features of Remote Client plus more:
 - Installed per default on Recording Server for local viewing and playback of video and audio.
 - Start recording on cameras for a pre-defined time (default 5 minutes). Subject to privileges set by administrator.

- Independent Playback capability allows for instant playback of recorded video for one or more cameras, while in live and playback mode
- 5. Live view digital zoom allows zoomed-out recordings while the operator digitally can zoom in to see details.
- 6. 'Update On Motion Only' optimizes CPU usage by letting motion detection control whether the image should be decoded and displayed or not. The visual effect is a still image in the view until motion is detected.
- 7. Shared and private camera views offer 1x1 up to 10x10 layouts in addition to asymmetric views.
- 8. Views optimized for both 4:3 and 16:9 screen ratios.
- 9. Multiple computer monitor support with a main window and any number of either windowed or full screen views.
- Hotspot function for working in details with a camera selected from a view containing multiple cameras.
- 11. Carousel function allows a specified view to rotate between predefined cameras with individual timing and order with multiple appearances. Carousel function can be controlled allowing the operator to pause carousel function and to switch to previous or next camera.
- 12. Overlay buttons provides intuitive control of cameras, cameraintegrated devices and other integrated systems- directly from the camera view
- 13. Matrix function to view live video from multiple cameras through the Image Server in any view layout with customizable rotation path, remotely controlled by Smart
- 14. Clients or Recording Servers sending Matrix remote commands
- 15. Send Matrix remote commands to display live video remotely on computers running the Matrix Monitor or the Smart Client with Matrix Plug-in.
- 16. Cameras' built-in audio sources available in live and in playback.
- 17. Separate pop-up window displaying sequences and time intervals in thumbnail pre-views, the Sequence Explorer gives unparalleled visual overview of recorded video combined with smooth navigation
- Presents recorded sequences for individual cameras, or all cameras in a view
- 19. Seamlessly available in both Live and Playback modes

- 20. Smooth navigation with sliding preview and "drag-andthrow" function for video thumbnails
- 21. Instant playback of video sequences
- 22. Application Options allows users to adapt the layout and personalize the application to their particular preferences
- L. PDA Client
 - View live or playback video from a single server or from multiple servers in half-screen or full-screen formats.
 - In live view you can control Pan/Tilt/Zoom cameras manually or use preset positions, and control the cameras' output relays to trigger external actions like opening doors or gates, turning on lights, etc.
 - To find recordings, you can jump to specific time/date or to next detected motion, or use motion detection sequence overviews.
 - When viewing recordings, you can playback at variable speed or single step image by image.
 - 5. The PDA client shall connect to the VMS server using any IP connection; typically wireless LAN, GPRS, etc.
 - 6. Video compression from the server to PDA optimizes bandwidth usage.
 - 7. System logon using user name and password.
- M. Matrix Monitor
 - Virtual Matrix showing live video directly from up to 4 cameras at a time triggered remotely by Matrix remote commands.
 - 2. Camera view shifts by FIFO (first-in-first-out)
 - Multiple events can control a single Matrix monitor and single events can control multiple monitors.
- N. Minimum System Requirements VMS Server
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU and 1 GB RAM (2.4 GHz dual core processor and 2 GB RAM or more recommended).
 - b. Minimum 1 GB disk space available, excluding space needed for recordings.
 - 2. OS:
 - a. Microsoft® Windows® XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*), Windows Server 2008 R1/R2 (32 bit or 64 bit*), Windows Vista™ Business (32 bit or 64 bit*),

Windows Vista Enterprise (32 bit or 64 bit*), Windows Vista Ultimate (32 bit or 64 bit*), Windows 7 Professional (32 bit or 64 bit*), Windows 7 Enterprise (32 bit or 64 bit*) and Windows 7 Ultimate (32 bit or 64 bit*).

- 3. Software:
 - a. Microsoft .NET 3.5 Framework SP1, or newer.
- b. DirectX 9.0 or newer required to run Playback Viewer application.
- O. Minimum System Requirements PDA Server
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU and 1 GB RAM (2.4 GHz dual core processor and2 GB RAM or more recommended).
 - b. Minimum 1 GB disk space available.
 - 2. OS:
 - a. Microsoft Windows XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*).
 - 3. Software:
 - a. Microsoft .NET 2.0 (not compatible with newer versions). Internet Information Server (IIS) 5.1.
- P. Minimum System Requirements VMS Client
 - 1. HW Platform:
 - a. Minimum 2.4 GHz CPU, 1 GB RAM (more powerful CPU and higher RAM recommended for Smart Clients running high number of cameras and multiple views and displays).
 - 2. Graphics Card:
 - a. AGP or PCI-Express, minimum 1024 x 768 (1280 x 1024 recommended),
 16 bit colors.
 - 3. OS:
 - a. Microsoft Windows XP Professional (32 bit or 64 bit*), Windows Server 2003 (32 bit or 64 bit*), Windows Server 2008 R1/R2 (32 bit or 64 bit*), Windows Vista Business (32 bit or 64 bit*), Windows Vista Enterprise (32 bit or 64
 - b. bit*), Windows Vista Ultimate (32 bit or 64 bit*), Windows 7
 Professional (32 bit or 64 bit*), Windows 7 Enterprise (32 bit or
 64 bit*) and Windows 7 Ultimate (32 bit or 64 bit*).
 - 4. Software:
 - a. DirectX 9.0 or newer required to run Playback Viewer application.
 - b. Microsoft .NET 3.5 Framework SP1, or newer.
- Q. Licensing Structure

- 1. Base Server License
 - a. An VMS Base Server license is mandatory for installing the product.
- 2. The Base Server license contains:
 - a. Unlimited numbers of Recording Server licenses
 - b. Unlimited numbers of Smart Clients, Remote Clients, PDA Clients and Matrix Monitor licenses
- 3. Camera License
 - a. To connect to a camera, a Device License per camera channel is required
 - b. In total, for all copies of the product installed under a given Base Server license, the product may only be used with as many cameras as you have purchased camera licenses for • Video encoders and DVRs with multiple analog cameras require a license per channel to operate
 - c. Camera Licenses can be purchased in any numbers. To extend the installation with additional Camera Licenses, the Base Server License number (SLC) is required when ordering.
- 4. Client License:
 - a. All client modules are not licensed and can be installed and used on any number of computers.
- R. IP NETWORK DECODER
 - The unit shall be used for video monitoring and surveillance over IP networks. Network decoder shall decode MPEG-4 digital video to analog video.
 - The decoder shall use MPEG-4 compression for efficient distribution of images over a network.
 - 3. The decoder shall be available as a standalone unit that can be horizontally or vertically mounted.
 - 4. The decoder shall include, but not be limited to the following:
 - a. The decoder shall use "hybrid" technology in providing both analog and network connections with the purpose of allowing users to integrate existing equipment and digital IP products.
 - 1) The decoder shall provide one composite video input and output connection.
 - 2) The decoder shall provide one Ethernet connection.
 - b. The decoder shall have the following digital resolution:
 - 1) D1: 720x576 (NTSC); 720x480 (PAL)

- 2) CIF: 352 x 288 (NTSC); 352 x 240 (PAL)
- 3) QCIF: 160 x 144 (NTSC); 160 x 112 (PAL)
- c. The decoder shall have a digital frame rate of up to 30 frames per second (NTSC) at 720x480 resolution or 25 fps (PAL) at 720x586 resolution.
- d. The decoder shall use the following protocols:
 - 1) TCP/IP
 - 2) UDP/IP
 - 3) DHCP
 - 4) Multicast
 - 5) Data Throttle
 - 6) Heart beat
- e. The decoder shall have the following connectors:
 - Power connector: 3-pin male for connecting the external power supply
 - I/O connector: 16-pin male for connecting alarm, audio, RS-232, RS-485 input and output
 - Video I/O connector: SVHS style for input and output connection of two composite monitors
 - 4) Ethernet port: RJ-45 for connecting to a network
- f. The decoder shall have the following indicators:
 - 1) Power LED
 - 2) Link indicates activity on the Ethernet port
 - 3) Tx activity
 - 4) Rx activity
- 5. The decoder shall have the following additional specifications:
 - a. Video
 - 1) Video signal output: 1 V p-p into 75 ohms
 - 2) Input termination: 75 ohm
 - 3) Video compression standard: MPEG-4
 - 4) Audio compression standard: MPEG-1 Layer 2
 - b. Audio
 - 1) Audio input: 315 mV, 40 kOhms, unbalanced
 - 2) Audio output: 315 mV, 600 ohms, unbalanced
 - c. Electrical
 - 1) External power supply: 100 to 240 VAC
 - 2) Output voltage: 13.5 V, 1.33 A
 - 3) Power consumption: 0.5 W maximum

2.4 VIDEO DISPLAY EQUIPMENT

- A. Video Display Equipment
 - Provide two video display workstations in the security screening area.
 - 2. Will consist of color monitors and shall be EIA 375A compliant.
 - Shall be able to display analog, digital, and other images in either NTSC or MPEG format associated with the operation of the Security Management System (SMS).
 - 4. Shall:
 - a. Have front panel controls that provide for power on/off, horizontal and vertical hold, brightness, and contrast.
 - b. Accept multiple inputs, either directly or indirectly.
 - c. Have the capabilities to observe and program the VASS System.
 - d. Be installed in a manner that they cannot be witnessed by the general public.
- B. Color Video Monitors Technical Characteristics:

Sync Format	PAL/NTSC
Display Tube	90° deflection angle
Horizontal Resolution	250 TVL minimum, 300 TVL typical
Video Input	1.0 Vp-p, 75 Ohm
Front Panel Controls	Volume, Contrast, Brightness, Color
Connectors	BNC

- C. Liquid Crystal Display (LCD)
- D. The 17-inch color LCD monitor shall have a flat screen and [17] <insert size> -inch diagonal viewing area and consists of an LCD panel, bezel, and stand.
- E. The monitor shall meet or exceed the following specifications:
 - 1. The monitor shall incorporate a 17.1 -inch active matrix TFT LCD panel.
 - a. The pixel pitch of the monitor's LCD panel shall be 0.264 mm horizontal and 0.264 mm vertical.
 - b. The monitor shall have a maximum resolution of 500 television lines.
 - c. The contrast ratio shall be 500:1.

- d. The typical brightness shall be 250 cd/m^2
- e. The monitor shall display at least 16.7 million colors.
- f. The light source for the LCD panel shall have a lifetime of 50,000 hours.
- g. The scan frequency horizontal shall be 30 K to 80 KHz and the scan frequency vertical shall be 56 to 75 Hz.
- h. The viewing angle for the monitor shall be 170 degrees horizontal and 170 degrees vertical.
- 2. The monitor shall have automatic NTSC or PAL recognition.
- 3. The monitor shall have a picture-in-picture function.
- 4. The monitor shall use the following signal connectors:
 - a. Video 1.0 V peak-to-peak at 75 ohms
 - b. BNC in/out
 - c. Y/C (S-video) in/out
 - d. Audio in/out
 - e. VGA 15-pin D-Sub
- 5. The monitor shall have audio speaker(s).
 - a. The speaker shall be 0.5 W minimum.
- 6. The monitor shall have the following front control panel buttons:
 - a. Power on/off
 - b. LED indicator
 - c. Mode
 - d. Increase (volume)
 - e. Decrease (volume)
 - f. Up (contrast adjustment)
 - g. Down (brightness adjustment)
 - h. Menu
 - i. Auto
- 7. The monitor shall have the following options for adjustment in an onscreen display menu:
 - a. Color
 - b. Tint
 - 1) NTSC mode only
 - a) Brightness
 - b) Contrast
 - c) Sharpness
 - d) Volume

- f) Scan

e) Language

- q) Color Temp
- h) H-Position
- i) Recall
- F. The electrical specifications for the monitor shall be as follows:
 - 1. Input voltage shall be 12 VDC/3 A.
 - 2. Power consumption shall be 50 W maximum.
- G. The environmental specifications for the monitor shall be as follows:
 - Operating temperature shall be 32 to 104 degrees Fahrenheit or 0 to 40 degrees Celsius.
 - 2. Operating humidity shall be 10 to 85 percent.
- H. The physical specifications for the monitor shall be as follows:
- I. The monitor shall conform to these compliance standards:
 - 1. FCC
 - 2. CE (EMC/LVD)3. UL

2.5 CONTROLLING EQUIPMENT

- A. Shall be utilized to call up, operate, and program all cameras associated VASS System components.
- B. Will have the ability to operate the cameras locally and remotely. A matrix switcher or a network server shall be utilized as the VASS System controller.
- C. The controller shall be able to fit into a standard 47.5 cm (19 inch) equipment rack.
- D. Control and programming keyboards shall be provided with its own type of switcher. All keyboards shall:
 - 1. Be located at each monitoring station.
 - 2. Be addressable for programming purposes.
 - 3. Provide interface between the operator and the VASS System.
 - 4. Provide full control and programming of the switcher.
 - 5. Have the minimum following controls:
 - a. programming
 - b. switching
 - c. lens function
 - d. P/T/Z
 - e. environmental housing
 - f. annotation

2.6 VIDEO CAMERAS

- A. The cameras shall be high-resolution color video cameras with wide dynamic range capturing capability.
- B. The camera shall meet or exceed the following specifications:
 - The image capturing device shall be a [1/3]/[1/4]-inch image sensor designed for capturing wide dynamic images.
 - a. The image capturing device shall have a separate analog-todigital converter for every pixel.
 - b. The image capturing device shall sample each pixel multiple times per second.
 - c. The dynamic range shall be 95 dB typical and 120 dB maximum.
 - 3. The camera shall optimize each pixel independently.
 - The camera shall have onscreen display menus for programming of the camera's settings.
 - 5. The signal system shall be NTSC.
- C. The camera shall have composite video output.
- D. The camera shall come with a manual varifocal lens.
- E. The video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- H. Fixed Color Camera
 - 1. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. Comply with UL 639.
 - 3. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
 - 4. With AGC, manually selectable on or off.
 - Manually selectable modes for backlight compensation or normal lighting.
 - Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
 - 7. White Balance: Auto-tracing white balance, with manually selectable fixed balance option.
 - 8. Fixed Color Cameras Technical Characteristics:

Pickup device	1/3" interline transfer CCD
Total pixels	NTSC: 811(H) x 508(V)
Effective pixels	NTSC: 768(H) x 494(V)

Resolution	500 TV lines
Sync. System	Internal Sync
Scanning system	NTSC: 525 Lines/60 Fields
S/N ratio	More than 48 dB
Electronic shutter	Auto 1/60 (1/50) ~1/100,000 sec.
Min. illumination	0.2 lux F2.0
Video output	Composite 1.0 Vp-p/75 ohm
White balance	Auto
Automatic gain control	ON
Frequency horizontal	NTSC: 15.734 KHz
Frequency vertical	NTSC: 59.94Hz
Lens type	Board lens/[DC]/[AI] varifocal lens
Focal length	[3-12mm] <insert values=""></insert>
Power source	DC12V/500mA or AC24/500mA
Power consumption	< 3W (Max)

- 9. Fixed color camera shall be enclosed in dome and have board mounted varifocal lens.
- 10. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
 - d. <Pole mount adapter.

2.7 AUTOMATIC COLOR DOME CAMERA

- A. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
- B. Comply with UL 639.
- C. Pickup Device: [1/3]/[1/4] CCD interline transfer.
- D. Horizontal Resolution: 480 lines.
- E. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
- F. With AGC, manually selectable on or off.
- G. Sensitivity: Camera shall provide usable images in low-light conditions, delivering an image at a scene illumination of <Insert light level> lux at <Insert f-stop of lens>[, with the camera AGC off].
- H. Sensitivity: Camera shall deliver 1-V peak-to-peak video signal at the minimum specified light level. The illumination for the test shall be

with lamps rated at approximately 2200-K color temperature, and with the camera AGC off.

- Manually selectable modes for backlight compensation or normal lighting.
- J. Pan and Tilt: Direct-drive motor, 360-degree rotation angle, and 180degree tilt angle. Pan-and-tilt speed shall be variable controlled by operator. Movement from preset positions shall be not less than 300 degrees per second.
- K. Preset positioning: 64 user-definable scenes. Controls shall include the following:
 - In "sequence mode," camera shall continuously sequence through preset positions, with dwell time and sequencing under operator control.
 - 2. Motion detection shall be available at each camera position.
- L. Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
- M. White Balance: Auto-tracing white balance, with manually settable fixed balance option.
- N. Motion Detector: Built-in digital.
- O. Dome shall support multiplexed control communications using coaxial cable recommended by manufacturer
- P. Indoor/Outdoor Fixed Mini Dome System (IP)
 - The indoor/outdoor fixed mini dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
 - The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.
 - 1. Dome camera basis of design Axis P3245 series camera.

2. License plate verifier camera basis of design Axis P3245 series.

Imaging Device	1/2.8-inch imager
Dynamic Range	102 dB typical/120 dB maximum
Electronic Shutter Range	Auto (1/15-1/22,000)

Lens Type	Varifocal with auto iris
Format Size	1/2.8-inch
Focal Length	9mm: 3.4 mm-8.9 mm 22mm: 9.0 mm-22.0 mm
Operation	Iris Auto (DC-drive) Focus Manual Zoom Manual
Minimum Illumination	Color: 0.1 lux at 50 IRE B/W 0.02 lux at 50IRE
Compression	H.264 MPEG-4, MJPEG in Web viewing mode
Video Streams	2, simultaneous
Video Resolutions	1920x1080 to 160x90
Frame Rate	With WDR 25/30 fps Without WDR 50/60 fps
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI-X
Cabling	CAT5 cable or better for 100BASE-TX
Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	IEEE 802.3 Type 1 Class 3 Typical 6.4W, Max 11.3W
Alarm	ONVIF motion alarm event
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°
Light Attenuation	<pre>smoked bubble, f/1.5 light loss; clear bubble, zero light loss</pre>
CERTIFICATIONS	CE, Class B UL Listed Meets NEMA Type 4X and IP66 standards

3. Accessories

- a. Pendant mount
- b. Wall mount for pendant

- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- e. Pole mount
- Q. Indoor/Outdoor Multi/Directional System (IP)
 - The indoor/outdoor fixed multi/directional system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
 - 3. The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.
 - 1. Dome camera basis of design Axis P3245 series camera.
 - 2. License plate verifier camera basis of design Axis P3245 series.

4 x 1/2.5-inch imager
102 dB typical/120 dB maximum
Auto (1/5-1/66,500)
Varifocal with auto iris
1/2.8-inch
Varifocal,3-6mm
Iris Auto (DC-drive) Focus Manual Zoom Manual
Color: 0.2lux at 50 IRE B/W 0.04 lux at 50IRE
H.264 MPEG-4, MJPEG in Web viewing mode
Multiple, individually configurable streams
4 x 2560x1440 to 80x60
25/30 fps
Low temperature, indoor/outdoor
RJ-45 for 100BASE-TX, Auto MDI/MDI- X
CAT5 cable or better for 100BASE-TX
24 VAC (18-36) or PoE input voltage
IEEE 802.3 Type 2 Class 4

	Typical 16.3W, Max 25.5W
Alarm	ONVIF motion alarm event
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 90°, tilt 80° (25° to 95°

	range), and rotation (-5° to range)
CERTIFICATIONS	CE, Class B
	UL Listed
	Meets NEMA Type 4X and IP66 standards

3. Accessories

- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- e. Pole mount

R. NETWORK CAMERAS

- 1. Shall be IEEE 802.3af compliant.
 - a. Shall be utilized for interior and exterior purposes.
 - b. A Category [CAT5]/[CAT6]<choose one> cable will be the primary source for carrying signals up to 100 m(300 ft.) from a switch hub or network server. If any camera is installed greater than 100 m (300 ft.) from the controlling device then the following will be required:
 - 1) A local or remote 12 VDC or 24 VAC power source will be required from a Class 2, UL compliant power supply.
 - 2) A signal converter will be required to convert from a [CAT5]/[CAT6]<choose one> cable over to a fiber optic or standard signal cable. The signal will need to be converted back to a [CAT5]/[CAT6]<choose one> cable at the controlling device using a signal converter card.
 - c. Shall be routed to a controlling device via a network switch.
 - d. Shall be a programmable IP address that allows for installation of multiple units in the same Local Area Network (LAN) environment.

95°

- e. Incorporate a minimum of Transmission Control Protocol (TCP)/IP, User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Internet Control Message Protocol (ICMP0, Address Resolution Protocol (ARP), Real-Time Transport Protocol (RTP), Dynamic Host Configuration Protocol (DHCP), Network Time Protocol (NTP), Simple Mail Transfer Protocol (SMTP), Internet Group Management Protocol (IGMP), and Differentiated Service Code Point (DSCP) protocols for various network applications.
- S. LENSES
 - Camera Field of View shall be set by the Contractor to produce full view of door, window opening and anyone entering or leaving through it, or site views. Follow the project construction drawings for design intent. Coordinate final aiming and captured views with COR.
 - 2. Camera Lenses shall be of the type supplied with the camera from the manufacture. All cameras which are not supplied with lenses from the factory are specified in this specification. The lens shall be equipped with an auto-iris mechanism unless otherwise specified. Lenses having auto-iris, DC iris, or motor zoom functions shall be supplied with connectors, wiring, receiver/drivers, and controls as needed to operate the lens functions. Lenses shall have sufficient circle of illumination to cover the image sensor evenly. Lenses shall not be used on a camera with an image format larger than the lens is designed to cover. Lenses shall be provided with pre-set capability.
 - 3. Lenses shall have optical-quality coated optics, designed specifically for video surveillance applications, and matched to specified camera. Provide color-corrected lenses with color cameras, megapixel lenses for megapixel cameras, and lenses with day/night for color/b&w cameras.
 - 4. Auto-Iris Lens: Electrically controlled iris with circuit set to maintain a constant video level in varying lighting conditions.
 - 5. Zoom Lenses: Motorized, remote-controlled units, rated as "quiet operating." Features include the following:
 - a. Electrical Leads: Filtered to minimize video signal interference.
 - b. Motor Speed: Variable.

09-11

- c. Lens shall be available with preset positioning capability to recall the position of specific scenes.
- 6. Lenses: Shall be utilized in a manner that provides maximum coverage of the area being monitored by the camera. The lenses shall:
 - a. Be 1/3" to fit CCD fixed camera.
 - b. Be all glass with coated optics.
 - c. Have mounts that are compatible with the camera selected.
 - d. Be packaged and supplied with the camera.
 - e. Have a maximum f-stop of f/1.3 for fixed lenses, and a maximum fstop of f/1.6 for variable focus lenses.
 - f. Be equipped with an auto-iris mechanism.
 - g. Have sufficient circle of illumination to cover the image sensor evenly.
 - h. Not be used on a camera with an image format larger than the lens is designed to cover.
 - i. Be provided with pre-set capability.
- Two types of lenses shall be utilized for both interior and exterior fixed cameras:
 - a. Manual Variable Focus
 - b. Auto Iris Fixed
- 8. Manual Variable Focus:
 - a. Shall be utilized in large areas that are being monitored by the camera. Examples of this are perimeter fence lines, vehicle entry points, parking areas, etc.
 - b. Shall allow for setting virtually any angle of field, which maximizes surveillance effects.
 - c. Technical Characteristics:

Image format	1/3 inch
Focal length	5-50mm
Iris range	F1.4 to close
Focus range	1m (3.3 ft)
Back focus distance	10.05 mm (0.4 in)
Angle view Wide (1/3 in)	53.4 x 40.1
Angle view Tele (1/3 in)	5.3 x 4.1
Iris control	manual
Focus ctrl	manual
Zoom ctrl	manual

- T. CAMERA HOUSINGS AND MOUNTS
 - This section pertains to all interior and exterior housings, domes, and applicable wall, ceiling, corner, pole, and rooftop mounts associated with the housing. Housings and mounts shall be specified in accordance to the type of cameras used.
 - All cameras and lenses shall be enclosed in a tamper resistant housing. Any additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
 - 3. The camera and lens contained inside the housing shall be installed on a camera mount. All additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
 - 4. Shall be manufactured in a manner that are capable of supporting a maximum of three (3) cameras with housings, and meet environmental requirements for the geographical area the camera support equipment is being installed on or within.
 - 5. Environmentally Sealed
 - a. Shall be designed in manner that it provides a condensation free environment for correct camera operation.
 - b. Shall be operated in a 100 percent condensing humidity atmosphere.
 - c. Shall be constructed in a manner that:
 - Has a fill valve to allow for the introduction of nitrogen into the housing to eliminate existing atmospheric air and pressurize the housing to create moisture free conditions.
 - Has an overpressure value to prevent damage to the housing in the event of over pressurization.
 - 3) Is equipped with a humidity indicator that is visible to the eye to ensure correct atmospheric conditions at all times.
 - The leak rate of the housing is not to be greater than 13.8kPa or 2 pounds per square inch at sea level within a 90 day period.
 - 5) It shall contain camera mounts or supports as needed to allow for correct positioning of the camera and lens.
 - 6) The housing and sunshield are to be white in color.

- All electrical and signal cables required for correct operations shall be supplied in a hardened carrier system from the controller to the camera.
- 7. The mounting bracket shall be adjustable to allow for the housing weight of the camera and the housing unit it is placed in.
- Accessibility to the camera and mounts shall be taken into consideration for maintenance and service purposes.
- U. Indoor Mounts
 - 1. Ceiling Mounts:
 - a. This enclosure and mount shall be installed in a finished or suspended ceiling.
 - b. The enclosure and mount shall be fastened to the finished ceiling, and shall not depend on the ceiling tile grid for complete support.
 - c. Suspended ceiling mounts shall be low profile, and shall be suitable for replacement of 610mm x 610mm (2 foot by 2 foot) ceiling tiles.
 - 2. Wall Mounts:
 - a. The enclosure shall be installed in manner that it matches the existing décor and placed at a height that it will be unobtrusive, unable to cause personal harm, and prevents tampering and vandalism.
 - b. The mount shall contain a manual pan/tilt head that will provide 360 degrees of horizontal and vertical positioning from a horizontal position, and has a locking bar or screw to maintain its fixed position once it has been adjusted.
- V. Interior Domes
 - The interior dome shall be a pendant mount, pole mount, ceiling mount, surface mount, or corner mounted equipment.
 - The lower portion of the dome that provides camera viewing shall be made of black opaque acrylic and shall have a light attenuation factor of no more that 1 f-stop.
 - 3. The housing shall be equipped with integral pan/tilt capabilities complete with wiring, wiring harness, connectors, receiver/driver, pan/tilt control system, pre-position cards, or any other hardware and equipment as needed to fully provide a fully functional pan/tilt dome.
 - 4. The pan/tilt mechanism shall be:

- a. Constructed of heavy duty bearings and hardened steel gears.
- b. Permanently lubricated to ensure smooth and consistent movement of all parts throughout the life of the product.
- c. Equipped with motors that are thermally or impedance protected against overload damage.
- d. Pan movements shall be 360 degrees and tilt movement shall no be less than +/- 90 degrees.
- e. Pan speed shall be a minimum of 10 degrees per second.
- Q. Exterior Domes
 - The exterior dome shall meet all requirements outlined in the interior dome paragraph above.
 - 2. The housing shall be constructed to be dust and water tight, and fully operational in 100 percent condensing humidity.
- R. Exterior Wall Mounts
 - 1. Shall have an adjustable head for mounting the camera.
 - 2. Shall be constructed of aluminum, stainless steel, or steel with a corrosion-resistant finish.
 - 3. The head shall be adjustable for not less than plus and minus 90 degrees of pan, and not less than plus and minus 45 degrees of tilt. If the bracket is to be used in conjunction with a pan/tilt, the bracket shall be supplied without the adjustable mounting head, and shall have a bolt-hole pattern to match the pan/tilt base.
 - 4. Shall be installed at a height that allows for maximum coverage of the area being monitored.
- S. Exterior Pole Mounts

Shall have an adjustable head for mounting the camera.

- 2. Shall be constructed of aluminum, stainless steel, or steel with a corrosion-resistant finish.
- 3. The head shall be adjustable for not less than plus and minus 90 degrees of pan, and not less than plus and minus 45 degrees of tilt. If the bracket is to be used in conjunction with a pan/tilt, the bracket shall be supplied without the adjustable mounting head, and shall have a bolt-hole pattern to match the pan/tilt base.
- Shall be installed at a height that allows for maximum coverage of the area being monitored.

2.8 POWER SUPPLIES

- A. Power supplies shall be a low-voltage power supplies matched for voltage and current requirements of cameras and accessories, type as recommended by camera[, infrared illuminator,] and lens manufacturer.
- B. Technical specifications:
 - 1. Input: 115VAC, 50/60Hz, 2.7 amps
 - 2. Outputs:
 - a. Number of outputs, 16
 - b. Fuse/PTC protected, power limited
 - c. Output voltage & power:
 - 1) 24VAC @ 12.5 amps (300VA) or 28VAC @ 10 amp (280VA) supply current
 - 3. Illuminated power disconnect circuit breaker with manual reset
 - 4. Surge suppression
 - 5. Camera synchronization
 - 6. Wall/Rackmount.
 - 7. Enclosure: NEMA 250, Type 1

2.9 NETWORK SERVER

- A. Allow for the transmission of live video, data, and audio over either an existing Ethernet network or a dedicated security system network, requiring an IP address or Internet Explorer 5.5 or higher, or shall work as an analog-to-Ethernet "bridge" controlling matrices, multiplexers, and pan/tilt/zoom cameras. The network shall operate in a box-to-box configuration allowing for encoded video to be decoded and displayed on an analog monitor.
- B. If a VASS System network is going to be utilized as the primary means of monitoring, operating, and recording cameras then the following equipment shall be required as part of the system:
 - 1. System Server
 - 2. Computer Workstation
 - 3. Recording Device
 - 4. Encoder/Decoder
 - 5. Monitor
 - 6. Hub/Switch
 - 7. Router
 - 8. Encryptor

- C. Shall provide overall control, programming, monitoring, and recording of all cameras and associated devices within the VASS System.
- D. All equipment on the network shall be IP addressable.
- E. The VASS System network shall meet or exceed the following design and performance specifications:
 - Two MPEG-4 video streams for a total of 40 images per second will be provided.
 - PC Software that manages the installation and maintenance of all hardware transmitters and receivers on the network shall be provided.
 - 3. Video Source that supports any NTSC video source to the computer network shall be addressed.
 - Receivers that could be used to display the video on a standard analog NTSC or PAL monitor will be addressed.
- F. The system shall support the following network protocols:
 - Internet connections: RTP, Real Time Control Protocol (RTCP), UDP, IP, TCP, ICMP, HTTP, Simple Network Management Protocol (SNMP), IGMP, DHCP, and ARP.
 - 2. Video Display: MPEG-4, M-JPEG in server push mode only.
 - 3. Have the ability to adjust bandwidth, image quality and image rate.
 - 4. Support image sizes of either 704 x 576 pixels or 352 x 288 pixels.
 - 5. Have an audio coding format of G.711 or G.728.
 - 6. Provide a video frame rate of at least 30 images per second.
 - 7. Support LAN Interface Ethernet 10/100BaseT and be auto sensing.
 - 8. Have a LAN Data Rate of 9.6 Kbps to 5.0 Mbps.
 - 9. Utilize data interface RS-232/RS-422/RS-485.
- G. All connections within the system shall be via CAT-5 cable and RJ-45 jacks. If analog equipment is used as part of the system, then either an encoder or a decoder will be utilized to convert the analog signal to a digital one.
- H. The VASS network system shall conform to all VA agency wide security standards for administrator and operator use.
- I. Server Technical Characteristics:

Hardware	Personal Computer
CPU	Pentium IV, 3.0 GHz or better
Hard Disk Interface	IDE or better
RAM	256 MB

OS	Windows XP Home/XP Professional
Graphic Card	NVIDIA GeForce 6600 NVIDIA Quadro FX 1400 ATI RADEON X600/X800 or better
Ethernet Card	100 Mb
Software	DirectX 9.0c
Free Memory	120 MB

J. Network Switch Technical Characteristics

Protocol and standard	IEEE802.3 IEEE802.3u IEEE802.3ab
Ports	24 10/100/1000M auto-negotiation RJ- 45 ports with auto MDI/MDI-X
Network media	Cat 5 UTP for 1,000Mbps Cat 3 UTP for 10Mbps
Transmission method	store-and-forward
LED	indicator power, act/link, speed

K. Router Technical Characteristics

Network Standards	IEEE 802.3, 802.3u 10Base-T Ethernet (WAN) 100Base-T Ethernet (LAN) IEEE 802.3x Flow Control IEEE802.1p Priority Queue ANS/IEEE 802.3 NWay auto-negotiation
Protocol	CSMA/CD, TCP, IP, UDP, PPPoE, AND DHCP (client and server)
VPN Supported	PPTP, IPSec pass-through
Management	Browser
Ports	4 x 10/100Base-T Auto sensing RJ45 ports, and an auto uplink RJ45port(s) 1 x 10Base-T RJ45 port, WAN
LEDS	Power, WAN Activity, LAN Link (10/100), LAN Activity

L. Encryptor Technical Characteristics:

Cryptography	Standard - Triple DES 168-bit (ANSI 9.52) Rijndael - AES (128, 192, 256)
Performance	Throughput (end-to-end) @ 100 Mbps line speed: >188 Mbps full duplex (large frames) >200 kfps full duplex (small frames) Latency (end-to-end) @ 100 Mbps
Key Management	Automatic KEK/DEK Exchange Using Signed Diffie-Hellman Unit Authentication Using X.509

	Certificates	
Physical Interfaces	10BaseT or 10/100BaseT Ethernet (Host and Network Ports) 10BaseT Ethernet Management Port Back and Front-Panel Serial Control Port	
Device Management	THALES Element Manager, Front Panel Viewer, and Certificate Manager 10Base T (RJ-45) or 9-pin Serial Control Port SNMP Network Monitoring	
Security Features	Tamper Proof Cryptographic Envelope Tamper Evident Chassis Hardware Random Number Generator	
Management	Channel Encrypted Using Same Algorithm as Data Traffic	
Security Certifications	FIPS 140-2 Level 3 CAPS Baseline and Enhanced Grades Common Criteria EAL4 and EAL5 (under evaluation)	
Regulatory	EN60950, FCC, UL, CE, EN 50082-1, and EN 55022	

2.11 RECORDING DEVICES

- A. All cameras on the VASS System shall be recorded in real time using a Digital Video Recorder (DVR), Network Video Recorder (NVR), or attached storage. The type of recording device utilized should be determined by the size and type of VASS System designed and installed, and to what extent the system is to be utilized.
- B. All recording devices shall be 47.5 cm (19 inch) rack-mountable.
- C. All DVR's and NVR's that are viewable over an Intranet or Internet will be routed through an encryptor.
- D. Encryptors shall:
 - 1. Comply with FIPS PUB 140-2.
 - 2. Support TCP/IP.
 - 3. Directly interfaces to low-cost commercial routers.
 - 4. Provide packet-based crypto synchronization.
 - 5. Encrypt source and destination IP addresses.
 - Support web browser based management requiring no additional software.
 - 7. Have a high data sustained throughput 1.544 Mbps (T1) full duplex data rate.
 - 8. Provide for both bridging and routing network architecture support.
 - 9. Support Electronic Key Management System (EKMS) compatible.
 - 10. Have remote management ability.

- 11. Automatically reconfigure when secure network or wide area network changes.
- E. Digital Video Recorder (DVR)
 - 1. Shall record video to a hard drive-based digital storage medium in either NTSC or MPEG format.
 - 2. Shall meet the following minimum requirements:
 - a. Record at minimum rate of 30 images per second (IPS).
 - b. Have a minimum of eight (8) to 16 looping inputs.
 - c. Have a minimum of eight (8) to 16 alarm inputs and two (2) relay outputs.
 - d. Shall provide instantaneous playback of all recorded images.
 - e. Be IP addressable, if part of a VASS network.
 - f. Have built-in digital motion detection with masking and sensitivity adjustments.
 - g. Provide easy playback and forward/reverse search capabilities.
 - h. Complete audit trail database, with minimum of a six-month history that tracks all events related to the alarm; specifically who, what, where and when.
 - i. DVR management capability providing automatic video routing to a back-up spare recorder in case of failure.
 - j. Accessible locally and remotely via the Internet, Intranet, or a personal digital assistant (PDA).
 - k. Records all alarm events in real time, ensuring 60 seconds before and after the event are included in the recording.
 - Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
 - m. Allow for independently adjustable frame rate settings.
 - n. Be compatible with the matrix switcher utilized to operate the cameras. The DVR could be utilized as a matrix switcher only if it meets all of the requirements listed in the matrix switcher section.
 - 3. Technical Characteristics:

SPEC WRITER NOTE: Edit values in [] to fit project reqirements.

Compression	MPEG-4
Internal Storage Capacities.	[160] GB, [320] GB, [500] GB, [1] TB, and 2 TB. Available USB hard drive up to 250 GB. Optional internal DVD available

Digital Recording	Up to [16] video and [8] audio channels, or [8] video and [4] audio channels.	
Full real-time video recording	Up to 400 IPS@352 x 288: PAL Up to 200 IPS@352 x 288: PAL	
Multiple simultaneous functions	Live viewing, Recording, playback, network transmission, back-up	
Search functions	Date/time search, event search, bookmark search, smart (pixel) Search	
PTZ Control	Third party PTZ control	
User ID security	3 levels	
Connectivity to external devices:	Eight [8] or sixteen [16] video input and looping output channels. VGA and dual monitor BNC outputs. Four [4] or eight [8] audio inputs and one [1] audio output. Ethernet 10/100BaseT network connection. Eight [8] to sixteen [16] alarm inputs and four [4] or eight [8] relay outputs. Biphase connection to control Bosch PTZ cameras. Third party PTZ control via RS-422/RS- 485 connection. Front and back USB connectors to connect to a PC mouse, or archive video to a USB memory stick or similar	
PC requirements	<pre>device. Windows 2000 or above; DirectX 8.1 or above. Intel Pentium III or above, AMD Athlon with 800 MHz or faster CPU. 512 MB or more RAM. 50 MB hard drive. AGP VGA with 64 MB video RAM or above. 10/100-BaseT network interface.</pre>	
Electrical	Power Input: 100 to 240 VAC; 50/60 Hz Power consumption: [120W] Max. [1.2] A	
Video	Video standard: PAL or NTSC selectable. Resolution: 704 x 576 PAL, 704 x 480 NTSC Compression: MPEG-4 Inputs: 8 or 16 composite video 0.5-2	

	Vpp, 75 Ohm automatic termination.
	Outputs 8 or 16 composite video 1 Vpp, 75 Ohm.
Audio	Inputs: 4 or 8 line in, 30 kOhm Output: 1 line, 100 kOhm
Monitors	VGA: analog RGB 800x600 MON A: CVBS 1 Vpp_0.1 V, 75 Ohm, BNC Monitor A multi-screen (VGA or CVBS) MON B: CVBS 1 Vpp_0.1 V, 75 Ohm, BNC Monitor B spot/alarm
Frame Rate and Resolution	[16]-channels PAL: Up to 400 IPS@352x288, up to 200 IPS@704x288, up to 100 IPS@704x576.
Alarm inputs	[8] [16] configurable NO/NC, max. input 5 VDC.
Alarm outputs	[4] or [8] relay outputs, configurable NO/NC, max. rated 1A, 125 VAC.
Connections	Ethernet: RJ45 modular jack 8 pins shielded, 10/100 Base-T. Biphase: Screw terminal connector (5 outputs).

	Maximum 5 controllable cameras per Biphase output.
	PTZ control interfaces: RS485/RS422.
	Serial interface: RS232 output signal, DB9 male connector
	Keyboard: RJ11 modular jack 6 pins
Network:	Transmission speed: up to 120 IPS@352x240
	Bandwidth control: Automatic
	Remote users: Maximum 5 simultaneous connected Control Center users.

Processor	Intel Pentium III 750 MHz	
Memory	256 MB RAM	
Operating System	Windows 98, NT, ME, 2000, and XP	
Video Card	4 MB of RAM capable of 24-bit true color display	
Free Hard Disk Space	160 MB for software installation	
Network Card	10Base-T network for LAN operation	
Archiving	80 GB, 160 GB, 320 GB and 640 GB Hard Drive; CD-RW	

Video Input	1.0 Vpp (signal 714mV, sync 286mV) 75 ohms (BNC unbalanced)
Video Output Level	1.0 Vpp +/-10%,75 ohms(BNC unbalanced)
Impedance	75 ohms/Hi- impedance x 16 switchable
Network Interface	Ethernet (RJ-45, 10/100M)
Network Protocol	TCP/IP, DHCP, HTTP, UDP
Network Capabilities	Live/Playback/P/T/Z control
Recording Rate	30 ips for 720 x 240 (NTSC)
Password Protection	Menu Setup, Remote Access
Recording Capacity	160 (1 or 2 fixed HDD) 1 CD-RW
Power Interrupt	Auto recovered to recording mode

- F. Network Video Recorder (NVR)
 - Shall record video to a hard drive-based digital storage medium in MPEG, MPEG4 or H.264 format.
 - 2. Shall meet the following minimum requirements:
 - a. Record at minimum rate of 30 IPS.
 - b. Have a minimum of eight (8) to 16 looping inputs.
 - c. Have a minimum of eight (8) to 16 alarm inputs and two (2) relay outputs.
 - d. Shall provide instantaneous playback of all recorded images.
 - e. Be IP addressable, if part of a VASS network.
 - f. Have built-in digital motion detection with masking and sensitivity adjustments.
 - g. Easy playback and forward/reverse search capabilities.
 - h. Complete audit trail database, with minimum of a six-month history that tracks all events related to the alarm; specifically who, what, where and when.
 - i. NVR management capability providing automatic video routing to a back-up spare recorder in case of failure.
 - j. Accessible locally and remotely via the internet, intranet, or a personal digital assistant (PDA).
 - k. Records all alarm events in real time, ensuring 60 seconds before and after the event are included in the recording.
 - Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.

- m. Allow for independently adjustable frame rate settings.
- n. Be compatible with the matrix switcher utilized to operate the cameras.
- 3. Technical Characteristics:

Hardware/CPU	Pentium III Xeon or IV, 1.8 GHz	
HDD Interface	IDE or better; optional: SCSI II, SCSI Ultra, or Fiber Channel	
RAM	1024 MB	
Operating System	Windows 2000/XP Professional/Server 2003 Standard	
Graphic	Card VGA	
Ethernet Card	100/1000 MB	
Memory	20 МВ	
Software Setup	Centralized setup from each authorized PC; access via integrated web server	
Storage Media	All storage media possible (e.g., HD, RAID), depending on operating system	
Storage Mode	Linear mode, ring mode (capacity-based)	
Recording Configuration	Camera name assignment, bandwidth limit, frame rate, video quality	
Recording Content	Video and/or audio data	
Search Parameters	Time, date, event	
Playback	Playback via any IP network (LAN/WAN) simultaneous recording, playback, and backup	
Network Interface	Ethernet (RJ-45, 10/100M)	
Network Protocol	TCP/IP, DHCP, HTTP, UDP	
Network Capabilities	Live/Playback/P/T/Z control	
Recording Rate	30 ips for 720 x 240 (NTSC)	
Password Protection	Menu Setup, Remote Access	
Recording Capacity	160 (1 or 2 fixed HDD) 1 CD-RW	
Power Interrupt	Auto recovered to recording mode	

2.12 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.

- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.
- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.
- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:
 - 1. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.
 - 2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.
- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.
- L. Coaxial Cables

- All video signal cables for the VASS System, with exception to the PoE cameras, shall be a coaxial cable and have a characteristic impedance of 75 ohms plus or minus 3 ohms.
- 2. For runs up to 750 feet use of an RG-59/U is required. The RG-59/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 23 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
- 3. For runs between 750 feet and 1250 feet, RG-6/U is required. RG-6/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 18 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
- 4. For runs of 1250 to 2750 feet, RG-11/U is required. RG-11/U shall be shielded which provides a minimum of 95 percent coverage, with a stranded copper center conductor of a minimum 14 AWG, polyethylene insulation, and black non-conductive polyvinylchloride (PVC) jacket.
- 5. All runs greater than 2750 feet will be substituted with a fiber optic cable. If using fiber optics as a signal carrier then the following equipment will be utilized:
 - a. Multimode fiber optic cable a minimum size of 62 microns
 - b. Video transmitter, installed at the camera that utilizes 12 VDC or 24 VAC for power.
 - c. Video receiver, installed at the switcher.
- 6. RG-59/U Technical Characteristics

AWG	22
Stranding	7x29
Conductor Diameter	.031 in.
Conductor Material	BCC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.145 in.
Outer Shield Type	Braid/Braid
Outer Jacket Material	PVC
Overall Nominal Diameter	.242 in.
UL Temperature Rating	75°C
Nom. Characteristic Impedance	75 Ohms

Nom. Inductance	0.094 µH/ft
Nom. Capacitance	Conductor to Shield 17.0 pF/ft
Nom. Velocity of Propagation	80 %
Nom. Delay	1.3 ns/ft
Nom. Conductor DC Resistance @ 20°C	12.2 Ohms/1000 ft
Nom. Outer Shield DC Resistance @ 20°C	2.4 Ohms/1000 ft
Max. Operating Voltage	UL 300 V RMS

7. RG-6/U Technical Characteristics:

AWG	18
Stranding	7x27
Conductor Diameter	.040 in.
Conductor Material	BC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.180 in.
Outer Shield Material	Trade Name Duofoil
Outer Shield Type	Tape/Braid
Outer Shield %Coverage	100 %
Outer Jacket Material	PVC
Overall Nominal Diameter	.274 in.
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.106 µH/ft
Nom. Capacitance	Conductor to Shield 16.2 pF/ft
Nom. Velocity of Propagation	82 %
Nom. Delay	1.24 ns/ft
Nom. Conductor DC Resistance	6.4 Ohms/1000 ft
Nominal Outer Shield DC Resistance @ 20°C	2.8 Ohms/1000 ft
Max. Operating Voltage	UL 300 V RMS
-11/U Technical Characteristi	CS:

8. RG-11/U Technical Characteristics:

AWG	15
Stranding	19x27

Conductor Diameter	.064 in.
Conductor Material	BC
Insulation Material	Gas-injected FHDPE
Insulation Diameter	.312 in.
Inner Shield Type	Braid
Inner Shield Material	BC - Bare Copper
Inner Shield %Coverage	95 %
Inner Jacket Material	PE - Polyethylene
Inner Jacket Diameter	.391 in.
Outer Shield Type	Braid
Outer Shield Material	BC - Bare Copper
Outer Shield %Coverage	95 %
Outer Jacket Material	Trade Name Belflex
Outer Jacket Material	PVC Blend
Overall Nominal Diameter	.520 in.
Operating Temperature Range	-35°C To +75°C
Non-UL Temperature Rating	75°C
Nom. Characteristic Impedance	75 Ohms
Nom. Inductance	0.097 µH/ft
Nom. Capacitance	Conductor to Shield 17.3 pF/ft
Nom. Velocity of Propagation	78 %
Nom. Delay	1.30 ns/ft
Nom. Conductor DC Resistance	3.1 Ohms/1000 ft
Nom. Inner Shield DC Resistance	1.8 Ohms/1000 ft
Nom. Outer Shield DC Resistance	1.4 Ohms/1000 ft
Max. Operating Voltage Non-UL	300 V RMS
L'anal Cables.	

- 9. Signal Cables:
 - a. Signal wiring for PoE cameras depends on the distance the camera is being installed from either a hub or the server.
 - b. If the camera is up to 300 ft from a hub or the server, then use a shielded UTP category 5 (CAT-V) cable a with standard RJ-45 connector at each end. The cable with comply with the Power over Ethernet, IEEE802.3af, Standard.
 - c. If the camera is over 300 ft from a hub or server then utilize a multimode fiber optic cable with a minimum size of 62 microns.

- d. Provide a separate cable for power.
- e. CAT-5 Technical Characteristics:

Number of Pairs	4
Total Number of Conductors	8
AWG	24
Stranding	Solid
Conductor Material	BC - Bare Copper
Insulation Material	PO - Polyolefin
Overall Nominal Diameter	.230 in.
IEC Specification	11801 Category 5
TIA/EIA Specification	568-B.2 Category 5e
Max. Capacitance Unbalance	(pF/100 m) 150 pF/100 m
Nom. Velocity of Propagation	70 %
Max. Delay	(ns/100 m) 538 @ 100MHz
Max. Delay Skew	(ns/100m) 45 ns/100 m
Max. Conductor DC Resistance	9.38 Ohms/100
Max. DCR Unbalance@ 20°C	3 %
Max. Operating Voltage	UL 300 V RMS
ibon Ontin Cables Machnigal Ch	

10. Fiber Optic Cables Technical Characteristics:

Fiber Type	62.5 Micron
Number of Fibers	4
Core Diameter 6	2.5 +/- 2.5 microns
Core Non-Circularity	5% Maximum
Clad Diameter	125 +/- 2 microns
Clad Non-Circularity	1% Maximum
Core-clad Offset	1.5 Microns Maximum
Primary Coating Material	Acrylate
Primary Coating Diameter	245 +/- 10 microns
Secondary Coating Material	Engineering Thermoplastic
Secondary Coating Diameter	900 +/- 50 microns
Strength Member Material	Aramid Yarn
Outer Jacket Material	PVC
Outer Jacket Color	Orange
Overall Diameter	.200 in.
Numerical Aperture	.275
Maximum Gigabit Ethernet	300 meters

Maximum Gigabit Ether	net 550 meters
-----------------------	----------------

- 11. Power Cables
 - a. Will be sized accordingly and shall comply with the NEC. High voltage power cables will be a minimum of three conductors, 14
 AWG, stranded, and coated with a non-conductive polyvinylchloride (PVC) jacket. Low voltage cables will be a minimum of 18 AWG, stranded and non-conductive polyvinylchloride (PVC) jacket.
 - b. Will be utilized for all components of the VASS System that require either a 110 VAC 60 Hz or 220 VAC 50 Hz input. Each feed will be connected to a dedicated circuit breaker at a power panel that is primarily for the security system.
 - c. All equipment connected to AC power shall be protected from surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used as a means of surge protection.
 - d. Shall be rated for either 110 or 220 VAC, 50 or 60 Hz, and shall comply with VA Master Spec 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
 - e. Low Voltage Power Cables
 - Shall be a minimum of 18 AWG, Stranded and have a polyvinylchloride outer jacket.
 - Cable size shall determined using a basic voltage over distance calculation and shall comply with the NEC's requirements for low voltage cables.

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system. All head end VASS head end work shall be coordinated with the VASS service provider and the COR.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a

complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.

- The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The VASS System will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.
- E. For integration purposes, the VASS System shall be integrated where appropriate with the following associated security subsystems:
 - 1. PACS:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings, as well as all emergency exits utilizing a fixed color camera.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed go into an alarm state when an emergency exit is opened, and notify the Physical Access Control System and Database Management of an alarm event.
 - 2. IDS:
 - a. Provide a recorded alarm event via a color camera that is connected to the IDS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the PACS.
 - d. For additional VASS System requirements as they relate to the IDS, refer to Section 28 16 00 "INTRUSION DETECTION".
 - 3. Security Access Detection:
 - a. Provide full coverage of all vehicle and lobby entrance screening areas utilizing a fixed color camera.

- b. Record cameras on a 24
- 4. EPPS:
 - a. Provide a recorded alarm event via a color camera that is connected to the EPPS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. A complete VASS System shall be comprised of, but not limited to, the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.

- 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.

- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.
- N. Cameras:
 - 1. Install the cameras with the focal length lens as indicated for each zone.
 - 2. Connect power and signal lines to the camera.
 - 3. Aim camera to give field of view as needed to cover the alarm zone.
 - 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
 - 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
 - Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
 - 7. PTZ cameras shall have all preset positions and privacy areas defined and programmed.
- O. Monitors:
 - Install the monitors as shown and specified in design and construction documents.
 - 2. Connect all signal inputs and outputs as shown and specified.
 - 3. Terminate video input signals as required.
 - 4. Connect the monitor to AC power.
- P. Switcher:
 - 1. Install the switcher as shown in the design and construction documents, and according to the OEM.
 - Connect all subassemblies as specified by the manufacturer and as shown.
 - Connect video signal inputs and outputs as shown and specified; terminate video inputs as required.
 - Connect alarm signal inputs and outputs as shown and specified; connect control signal inputs and outputs for ancillary equipment or

secondary control/monitoring sites as specified by the manufacturer and as shown.

- 5. Connect the switcher CPU and switcher subassemblies to AC power.
- 6. Load all software as specified and required for an operational VASS System configured for the site and building requirements, including data bases, operational parameters, and system, command, and application programs.
- 7. Provide the original and 2 backup copies for all accepted software upon successful completion of the endurance test.
- 8. Program the video annotation for each camera.
- Q. Video Encoder/Decoder
 - 1. Install the Video Encoder/Decoder per design and construction documents, and as specified by the OEM.
 - 2. Connect analog camera inputs to video encoder.
 - 3. Connect network camera to video decoder.
 - 4. Connect video encoder to VASS network.
 - 5. Connect video decoder to video matrix, DVR, monitor etc.
 - 6. Connect unit to AC power (UPS).
 - Configure the video encoder/decoder per manufacturer's recommendation and project requirements.

R. Video Server:

- Install the video server per design and construction documents, and as specified by the OEM.
- 2. Connect video server to AC power (UPS).
- 3. Connect to VASS network.
- 4. Install operating system and Video Management Software.
- 5. Provide Video Management Software programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs
 - g. GUI maps, views, icons and actions

- h. PTZ controls (presets, time schedules for privacy zones etc.)
- i. Reports
- S. Video Workstation:
 - Install the video workstation per design and construction documents, and as specified by the OEM.
 - 2. Connect video workstation to AC power (UPS).
 - 3. Connect to VASS network.
 - 4. Install operating system and application software.
 - 5. Provide application software programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Screen views
 - b. Graphical User Interface (GUI) maps, views, icons and actions
 - c. Alarm outputs
 - d. Reports
- T. Network Switch:
 - Install the network switch per design and construction documents, and as specified by the OEM.
 - 2. Connect network switch to AC power (UPS).
 - 3. Connect network cameras to network switch.
 - Configure the network switch per manufacturer's recommendation and project requirements.
- U. Network Recording Equipment
 - 1. Install the NVR or video storage unit as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect recording device to AC power (UPS).
 - 3. Connect recording device to network switch as shown and specified.
 - 4. Configure network connections
 - 5. Provide recording unit programming per VA guidance and the requirements provided by the Owner. Programming shall include:
 - a. Camera names
 - b. Screen views
 - c. Camera recording schedules (continuous and event) driven recording. Events include alarms from other systems (sensors), manual input, and video motion detection.
 - d. Video detection zones for each camera requiring video motion detection
 - e. Alarm interface
 - f. Alarm outputs

- g. GUI maps, views, icons and actions
- h. PTZ controls (presets, time schedules for privacy zones etc.)
- i. Reports
- V. Video Recording Equipment:
 - 1. Install the video recording equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video signal inputs and outputs as shown and specified.
 - 3. Connect alarm signal inputs and outputs as shown and specified.
 - 4. Connect video recording equipment to AC power.
 - 5. Program the video recording equipment;
 - a. Recording schedules
 - b. Camera caption
- W. Video Signal Equipment:
 - 1. Install the video signal equipment as shown in the design and construction documents, and as specified by the OEM.
 - 2. Connect video or signal inputs and outputs as shown and specified.
 - 3. Terminate video inputs as required.
 - 4. Connect alarm signal inputs and outputs as required.
 - 5. Connect control signal inputs and outputs as required
 - 6. Connect electrically powered equipment to AC power.
- X. Camera Housings, Mounts, and Poles:
 - Install the camera housings and mounts as specified by the manufacturer and as shown, provide mounting hardware sized appropriately to secure each camera, housing and mount with maximum wind and ice loading encountered at the site.
 - 2. Provide a foundation for each camera pole as specified and shown.
 - Provide a ground rod for each camera pole and connect the camera pole to the ground rod as specified in Division 26 of the VA Master Specification and the VA Electrical Manual 730.
 - Provide electrical and signal transmission cabling to the mount location via a hardened carrier system from the Physical Access Control System and Database Management to the device.
 - 5. Connect signal lines and AC power to the housing interfaces.
 - 6. Connect pole wiring harness to camera.

3.3 SYSTEM START-UP

A. The Contractor shall not apply power to the VASS System until the following items have been completed:

- 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
- A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
- System wiring has been tested and verified as correctly connected as indicated.
- 4. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent. B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".
- B. Provide services of manufacturer's technical representative for [four] <insert hours> hours to instruct VA personnel in operation and maintenance of units.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

----END----

SECTION 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install complete Duress-Panic Alarms, Emergency Phones/ Call-Boxes, and Intercom Systems, data transmission wiring and a control station with its associated equipment, hereafter referred to as EPPS System.
- B. EPPS shall be integrated with existing monitoring and control system.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- E. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- F. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- G. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- H. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- I. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- J. Section 28 05 28.33 CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- K. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for requirements for commissioning - systems readiness checklists, and training.
- L. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.
- M. Section 28 16 00 INTRUSION DETECTION SYSTEM. Requirements for integration with intrusion detection system.

- N. Section 28 13 53 SECURITY ACCESS DETECTION. Requirements for security access detection.
- O. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the EPPS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of

contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- 2. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITALS

A. Submit below items in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Master Specification Sections 01 33 23, SHOP DRAWING, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.

- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawings and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.

- c. Include the number, size, identification, and maximum lengths of interconnecting wires.
- d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
- Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a

Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.

G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REOUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI): ANSI S3.2-09.....Method for measuring the Intelligibility of Speech over Communications Systems
- C. Department of Justice American Disability Act (ADA) 28 CFR Part 36.....2010 ADA Standards for Accessible Design
- D. Federal Communications Commision (FCC): (47 CFR 15) Part 15....Limitations on the Use of Wireless

Equipment/Systems

- E. National Fire Protection Association (NFPA): 70-11.....National Electrical Code
- F. National Electrical Manufactures Association (NEMA) 250-08..... Enclosures for Electrical Equipment (1000 Volts Maximum)
- G. Underwriters Laboratories, Inc. (UL): 305-08.....Standard for Panic Hardware 444-08....Safety Communications Cables 636-01....Standard for Holdup Alarm Units and Systems
- H. Uniform Federal Accessibility Standards (UFAS), 1984

1.6 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - To provide for ease of disconnecting the equipment with minimum interference to other installations.

- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.7 MAINTENANCE & SERVICE

- A. General Requirements
 - The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, facility interface, and signal transmission equipment.
- C. Personnel
 - 1. Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COTR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COTR shall be provided copies of system manufacturer certification for the designated service representative.
- D. Schedule of Work

- The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, check and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- E. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification].
 Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.
 - b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.

 $28 \ 26 \ 00 \ - \ 8$

F. Operation

- Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- G. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- H. Work Request
 - The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- I. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COTR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COTR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- J. Software
 - 1. The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and

validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.8 WARRANTY OF CONSTRUCTION.

- A. Warrant EPPS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.9 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. General requirements applicable to this section include:
 - 1. Performance Requirements,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Equipment and Materials,
 - 5. Electrical Power,
 - 6. Lightning, Power Surge Suppression, and Grounding,
 - 7. Electronic Components,
 - 8. Substitute Materials and Equipment, and
 - 9. Like Items.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. General:

- All equipment shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- 2. All equipment shall operate on a 120V alternating current (VAC); 60 Hz Alternating Current (AC) power system unless documented otherwise in subsequent sections listed within this spec. All equipment shall

have a battery back-up source of power that will provide 12 hours (hrs.) of run time in the event of a loss of primary power to the security systems until a backup generator comes on-line.

- 3. The EPPS systems shall be designed, installed, and programmed in a manner that will allow for easy of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- 4. The Contractor shall provide the Contracting Officer with written verification, that the type of wire/cable being provided is recommended and approved by the OEM. Cabling shall meet the interconnecting wiring requirements of NFPA 70, National Electrical Code. The Contractor is responsible for providing the correct protection cable duct and/or conduit and wiring.
- 5. When interfacing with other communications or security subsystems the Contractor shall utilize interfacing methods that are approved by the Contracting Officer. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection; but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The interface point must adhere to all standards described herein.
- Systems shall be scaleable, not vendor specific, and allow expansion as required.
- 7. All hardwired alarms, switches, and junction boxes shall be protected from tampering and include line supervision.
- 8. The installation and placement of intercom units and emergency-call boxes in strategic locations shall also require that signage be posted near these devices. The signage, in accordance with Section 10 14 00, SIGNAGE shall communicate the location of the device and its unique identification number, and brief instruction on how to access/use the device. The signage may appear on the device, on a pole or wall near the device location and shall be printed in a manner that is easily read during daylight and hours of darkness.

2.2 EQUIPMENT ITEMS

- A. All systems shall be designed to provide continuous electrical supervision of the complete and entire system.
- B. Noise filters and surge protectors shall be provided for all intercommunications equipment to ensure protection from primary AC power surges and to ensure noise interference is not induced into low voltage data circuits.

- C. All alarm and initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and Uninterrupted Power Supply (UPS) power circuits shall be supervised for any change in operating conditions (e.g. low battery, primary to back up battery, and UPS online). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the master control station and all remote locations.
- D. Control Unit: Shall consist of the components to constantly monitor and verify alarm activation; identify zone of activation and location of activation.
- E. Audible Signal Device for Duress-Panic: Provides alarm activation and audible sound for alarms, as well as supervisory and trouble signals that shall be distinctive.
- F. Assessment: This capability shall consist of electronic devices required to visually and audibly verify the validity of alarms. Assessment also includes providing indication of tampering, fail-safe, low battery, and power losses.
- G. Alarm Monitoring and Reporting: Shall annunciate information to at least two (2) separate locations. The alarms shall maintain the capability to respond with local and remote visible and audible signals upon activation of an alarm. The alarms shall have the capability of operating in a silent mode, alerting personnel monitoring the system that the device has been activated.
- H. The intercom and emergency call-box systems shall be provided with normally acceptable speech intelligibility, defined as a score of at least 70% in accordance with ANSI S3.2
- I. Master Stations for Emergency Call Box and Security Intercoms:
 - All master stations shall have a "call-in" switch to provide an audible and visual indication of incoming calls from remote stations. Individual visual indication shall identify the calling station and status, and remain actuated until a call is answered by a master station.
 - Master stations shall be equipped with a handset with a switch for private conversations.
 - 3. Intercom master stations shall also have an all-call feature, and have the ability to receive video from a video intercom unit.

- Master stations shall have the capability to selectively communicate with any remote station by actuating assigned station number on a keypad or select button for that station.
- 5. Master stations may be standalone or can be integrated with the Physical Access Control System and Database Management. The Contractor will be responsible for the integration of the Master station with the Physical Access Control System and Database Management in accordance with OEM instructions and Section 28 13 16, PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT.
- J. Duress-Panic Alarms:
 - 1. Duress panic system to match existing Johnson Control Link system.
 - Housing shall be a rugged corrosion-resistant housing of stainless steel or Acrylonitrile Butadiene Styrene (ABS) molded plastic or similar material that is weather and dust proof.
 - 3. Actuating device shall include a minimum of a plunger button whose head is recessed from the face/front edge of the housing and be designed to avoid accidental activation using switch guard or multiple buttons (i.e., requires pressing two (2) buttons simultaneously)
 - Wireless stationary devices will meet the same specifications as Personal Duress/Panic Alarms.
 - 5. Alarm switch/button shall lock-in upon activation until manually reset with key or manufacture provided device.
 - 6. The switch shall be a positive-acting, double-pole, and double-throw switch.
 - Duress/Panic alarms shall meet UL 305 Standard for Panic Alarms. To reduce the possibility of false alarms and ensure installation functionality UL 636 Standard for Holdup Alarms standards shall be met.
 - 8. Alarms used for concealed application requires silent alarm notification to a monitoring station. They shall annunciate at the Physical Access Control System and Database Management, monitored by a central station or direct connect to local police, depending on local ordinance requirements.
 - 9. Shall be capable of being mounted for hand or foot use in a manner that is unable to be viewed by the public. Larger systems use a computer that intercepts and processes alarms and displays them on a monitor. The central computer can make an announcement over facility

hand held radios, pagers or telephones, or at the Physical Access Control System and Database Management so that the other security personnel can be immediately notified. These systems shall be hardwired.

- 10. Components:
 - a. Transmitter
 - b. Locator subsystem
 - c. Receiver
 - d. Software
- 11. Wiring will be four (4) conductor #18 American Wire Gauge (AWG).
- 12. Duress-Panic Alarm Technical Characteristics:

Temperature Range	0° to 110°F (-17.8°C to 43.3°C)
Nominal Voltage	12 V DC @ 6 mA
Current	Max 8 mA
Operational Voltage	7 V DC to 15 V DC
Operational life	Rated for 0,000 activations
Battery Activations	500
Actuator	Dual button plunger with activation lock
LED	Bi-color - on and activated

2.3 INSTALLATION KIT

- A. General: A kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, barrier strips, wiring blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, etc., required to accomplish a neat and secure installation. Unfinished or unlabeled wire connections will not be allowed. Contractor shall turn over to the Contracting Officer all unused and partially opened installation kit boxes, coaxial cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, and physical installation hardware. This is an acceptable alternate to the individual spare equipment requirement as long as the minimum spare items are provided in this count. The following installation sub-kits are required as a minimum:
- B. System Grounding:
 - The grounding kit shall include all cable in accordance with UL 444 Communications Cables, and installation hardware required. All grounding will be according to the NEC.

- 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields
 - b. Control Cable Shields
 - c. Data Cable Shields
 - d. Conduits
 - e. Cable Duct
 - f. Cable Trays
 - g. Power Panels
 - h. Connector Panels
- C. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.
- D. Wire And Cable: The wire and cable kit shall include all connectors and terminals, barrier straps, wiring blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- E. Equipment Interface: The equipment interface kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface Systems and Subsystems according to the OEM requirements and this specification.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this specification.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. System installation shall be installed in accordance with NFPA 731 Standards for the Installation of Electric Premises Security Systems and appropriate installation manual for each type of subsystem designed, engineered, and installed.
- B. The location and type of duress, to be installed will be in accordance with physical security requirements unique to each VA facility.

- C. For EPPS systems (i.e. use current panic/duress and emergency call boxes) that can operate through existing VA facility telephone system lines, software programming and hardware, refer to Section 27 51 23, INTERCOMMUNICATIONS AND PROGRAM SYSTEMS to integrate additional EPPS equipment.
- D. Concealed duress/panic devices shall be mounted in such a way that their location is only known by the person having knowledge of the activating device location. No wiring shall be exposed to identify the location of the activation device.
- E. Floor mounted duress alarms shall be attached to millwork on floor. When mounted under millwork, wiring shall be routed in millwork to conduit system via flexible conduit.
- F. Hard-wired switches shall be wired to individual alarm points within the Advanced Processing Controller (apC).
- G. Wall and post mounted stations shall be mounted to meet UFAS/ADA requirements and use tamper proof bolts and screws. Testing will be finished before installation of fasteners.
- H. Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
- Provisions shall be made for systems in high-noise areas or areas with electrical interference environments.
- J. Adjustment/Alignment/Synchronization: Contractor shall prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or programming. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.

3.2 WIRELINE DATA TRANSMISSION

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final

documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.

- C. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- D. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- E. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- F. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- G. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.3 WIRING

A. Wiring Method: Install cables in raceways [except in accessible indoor ceiling spaces, in attics,] [in hollow gypsum-board partitions,] and as otherwise indicated. Conceal raceways and wiring except in unfinished spaces.

- B. Wiring Method: Install cables concealed in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- D. Splices, Taps, and Terminations: For power and control wiring, use numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation and supervise pretesting, testing, and adjusting of video surveillance equipment.
- B. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.
- C. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days' notice of test schedule.
- D. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.
- E. Remove and replace malfunctioning items and retest as specified above.
- F. Record test results for each piece of equipment.
- G. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions and to optimize performance of the installed equipment. Tasks shall include, but are not limited to, the following:
 - 1. Check cable connections.

- 2. Check proper operation of detectors.
- Recommend changes to walk trough detectors, X-ray machines, and associated equipment to improve Owner' utilization of security access detection system.
- 4. Provide a written report of adjustments and recommendations.

3.6 CLEANING

A. Clean installed items using methods and materials recommended in writing by manufacturer.

3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain electronic personal protection system (EPSS) equipment.
 - Train Owner's maintenance personnel on procedures and schedules for troubleshooting, servicing, and maintaining equipment.
 - Demonstrate methods of determining optimum alignment and adjustment of components and settings for system controls.
 - 3. Review equipment list and data in maintenance manuals.
 - 4. Conduct a minimum of [four] <Insert number> hours' training.

3.8 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.9 TESTS AND TRAINING

A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system, compatible with the existing Johnson Controls International System (JCI), ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the CORor his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:
 - Building(s) 5 shall have an automatic digitized voice fire alarm signal with emergency manual voice override to notify occupants to evacuate. The digitized voice message shall identify the area of the building (smoke zone) from which the alarm was initiated.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.

E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. A fully addressable fire alarm system as an extension of an existing JCI addressable fire alarm systemshall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72.

Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.

- Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- J. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- K. Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for integration with physical access control system.

1.4 SUBMITTALS

A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Representative (COR). Bid drawing files will be provided to the Contractor at the preconstruction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
 - 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
 - 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built

drawing computer files using AutoCAD 2007 or later. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.

C. Manuals:

- Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall

also be provided in the manual. Provide the disk in a pocket within the manual.

- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.

3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 GUARANTY PERIOD SERVICES

- A. Complete inspection, testing, maintenance and repair service for the fire alarm system shall be provided by a factory trained authorized representative of the manufacturer of the major equipment for a period of 5 years from the date of acceptance of the entire installation by the Contracting Officer.
- B. Contractor shall provide all necessary test equipment, parts and labor to perform required inspection, testing, maintenance and repair.
- C. All inspection, testing, maintenance and permanent records required by NFPA 72, and recommended by the equipment manufacturer shall be provided by the contractor. Work shall include operation of sprinkler system alarm and supervisory devices //as well as all reused existing equipment connected to the fire alarm system//. It shall include all interfaced equipment including but not limited to elevators, HVAC shutdown, and extinguishing systems.
- D. Maintenance and testing shall be performed in accordance with NFPA 72. A computerized preventive maintenance schedule shall be provided and shall describe the protocol for preventive maintenance of equipment. The schedule shall include a systematic examination, adjustment and cleaning of all equipment.
- E. Non-included Work: Repair service shall not include the performance of any work due to improper use, accidents, or negligence for which the contractor is not responsible.
- F. Service and emergency personnel shall report to the Engineering Office or their authorized representative upon arrival at the hospital and again upon the completion of the required work. A copy of the work ticket containing a complete description of the work performed and parts replaced shall be provided to the VA CORor his authorized representative.
- G. Emergency Service:

- 1. Warranty Period Service: Service other than the preventative maintenance, inspection, and testing required by NFPA 72 shall be considered emergency call-back service and covered under the warranty of the installation during the first year of the warranty period, unless the required service is a result of abuse or misuse by the Government. Written notification shall not be required for emergency warranty period service and the contractor shall respond as outlined in the following sections on Normal and Overtime Emergency Call-Back Service. Warranty period service can be required during normal or overtime emergency call-back service time periods at the discretion of the CORor his authorized representative.
- 2. Normal and overtime emergency call-back service shall consist of an on-site response within 2 hours of notification of a system trouble.
- 3. Normal emergency call-back service times are between the hours of 7:30 a.m. and 4:00 p.m., Monday through Friday, exclusive of federal holidays. Service performed during all other times shall be considered to be overtime emergency call-back service. The cost of all normal emergency call-back service for years 2 through 5 shall be included in the cost of this contract.
- 4. Overtime emergency call-back service shall be provided for the system when requested by the Government. The cost of the first 40 manhours per year of overtime call-back service during years 2 through 5 of this contract shall be provided under this contract. Payment for overtime emergency call-back service in excess of the 40 man hours per year requirement will be handled through separate purchase orders. The method of calculating overtime emergency call-back hours is based on actual time spent on site and does not include travel time.
- H. The contractor shall maintain a log at each fire alarm control unit. The log shall list the date and time of all examinations and trouble calls, condition of the system, and name of the technician. Each trouble call shall be fully described, including the nature of the trouble, necessary correction performed, and parts replaced.

1.7 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the shall be applicable.
B. National Fire Protection Association (NFPA):
NFPA 13Standard for the Installation of Sprinkler
Systems, 2010 edition
NFPA 14Standard for the Installation of Standpipes and
Hose Systems, 2010 edition
NFPA 20Standard for the Installation of Stationary
Pumps for Fire Protection, 2010 edition
NFPA 70....National Electrical Code (NEC), 2010 edition
NFPA 72....National Fire Alarm Code, 2010 edition
NFPA 90A....Standard for the Installation of Air
Conditioning and Ventilating Systems, 2009
edition
NFPA 101....Life Safety Code, 2009 edition
C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment

basic designation only and the latest editions of these publications

- Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.

3. All new conduits shall be 3/4 inch (19 mm) minimum.

- B. Wire:
 - Wiring shall be in accordance with NEC article 760, Section 28 05

 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as
 recommended by the manufacturer of the fire alarm system. All wires
 shall be color coded. Number and size of conductors shall be as
 recommended by the fire alarm system manufacturer, but not less than
 18 AWG for initiating device circuits and 14 AWG for notification
 device circuits.
 - 2. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
 - 3. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. The existing JCI fire alarm control unit shall be modified and shall operate as a supervised zoned fire alarm system.
 - 2. Each power source shall be supervised from the other source for loss of power.
 - 3. All circuits shall be monitored for integrity.

- Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- 5. Transmit digital alarm information to the main fire alarm control unit.
- B. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
 - 3. Power supply for smoke detectors shall be taken from the fire alarm control unit.
 - Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
 - 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- C. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- D. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.
- E. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.

- F. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
 - 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- G. Remote Transmissions:
 - Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
 - Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- H. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- I. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20

percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.7 ALARM NOTIFICATION APPLIANCES

- B. Speakers:
 - Shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.
 - 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
 - 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- C. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - Strobes may be combined with the audible notification appliances specified herein.
- D. Fire Alarm Horns:
 - 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.

28 31 00 - 13

5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.8 ALARM INITIATING DEVICES

A. Manual Fire Alarm Stations:

1. Shall be non-breakglass, address reporting type.

- Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
- 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
- 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
- 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

2.9 SUPERVISORY DEVICES

A. Duct Smoke Detectors:

- 1. Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings. 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
 - 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
 - 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5

28 31 00 - 16

- 2. Heat detectors 2 of each type
- 3. Fire alarm strobes 5
- 4. Fire alarm speakers 5
- 5. Smoke detectors 20
- 6. Duct smoke detectors with all appurtenances 1
- 7. 2.5 oz containers aerosol smoke 12
- 8. Monitor modules 3
- 9. Control modules 3
- 10. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- B. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- C. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COTR.
- D. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.

- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COR.
- F. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.
- G. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- H. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- I. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- J. Mount value tamper switches so as not to interfere with the normal operation of the value and adjust to operate within 2 revolutions toward the closed position of the value control, or when the stem has moved no more than 1/5 of the distance from its normal position.

28 31 00 - 18

K. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in Buildings 5 indicate buildings. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building 5.
 - 3. Release only the magnetic door holders in the smoke zone from which alarm was initiated after the alert signal.
 - Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- C. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders in that smoke zone. D. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- E. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- F. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make

repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.

- Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
- Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
- Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.

- Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
- 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - END - -

SECTION 28 52 31 EMERGENCY CALL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the complete and operating emergency call system, including instruments (stations), security strobe, stanchions and associated equipment here-in-after referred to as the "system".

1.2 RELATED WORK

- A. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- B. Lightning Protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.
- C. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- D. Requirements for personal safety and to provide a low impedance path for possible telecommunications ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- E. Voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, and "break out" devices: Section 27 15 00, COMMUNICATIONS HORIZONTAL CABLING.
- F. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- G. Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEM.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Names, locations and contact information for three or more installations of operating emergency call station systems of comparable size and complexity previously installed by contractor performing satisfactorily for at least one year after final acceptance by user.
 - 2. Copies of applicable licenses.
- B. Certifications:
 - Submit certification equipment provider has been OEM authorized distributor and service organization for three years.

- 2. Certification that technicians assigned to system are trained, qualified, and certified by OEM on engineering, installation, operation, and testing of system. Submit certificate of successful completion of OEM's installation/training school for every installing technician of equipment.
- 3. Submit OEM letter certifying authorization to pass OEM's warranty of equipment to Government.
- C. Closeout Submittals:
 - 1. Before the project closeout date submit:
 - a. Warranty certificate.
 - b. Evidence of compliance with requirements of governing authorities such as Low Voltage Certificate of Inspection.
 - c. Project record documents.
 - d. Instruction manuals and software that is a part of system.
 - 2. Submit written notice that:
 - a. Contract Documents have been reviewed.
 - b. Project has been inspected for compliance with contract.
 - c. Work has been completed in accordance with the contract
 - 3. Project Record Documents (As Builts):
 - a. Throughout progress of work, maintain an accurate record of changes in Contract Documents. Upon completion of Work, transfer recorded changes to a set of Project Record Documents.
 - 4. Mark floor plans in pen to include the following:
 - a. Device locations with labels.
 - b. Conduit locations.
 - c. Equipment specific locations.
 - d. Wiring diagram.
 - e. Labeling and administration documentation.
 - f. Warranty certificate.
 - g. System test results.

1.4 QUALITY ASSURANCE

- A. Supervision:
 - 1. Assign a single project manager to this project to serve as point of contact for Government, General Contractor, and design professional.
 - Assigned individual to initiate and maintain discussion with General Contractor regarding the schedule for ceiling installation and complete cabling to meet that schedule.

B. Approvals: Contact Office of Telecommunications, Special Communications Team (0050P2H3) at (202) 461-5310 to have a VA Certified Telecommunications AHJ assigned to the project for telecommunications review, equipment and system approval and co-ordination with VA's Spectrum Management and FMS Teams.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevents damage, deterioration, and loss, including theft.
- B. Store products in original containers.
- C. Plan to store materials off site due to limited storage available on site.
- D. Do not install damaged products. Remove damaged products from the site and replace with new products.

1.6 WARRANTY

- A. Comply with FAR clause 52.246-21, except as follows:
 - Manufacturer shall warranty their equipment and certified installation for a minimum of two years from date of installation and final acceptance by the government. Submit manufacturer warranty during the submittal process.
 - Provide, free of charge, product firmware/software upgrades for a period of two years from date of acceptance by Government including any product feature enhancements.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coordinate features and select components to form an integrated system.
- B. Provide components and interconnections matched for optimum performance of specified functions.
- C. Equipment: Modular type, continuous duty rated.
- D. Weather-Resistant Equipment: Listed by a National Recognized Testing Laboratory (NRTL) for operation in damp or outdoor locations.

2.2 PERFORMANCE CRITERIA

- A. Provide functioning emergency call station system consisting of outdoor enclosures, stanchions, blue light and strobe lights, ADAAD compliant hands-free speakerphone communications devices and power supplies.
 - Conform to VAAR 852.236.91 and intent indicated for complete emergency communications network, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items

because of variances in manufacturer's methods of achieving specified results.

- B. Provide integrated blue light and strobe to identify unit location.
 - To call attention to location of emergency communication unit, Blue light must always be lit.
 - When emergency instrument is activated, the strobe flashes at 1 million candlepower and 60 fpm to draw attention to the location.
 - 3. Strobe continuously flashes until actively terminated by personnel receiving the call.
- C. Provide systems firmware by OEM with a proven history of product reliability and sole control over all source code.
- D. Provide system with configuration programming capable of being executed remotely via a remote connection (when specifically accepted by Spectrum Management and COMSEC Services (SMCS 0050P2H3)) without any exchange of parts.

2.3 EMERGENCY CALL STATION

- A. Provide dual button ring down, ADAAD compliant, multi-function, high strength, vandal-resistant emergency instrument. Include high quality, and vandal-resistant, hands free communications device capable of mounting in an integrated wall mount enclosure assembly or freestanding emergency phone stanchion.
- B. Standard Features:
 - 1. Three number dialing capability.
 - 2. Programmable from a remote location.
 - 3. Two input relays.
 - 4. Two output relays.
 - 5. Remote speaker volume adjustment.
 - 6. Capable of playing two digitally stored voice messages.
 - 7. Programmable passwords.
 - 8. Capable of using interchangeable faceplates.
 - 9. Silent dial out.
 - 10. Output sound level >80 dB at 1 meter for normal conversation.
 - 11. Waterproof speaker.
 - 12. Waterproof microphone.
 - 13. Auto answer and auto shut-off.
 - 14. Operating temperatures of -40 degrees to +65 degrees C (-40 degrees F to +150 degrees F).

- 15. Conformal coated Speakerphone electronics to withstand harsh environments.
- C. Unit must have the following additional features:
 - Interface with facility's Emergency Voice Switching and Security Management System via "home run" communication cables.
 - Vandal resistant stainless steel faceplate 12-gauge No.4 brushed stainless steel.
 - 3. Metal buttons.
 - Phone line powered; no local power supply or battery backup required. Power provided by system headend unit.
 - 5. LED indicator for hearing impaired.
 - 6. Cast metal raised letter and Braille signage for ADAAD compliance.
 - 7. Auto-answer that allows security to monitor and initiate calls with Government provided phone.
 - Auxiliary input and output programmable to integrate with video surveillance and security management system (SMS).
- D. Tamper-resistant Fasteners: Provide fasteners to enter unit only with proprietary wrench available from OEM of unit. Other types of fasteners will not be permitted for installation due to abundance of nonproprietary tools available for their removal.
- E. Rain and ice tight and insect resistant when assembled.
- F. When push button is activated:
 - 1. Immediately and automatically dial security SMS console.
 - 2. Cause blue strobe light to flash.
 - 3. Activate output to associated video surveillance cameras.
 - Provide visual indication, on Security Service's SMS Console Display Panels, to identify mapped location of activated unit.
- G. Connect via RJ-45 plug to twisted pair phone line to SMS.
- H. Electrical:
 - Provide quick-disconnect terminals with plug and receptacle attachments for easy service or removal electrical components.
 - 2. Conceal wiring within unit so is not to be visible from outside.
 - 3. Provide 24 VAC under normal operation.
 - Surge protect dry pair telephone line and lightning ground entire unit.

2.4 BLUE STROBE LIGHTS

A. Provide 1 million candlepower LED strobe light and a vivid blue area light, which serves to identify unit from great distances.

- B. Flash rate of no less than 60 flashes per minute
- C. Covered by a polycarbonate, prismatic refractor that distributes light in a horizontal pattern, making flash visible at great distances.
- D. Inaccessible to vandals.
- E. Weather resistant.
- F. Program to automatically activate when "Emergency" button is touched and flash until receiving party (SMS Console Operator) of call deactivates it. Strobe cannot be deactivated at unit.
- G. Provide 24VAC, 60Hz power for blue light, strobe, and faceplate light.
- H. Blue light and strobe must be controlled via emergency instrument by an auxiliary output.

2.5 STANCHION

- A. Free Standing:
 - Concentric steel cylinder (bollard) with a 222 mm (8-3/4 inch) diameter, a 6 mm (1/4 inch) wall thickness and a height of 2133 mm (84 inches).
 - Blue light and strode located at top of unit with deep blue polycarbonate prismatic refractor that distributes light in a horizontal pattern, making the flash visible even at great distances.
 - 3. Capability of mounting ADAAD-compliant, hands-free emergency instrument into pole mount housing.
 - 4. Weight: Maximum 124.73 kg (275 lbs).
 - 5. Secure free standing stanchions as shown on drawing details.
- B. Graphics:
 - 1. Cut from an engineering grade reflective vinyl for high visibility and legibility, with seven-year durability.
 - 2. Provide standard graphics text "Emergency". In Standard colors reflective white, reflective blue and reflective black.
- C. Finish:
 - Wall mounted stanchion: stainless steel uniform and free of visible and mechanical defects.
 - 2. Free standing stanchion: Finished with a coating process graffiti, water, hostile environment and UV resistant.

2.6 SECURITY CALL STATION POWER SUPPLY

- A. Provide power to operating and management console circuits and Multiple Call Instruments:
 - 1. Steel, NEMA 1 rated enclosure.

28 52 31 - 6

- AC power indicator with power On/Off switch with corresponding light.
- 3. 120 or 230 VAC selectable input.
- 4. 24VAC output, 28VAC output (for longer runs).
- 5. Main fused input.
- 6. 10A current capacity.
- 7. Minimum 8 fused outputs.
- 8. Input wire size 12-16 gauge.
- 9. Output wire size 12-22 gauge stranded wire.
- B. Security Call Station Cable:
 - 1. Meet or exceed OEM's requirement.
 - 2. Power cable: Minimum 14 AWG wire or as otherwise accepted home run from power supply to each call instruments.
 - Cables installed underground in underground conduits: Rated for direct burial installation.
 - Cables inside Building: Plenum rated in plenum spaces; riser rated in other areas.

2.7 UNINTERRUPTIBLE POWER SUPPLY (UPS)

- A. Provide a backup battery or a UPS for system head end at Security Service SMS console or its associated TR to allow normal operation and function (as if there was no AC power failure) in event of an AC power failure or during input power fluctuations for a minimum of one hour. Connect system to facility's Critical Generator Power Service.
- B. Provide UPS for active system components including:
 - 1. Head end.
 - 2. Master call instruments.
 - 3. Remote call instruments.
 - 4. Police SMS console.
 - Emergency/Disaster control console (when made an extended control and monitoring part of system).

2.8 FINISHES

A. Finishes for any exposed work such as plates, racks, panels, towers, enclosures, intercom stations, etc. must be accepted by design professional, COR and SMCS 0050P2H3.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Review and coordinate with cabling trade contractor for location of security emergency call equipment in TRs.

28 52 31 - 7

- B. Before beginning work, verify location, quantity, size and access for the following:
 - 1. AC power circuits provided for systems.
 - 2. Pull boxes, back boxes, wire troughs, cable trays/ladders, conduit stubs and other related infrastructure for systems.
 - 3. System components installed by others.
 - 4. Overhead supports and rigging hardware installed by others.
 - 5. Telecommunications grounding busbar connected to telecommunications grounding system.
 - Immediately notify Government, general contractor and design professional of any discrepancies.

3.2 INSTALLATION

- A. General:
 - Install work neatly, plumb and square and in a manner consistent with standard industry practice.
 - Protect work from dust, paint and moisture as dictated by site conditions. Contractor is responsible for protection of his work during construction phase up until final acceptance by Government.
 - Install equipment according to OEM's recommendations. Provide any hardware, adaptors, brackets, rack mount kits or other accessories recommended by OEM for correct assembly and installation.
 - Secure equipment firmly in place, including emergency call stations, stanchions, system cables, etc.
 - a. Support loads with mounts, fasteners, attachments and attachment points with a safety factor of at least 5:1.
 - b. Do not impose weight of equipment or fixtures on supports provided for other trades or systems.
 - c. Any suspended equipment or associated hardware must be certified by OEM for overhead suspension.
 - d. Contractor is responsible for means and methods in design, fabrication, installation and certification of any supports, mounts, fasteners and attachments.
 - 5. Coordinate cover plates with field conditions. Size and install cover plates as necessary to hide joints between back boxes and surrounding wall. Where cover plates are not fitted with connectors, provide grommeted holes in size and quantity required. Do not allow cable to leave or enter boxes without cover plates installed.

28 52 31 - 8

6. Cutting and Patching:

- a. Patch and paint any wall or surface that has been disturbed by execution of work.
- b. Provide any additional cutting, drilling, fitting or patching required that is not indicated as provided by others to complete work or to make its parts fit together.
- c. Do not damage or endanger a portion of Work, or partially completed construction of Government or separate contractors, by cutting, patching or otherwise altering such construction, or by excavation. Do not cut or otherwise alter such construction by Government or a separate contractor except with written consent of Government.
- d. Where coring of in-place concrete is required, clearly identify location of such coring in the field and have location accepted by COR prior to commencement of coring.
- Keep work areas clear of debris and clean daily at completion of work.
- B. Wiring Practice:
 - Comply with requirements for raceways and boxes specified in Division 28, Section 28 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
 - Execute wiring in strict adherence to National Electrical Code, applicable local building codes and standard industry practices.
 - Classify wiring according to the following low voltage signal types:
 a. Voice audio.
 - b. Low voltage DC control or power (less than 48VDC).
 - Where raceway is conduit, wiring of differing classifications must be run in separate conduit.
 - 5. Where raceway is to be an enclosure (rack, tray, wire trough, utility box) wiring of differing classifications which share same enclosure must be mechanically partitioned and separated by minimum 102 mm (4 inches). Where cables of differing classifications cross, cross cabling perpendicular to one another.
 - 6. Do not splice wiring anywhere along entire length of run.
 - 7. Ensure cables are insulated and shielded from each other and from raceway for entire length of run.
 - Do not pull wire through any enclosure where a change of raceway alignment or direction occurs.
 - 9. Do not bend wires to less than radius recommended by manufacturer.

- 10. Replace entire length of run of any wire or cable that is damaged or abraded during installation. There are no acceptable methods of repairing damaged or abraded wiring.
- 11. Use wire pulling lubricants and pulling tensions recommended by OEM.
- 12. Use grommets around cut-outs and knock-outs where conduit or chase nipples are not installed.
- 13. Do not use tape-based or glue-based cable anchors.
- 14. Ground shields and drain wires as indicated or recommended by OEM.
- 15. Terminate field wiring entering equipment racks as follows:
 - a. Provide service loops at harness break-outs, plates, panels and equipment to allow plates, panels and equipment to be removed for service and inspection.
 - b. If specified terminal blocks are not designed for rack mounting, utilize 19 mm (3/4 inch) plywood or 3 mm (1/8 inch) thick aluminum plates/blank panels as a mounting surface.
 - c. Do not mount terminal block on bottom of rack.
 - d. Employ permanent strain relief for any cable with an outside diameter of 25.4 mm (1 inch) or greater.
- 16. Make connections as follows:
 - a. Use mechanical connectors appropriate to application.
 - b. For crimp-type connections, use only tools that are specified by manufacturer for the application.
 - c. Use only insulated spade lugs on screw terminals. Size spade lugs to fit wire gauge; do not exceed two lugs per terminal.
 - d. Wire connectors or electrical tape connections are not permitted for any application.
- C. Cable Installation: In addition to mandatory infrastructure requirements provided under, Section 27 15 00, STRUCTURED CABLING, adhere to the following additional practices:
 - Support cable on maximum 610 mm (2 feet) centers. Acceptable means of cable support are cable tray or conduit. Wrap cable bundles loosely to cable tray with plenum rated hook and loop straps. Plastic tie wraps are not permitted as a means to bundle cables.
 - 2. Run cables parallel to walls.
 - 3. Do not lay cables on top of luminaires, ceiling tiles, mechanical equipment, or ductwork. Maintain 61 cm (2 feet) clearance from shielded electrical apparatus.

28 52 31 - 10

- Test each cable after the total installation is complete. Document every test result including failures. Remedy any cabling problems or defects; this includes re-pull of new cable as required.
- 5. Terminate cables on both ends per industry and OEM's recommendations.
- 6. Provide proper temporary protection of cable after pulling is complete before final dressing and terminations are complete. Do not leave cable lying on floor. Bundle and tie wrap up off the floor until you are ready to terminate.
- 7. Cold-Weather Installation: Bring cable to room temperature before de-reeling. Heat lamps are not permitted.
- 8. Elude runs through structural members or cable in contact with pipes, ducts, or other potentially damaging items.
- 9. Separation of Wires: (Refer to Raceway Installation)
 - a. Separate communications cable, and power wiring runs.
 - b. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 30.5 cm (12 inches) apart for adjacent parallel power and telephone wiring.
 - c. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.
- D. Labeling:
 - Permanently mark switches, connectors, jacks, relays, receptacles and electronic and other equipment.
 - Permanently label cables at each end, including intra-rack connections with, electronically printed labels of type which include a clear protective wrap.
 - 3. Provide printed labels at both ends of cables.
 - 4. Ensure equipment has appropriate NRTL Label, for product category it will perform. Equipment not bearing NRTL label will not be permitted as part of system, and contractor must provide listed replacement equipment with NRTL label.
- E. System Programming: Provide programming required for a complete and operational system. Coordinate programming parameters with COR and FMS Engineer.
- F. Fireproofing:
 - Fireproof the openings where cables penetrate fire rated walls, floors and ceilings.

- 2. Provide conduit sleeves (if not already provided by electrical contractor) for cables that penetrate fire rated walls. After cabling installation is complete, install fireproofing material in and around conduit sleeves and openings. Install fire proofing material thoroughly and neatly. Seal floor and ceiling penetrations.
- Use only materials and methods that preserve integrity of fire stopping system and its rating.
- G. Grounding:
 - Ground cable shields and equipment to eliminate shock hazard and to minimize ground loops, common mode returns, noise pickup, cross talk, and other impairments.
 - 2. Provide telecommunications grounding system per Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

3.3 FIELD QUALITY CONTROL

A. Intermediate Testing:

- After completion of 25 percent of installation of equipment, including one emergency call station, and prior to any further work, this portion of system must be pretested, inspected, and certified. Check each item of installed equipment to ensure appropriate NRTL labels are affixed, NFPA, Life Safety, and Joint Commission guidelines are followed, and proper installation practices are followed. Include a full operational test.
- Arrange for inspection and test to be conducted by a factorycertified representative and witnessed by Government and SMCS 0050P2H3.
- 3. An identical inspection must be conducted between 65 and 75 percent of system construction phase; COR has authority to waive this requirement.
- B. Pretesting:
 - 1. Upon completing installation of system:
 - Align, balance, and pretest entire system under full operating conditions.
 - b. Verify (utilizing accepted test equipment) system is operational and meets performance requirements of this standard.
 - c. Verify that system functions are operational, and no unwanted aural effects, (i.e. signal distortion, noise pulses, glitches, audio hum, poling noise, etc.) are present. Pretest each of the following locations:

- 1) Networked locations.
- 2) System trouble reporting.
- 3) System electrical supervision.
- 4) UPS operation.
- 2. Provide COR with recorded system pretest measurements and certification that system is ready for formal acceptance.
- C. Acceptance Test:
 - After system has been pretested and contractor has submitted pretest results and certification to COR, schedule an acceptance test date by giving COR thirty days' written notice prior to date acceptance test is expected to begin. Include the duration of time for the test in the notification.
 - 2. Test system in the presence of Government, SMCS 0050P2H3 and an OEMcertified representative.
 - Test utilizing accepted test equipment to certify proof of performance.
 - Perform only operator adjustments required to show proof of performance during test.
 - 5. Demonstrate and verify that installed system complies with requirements of this section, under operating conditions.
 - Rate system as either acceptable or unacceptable at conclusion of test.
 - 7. Terminate acceptance test of system for failure of any part of system that precludes completion of system testing, and which cannot be repaired in four hours. For repeated failures that result in a cumulative time of eight hours to affect repairs, Government will declare entire system to be unacceptable.
 - Reschedule retesting of unacceptable systems at the convenience of Government.
- D. Acceptance Test Procedure:
 - 1. Physical and Mechanical Inspection:
 - a. Prepare a system inventory including available spare parts. Check each item of installed equipment to ensure appropriate NRTL certification labels are affixed.
 - b. Formally inventory and review system diagrams, record drawings, equipment manuals, electronic drawing files, intermediate, and pretest results on portable storage drives.

- c. Terminate testing for failure of system to meet requirements of this section.
- 2. Operational Test:
 - a. After physical and mechanical inspection, check equipment to verify system meets performance requirements. Use sound level meter to accomplish this requirement.
 - b. Individual Item Test: Government will select individual items of equipment for detailed proof of performance testing until 100 percent of system is tested and found to meet or exceed minimum requirements of specifications.
- 3. Test Conclusion: Government will accept results of the test or require additional testing on reported deficiencies and shortages. Retesting to comply with these specifications must be done at Government's convenience an contractor's expense.
- E. Acceptable Test Equipment:
 - Provide test equipment with a calibration tag of an acceptable calibration service dated not more than twelve months prior to test.
 - As part of submittal, a test equipment list must be furnished that includes make and model number of the following type of equipment:
 a. Telephone Test Set.
 - b. Signal Level Meter.
 - c. Volt-Ohm Meter.
 - d. Sound Pressure Level (SPL) Meter.

3.4 CLEANING

A. Prior to final inspection and acceptance of work, remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and thoroughly clean work area.

3.5 TRAINING

- A. Provide thorough training of security staff assigned to units receiving communications from emergency call station system equipment. Implement training from security console officer's perspective, and likewise, for any person whose specific responsibilities include answering emergency calls and dispatching security response, provide operational training from their perspective. Use a separate training room that allows this type of individualized training utilizing an in-service training unit, prior to cut over of new system.
- B. Provide the following minimum training:
 - 1. 24 hours for supervisors and system administrators.

3.6 MAINTENANCE

- A. Provide COR the ability to contact contractor and OEM's central emergency assistance maintenance center and request remote diagnostic testing and assistance in resolving technical problems at any time, during warranty period. Provide remote diagnostic testing and logistic assistance capability to Government.
- B. Response Time, during Warranty Period, for Security Emergency Call System Trouble Calls:
 - 1. A standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond and correct on-site trouble calls, during the standard work week:
 - a. A routine trouble is considered a trouble which reports a single station or interface point is inoperable. Routine trouble call within one working day (12 hours) of its report.
 - b. An emergency trouble is considered a trouble which causes a sub system (ward), distribution point, terminal cabinet, to be inoperable at any time. Emergency trouble call within two hours of its report.
 - c. A catastrophic trouble is considered a trouble which a major portion of system fails; or, an entire system failure has happened. Catastrophic trouble call within one hour of it report.

SECTION 31 20 00 EARTHWORK

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
 - 1. Site preparation.
 - 2. Excavation.
 - 3. Underpinning.
 - 4. Filling and backfilling.
 - 5. Grading.
 - 6. Soil Disposal.
 - 7. Clean Up.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D698.
 - 2. Existing Subgrade (Except Footing Subgrade): Same materials as 1.2.A.1, that are not capable of direct support of slabs, pavement, and similar items with possible exception of improvement by compaction, proofrolling, or similar methods.
 - 3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings.
- C. Trench Earthwork: Trenchwork required for utility lines.

- D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.
- E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D6938.
- F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- G. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- H. Unauthorized excavation: Removal of materials beyond indicated subgrade elevations or indicated lines and dimensions without written authorization by the Resident Engineer. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- I. Authorized additional excavation: Removal of additional material authorized by the Resident Engineer based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
- J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.

- O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
- P. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
- Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
- R. Contaminated soils: Soil that contains contaminates as defined and determined by the Resident Engineer or the Government's testing agency.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Classified Excavation: Removal and disposal of all material not defined as Rock.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

A. Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Furnish to Resident Engineer:
 - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
 - 2. Soil samples.
 - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - b. Laboratory compaction curve in accordance with ASTM D698 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - c. Test reports for compliance with ASTM D2940 requirements for subbase material.
 - d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
 - e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.
 - 3. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.

1.8 APPLICABLE PUBLICATIONS:

A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.

в.	American Association of (AASHTO):	State Highway and Transportation Officials
	Т99-10	Standard Method of Test for Moisture-Density
		Relations of Soils Using a 2.5 kg (5.5 lb)
		Rammer and a 305 mm (12 inch) Drop
	T180-10	Standard Method of Test for Moisture-Density
		Relations of Soils using a 4.54 kg (10 lb)
		Rammer and a 457 mm (18 inch) Drop
с.	American Society for Testing and Materials (ASTM):	
	СЗЗ-03	Concrete Aggregate
	D448-08	Standard Classification for Sizes of Aggregate
		for Road and Bridge Construction
	D698-07e1	Standard Test Method for Laboratory Compaction
		Characteristics of Soil Using Standard Effort
		(12,400 ft. lbf/ft ³ (600 kN m/m ³))
	D1140-00	Amount of Material in Soils Finer than the No.
		200 (75-micrometer) Sieve
	D1556-07	Standard Test Method for Density and Unit
		Weight of Soil in Place by the Sand Cone Method
	D1557-09	Standard Test Methods for Laboratory Compaction
		Characteristics of Soil Using Modified Effort
		(56,000 ft-lbf/ft ³ (2700 kN m/m ³))
	D2167-08	Standard Test Method for Density and Unit
		Weight of Soil in Place by the Rubber Balloon
		Method
	D2487-11	Standard Classification of Soils for
		Engineering Purposes (Unified Soil
		Classification System)
	D2940-09	Standard Specifications for Graded Aggregate
		Material for Bases or Subbases for Highways or
		Airports
	D6938-10	Standard Test Method for In-Place Density and
		Water Content of Soil and Soil-Aggregate by
		Nuclear Methods (Shallow Depth
D.	Society of Automotive En	gineers (SAE):
	J732-07	Specification Definitions - Loaders
	J1179-08	Hydraulic Excavator and Backhoe Digging Forces

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a 75-µm (No. 200) sieve.
- E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
- F. Granular Fill:
 - 1. Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below. Fine aggregate grading shall conform to ASTM C 33 with a maximum of 3 percent by weight passing ASTM D 1140, and no more than 2 percent by weight passing the coarse aggregate Size 57.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No 4), per ASTM D2940.
- G. Requirements for Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including

ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method 5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site.

H. Buried Warning and Identification Tape: Polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:	Electric			
Yellow:	Gas, Oil, Dangerous Materials			
Orange:	Telephone and Other Communications			
Blue:	Water Systems			
Green:	Sewer Systems			
White:	Steam Systems			
Gray:	Compressed Air			

- I. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- J. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of

enabling detection by a metal detector when tape is buried up to 0.9 m (3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.

K. Detection Wire For Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm (7.5 feet) of utility lines when removal is approved in advance by Resident Engineer. Remove materials from Medical Center. Maintain trees and shrubs held in temporary locations by watering as necessary and feeding semiannually with liquid fertilizer with a minimum analysis of 5 percent nitrogen, 10 percent phosphorus, and 5 percent potash. Maintain plants moved to permanent positions as specified for plants in temporary locations until conclusion of contract. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Do not store building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs.
- D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by Resident Engineer. Eliminate foreign materials, such as weeds, roots, stones, subsoil,

frozen clods, and similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.

- E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center.
- F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
 - 1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
 - 2. Locations of existing elevations indicated on plans are from a site survey that measured spot elevations and subsequently generated existing contours and spot elevations. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify Resident Engineer of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify Resident Engineer of any differences between existing or constructed grades, as compared to those shown on the plans.

- 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
- 4. Finish grading is specified in Section 32 90 00, PLANTING.
- G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the Resident Engineer, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
 - Design of the temporary support of excavation system is the responsibility of the Contractor. The Contractor shall submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered professional engineer, describing the methods for shoring and sheeting of excavations. Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving.
 - Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the Resident Engineer.
 - 3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
 - 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall underpin the existing foundation, per Section 3.3 in compliance with specifications Section 31 23 23.33, FLOWABLE FILL, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
 - 5. The Contractor is required to hire a Professional Geotechnical Engineer to provide inspection of excavations and soil/groundwater

07-01-16

conditions throughout construction. The Geotechnical Engineer shall be responsible for performing pre-construction and periodic site visits throughout construction to assess site conditions. The Geotechnical Engineer shall update the excavation, sheeting and dewatering plans as construction progresses to reflect changing conditions and shall submit an updated plan if necessary. A written report shall be submitted, at least monthly, informing the Contractor and Resident Engineer of the status of the plan and an accounting of the Contractor's adherence to the plan addressing any present or potential problems. The Geotechnical Engineer shall be available to meet with the Resident Engineer at any time throughout the contract duration.

- B. Excavation Drainage: Operate pumping equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously, at least 2 feet below the working level. Operate dewatering system continuously until construction work below existing water levels is complete. Submit performance records weekly.
- C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the Resident Engineer.
- D. Proofrolling:

- After rough grade has been established in cut areas and prior to placement of fill in fill areas under building and pavements, proofroll exposed subgrade with a fully loaded dump truck to check for pockets of soft material.
- 2. Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. Operate the truck in a systematic manner to ensure the number of passes over all areas, and at speeds between 4 to 5.5 km/hour (2 1/2 to 3 1/2 mph). When proof rolling, one-half of the passes made with the roller shall be in a direction perpendicular to the other passes. Notify the Resident Engineer a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the Resident Engineer. Rutting or pumping of material shall be undercut and replaced with fill material. Maintain subgrade until succeeding operation has been accomplished.
- F. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft materials to a solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
 - 5. Do not tamp earth for backfilling in footing bottoms, except as specified.
 - 6. Slope grades to direct water away from excavations and to prevent ponding.
 - 7. Capillary water barrier (granular fill) under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor.
 - 8. Ensure that footing subgrades have been inspected and approved by the Resident Engineer prior to concrete placement. Excavate to bottom of pile cap prior to placing or driving piles, unless authorized otherwise by the Resident Engineer. Backfill and compact over excavations and changes in grade due to pile driving operations to 95 percent of ASTM D698 maximum density.
- G. Trench Earthwork:

- 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. Length of open trench in advance of piping laying shall not be greater than is authorized by Resident Engineer.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
 - g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

- Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of pipe shall be 600 mm (24 inches) maximum for pipe up to and including 300 mm (12 inches) diameter, and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - Bed bottom quadrant of pipe on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one sixth of pipe diameter below pipe to 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
 - c. Place and compact as specified remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
 - d. Use granular fill for bedding where rock or rocky materials are excavated.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade

- f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- H. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and

specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by Resident Engineer as unsuitable, and replace with acceptable material. When unsuitable material is encountered and removed, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on volume in cut section only.

- 1. Site Grading:
 - a. Provide a smooth transition between adjacent existing grades and new grades.
 - b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
 - c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
 - 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
 - 2) Walks: Plus or minus 25 mm (1 inch).
 - 3) Pavements: Plus or minus 13 mm (1 inch).
 - d. Grading Inside Building Lines: Finish subgrade to a tolerance of 13 mm (1/2 inch) when tested with a 3000 mm (10 foot) straightedge.

3.4 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by Resident Engineer.
- B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction

equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.

- C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of Resident Engineer. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials to prevent wedging action or eccentric loading upon or against the structure. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below:
 - 1. Fills, Embankments, and Backfill
 - a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with AASHTO T99 95 percent.
 - b. Curbs, curbs and gutters, AASHTO T99 95 percent.
 - c. Under Sidewalks, scarify and recompact top 150 mm (6 inches) below subgrade and compact each layer of backfill or fill material in accordance with AASHTO T99 95 percent.
 - d. Landscaped areas, top 400 mm (16 inches), AASHTO T99 85 percent.
 - e. Landscaped areas, below 400 mm (16 inches) of finished grade, AASHTO T99 90 percent.
 - 2. Natural Ground (Cut or Existing)
 - a. Under building slabs, steps and paved areas, top 150 mm (6 inches), AASHTO T99 95 percent.
 - b. Curbs, curbs and gutters, top 150 mm (6 inches), AASHTO T99 95 percent.

c. Under sidewalks, top 150 mm (6 inches), AASHTO T99 95 percent.

- D. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- E. Opening and Drainage of Excavation: The Contractor shall notify the Resident Engineer sufficiently in advance of the opening of any excavation to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. The Contractor shall ensure that excavation of any area, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

3.5 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
- D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.

- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
- G. Finish subgrade in a condition acceptable to Resident Engineer at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.
- H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Disposal: Transport surplus satisfactory soil to designated storage areas on Medical Center property. Stockpile or spread soil as directed by Resident Engineer.
 - 1. Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- E. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center Property.

----- E N D -----

SECTION 31 23 19 DEWATERING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies performance of dewatering required to lower and control ground water table levels and hydrostatic pressures to permit excavation, backfill, and construction to be performed in the dry. Control of surface water shall be considered as part of the work under this specification.

1.2 SUMMARY:

- A. The work to be completed by the Contractor includes, but is not necessarily limited to the following:
 - 1. Implementation of the Erosion and Sedimentation Control Plan.
 - 2. Dewater excavations, including seepage and precipitation.
- B. The Contractor shall be responsible for providing all materials, equipment, labor, and services necessary for care of water and erosion control. Excavation work shall not begin before the Erosion and Sedimentation Control Plan is in place.

1.3 REQUIREMENT:

- A. Dewatering system shall be of sufficient size and capacity necessary to lower and maintain ground water table to an elevation at least 300 mm (1 foot) below lowest foundation subgrade or bottom of pipe trench and to allow material to be excavated, and concrete placed in a reasonably dry condition. Materials to be removed shall be sufficiently dry to permit excavation to grades shown and to stabilize excavation slopes where sheeting is not required. Operate dewatering system continuously until backfill work has been completed.
- B. Reduce hydrostatic head below any excavation to the extent that water level in the construction area is a minimum of 300 mm (1 foot) below prevailing excavation surface.
- C. Prevent loss of fines, seepage, boils, quick conditions or softening of foundation strata.
- D. Maintain stability of sides and bottom of excavation.
- E. Construction operations are performed in the dry.
- F. Control of surface and subsurface water is part of dewatering requirements. Maintain adequate control so that:
 - 1. The stability of excavated and constructed slopes are not adversely affected by saturated soil, including water entering prepared

subbase and subgrades where underlying materials are not free draining or are subject to swelling or freeze-thaw action.

- 2. Erosion is controlled.
- 3. Flooding of excavations or damage to structures does not occur.
- 4. Surface water drains away from excavations.
- 5. Excavations are protected from becoming wet from surface water, or insure excavations are dry before additional work is undertaken.
- G. Permitting Requirements: The contractor shall comply with and obtain the required State and County permits where the work is performed.

1.4 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety Requirements: Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Submittal requirements as specified in Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- D. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- E. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article 1.11, PHYSICAL DATA.
- F. Excavation, backfilling, site grade and utilities: Section 31 20 00, EARTHWORK.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Drawings and Design Data:
 - Submit drawings and data showing the method to be employed in dewatering excavated areas 30 days before commencement of excavation.
 - Material shall include: location, depth and size of wellpoints, headers, sumps, ditches, size and location of discharge lines, capacities of pumps and standby units, and detailed description of dewatering methods to be employed to convey the water from site to adequate disposal.
 - 3. Include a written report outlining control procedures to be adopted if dewatering problem arises.
 - 4. Capacities of pumps, prime movers, and standby equipment.

- 5. Design calculations proving adequacy of system and selected equipment. The dewatering system shall be designed using accepted and professional methods of design and engineering consistent with the best modern practice. The dewatering system shall include the deep wells, wellpoints, and other equipment, appurtenances, and related earthwork necessary to perform the function.
- 6. Detailed description of dewatering procedure and maintenance method.
- 7. Materials submitted shall be in a format acceptable for inclusion in required permit applications to any and all regulatory agencies for which permits for discharge water from the dewatering system are required due to the discharge reaching regulated bodies of water.
- C. Inspection Reports.
- D. All required permits.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Install a dewatering system to lower and control ground surface water in order to permit excavation, construction of structure, and placement of backfill materials to be performed under dry conditions. Make the dewatering system adequate to pre-drain the water-bearing strata above and below the bottom of structure foundations, utilities and other excavations.
- B. In addition, reduce hydrostatic pressure head in water-bearing strata below structure foundations, utility lines, and other excavations, to extent that water levels in construction area are a minimum of 300 mm (1 foot) below prevailing excavation surface at all times.

3.2 OPERATION:

- A. Prior to any excavation below the ground water table, place system into operation to lower water table as required and operate it continuously 24 hours a day, 7 days a week until utilities and structures have been satisfactorily constructed, which includes the placement of backfill materials and dewatering is no longer required.
- B. Place an adequate weight of backfill material to prevent buoyancy prior to discontinuing operation of the system.

3.3 WATER DISPOSAL:

A. Dispose of water removed from the excavations in such a manner as:1. Will not endanger portions of work under construction or completed.

- Will cause no inconvenience to Government or to others working near site.
- 3. Will comply with the stipulations of required permits for disposal of water.
- 4. Will Control Runoff: The Contractor shall be responsible for control of runoff in all work areas including but not limited to: excavations, access roads, parking areas, laydown, and staging areas. The Contractor shall provide, operate, and maintain all ditches, basins, sumps, culverts, site grading, and pumping facilities to divert, collect, and remove all water from the work areas. All water shall be removed from the immediate work areas and shall be disposed of in accordance with applicable permits.
- B. Excavation Dewatering:
 - The Contractor shall be responsible for providing all facilities required to divert, collect, control, and remove water from all construction work areas and excavations.
 - Drainage features shall have sufficient capacity to avoid flooding of work areas.
 - 3. Drainage features shall be so arranged and altered as required to avoid degradation of the final excavated surface(s).
 - The Contractor shall utilize all necessary erosion and sediment control measures as described herein to avoid construction related degradation of the natural water quality.
- C. Dewatering equipment shall be provided to remove and dispose of all surface and ground water entering excavations, trenches, or other parts of the work during construction. Each excavation shall be kept dry during subgrade preparation and continually thereafter until the structure to be built, or the pipe to be installed therein, is completed to the extent that no damage from hydrostatic pressure, flotation, or other cause will result.

3.4 STANDBY EQUIPMENT:

Provide complete standby equipment, installed and available for immediate operation, as may be required to adequately maintain dewatering on a continuous basis and in the event that all or any part of the system may become inadequate or fail.

3.5 CORRECTIVE ACTION:

If dewatering requirements are not satisfied due to inadequacy or failure of the dewatering system (loosening of the foundation strata,

or instability of slopes, or damage to foundations or structures), perform work necessary for reinstatement of foundation soil and damaged structure or damages to work in place resulting from such inadequacy or failure by Contractor, at no additional cost to Government.

3.6 DAMAGES:

Immediately repair damages to adjacent facilities caused by dewatering operations.

3.7 REMOVAL:

Insure compliance with all conditions of regulating permits and provide such information to the Resident Engineer. Obtain written approval from Resident Engineer before discontinuing operation of dewatering system.

---- E N D -----

SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Subbase for concrete pavements.
 - 2. Combination curbs and gutters.
 - Pedestrian Pavement: Walks, grade slabs, wheelchair curb ramps, steps, and patios.
 - 4. Vehicular Pavement: driveways, parking lots, and loading docks.
 - 5. Equipment Pads: transformers.

1.2 RELATED REQUIREMENTS

- A. Field Testing: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Step Nosings and Railings: Section 05 50 00, METAL FABRICATIONS.
- C. Subgrade Preparation and Subbase Compaction: Section 31 20 00, EARTHWORK.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 - M147-65-UL-04 Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 - M233-86 Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 - 1. 305R-10 Guide to Hot Weather Concreting.
 - 2. 306R-10 Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 - B101.3 Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 - A615/A615M-16 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.
 - A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.

- A1064/A1064M-16 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
- 4. C33/C33M-16 Concrete Aggregates.
- 5. C94/C94M-16 Ready Mixed Concrete.
- 6. C143/C143M-15a Slump of Hydraulic Cement Concrete.
- 7. C150/C150M-16 Portland Cement.
- 8. C171-16 Sheet Materials for Curing Concrete.
- 9. C260/C260M-10a Air Entraining Admixtures for Concrete.
- 10. C309-11 Liquid Membrane Forming Compounds for Curing Concrete.
- 11. C494/C494M-15a Chemical Admixtures for Concrete.
- 12. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 13. C979/C979M-16 Pigments for Integrally Colored Concrete.
- 14. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 15. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 16. D1751-04(2013)e1 Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
- 17. D5893/D5893M-10 Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
- 18. D6690-15 Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect/Engineer.
 - c. Inspection and Testing Agency.
 - d. Contractor.
 - e. Installer.
 - f. Other installers responsible for adjacent and intersecting work, including excavation, plantings, and traffic markings.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.

- d. Protection before, during, and after installation.
- e. Installation.
- f. Terminations.
- g. Transitions and connections to other work.
- h. Inspecting and testing.
- i. Other items affecting successful completion.
- Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show reinforcing.
 - 3. Include jointing plan for concrete pavements, curbs and gutters.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Samples:
 - Exposed Aggregate Concrete Panel: 0.4 sq. m by 50 mm (4 sq. ft. by 2 inches) thick, 2 required, each color and finish.
 - Colored Concrete Panel: As specified in Section 09 06 00, SCHEDULE FOR FINISHES, with mix data.
- E. Test reports: Certify products comply with specifications.
 - 1. Concrete materials.
 - 2. Select subbase materials.
 - 3. Field test reports.
- F. Certificates: Certify products comply with specifications.
 - 1. Expansion joint filler.
 - 2. Reinforcement.
 - 3. Curing materials.
 - 4. Concrete protective coating.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list.
 - 2. Land surveyor.
- H. Concrete mix design.
- I. Select subbase job-mix design.
- J. Proposed hot and cold weather concreting methods.

32 05 23 - 3

- K. Land surveyor's construction staking notes, before placing concrete.
 - 1. Identify discrepancies between field conditions and Drawings.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations.
 - Project Experience List: Provide contact names and addresses for completed projects.
- B. Land Surveyor: Professional land surveyor or engineer registered to provide land surveys in jurisdiction where project is located.
- C. Preconstruction Testing:
 - Engage independent testing laboratory to perform tests and submit reports.
 - Deliver samples to laboratory in number and quantity required for testing.
 - 2. Concrete mix design.
 - 3. Select subbase job-mix design. Report the following:
 - a. Material sources.
 - b. Gradation.
 - c. Plasticity index.
 - d. Liquid limit.
 - e. Laboratory compaction curves indicating maximum density at optimum moisture content.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.
- C. Bulk Products: Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

A. Hot Weather Concreting Procedures: ACI 305R.

- B. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Slag: ASTM C989/C989M; Grade 80.
 - 3. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33/C33M.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: ASTM C494/C494M.
- H. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M.
- I. Welded Wire Fabric: ASTM A1064/A1064M, plain; sized as indicated.
- J. Expansion Joint Filler: ASTM D1751.
- K. Sheet Materials for Curing Concrete: ASTM C171.
- L. Color Pigment: ASTM C979/C979M, colored and white powder pigments.

2.2 SELECT SUBBASE

- A. Subbase: AASHTO M147; Grade A.
 - Select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials.

SUBBASE GRADING REQUIREMENTS							
Sieve Si	ze	Percentage Passing by Mass					
		Grades					
(mm)	(in)	A	В	С	D	Е	F
50	2	100	100				

SUDDASE GRADING REQUIREMENTS							
Sieve Siz	ze	Percentage Passing by Mass					
25	1		75-95	100	100	100	100
9.5	3/8	30-65	40-75	50-85	60-100		
4.47	No. 4	25-55	30-60	35-65	50-85	55-100	70-100
2.00	No. 10	15-40	20-45	25-50	40-70	40-100	55-100
0.425	No. 40	8-20	15-30	15-30	25-45	20-50	30-70
0.075	No. 200	2-8	5-20	5-15	5-20	6-20	8-25

SUBBASE GRADING REQUIREMENTS

B. Other Acceptable Gradations: Materials within three to five percent, plus or minus, of specified gradation, or as recommended by the geotechnical engineer and approved by the Contracting Officer's Representative.

2.3 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - Plywood: Exterior grade, free of defects and patches on contact surface.
 - Lumber: Sound, grade-marked, S4S stress graded softwood, minimum
 50 mm (2 inches) thick, free from warp, twist, loose knots, splits, or other defects.
 - 3. Form Coating: As recommended by Architect/Engineer.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - Do not use forms varying from straight line more than 3 mm in 3000 mm (1/8 inch in 10 feet), horizontally and vertically.
- C. Provide flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Burlap: Minimum 233 g/sq. m (7 ounces/sq. yd.) dry.
 - 2. Sheet Materials for Curing Concrete: ASTM C171.
 - 3. Curing Compound: ASTM C309, Type 1 clear; liquid membrane forming type, without paraffin or petroleum.

2.5 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Concrete Type: Non-air-entrained. See Table I.

TABLE I - CONCRETE TYPES					
Concrete	Minimum 28 Day	Non-Air-Entrained		Air-Entrained	
Туре	Compressive	Min. Cement	Max.	Min. Cement	Max.
	Strength f'c	kg/cu. m	Water	kg/cu. m	Water
	MPa (psi)	(lbs./cu. yd.)	Cement	(lbs./cu. yd.)	Cement
			Ratio		Ratio
A	35 (5000)1,3	375 (630)	0.45	385 (650)	0.40
В	30 (4000)1,3	325 (550)	0.55	340 (570)	0.50
С	25 (3000)1,3	280 (470)	0.65	290 (490)	0.55
D	25 (3000)1,2	300 (500)	*	310 (520)	*
Footnotes:					

1000100000

 If trial mixes are used, achieve compressive strength 8.3 MPa (1,200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve compressive strength 9.7 MPa (1,400 psi) in excess of f'c.
 For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.

3. Laboratory Determined according to ACI 211.1 for normal weight concrete.

C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP	
APPLICATION	MAXIMUM SLUMP
Curb & Gutter	75 mm (3 inches)
Pedestrian Pavement	75 mm (3 inches)
Vehicular Pavement	50 mm (2 inches) Machine Finished
	100 mm (4 inches) Hand Finished
Equipment Pad	75 to 100 mm (3 to 4 inches)

2.6 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.
- C. Sealants:
 - Concrete Paving Expansion Joints: ASTM D5893/D5893M, Type SL, single component, self-leveling, silicone joint sealant.
 - Concrete Paving Joints: ASTM D6690, Type IV, hot-applied, single component joint sealant.

D. Concrete Protective Coating: AASHTO M233 linseed oil mixture.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Prepare, construct, and finish subgrade. See Section 31 20 00, EARTHWORK.
- D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

- A. Placing:
 - Place subbase material on prepared subgrade in uniform layer to required contour and grades, and to maximum 200 mm (8 inches) loose depth.
 - When required compacted thickness exceeds 150 mm (6 inches), place subbase material in equal thickness layers.
 - 3. When subbase elevation is 13 mm (1/2 inch) or more below required grade, excavate subbase minimum 75 mm (3 inches) deep. Place and compact subbase to required grade.
- B. Compaction:
 - 1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
 - 2. Maintain subbase at optimum moisture content for compaction.
 - Compact each subbase layer to minimum 95 percent or 100 percent of maximum density as specified in Section 31 20 00, EARTHWORK.
- C. Subbase Tolerances:
 - 1. Variation from Indicated Grade: Maximum 9 mm (3/8 inch).
 - 2. Variation from Indicated Thickness: Maximum 13 mm (1/2 inch).
- D. Protection:
 - 1. Protect subbase from damage until concrete is placed.
 - 2. Reconstruct damaged subbase before placing concrete.

3.3 SETTING FORMS

- A. Form Substrate:
 - Compact form substrate to uniformly support forms along entire length.

- Correct substrate imperfections and variations by cutting, filling, and compacting.
- B. Form Setting:
 - 1. Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
 - Remove forms when removal will not damage concrete and when required for finishing.
 - 3. Clean and oil forms before each use.
 - 4. Correct forms, when required, immediately before placing concrete.
- C. Land Surveyor: Establish control, alignment, and grade for forms and slip forming machine operations.
 - 1. Notify Contracting Officer's Representative immediately when discrepancies exist between field conditions and drawings.
 - 2. Correct discrepancies greater than 25 mm (1 inch) before placing concrete.
- D. Form Tolerances:
 - 1. Variation from Indicated Line: Maximum 6 mm (1/4 inch).
 - Variation from Indicated Grade: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 - 1. Conform to details shown.
 - 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on approved submittal Drawings.
- B. Place transverse construction joints of type shown, where indicated, and whenever concrete placement is suspended for more than 30 minutes.

- C. Provide butt-type joint with dowels in curb and gutter at planned joint locations.
- D. Provide keyed joints with tie bars when joint occurs in middle third of planned curb and gutter joint interval.

3.7 CONTRACTION JOINTS

- A. Tool or cut joints to width, depth, and radius edge shown on drawings using grooving tool, jointer, or saw.
- B. Construct joints in curbs and gutters by inserting 3 mm (1/8 inch) steel plates conforming to curb and gutter cross sections.
 - 1. Keep plates in place until concrete can hold its shape.
- C. Finish joint edges with edging tool.
- D. Score pedestrian pavement with grooving tool or jointer.

3.8 EXPANSION JOINTS

- A. Form expansion joints with expansion joint filler of thickness shown on drawings.
 - Locate joints around perimeter of structures and features abutting site work concrete.
 - Create complete, uniform separation between structure and site work concrete.
- B. Extend expansion joint material full depth of concrete with top edge of joint filler below finished concrete surface where sealant is indicated on Drawings.
- C. Cut and shape material matching cross section.
- D. Anchor with approved devices to prevent displacing during placing and finishing operations.
- E. Round joint edges with edging tool.

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 - 1. Obtain Contracting Officer's Representative approval.
 - 2. Remove debris and other foreign material.
 - 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 - 1. Vibrate concrete against forms and along joints.
 - 2. Avoid excess vibration and handling causing segregation.

- D. Place concrete continuously between joints without bulkheads.
- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.
- 3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS
 - A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.
 - B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
 - C. Strike concrete surface to proper section ready for consolidation.
 - D. Consolidate concrete by tamping and spading.
 - E. Finish concrete surface with wood or metal float.
 - F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 PLACING CONCRETE FOR VEHICULAR PAVEMENT

- A. Deposit concrete as close as possible to its final position.
- B. Place concrete continuously between construction joints without cold joints.
- C. Strike and consolidate concrete with finishing machine, vibrating screed, or by hand-finishing.
- D. Finish concrete surface to elevation and crown shown on drawings.
- E. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- F. Obtain Contracting Officer's Representative's approval before placing adjacent lanes.
- G. Curb-Forming Machines: Curb-forming machines for constructing curbs and gutter on the project. When equipment produces unsatisfactory results, discontinue use of the equipment at any time during construction and accomplish work by hand method construction. Remove unsatisfactory work and reconstruct full length between regularly scheduled joints. Dispose of removed portions off the project site.

3.12 FORM REMOVAL

A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.

B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.13 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below, unless otherwise indicated on Drawings:
 - Consolidating, floating, striking, troweling, texturing, and joint edging.
- B. Use edging tool with 6 mm (1/4 inch) radius.
- C. Keep finishing equipment and tools clean and suitable for use.

3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Wheelchair Curb Ramps:
 - Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 - 2. Finish slab edges and formed transverse joints with edger.
 - 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1.5 mm (1/16 inch) deep profile.
 - Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 - 5. Paving Tolerances:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).
 - b. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
 - 6. Replace paving within joint boundary when paving exceeds specified tolerances.
- B. Step Treads, Risers and Sidewalls: Finish as specified for pedestrian pavement, except as follows:
 - 1. Remove riser forms sequentially, starting with top riser.
 - Rub riser face with wood or concrete rubbing block and water. Remove blemishes, form marks, and tool marks. Use outside edger to round nosing; use inside edger to finish bottom of riser.
 - 3. Apply uniform brush finish to treads, risers, and sidewall.
 - Apply stiff brush finish to treads to provide slip resistant surface complying with ANSI B101.3.
 - 4. Step Tolerance:

a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).

3.15 CONCRETE FINISHING - VEHICULAR PAVEMENT

- A. Align finish surfaces where new and existing pavements abut.
- B. Longitudinally float pavement surface to profile and grade indicated on drawings.
- C. Straighten surface removing irregularities and maintaining specified tolerances while concrete is plastic.
- D. Finish pavement edges and joints with edging tool.
- E. Broom finish concrete surface after bleed water dissipates and before concrete hardens.
 - 1. Broom surface transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 3 mm (1/8 inch) deep profile.
- F. Pavement Tolerances:
 - Variation from Indicated Plane: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet) tested parallel and perpendicular to traffic direction at maximum 1500 mm (5 feet) intervals.
 - 2. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- G. Replace paving within joint boundary when paving exceeds specified tolerances.

3.16 CONCRETE FINISHING - CURBS AND GUTTERS

- A. Round edges of gutter and top of curb with edging tool.
- B. Gutter and Curb Top:
 - Float surfaces and finish with smooth wood or metal float until true to grade and section and uniform color.
 - 2. Finish surfaces, while still plastic, longitudinally with bristle brush.
- C. Curb Face:
 - Remove curb form and immediately rub curb face with wood or concrete rubbing block removing blemishes, form marks, and tool marks and providing uniform color.
 - 2. Brush curb face, while still plastic, matching gutter and curb top.
- D. Curb and Gutter Tolerances: Except at grade changes or curves.
 - 1. Variation from Indicated Plane and Grade:
 - a. Gutter: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

- b. Curb Top and Face: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet).
- E. Replace curbs and gutters within joint boundary when curbs and gutters exceed specified tolerances.
- F. Correct depressions causing standing water.

3.17 CONCRETE FINISHING - EQUIPMENT PADS

- A. Strike pad surface to elevation shown on Drawings.
- B. Provide smooth, dense float finish, free from depressions or irregularities.
- C. Finish pad edges with edger.
- D. After removing forms, rub pad edge faces with wood or concrete rubbing block, removing blemishes, form marks, and tool marks and providing uniform color.
- E. Pad Tolerances:
 - Variation from Indicated Plane: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
 - 2. Variation from Indicated Elevation: Maximum 6 mm (1/4 inch).
 - 3. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- F. Replace pads when pads exceed specified tolerances.

3.18 CONCRETE CURING

- A. Concrete Protection:
 - 1. Protect unhardened concrete from rain and flowing water.
 - 2. Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
 - 3. Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.
 - a. Replace pavement damaged by curing method allowing concrete cracking.
 - Employ another curing method as directed by Contracting Officer's Representative.
- B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:
 - Burlap Mat: Provide minimum two layers kept saturated with water during curing period. Overlap Mats at least 150 mm (6 inches).
 - 2. Sheet Materials:

- a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
- b. Overlap sheets minimum 300 mm (12 inches).
- c. Securely anchor sheet materials preventing displacement.
- 3. Curing Compound:
 - a. Protect joints indicated to receive sealants preventing contamination from curing compound.
 - Insert moistened paper or fiber rope into joint or cover joint with waterproof paper.
 - c. Apply curing compound before concrete dries.
 - Apply curing compound in two coats at right angles to each other.
 - e. Application Rate: Maximum 5 sq. m/L (200 sq. ft./gallon), both coats.
 - Immediately reapply curing compound to surfaces damaged during curing period.

3.19 CONCRETE PROTECTIVE COATING

- A. Apply protective coating of linseed oil mixture to exposed-to-view concrete surfaces, drainage structures, and features that project through, into, or against concrete exterior improvements to protect the concrete against deicing materials.
- B. Complete backfilling and curing operation before applying protective coating.
- C. Dry and thoroughly clean concrete before each application.
- D. Apply two coats, with maximum coverage of 11 sq. m/L (50 sq. yds./gal.); first coat, and maximum 16 sq. m/L (70 sq. yds./gal.); second coat, except apply commercially prepared mixture according to manufacturer's instructions.
- E. Protect coated surfaces from vehicular and pedestrian traffic until dry.
- F. Do not heat protective coating, and do not expose protective coating to open flame, sparks, or fire adjacent to open containers or applicators. Do not apply material at temperatures lower than 10 degrees C (50 degrees F).

3.20 FIELD QUALITY CONTROL

A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.

- 1. Compaction.
 - a. Pavement subgrade.
 - b. Curb, gutter, and sidewalk.
- 2. Concrete:
 - a. Delivery samples.
 - b. Field samples.
- 3. Slip Resistance: Steps and pedestrian paving.

3.21 CLEANING

- A. After completing curing:
 - 1. Remove burlap and sheet curing materials.
 - 2. Sweep concrete clean, removing foreign matter from the joints.
 - 3. Seal joints as specified.

3.22 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.
 - Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -

SECTION 32 12 16 ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.2 RELATED WORK

- A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 00, EARTH MOVING.
- C. Pavement Markings: Section 32 17 23, PAVEMENT MARKINGS.

1.3 INSPECTION OF PLANT AND EQUIPMENT

The Resident Engineer shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use.

1.4 ALIGNMENT AND GRADE CONTROL

The Contractor's Registered Professional Land Surveyor shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Data and Test Reports:
 - Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by State Highway Department.
 - Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by State Highway Department.

- 3. Job-mix formula.
- C. Certifications:
 - Asphalt prime and tack coat material certificate of conformance to State Highway Department requirements.
 - 2. Asphalt cement certificate of conformance to State Highway Department requirements.
 - 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the State Highway Specification.
- D. One copy of State Highway Department Specifications.
- E. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground.

PART 2 - PRODUCTS

2.1 GENERAL

A. Aggregate base and asphalt concrete materials shall conform to the requirements of the following and other appropriate sections of the latest version of the State Highway Material Specifications, including amendments, addenda and errata. Where the term "Engineer" or "Commission" is referenced in the State Highway Specifications, it shall mean the VA Resident Engineer or VA Contracting Officer.

2.2 AGGREGATES

- A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined.
- B. Subbase aggregate (where required) maximum size: 38mm(1-1/2").
- C. Base aggregate maximum size:
 - 1. Base course over 152mm(6") thick: 38mm(1-1/2");
 - 2. Other base courses: 19mm(3/4").
- D. Asphaltic base course:
 - 1. Maximum particle size not to exceed 25.4mm(1").
 - Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.
- E. Aggregates for asphaltic concrete paving: Provide a mixture of sand, mineral aggregate, and liquid asphalt mixed in such proportions that the percentage by weight will be within:

```
<u>Sieve Sizes</u> <u>Percentage Passing</u>
```

32 12 16 - 2

19mm(3/4")		100		
9.5mm(3/8")	67	to	85	
6.4mm(1/4")	50	to	65	
2.4mm(No. 8 mesh)	37	to	50	
600µm(No. 30 mesh)	15	to	25	
75µm(No. 200 mesh)	3	to	8	

plus 50/60 penetration liquid asphalt at 5 percent to 6-1/2 percent of the combined dry aggregates.

2.3 ASPHALTS

- A. Comply with provisions of Asphalt Institute Specification SS2:
 - 1. Asphalt cement: Penetration grade 50/60
 - 2. Prime coat: Cut-back type, grade MC-250
 - 3. Tack coat: Uniformly emulsified, grade SS-1H

2.4 SEALER

- A. Provide a sealer consisting of suitable fibrated chemical type asphalt base binders and fillers having a container consistency suitable for troweling after thorough stirring, and containing no clay or other deleterious substance.
- B. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.

PART 3 - EXECUTION

3.1 GENERAL

The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the State Highway Specifications for the type of material specified.

3.2 MIXING ASPHALTIC CONCRETE MATERIALS

- A. Provide hot plant-mixed asphaltic concrete paving materials.
 - Temperature leaving the plant: 143 degrees C(290 degrees F) minimum, 160 degrees C(320 degrees F) maximum.
 - Temperature at time of placing: 138 degrees C(280 degrees F) minimum.

3.3 SUBGRADE

A. Shape to line and grade and compact with self-propelled rollers.

- B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled.
- C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled.
- D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade.
- E. Proof-roll the subgrade with maximum 45 tonne (50 ton) gross weight dump truck as directed by VA Resident Engineer or VA Contracting Officer. If pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade.

3.4 BASE COURSES

- A. Subbase (when required)
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course.
- B. Base
 - 1. Spread and compact to the thickness shown on the drawings.
 - 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
 - 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course.
- C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus 0.0mm (0.0") to plus 12.7mm (0.5").
- D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 5mm in 3m (3/16 inch in ten feet).
- E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction.

3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING

- A. Remove all loose materials from the compacted base.
- B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- C. Receipt of asphaltic concrete materials:

- Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 130 degrees C(280 degrees F).
- Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 10 degrees C (50 degrees F), not during fog, rain, or other unsuitable conditions.
- D. Spreading:
 - 1. Spread material in a manner that requires the least handling.
 - 2. Where thickness of finished paving will be 76mm (3") or less, spread in one layer.
- E. Rolling:
 - After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings.
 - 2. Roll in at least two directions until no roller marks are visible.
 - 3. Finished paving smoothness tolerance:
 - a. No depressions which will retain standing water.
 - b. No deviation greater than 3mm in 1.8m (1/8" in six feet).

3.6 FINAL CLEAN-UP

Remove all debris, rubbish, and excess material from the work area.

- - - E N D - - -

SECTION 32 17 23 PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Paint on pavement surfaces, in form of traffic lanes, parking bays, areas restricted to handicapped persons, crosswalks, and other detail pavement markings.

1.2 RELATED REQUIREMENTS

- A. Paint VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Paint Color: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. Federal Specifications (Fed. Spec.):
 - 1. TT-P-1952F Paint, Traffic and Airfield Marking, Waterborne.
- C. Master Painters Institute (MPI):
 - 1. No. 97 Traffic Marking Paint, Latex.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show pavement marking configuration and dimensions.
 - 2. Show international symbol of accessibility at designated parking spaces.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Application instructions.
- D. Samples:
 - 1. Paint: 200 mm (8 inches) square, each type and color.
- E. Certificates: Certify products comply with specifications.
- F. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer with project experience list.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.

- Installed specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 13 degrees C (55 degrees F) for minimum
 48 hours before installation.
 - a. Surface to be painted and ambient temperature: Minimum
 10 degrees C (50 degrees F) and maximum 35 degrees C
 (95 degrees F).
- B. Field Measurements: Verify field conditions affecting traffic marking installation. Show field measurements on Submittal Drawings.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

A. Design paint complying with specified performance:1. Application: Fed. Spec. TT-P-1952.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer and from one production run.

- Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Paints and coatings.

2.3 SANDBLASTING EQUIPMENT

A. Air compressor, hoses, and nozzles of proper size and capacity as required for cleaning painted surfaces. Compressor to provide minimum 0.08 cu. m/s (150 cfm) of air at pressure of minimum 625 kPa (90 psi) at each nozzle used.

2.4 PAINT APPLICATOR

A. Apply marking paint with approved mechanical equipment. Provide equipment with constant agitation of paint and travel at controlled speeds. Synchronize one or more paint "guns" to automatically begin and cut off paint flow in case of skip lines. Equipment to have manual control to apply continuous lines of varying length and marking widths as indicated on Drawings. Provide pneumatic spray guns for hand application of paint in areas where mobile paint applicator cannot be used.

2.5 PAINT

A. Paint: MPI No. 97. For obliterating existing markings comply with Fed. Spec. TT-P-1952. Provide minimum 18 L (5 gallons) containers.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - Allow new pavement surfaces to cure for period of minimum 14 days before application of marking materials.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.
 - Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or combination of these methods.
 - Completely remove rubber deposits, existing paint markings, and other coatings adhering to pavement with scrapers, wire brushings, sandblasting, mechanical abrasion, or approved chemicals as directed by Contracting Officer's Representative.

- 3. As an option, comply with Fed. Spec. TT-P-1952 for removal of existing paint markings on asphalt pavement. Apply black paint in as many coats as necessary to completely obliterate existing markings.
- 4. Scrub affected areas with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinse thoroughly after each application where oil or grease are present on old pavements to be marked.
 - a. After cleaning, seal oil-soaked areas with cut shellac to prevent bleeding through new paint.
- Clean and dry surface before pavement marking. Do not begin any marking until Contracting Officer's Representative inspected surface and gives permission to proceed.

3.2 TEMPORARY PAVEMENT MARKING

- A. Apply Temporary Pavement Markings of colors, widths and lengths shown on drawings or directed by Contracting Officer's Representative. After temporary marking has served its purpose and when so ordered by Contracting Officer's Representative, remove temporary marking by carefully controlled sandblasting, approved grinding equipment, or other approved method to prevent damage on applied surface.
- B. As an option, provide approved preformed pressure sensitive, adhesive tape type of temporary pavement marking of required colors, widths and lengths in lieu of temporary painted marking. Continuous durability and effectiveness of such marking is required during period for which its use is required. Remove any unsatisfactory tape type marking and replace with painted markings.

3.3 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.4 PAINT APPLICATION

- A. Apply uniformly painted pavement marking of required colors, length, and width with true, sharp edges and ends on properly cured, prepared, and dried surfaces.
- B. Comply with details as indicated on drawings and established control points.

- C. Apply paint at wet film thickness of 0.4 mm (0.015 inch). Apply paint in one coat. When directed by Contracting Officer's Representative, apply additional coats at markings showing light spots. Comply with paint manufacturer's maximum drying time requirements to prevent undue softening of asphalt, and pick-up, displacement, or discoloration by tires of traffic.
- D. When deficiency in marking drying occurs, discontinue paint operations until cause of slow drying is determined and corrected.
- E. Remove and replace marking applied less than minimum material rates, deviates from true alignment, exceeds stipulated length and width tolerances, or shows light spots, smears, or other deficiencies or irregularities.
- F. Remove marking by carefully controlled sandblasting, approved grinding equipment, or other approve method to prevent damage on applied surface.

3.5 DETAIL PAVEMENT MARKING APPLICATION

- A. Apply Detail Pavement Markings, exclusive of actual traffic lane marking as follows:
 - 1. At exit and entrance islands and turnouts.
 - 2. On curbs.
 - 3. At crosswalks.
 - 4. At parking bays.
 - 5. Other locations as indicated on drawings.
- B. Apply International Handicapped Symbol at indicated parking spaces. Color as shown on drawings. Apply paint for symbol using suitable template that will provide pavement marking with true, sharp edges and ends.
- C. Install detail pavement markings of colors, widths and lengths, and design pattern at locations indicated on drawings.

3.6 TOLERANCES

- A. Length and Width of Lines: Plus or minus 75 mm (3 inches) and plus or minus 3 mm (1/8 inch), respectively, in case of skip markings.
- B. Length of intervals exceeding line length tolerance are not acceptable.

3.7 CLEANING

A. Remove excess paint before paint sets.

3.8 PROTECTION

A. Protect pavement markings from traffic and construction operations.

32 17 23 - 5

- Protect newly painted markings from vehicular traffic until paint is dry and track free.
- Place warning signs at beginning of wet line, and at points well in advance of marking equipment for alerting approaching traffic from both directions.
- Place small flags or other similarly effective small objects near freshly applied markings at frequent intervals to reduce crossing by traffic.
- B. Repair damage.

- - - E N D - - -

SECTION 32 84 00 PLANTING IRRIGATION

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Automatically-controlled lawn and plant bed irrigation system, controllers and all other appurtenances.

1.2 ABBREVIATIONS

- A. HDPE: High-density polyethylene plastic.
- B. NPT: National pipe thread.
- C. PTFE: Polytetrafluoroethylene.
- D. PVC: Polyvinyl chloride plastic.

1.3 DEFINITIONS

- A. Circuit Piping: Downstream from control valves to sprinklers, specialties, and drain valves.
- B. Drain Piping: Downstream from circuit-piping drain valves.
- C. Main Piping: Downstream from point of connection to water distribution piping to, and including, control valves.
- D. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 Volts or for remote-control, signaling power-limited circuits.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Society of Mechanical Engineers (ASME):
 - 1. B16.18-2012 Cast Copper Alloy Solder Joint Pressure Fittings.
 - B16.22-2013 Wrought Copper and Copper Alloy Solder Joint Pressure Fittings.
 - B16.24-2011 Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500 and 2500.
 - 4. B40.100-2013 Pressure Gauges and Gauge Attachments.
- C. ASTM International (ASTM):
 - 1. B88-14/B88M-13 Seamless Copper Water Tube.
 - B813-10 Liquid and Paste Fluxes for Soldering of Copper and Copper Alloy Tube.
 - D1785-15 Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedule 40, 80, and 120.

- D2239-12- Polyethylene (PE) Plastic Pipe (SIDR) Based on controlled Inside Diameter.
- D2241-15 Poly(Vinyl Chloride) (PVC) Pressure Rated Pipe (SDR Series).
- D2464-15 Threaded Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80.
- D2466-15 Poly(Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 40.
- D2564-12 Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Piping Systems.
- 9. D2609-15 Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe.
- 10. D2683-14 Socket-Type Polyethylene Fittings for Outside Diameter-Controlled Polyethylene Pipe and Tubing.
- 11. D2855-15 Two-Step (Primer and Solvent Cement) Method of Joining Poly (Vinyl Chloride) (PVC) or Chlorinated Poly (Vinyl Chloride) (CPVC) Pipe and Piping Components with Tapered Sockets.
- 12. F477-14 Elastomeric Seals (Gaskets) for Joining Plastic Pipe.
- D. American Welding Society (AWS):
 - 1. A5.8/A5.8M-04 Filler Metals for Brazing and Braze Welding.
- E. National Fire Protection Association (NFPA):
 - 1. 70 2011 Edition National Electrical Code.

1.5 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting minimum 7 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect.
 - c. Landscape Architect
 - d. Contractor.
 - e. Installer.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.

32 84 00 - 2

- f. Terminations.
- g. Transitions and connections to other work.
- h. Inspecting and testing.
- i. Other items affecting successful completion.
- Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Installation instructions.
 - 3. Warranty.
- D. Certificates: Certify each product with specifications.
 - 1. Control systems.
 - 2. Show control system is UL Listed for specified application.
- E. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Irrigation Installer with project experience list.
- F. Operation and Maintenance Data:
 - Start-up, maintenance, troubleshooting, emergency, and shut-down instructions for each operational product.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - Project Experience List: Provide contact names and addresses for completed projects.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

D. Store plastic piping protected from direct sunlight. Support pipe to prevent sagging and bending.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Piping Materials:
 - 1. Copper Tubes: ASTM B88, Type L.
 - a. Fittings: ASME B16.18 and ASME B16.22 solder-joint fittings.
 - b. Bronze Flange: ASME B16.24, class 150, ASTM B32 solder-joint end.
 - c. Union: Cast-copper alloy with ball-and-socket, solder joints or threaded ends.
 - d. Brazing Filler Metal: AWS A5.8.
 - e. Solder: ASTM B32, tin-antimony. Flux soldering, ASTM B813.
 - Polyethylene (PE) Plastic Pipe with Controlled ID: ASTM D2239, SIDR 15.
 - a. Fittings: ASTM D2609.
 - b. Flange Gaskets, Bolts, and Nuts: Type as recommended by manufacturer.
 - 3. Polyvinyl Chloride (PVC) Pipe: ASTM D1785 PVC 1120, Schedule 40 or ASTM D2241, PVC 1120 compound, SDR 21.
 - a. Fittings:
 - 1) Socket Type: ASTM D, 2464 Schedule 80.
 - 2) Threaded Type: ASTM D2464, Schedule 80.
 - Swing Joints: Threaded fittings with elastomeric seals and minimum 1380 kPa (200 psi) working pressure.
 - b. Solvent Cement: ASTM D2564.
 - c. Flange Gaskets, Bolts, and Nuts: Type as recommended by manufacturer.
- B. Valves:
 - 1. Underground Shut-Off Valves:
 - a. Ball Valves, Isolation valves, 38 mm (1-1/2 Inch) and Smaller: Full-port ball valves with bronze body, PTFE seats, and 90 degree on/off handle. Ball valves to have NPT female end connections.

 $32 \ 84 \ 00 \ - \ 4$

- Remote Control Valves: Solenoid actuated valves, 24 Volt AC, installed underground.
 - a. Globe Valves: Heavy duty construction with manual shut-off and flow control adjustment manual operation.
 - b. Straight or Angle Valve:
 - Molded-plastic body, normally closed diaphragm type with manual shut off and flow control adjustment.
 - c. Provide valves with unions and housing with minimum working pressure, 1025 kPa (150 psi).
- Quick Couplers: Brass parts, two-piece unit consisting of coupler water seal valve assembly and removable upper body to allow spring and key track to be serviced without shut down of main.
 - Lids: Lockable vinyl cover with springs for positive closure on key removal.
 - b. Provide (1) one hose swivels and operating keys for each size coupler to Contracting Officer's Representative.
- C. Sleeve Material: ASTM D2241, Schedule 40.

2.2 AUTOMATIC CONTROL EQUIPMENT - ELECTRIC

A. Control Equipment: NEMA ICS 2 with 20-volt single phase service operating with indicated station, and ground chassis. Provide enclosure NEMA ICS 6 Type 3R, with locking hinge cover, wall mounted.

2.3 SPRINKLER HEADS

- A. Sprinkler Heads: Manufacturer's standard unit designed to provide uniform coverage over entire area of spray as indicated on Drawings. Internal assembly includes filter screen, capable of removal from top without removing sprinkler case from riser.
 - Rotary Pop-Up Sprinklers: Gear-driven, impact resistant heavy-duty ABS with gears and pinions assembled on stainless steel spindles.
 - a. Full circle sprinklers, dual or tri-nozzle combination type with positive water-driven gear assembly.
 - b. Part circle sprinklers, variable arc type.
 - Shrub Spray: Pop-up or fixed spray type with heavy-duty, ultraviolet resistant plastic sprinkler body, stem, nozzle, and screen and stainless steel retract spring and ratcheting system for alignment of pattern.

2.4 LOW VOLTAGE CONTROL VALVE WIRE (for repair of existing controlwire)

A. Wire: NFPA 70, solid copper wire, minimum1.8 mm (14 gage), UL LLC approved for direct burial in ground.

2.5 LOW VOLTAGE CONTROLLER CABLE

A. Multi-strand cable, UL-approved for direct burial in ground, size and wire type according to manufacturer's recommendations.

2.6 SPLICING MATERIALS

A. Epoxy waterproof sealing packet.

2.7 ACCESSORIES

- A. Valve Box: HDPE structural foam Type A, Class III.
 - 1. Color: Green.
 - 2. Cast word "Irrigation" on cover.
 - Stencil controller and circuit numbers with permanent white epoxy paint. Letters minimum 75 mm (3 inches) height.
- B. Backflow Preventer: ASSE 1013.Plumbing contractor to provide reduced pressure principle backflow preventer at each new connection to water distribution system.
- C. Water Meter and backflow: by plumbing contractor.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Examine proposed irrigation areas for compliance with requirements and conditions affecting installation and performance.
- D. Set stakes to identify locations of proposed irrigation system. Obtain Contracting Officer's Representative's approval before excavation.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Perform excavation, trenching, and backfilling for sprinkler system as specified in Section 31 20 00, EARTHWORK.

3.3 PIPE INSTALLATION - GENERAL

- A. Layout work as indicated on drawings. Lines are to be in common trench wherever possible.
- B. Install sprinkler lines to avoid HVAC trenches, electric ducts, storm and sanitary sewer lines, and existing water and gas mains; all of which have right of way.
- C. Install pipe under sidewalks and curbs by jacking, auger boring, or by tunneling. Repair or replace any cracked concrete, due to settling, during warranty period.
- D. Do not lay pipe on unstable material, in wet trenches or, in opinion of Contracting Officer's Representative, when trench or weather conditions are unsuitable for work.
- E. Allow minimum of 3 inches between parallel pipes in same trench.
- F. Clean interior portion of pipe and fittings of foreign matter before installation. Securely close open ends of pipe and fittings with caps or plugs to protect fixtures and equipment against dirt, water and chemical or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- G. Install full length of each section of pipe resting upon pipe bed with recesses excavated to accommodate bells or joints. Do not lay pipe on wood blocking.
- H. Hold pipe securely in place while joint is being made.
- I. Do not work over, or walk on, pipe in trenches until covered by layers of earth, well tamped, in place to depth of 12 inches over pipe.
- J. Install irrigation lines and control wire at designated utility lanes or beside roadways where possible.
- K. Connect new system to existing mains.
- L. Install concrete thrust blocks where irrigation main changes direction at "L" and "T" locations and where irrigation main terminates. Delay pressure tests until minimum 36 hours after completing thrust blocks. Size and place concrete thrust blocks for supply mains according to pipe manufacturer's instructions.
- M. Minimum cover over mainline of 30 inches. Cover laterals to minimum depth of 24 inches.

3.4 PLASTIC PIPE INSTALLATION

A. Install plastic pipe snaked in trench at least 1 m per 30 m (1 foot per 100 feet) to allow for thermal construction and expansion and to reduce strain on connections.

32 84 00 - 7

- B. Joints:
 - 1. Solvent Welded Socket Type: ASTM D2855.
 - Threaded Type: Apply liquid Polytetrafluoroethylene (PTFE) thread lubricant or PTFE thread tape. After joint is made hand tight (hard), strap wrench should be used to make up to two additional full turns.
 - 3. Elastomeric Gasket: ASTM F477.

3.5 VALVE INSTALLATION

- A. Group remote control valves wherever possible and aligned at set dimension back of curb along roads.
- B. Do not install valves under roads, pavement or walks.
- C. Clean interior of valves of foreign matter before installation.
- D. House pressure control valves installed adjacent to remote control valve in same valve box.
- E. Install valve box with cover flush with finished grade.
- F. Install control valves minimum75 mm (3 inches) below finished grade.

3.6 SLEEVE INSTALLATION

- A. Install sleeves where pipe and control wires are installed under walks, paving, walls, and other similar areas.
- B. Install sleeves twice line size or greater extend 12 inches beyond edges of paving or construction.
- C. Bed sleeves with minimum 4 inches sand backfill above top of pipe in areas where pipe is placed before hardscape is installed.

3.7 SPRINKLER AND QUICK COUPLER INSTALLATION

- A. Install sprinkler heads and quick couplers on temporary nipples extending at least 3 inches above finished grade. After turf is established, remove temporary nipples, install sprinkler heads and quick couplers at ground surface.
- B. Locate part circle heads to maintain maximum distance of 6 inches from edges and other boundaries.
- C. Provide swing joint assembly in all sprinklers, shrub sprays and quick couplers.
- D. Install entire system for manual winterization by compressed air.

3.8 AUTOMATIC IRRIGATION - CONTROL SYSTEM INSTALLATION

A. Determine exact location of controllers in field before installation. Coordinate electrical service to these locations. Install according to manufacturer's instructions and NFPA 70.

32 84 00 - 8

3.9 CONTROL WIRE INSTALLATION

- A. Install electric control cable in trenches with new mains or in separate trench at back of curb, unless cross-country route is indicated on Drawings. Locate in trench with mains when possible on cross-country routes.
- B. Install wiring bundles located with piping 2 inches below bottom of pipe. Color code each wire in bundle differently. Bundle multiple wires and tape together at 15 foot intervals. Tag wires at controllers and control valve location with plastic tie wire tags. Provide same number and color of wire at each ends.
- C. Hold splicing to minimum. Provide pullbox at each splice. No splices will be allowed between field located controllers and remote control valves.
- D. Provide 12 inch expansion loops in wiring at each wire connection or change in wire direction. Provide 24 inches loop at remote control valves.
- E. Do not install power wires for operation of irrigation system in same conduit as irrigation control wires.

3.10 FIELD TRAINING

A. Provide field training course for designated operating and maintenance staff members for total period of (4) four hours of normal working time and starting after system is functionally complete but before final acceptance tests. Submit information describing training to be provided, training aids to be used, samples of training materials to be provided, and schedules and notification of training. Cover items contained in operating and maintenance manuals.

3.11 PROTECTION

- A. Protect irrigation system from traffic and construction operations.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.

- - - E N D - - -

SECTION 32 90 00 PLANTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Plants, soils, edging, turf, and landscape materials.

1.2 RELATED REQUIREMENTS

1.3 DEFINITIONS

- A. Pesticide: Any substance or mixture of substances, including biological control agents, that may prevent, destroy, repel, or mitigate pests and is specifically labeled for use by U.S. Environmental Protection Agency (EPA). Also, any substance used as plant regulator, defoliant, disinfectant, or biocide.
- B. Planter Bed: An area containing one or combination of following plant types: shrubs, vines, wildflowers, annuals, perennials, ground cover, and mulch topdressing, excluding turf. Trees may also be found in planter beds.
- C. Stand of Turf: 100 percent of established species.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute (ANSI):
 - 1. Z60.1-2014 Nursery Stock.

1.5 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 7 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. Architect.
 - c. Landscape Architect
 - d. Contractor.
 - e. Installer.
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Inspection of planting materials.
 - b. Installation schedule.
 - c. Installation sequence.

- d. Preparatory work.
- e. Protection before, during, and after installation.
- f. Installation.
- g. Inspecting.
- h. Environmental procedures.
- Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Warranty.
- C. Samples:
 - Organic and Compost Mulch: 1 L. (1 quart) sealed plastic bag of each required mulch, including label with percentage weight of each material and source representing material to be provided. Samples to match color, texture, and composition of installed material.
 - Mineral Mulch: 1.0 kg (2 lb.) sealed plastic bag of mulch, including label with source. Samples to match color, texture, and composition of installed material.
 - 3. Filter Fabric: 300 by 300 mm (12 by 12 inches).
 - 4. Edging Materials and Accessories: Manufacturer's standard sizes.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations for minimum five years.
 - Project Experience List: Provide contact names and addresses for completed projects.
- B. Measure plants according to ANSI Z60.1. Pruning to obtain required sizes will not be permitted.
- C. Contracting Officer's Representative may review plant materials either at place of growth or project site before planting for compliance with requirements. Contracting Officer's Representative retains right to inspect trees and shrubs to determine if any unacceptable conditions exist and to reject any trees or shrubs at any time during Project. All

rejected trees and shrubs must be immediately removed from Project site.

 Submit plant material source information to Contracting Officer's Representative seven days in advance of delivery to Project site.

1.8 DELIVERY

- A. Deliver packaged products in manufacturer's original sealed packaging.
- B. Deliver branched plants with branches tied and exposed branches covered with material that allows air circulation. Prevent damage to branches, trunks, root systems, and root balls and desiccation of leaves.
- C. Use of equipment such as "tree spades" is permitted provided plant balls are sized according to ANSI Z60.1 and tops are protected from damage.

1.9 STORAGE AND HANDLING

- A. Plant Storage and Protection: Store and protect plants not planted on day of arrival at Project site as follows:
 - Shade and protect plants in outdoor storage areas from wind and direct sunlight until planted.
 - Protect balled and burlapped plants from freezing or drying out by covering balls or roots with moist burlap, sawdust, wood chips, shredded bark, peat moss, or other approved material. Provide covering that allows air circulation.
 - Keep plants in moist condition until planted by watering with fine mist spray.
 - Do not store plant materials directly on concrete or bituminous surfaces.
- B. Handling: Do not drop or dump plants from vehicles. Avoid damaging plants being moved from nursery or storage area to planting site. Handle plants carefully to avoid damaging or breaking earth ball or root structure. Do not handle plants by trunk or stem. Remove damaged plants from Project site.

1.10 FIELD CONDITIONS

- A. Environment:
 - 1. Coordinate installation of planting materials during optimal planting seasons for each type of plant material required.
 - Restrictions: Do not plant when ground is frozen, snow covered, muddy, or when air temperature exceed .

B. Weather Limitations: Install plantings only during current and forecasted weather conditions that are comply with plant requirements. Apply associated products in compliance with manufacturers' instructions.

1.11 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant plantings and against material defects.
 - 1. Warranty Period: Two years.
 - Plant and Turf Warranty Periods will begin from date of Substantial Completion .
 - 3. Contracting Officer's Representative will reinspect plants and turf at end of Warranty Period. Replace any dead, missing, or defective plant material and turf immediately. Warranty Period will end on date of this inspection provided Contractor has complied with warranty work required by this specification. Comply with following requirements:
 - a. Replace any plants more than 25 percent dead, missing or defective plant material before final inspection.
 - b. Only one replacement of each plant will be required except when losses or replacements are due to failure to comply with these requirements.
 - c. Complete remedial measures directed by Contracting Officer's Representative to ensure plant and turf survival.
 - d. Repair damage caused while making plant or turf replacements.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

A. Provide each product from one source or manufacturer.

2.2 PLANT MATERIALS

A. Plant Materials: ANSI Z60.1, conforming to varieties specified and be true to scientific name as listed in Hortus Third. Well-branched, well-formed, sound, vigorous, healthy planting stock free from disease, sunscald, windburn, abrasion, and harmful insects or insect eggs and having healthy, normal, and undamaged root system.

- 1. Trees-Deciduous and Evergreen: Single trunked with single leader, unless otherwise indicated; symmetrically developed deciduous trees and shrubs of uniform habit of growth; straight boles or stems; free from objectionable disfigurements; evergreen trees and shrubs with well-developed symmetrical tops, with typical spread of branches for each particular species or variety. Trees with damaged, crooked, or multiple leaders; tight vertical branches where bark is squeezed between two branches or between branch and trunk; crossing trunks; cut-off limbs more than 19 mm (3/4 inch) in diameter; or with stem girdling roots will be rejected.
- 2. Provide plants of sizes indicated, measured before pruning with branches in normal position. Plants larger in size than specified is acceptable with approval of Contracting Officer's Representative, with no change in contract price. When larger plants are used, increase ball of earth or spread of roots according to ANSI Z60.1.
- 3. Provide nursery grown plant material conforming to requirements and recommendations of ANSI Z60.1. Dig and prepare plants for shipment in manner that will not cause damage to branches, shape, and future development after planting.
- Balled and burlapped (B&B) plant ball sizes and ratios will conform to ANSI Z60.1, consisting of firm, natural balls of soil wrapped firmly with burlap or strong cloth and tied.
- 5. Container grown plants to have sufficient root growth to hold earth intact when removed from containers, but not be root bound.
- 6. Make substitutions only when plant (or alternates as specified) is not obtainable and Contracting Officer's Representative authorizes change order providing for use of nearest equivalent obtainable size or variety of plant with same essential characteristics and an equitable adjustment of contract price.
- Existing plants to be relocated: Ball sizes to conform to requirements for collected plants in ANSI Z60.1, and plants dug, handled, and replanted according to applicable articles of this Section.
- 8. Only plants grown in nursery are permitted.
- B. Label plants with durable, waterproof labels in weather-resistant ink. Provide labels stating correct botanical and common plant name and variety and size as specified in list of required plants. Groups of

plants may be labels by tagging one plant. Labels to be legible for minimum 60 days after delivery to planting site.

2.3 SEED

- A. Grass Seed: State-certified seed of latest season's crop delivered in original sealed packages, bearing producer's guaranteed analysis for percentages of mixtures, purity, germination, weed seed content, and inert material. Label in conformance with AMS Seed Act and applicable state seed laws. Wet, moldy, or otherwise damaged seed will not be acceptable. Field mixes will be acceptable when field mix is performed on site in presence of Contracting Officer's Representative.
- B. Seed Mixtures: Proportion seed mixtures by weight.
 - 1. Sun and Partial Shade: Proportioned grass species as follows:
 - a. 90 percent Elite Tall Fescue.
 - b. 10 percent Elite Kentucky Bluegrass
 - 2. Native Grass
 - a. Fresh, clean, and dry new seed proportioned by weight as follows:
 - b. Schizachyrium scoparium Little Bluestem 12.00 lb/acre
 - c. Install with 15.0 lb/acre seed carrier with Myco Apply.

2.4 PLANTING SOILS

- A. Existing Planting Soil: Existing, native surface topsoil formed under natural conditions retained during excavation process // and stockpiled on-site //. Verify suitability of native surface topsoil to produce viable planting soil. Clean soil of roots, plants, sod, stones, clay lumps, and other extraneous materials harmful to plant growth.
 - Mix existing, native surface topsoil with soil amendments and fertilizers as specified.

2.5 ORGANIC SOIL AMENDMENTS

- A. Organic Matter: Commercially prepared compost. Free of substances toxic to plantings and as follows:
 - Organic Matter Content: Biobased content 100 percent. Wood cellulose fiber processed to contain no growth or germination-inhibiting factors, dyed with non-toxic, biodegradable dye to appropriate color to facilitate visual metering of materials application.
 - Feedstock: Agricultural, food, or industrial residuals; biosolids; yard trimmings; or source-separated or compostable mixed solid waste.

B. Manure: Well-rotted, horse or cattle manure containing maximum 25 percent by volume of straw, sawdust, or other bedding materials; free of seeds, stones, sticks, soil, and other invasive species.

2.6 PLANT FERTILIZERS

- A. Granular Fertilizer: Organic, granular controlled release fertilizer containing minimum percentages, by weight, of plant food nutrients.
 - Composition: Nitrogen, phosphorous, potassium, sulfur, and iron in amounts recommended in soil reports from qualified soil-testing laboratory.

2.7 WEED CONTROL FABRIC

- A. Roll Type Polypropylene or Polyester Mats: Woven, needle punched, or non-woven fabric treated for protection against deterioration due to ultraviolet radiation. Minimum 99 percent opaque to prevent photosynthesis and seed germination, fabric allows air, water, and nutrients to pass through to plant roots.
 - 1. Minimum weight: 0.11 kg per square meter (5 ounces per square yard).
 - 2. Minimum thickness: 0.50 mm (20 mils).

2.8 MULCH

- A. Rock Mulch:
 - 1. Rock Mulch: Milbank 'Dakota Mahogany' Granite.
 - 2. Crushed.
 - 3. Size: 1-1/2" to 2" inch.
- B. Organic Mulch:
 - Shredded hardwood. Biobased content minimum 100 percent. Wood cellulose fiber processed to contain no growth or germination-inhibiting factors.

2.9 EDGING

- A. Steel Edging: Commercial-grade steel product with rolled edge, in standard lengths, with steel loops for installation with stakes.
 - 1. Edging Size: 1/8 inch wide by 4 inches deep.
 - 2. Stakes: Steel to match edging, tapered, minimum 12 inches long.
 - 3. Accessories: End pieces, end stakes, corner stakes, and splicing stakes.
 - 4. Finish: Painted.
 - 5. Paint Color: Black.

- A. Staking Material:
 - Tree Support Stakes: Rough sawn hardwood free of knots, rot, cross grain, bark, long slivers, or other defects that impair strength. Minimum 2-1/2 inches diameter 8 feet long, pointed at one end.
- B. Guying Material:
 - 1. Guying Wire: ASTM A580/A580M, galvanized steel wire.
- C. Hose Chafing Guards: New or used 2 ply 19 mm (3/4 inch) reinforced rubber or plastic hose, black or dark green, all of same color.
- D. Flags: White surveyor's plastic tape 150 mm (6 inches) long, fastened to guying wires or cables.

2.11 TREE WRAP

A. Crinkled Paper Tree Wrap: Two thicknesses of crinkled paper cemented together with layer of bituminous material. Minimum 100 mm (4 inches) wide with stretch factor of 33 1/3 percent. Tie with lightly tarred medium or coarse sisal yarn twine.

2.12 TACKIFIERS AND ADHESIVES

- A. Nonasphalt Tackifier: Colloidal liquid fixative recommended by fiber mulch manufacturer for hydroseeding.
- B. Asphalt emulsion: ASTM D977, Grade SS-1.

2.13 WATER

A. Water: Source approved by Contracting Officer's Representative and suitable quality for irrigation, containing no elements toxic to plant life, including acids, alkalis, salts, chemical pollutants, and organic matter. Use collected storm water or graywater when available.

2.14 PESTICIDES

A. Consider IPM (Integrated Pest Management) practices to minimize use of all pesticides and chemical products. Obtain Contracting Officer's Representative's approval for allowable products, product alternatives, scheduling and application procedures. Evaluate existing weather and site conditions before application. Apply products during favorable weather and site conditions according to manufacturer's instructions and warranty requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive plants for compliance with requirements and conditions affecting installation and performance.
 - Verify that no materials that would inhibit plant growth are present in planting area. If such materials are present, remove soil and contaminants ad directed by Contracting Officer's Representative and provide new planting soil.
 - Do not mix or place soils and soil amendments in frozen, wet, or muddy conditions.
 - Suspend soil spreading, grading, and tilling operations if soil moisture becomes excessive. Resume soil preparations when moisture content returns to acceptable level.
 - 4. If soil is excessively dry, not workable, and too dusty, moisten uniformly.
 - 5. Special conditions may exist that warrant variance in specified planting dates or conditions. Submit written request to Contracting Officer's Representative stating special conditions and proposed variance.
- B. Proceed with planting operations only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Protect existing and proposed landscape features, elements, and site construction and completed work from damage. Protect trees, vegetation, and other designated features by erecting high-visibility, reusable construction fencing. Locate fence no closer to trees than drip line. Plan equipment and vehicle access to minimize and confine soil disturbance and compaction to areas indicated on drawings.
- B. Install erosion control materials at all areas inside or outside limits of construction that are disturbed by planting operations. Provide erosion control and seeding with native plant species to protect slopes.
- C. Stake out approved plant material locations and planter bed outlines on project site before digging plant pits or beds. Contracting Officer's Representative reserves right to adjust plant material locations to meet field conditions. Do not plant closer than 24 to building wall , pavement edge , fence or wall edge and other similar structures

3.3 PLANT BED PREPARATION

- A. Verify location of underground utilities before excavation. Protect existing adjacent turf before excavations are made. Do not disturb topsoil and vegetation in areas outside those indicated on Drawings. Where planting beds occur in existing turf areas, remove turf to depth that will ensure removal of entire roof system. Measure depth of plant pits from finished grade. Provide depth of plant pit excavation and relation of top of root ball and finish grade as indicated on drawings. Install plant materials as specified in Article 3.8. Do not plant trees within 3 m (10 feet) of any utility lines or building walls.
- B. For newly graded subgrades, loosen subgrade to minimum 8 inches deep. Remove stones larger than 1-1/2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Government's property.
 - Apply soil amendments and fertilizer on surface at rates indicated, and thoroughly blend planting soil.
- C. Finish grade planting areas to smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch of finish elevation. Roll and rake, remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in immediate future.

3.4 GROUND COVER AND PLANT INSTALLATION

- A. Place ground cover and plants, not including trees, shrubs, and vines as indicated on drawings in even rows and with triangular spacing.
- B. Use prepared soil mixture for backfill.
- C. Place so roots are in natural position.
- D. Do not remove plants from flats or containers until immediately before planting. Plat at depth to sufficiently cover all roots. Start watering areas planted as required by temperature and wind conditions. Water plants at sufficient rate to ensure thorough wetting of soil to 6 inches deep without runoff or puddling. Smooth planting areas after planting to provide even, smooth finish.

3.5 TREE, SHRUB, AND VINE PLANTING

A. Move plant materials only by supporting root ball or container. Set plants on hand compacted layer of prepared backfill soil mixture 6 inches thick and hold plumb in center of pit until soil has been tamped firmly around root ball.

- B. Set plant materials in relation to surrounding finish grade 1 to 2 inches above depth at which they were grown in nursery, collecting field, or container. Replace plant material whose root balls are cracked or damaged either before or during planting process.
- C. Place backfill soil mixture on previously scarified subsoil to completely surround root balls and bring to smooth and even surface, blending into existing areas.
- D. Balled and Burlapped Stock: Backfill with topsoil to approximately half ball depth then tamp and water. Carefully remove or fold back excess burlap and tying materials from top to minimum 1/3 depth from top of root ball. Tamp and complete backfill, place mulch topdressing, and water. Remove wires and non-biodegradable materials from plant pit before backfilling.

3.6 MECHANIZED TREE SPADE PLANTING

- A. At designated locations and with approved equipment, trees may be planted by mechanized tree spade. Tree spade is not acceptable for moving trees that are larger than maximum size of similar field-grown, balled-and-burlapped root-ball diameter recommended by ANSI Z60.1, or that are larger than manufacturer's recommended maximum size for tree spade to be used, whichever is smaller.
- B. For tree extraction, center trunk in tree spade and move tree and solid root ball.
- C. Cut any exposed roots with sharp instruments.
- D. Excavate planting hole with same tree spade used to extract and move tree.
- E. If possible, place trees with same orientation as at location from which they were extracted.

3.7 TREE AND SHRUB PRUNING

- A. Pruning: Performed by trained and experience personnel according to TCIA A300P1.
- B. Remove dead and broken branches. Prune only to correct structural defects.
- C. Retain typical growth shape of individual plants with as much height and spread as practical. Do not central leader on trees. Make cuts with sharp instruments. Do not flush cut with trunk or adjacent branches. Collars to remain in place.
- D. Do not apply tree wound dressing to cuts.

3.8 STAKING AND GUYING

A. Staking: Stake plants with number of stakes indicated on drawings with double strand of guy wire. Attach guy wire at half tree trunk height but maximum 5 feet high. Drive stakes to depth of 2-1/2 to 3 feet into the ground outside plant pit. Do not injure root ball. Install hose chafer guards where wire is in contact with tree trunk.

3.9 MULCH INSTALLATION

A. Provide specified mulch over entire planting bed surfaces and individual plant surfaces, including earth mount watering basin around plants, to 3 inches depth after plant installation and before watering. Do not place mulch in crowns of shrubs. Place mulch minimum 2 to 3 inches away from tree or shrub trunks. Place mulch on all weed control fabric.

3.10 EDGING INSTALLATION

- A. Uniformly edge beds of plants to provide clear cut division line between planted area and adjacent lawn. Construct bed shapes as indicated on drawings.
- B. Metal Edging: Install steel edging material according to manufacturer's instructions. Install edging with minimum 1 inch visible above ground level.

3.11 SEEDING

- A. Broadcast and Drop Seeding: Uniformly broadcast seed at rate of 9 pounds per 1000 square feet. Use broadcast or drop seeders. Sow one-half seed in one direction and sow remainder at right angles to first sowing. Cover seed uniformly to maximum 1/4 inch deep by means of spike-tooth harrow, cultipacker, raking, or other approved device.
- B. Drill Seeding: Drill seed at rate of 9 pounds per 1000 sq. ftgrass seed drills. Drill seed uniformly to 1/2 inch deep.
- C. Rolling: Immediately after seeding, firm entire area, except for slopes in excess of 3 to 1, with roller not exceeding 90 lb./ft. of roller width. Eliminate rolling if seeding is done with cultipacker type seeder.

3.12 TURF RENOVATION

A. General: Restore to original condition existing turf areas damaged during turf installation and construction operations. Keep at least one paved pedestrian access route and one paved vehicular access route to each building clean at all times. Clean other paving when work in adjacent areas is complete.

- B. Aeration: Eradicate weeds and, with Contracting Officer's Representative's approval to proceed, aerate turf areas with approved device. Core, by pulling soil plugs to minimum 2-1/2" inches deep. Leave all soil plugs that are produced, in turf area. After aeration operations are complete, topdress entire area 1/2 inchdeep. Blend all parts of topdressing mixture to uniform consistency. Clean all soil plugs off of other paving when work is complete.
- C. Overseeding: Apply seed according to applicable portions of "Seed Application Method" at rates specified in "Seed Composition."

3.13 PLANT MAINTENANCE

- A. Frequency: Begin maintenance immediately after plants have been installed. Inspect plants at least once week and perform required maintenance promptly.
- B. Promotion of Plant Growth and Vigor: Water, prune, fertilize, mulch, eradicate weeds, and perform other operations necessary to promote plant growth and vigor.
- C. Planter Beds: Weed, fertilize, and irrigate planter beds and keep pest free, pruned, and mulch levels maintained. Do not permit planter beds encroach into turf areas. Maintain edging breaks between turf areas and planter beds. Fertilize plant materials to promote healthy growth without encouraging excessive top foliar growth. Remove noxious weeds common to area from planter beds by mechanical means.
- D. Shrubs: In addition to planter bed maintenance requirements, selectively prune and shape shrubs for health and safety when following conditions exist:
 - Remove growth in front of windows, over entrance ways or walks, and any growth which will obstruct vision at street intersections or of security personnel.
 - Remove dead, damaged, or diseased branches or limbs where shrub growth obstructs pedestrian walkways, where shrub growth is growing against or over structures, and where shrub growth permits concealment of unauthorized persons.
 - 3. Properly dispose of all pruning debris.
- E. Trees: Adjust stakesand ties, and water, fertilize, control pests, mulch, and prune for health and safety.

- Inspect and adjust stakes and ties avoid girdling and promote natural development.
- Selectively prune trees for safety and health reasons, including, but not limited to, removal of dead and broken branches and correction of structural defects. Prune trees according to their natural growth characteristics leaving trees well shaped and balanced.
- 3. Properly dispose of all pruning debris.

3.14 SLOPE EROSION CONTROL MAINTENANCE

- A. Provide slope erosion control maintenance to prevent undermining of all slopes in newly landscaped areas. Maintenance tasks include immediate repairs to weak spots in sloped areas
 - 1. Fill eroded areas with amended topsoil and replant with same plant species.
 - 2. Reinstall erosion control materials damaged due to slope erosion.

3.15 REMOVAL OF DYING OR DEAD PLANTS

- A. Remove dead and dying plants and provide new plants immediately upon commencement of specified planting season and replace // stakes, // guys, // mulch, and eroded earth mound water basins. No additional correction period will be required for replacement plants beyond original warranty period. Plants will be considered dead or dying as follows:
 - 1. Tree: Main leader died back or minimum 20 percent of crown died.
 - 2. Shrub and Ground Cover: Minimum 20 percent of plant died.
 - Determination: Scrape on maximum 1/16 inch square branch area to determine dying plant material cause and provide recommendations for replacement.

3.16 TURF MAINTENANCE

- A. Mow turf to uniform finished height measured from soil. Perform mowing in manner that prevents scalping, rutting, bruising, uneven and rough cutting. Before mowing, remove and dispose of all rubbish, debris, trash, leaves, rocks, paper, and limbs or branches on turf areas. Sweep clean adjacent paved areas.
- B. Apply fertilizer in manner that promotes health, growth, vigor, color and appearance of cultivated turf areas. Provide organic fertilizer. Apply fertilizer by approved methods and according to manufacturer's instructions.

C. Watering: Perform irrigation in manner that promotes health, growth, color, and appearance of cultivated vegetation, complying with Federal, State, and local water agency and authority directives. Prevent overwatering, water run-off, erosion, and ponding due to excessive quantities or rate of application.

3.17 SATISFACTORY TURF

- A. Turf installations shall meet the following criteria as determined by Architect:
- B. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 6 by 6 inches.
- C. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

3.18 SATISFACTORY NATIVE GRASS STAND

- A. Native grass installations shall meet the following criteria as determined by Architect:
- B. Satisfactory Native Grass Stand: At end of maintenance period, a healthy, uniform, stand of native grass has been established, with minimal weeds and surface irregularities, with one visible grass seedling occurring per one (1) sq. ft. and bare spots not exceeding 2' by 2'.
- C. Use specified materials to reestablish native grass stand that does not comply with requirements and continue maintenance until native grass is satisfactory.

3.19 CLEANING

A. Remove and legally dispose of all excess soil and planting debris.

3.20 PROTECTION

- A. Protect plants from traffic and construction operations.
- B. Provide temporary fences or enclosures and signage, at planted areas.
 Maintain fences and enclosures during maintenance period.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

SECTION 33 08 00

COMMISSIONING OF SITE UTILITY SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 31.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Facility site utilities systems, related subsystems and related equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 31 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 31, is required in cooperation with the VA and the Commissioning Agent.
- B. The Facility site utilities systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- PART 2 PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of Site Utility systems will require inspection of individual elements of the site utility systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule site utility systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 31 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 31 Sections for additional Contractor training requirements. ----- END -----

SECTION 33 10 00 WATER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of underground water distribution for domestic and/or fire supply systems outside the building that are complete and ready for operation. This includes piping, structures, appurtenances, and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Concrete: Section 03 30 00, CAST IN-PLACE CONCRETE.
- C. Fire Protection System connection: Section 21 12 00, FIRE-SUPPRESSION STANDPIPES.
- D. General plumbing: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- E. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- F. Metering: Section 25 10 10, ADVANCED UTILITY METERING SYSTEM.
- G. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

- A. Water distribution system: Pipelines and appurtenances which are part of the distribution system outside the building for potable water and fire supply.
- B. Water service line: Pipeline from main line to 5 feet outside of building.

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic.
- B. DI: Ductile iron pipe.
- C. WOG: Water, Oil and Gas.

1.5 DELIVERY, STORAGE AND HANDLING

A. Ensure that valves are dry and internally protected against rust and corrosion. Protect valves against damage to threaded ends and flange faces.

- B. Use a sling to handle valves and fire hydrants if size requires handling by crane or lift. Rig valves to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.
- C. Deliver piping with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe-end damage and to prevent entrance of dirt, debris, and moisture.
- D. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.
- E. Store plastic piping protected from direct sunlight and support to prevent sagging and bending.
- F. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading, and welding of piping shall be removed.
 - 2. Piping systems shall be flushed, blown, or pigged as necessary to deliver clean systems.

1.6 COORDINATION

- A. Coordinate connection to water main with Public Utility company.
- B. Coordinate water service lines with building contractor.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least three years. Digital electronic devices, software and systems such as controls, instruments or computer work stations shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
- C. Regulatory requirements:

- Comply with the rules and regulations of the public utility company having jurisdiction over the connection to public water lines and the extension and/or modifications to public utility systems.
- Comply with the rules and regulations of the Federal, State, and/or Local Health Department having jurisdiction for potable waterservice.
- 3. Comply with rules and regulations of Federal, State, and/or Local Health Department having jurisdiction for fire-suppression waterservice piping including materials, hose threads, installation and testing.
- D. Provide certification of factory hydrostatic testing of not less than 500 psi (3.5 MPa) in accordance with AWWA C151. Piping materials shall bear the label, stamp or other markings of the specified testing agency.
- E. Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - All welds shall be stamped according to the provisions of the American Welding Society.
- F. Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the Resident Engineer prior to installation.
- G. Applicable codes:
 - 1. Plumbing Systems: IPC, International Plumbing Code.
 - Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction and marked for intended use.
 - 3. Fire-service main products shall be listed in the FM Global "Approval Guide" or Underwriters Laboratories (UL) "Fire Protection Equipment Directory".

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI): MSS SP-60-2004Connecting Flange Joint Between Tapping Sleeves and Tapping Valves MSS SP-108-2002Resilient-Seated Cast Iron, Eccentric Plug Valves MSS SP-123-1998(R2006) .Non-Ferrous Threaded and Solder-Joint Unions for Use With Copper Water Tube C. American Society of Mechanical Engineers (ASME): A112.1.2-2004Air Gaps in Plumbing Systems (for Plumbing Fixtures and Water-Connected Receptors)) A112.6.3-2001Floor Drains B16.1-2010Gray Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 B16.18-2001Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2001Wrought Copper and Copper Alloy Solder Joint Pressure Fittings B16.24-2006Cast Copper Alloy Pipe Flanges and Flanged Fittings; Classes 150, 300, 600, 900, 1500 and 2500 B31 Code for Pressure Piping Standards D. American Society for Testing and Materials (ASTM): A36/A36M-08Carbon Structural Steel A48/A48M-08(2008)Gray Iron Castings A536-84(2009)Ductile Iron Castings A674-10Polyethylene Encasement for Ductile Iron Pipe for Water or Other Liquids B61-08Steam or Valve Bronze Castings 33 10 00-4

B62-09 Composition Bronze or Ounce Metal Castings B88/B88M-09Seamless Copper Water Tube C651-05Disinfecting Water Mains C858-10e1Underground Precast Utility Structures D1785-06Poly (Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120 D2239-03Polyethylene (PE) Plastic Pipe (SIDR-PR) Based on Controlled Inside Diameter D2464-06Threaded Poly (Vinyl Chloride) PVC Pipe Fittings, Schedule 80 D2466-06Poly (Vinyl Chloride) (PVC) Pipe Fittings, Schedule 40 D2467-06Poly (Vinyl Chloride) (PVC) Plastic Pipe Fittings, Schedule 80 D2609-02(2008)Plastic Insert Fittings for Polyethylene (PE) Plastic Pipe D3350-10aPolyethylene Plastics Pipe and Fittings Materials F714-10Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F1267-07Metal, Expanded, Steel E. American Water Works Association (AWWA): B300-10Hypochlorites B301-10Liquid Chlorine C104-08Cement-Mortar Lining for Ductile Iron Pipe and Fittings C105/A21.5-10Polyethylene Encasement for Ductile Iron Pipe Systems C110-08 Ductile Iron and Gray-Iron Fittings C111/A21.11-07Rubber-Gasket Joints for Ductile Iron Pressure Pipe and Fittings

C115/A21.11-11Flanged Ductile Iron Pipe with Ductile Iron or Gray-Iron Threaded Flanges
C151/A21.51-09Ductile Iron Pipe, Centrifugally Cast
C153/A21.53-11Ductile Iron Compact Fittings for Water Service
C502-05Dry-Barrel Fire Hydrants
C503-05Wet-Barrel Fire Hydrants
C504-10Rubber-Seated Butterfly Valves
C508-09 Swing-Check Valves for Waterworks Service, 2- In. Through 24-In. (50-mm Through 600-mm) NPS
C509-09 Resilient-Seated Gate Valves for Water Supply Service
C510-07 Double Check Valve Backflow Prevention Assembly
C511-07Reduced-Pressure Principle Backflow Prevention Assembly
C512-07Air Release, Air/Vacuum and Combination Air Valves
C550-05 Protective Interior Coatings for Valves and Hydrants
C600-10 Appurtenances
C605-11 Underground Installation of Polyvinyl Chloride (PVC) Pressure Pipe and Fittings for Water
C606-11Grooved and Shouldered Joints
C651-05Disinfecting Water Mains
C700-09 Cold-Water Meters, "Displacement Type," Bronze Main Case
C800-05 And Fittings
C900-09Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution

C906-07Polyethylene (PE) Pressure Pipe and Fittings, 4 In. (100 mm) Through 64 In. (1,600 mm), for Water Distribution and Transmission C907-04Injection-Molded PVC Pressure Fittings, 4 Inch through 12 Inch (100 mm through 300 mm), for Water Distribution M23-2nd Ed.PVC Pipe, Design and Installation M44-2nd Ed.Distribution Valves: Selection, Installation, Field Testing and Maintenance F. National Fire Protection Association (NFPA): NFPA 24-2010 Ed.Installation of Private Fire Service Mains and Their Appurtenances NFPA 1963-2009 Ed.Fire Hose Connections G. NSF International (NSF): NSF/ANSI 14 (2013)Plastics Piping System Components and Related Materials NSF/ANSI 61-2012Drinking Water System Components - Health Effects NSF/ANSI 372-2011Drinking Water System Components - Lead Content H. American Welding Society (AWS): A5.8/A5.8M-2004Filler Metals for Brazing and Braze Welding I. American Society of Safety Engineers (ASSE): 1003-2009Water Pressure Reducing Valves 1015-2009 Double Check Backflow Prevention Assemblies and Double Check Fire Protection Backflow Prevention Assemblies 1020-2004Pressure Vacuum Breaker Assembly 1047-2009Performance Requirements for Reduced Pressure Detector Fire Protection Backflow Prevention Assemblies

03-01-17

1048-2009Performance Requirements for Double Check Detector Fire Protection Backflow Prevention Assemblies

1060-2006 Performance Requirements for Outdoor Enclosures for Fluid Conveying Components

J. Underwriters' Laboratories (UL):

246 Bydrants for Fire-Protection Service
262Gate Valves for Fire-Protection Service
312Check Valves for Fire-Protection Service
405 Department Connection Devices
753Alarm Accessories for Automatic Water-Supply
Control Valves for Fire Protection Service
789 Fire-Protection Service
1091Butterfly Valves for Fire-Protection Service
1285 Pipe and Couplings, Polyvinyl Chloride (PVC),
and Oriented Polyvinyl Chloride (PVCO) for
Underground Fire Service

1.9 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption, and shall be certified in accordance with NSF/ANSI 61 or NSF 372.
- B. Plastic pipe, fittings, and solvent cement shall meet NSF/ANSI 14 and shall be NSF listed for the service intended.

2.2 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.3 SAFETY GUARDS

A. All equipment shall have moving parts protected to prevent personal injury. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gauge sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 1/4 inch (6 mm) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.

2.4 DUCTILE IRON PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi (2400 kPa).
 - Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated, 350 psi (2400 kPa).
 - Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern or AWWA C153, ductile-iron compact pattern.
 Gaskets: AWWA C111, rubber.
- C. Grooved-Joint, Ductile-Iron Pipe: AWWA C151, with cut, round-grooved ends.
 - Grooved-End, Ductile-Iron Pipe Appurtenances: ASTM A47, malleableiron castings or ASTM A536, ductile-iron castings with dimensions matching pipe, 350 psi (3400 kPa).
 - Grooved-End, Ductile-Iron-Piping Couplings: AWWA C606, for ductileiron-pipe dimensions, Include ferrous housing sections, gasket suitable for water, and bolts and nuts.
 - 3. Gaskets: AWWA C111.

- D. Flanged Ductile Iron Pipe: AWWA C115/A21.11, with factory applied screwed long hub flanges.
 - 1. Flanges: ASME B16.1 for 125 psi (850 kPa) or 250 psi (1725 kPa) pressure ratings, as necessary.
 - Wall Sleeve Castings, size and types shown on the drawings, shall be hot dipped galvanized per ASTM A123.
 - 3. Pipe and fittings exposed to view in the finished work are to be painted in accordance with Section 09 91 00, PAINTING. Pipe shall be shop primed with one coat of rust inhibitive primer. Final paint color shall match the final wall color.

2.5 POLYVINYL CHLORIDE PIPE AND FITTINGS

- A. PVC, Schedule 40 Pipe: ASTM D1785.
 - 1. PVC, Schedule 40 Socket Fittings: ASTM D2466.
- B. PVC, Schedule 80 Pipe: ASTM D1785.
 - 1. PVC, Schedule 80 Socket Fittings: ASTM D2467.
 - 2. PVC, Schedule 80 Threaded Fittings: ASTM D2464.
- C. PVC, AWWA Pipe: AWWA C900, Class 150, with bell end with gasket, and with spigot end.
 - 1. Comply with UL 1285 for fire-service mains if indicated.
 - 2. PVC Fabricated Fittings: AWWA C900, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - 3. PVC Molded Fittings: AWWA C907, Class 150, with bell-and-spigot or double-bell ends. Include elastomeric gasket in each bell.
 - Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or grayiron standard pattern.
 - a. Gaskets: AWWA C111, rubber.
 - 5. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - a. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.

2.6 PE PIPE AND FITTINGS

- A. PE, ASTM Pipe: ASTM D2239, SIDR No. 5.3, 7, or 9; with PE compound number required to give pressure rating not less than 160 psi (1100 kPa).
 - Insert Fittings for PE Pipe: ASTM D2609, made of PA, PP, or PVC with serrated male insert ends matching inside of pipe. Include bands or crimp rings.

- 2. Molded PE Fittings: ASTM D3350, PE resin, socket- or butt-fusion type, made to match PE pipe dimensions and class.
- B. PE, AWWA Pipe: AWWA C906, DR No. 7.3, 9, or 9.3; with PE compound number required to give pressure rating not less than 160 psi (1100 kPa).
 - 1. PE, AWWA Fittings: AWWA C906, socket- or butt-fusion type, with DR number matching pipe and PE compound number required to give pressure rating not less than 160 psi (1100 kPa).
- C. PE, Fire-Service Pipe: ASTM F714, AWWA C906, or equivalent for PE water pipe; FMG approved, with minimum thickness equivalent to FMG Class 150.
 - 1. Molded PE Fittings: ASTM D3350, PE resin, socket-or butt-fusion type, made to match PE pipe dimensions and class.

2.7 VALVES

- A. Gate Valves: AWWA C509, Non-rising Stem, Resilient Seat, 200 psi (1380 kPa).
 - Valves 3 inches (75 mm) and larger: Resilient seat valve with grayor ductile iron body and bonnet; cast iron or bronze double-disc gate; bronze gate rings; non-rising bronze stem and stem nut.
 - 2. Interior and exterior coating: AWWA C550, thermo-setting or fusion epoxy.
 - Underground valve nut: Furnish valves with 2 inch (50 mm) nut for socket wrench operation.
 - 4. Aboveground and pit operation: Furnish valves with hand wheels.
 - 5. End connections shall be push on.
- B. Gate Valve Accessories and Specialties
 - Tapping-Sleeve Assembly: ANSI MSS SP-60; sleeve and valve to be compatible with the drilling matching.
 - a. Tapping Sleeve: Ductile Iron, two-piece bolted sleeve. Sleeve to match the size and type of pipe material being tapped.
 - b. Valve shall include one raised face flange mating tapping-sleeve flange.
 - Valve Boxes: AWWA M44 with top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel.
 - Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut. (Provide two wrenches for Project.)

- 4. Indicator Posts: UL 789, FMG approved, vertical-type, cast iron body with operating wrench, extension rod, and adjustable cast iron barrel of length required for depth of burial of valve.
- C. Swing Check Valves:
 - Valves smaller than 2 inches (25 mm): ASTM B61, resilient seat, bronze body and bonnet, pressure rating of 200 psi (1380 kPa). Ends to match main line piping.
 - Valves 2 inches (25 mm) or larger: AWWA 508, resilient seat valve with iron body and bonnet, pressure rating of 200 psi (1380 kPa).
 - 3. Coating: AWWA C550, fusion epoxy coated.
- D. Detector Check Valves
 - Galvanized cast iron body, bolted cover with air-bleed device for access to internal parts, and flanged ends. Include one-piece bronze disc with bronze bushings, pivot, and replaceable seat. Include threaded bypass taps in inlet and outlet for bypass meter connection. Set valve to allow minimal water flow through bypass meter when major water flow is required.
 - a. Standards: UL 312 and FMG approved, 175 psi (1207 kPa).
 - b. Water Meter: AWWA C700, disc type, at least one-fourth size of detector check valve. Include meter, bypass piping, gate valves, check valve, and connections to detector check valve.
 - Iron body, corrosion-resistant clapper ring and seat ring material, flanged ends, with connections for bypass and installation of water meter.
 - a. Standards: UL 312 and FMG approved, 175 psi (1207 kPa).
- E. Butterfly Valves
 - 1. Rubber-Seated Butterfly Valve: AWWA C504.
 - a. Provide rubber seated butterfly valve ductile iron body, flanged, minimum pressure of 150 psi (1035 kPa).
 - 2. UL Butterfly Valve: UL 1091 and FMG approved.
 - a. Provide metal on resilient material seating butterfly valves that are UL 1091 and FMG approved, ductile iron body, flanged minimum pressure of 175 psi (1207 kPa).
- F. Plug Valves: ANSI MSS SP-108, resilient-seated eccentric plug valve, minimum pressure of 175 psi (1207 kPa).
- G. Corporation Valves and Curb Valves
 - 1. Service-Saddle Assemblies: AWWA C800.

- a. Service Saddle: Copper alloy with seal and threaded outlet for corporation valve.
- b. Corporation Valve: Bronze body and ground-key plug, with threaded inlet and outlet matching service piping material.

2.8 FLUSHING HYDRANTS

- A. Post-Type Flushing Hydrants: Non-freeze and drainable, of length required for shutoff valve installation below frost line.
 - 1. Pressure Rating: 150 psi (1035 kPa) minimum
 - 2. Outlet: One, with horizontal discharge
 - 3. Hose Thread: NPS 2-1/2 (DN 65), with NFPA 1963 external hose thread for use by local fire department, and with cast iron cap with brass chain
 - 4. Barrel: Cast iron with breakaway feature
 - 5. Valve: Bronze body with bronze-ball, and automatic draining
 - 6. Security: Locking device for padlock
 - 7. Exterior Finish: Red alkyd-gloss enamel paint.
 - 8. Inlet: NPS 2 (DN 50) minimum
 - 9. Operating Wrench: One for each unit
- B. Ground-Type Flushing Hydrants: Non-freeze and drainable, of length required for shutoff valve installation below frost line.
 - 1. Pressure Rating: 150 psi (1035 kPa) minimum
 - 2. Outlet: One, with vertical discharge
 - 3. Hose Thread: NPS 2-1/2 (DN 65), with NFPA 1963 external hose thread for use by local fire department, and with cast iron cap with brass chain
 - 4. Barrel: Cast iron
 - 5. Valve: Bronze body with bronze-ball, and automatic draining
 - 6. Inlet: NPS 2 (DN 50) minimum
 - 7. Hydrant Box: Cast iron with cover, for ground mounting
 - 8. Operating Wrench: One for each unit
- C. Post-Type Sampling Station: Non-freeze and drainable, of length required for shutoff valve installation below frost line.
 - 1. Pressure Rating: 100 psi (690 kPa) minimum
 - 2. Sampling Outlet: One unthreaded nozzle with handle
 - 3. Valve: Bronze body with bronze-ball. Include operating handle.
 - 4. Drain: Tubing with separate manual vacuum pump
 - 5. Inlet: NPS 3/4 (DN 20) minimum

- Housing: Weatherproof material with locking device. Include anchor device
- 7. Operating Wrench: One for each unit

2.9 FIRE HYDRANTS

- A. All hydrants shall have removable interiors capable of replacement without digging up the hydrant and be packable under pressure. Threaded joints or spindles shall be bronze and upper and lower barrels shall be of equal diameter. Upper barrel shall be of sufficient length to permit setting hydrant with barrel flange not more than 4 inches (100 mm) above finished grade. All fire hydrants shall have 6 inch (150 mm) bottom connection. Provide two hydrant wrenches not less than 14 inches (350 mm) long. Pressure Rating: 150 psi (1035 kPa) minimum. Hydrant valve shall open by turning operating nut to left or counterclockwise. Exterior finish shall be red alkyd-gloss enamel paint, unless otherwise indicated. Outlet threads shall meet NFPA 1963, with external hose thread used by local fire department. Include cast iron caps with steel chains and Pentagon, 1-1/2 inch (38 mm) point to flat operating and cap nuts.
- B. Wet-Barrel Fire Hydrants:
 - AWWA C503, freestanding, with one NPS 4-1/2 (DN 115) and two NPS 2-1/2 (DN 65) outlets, NPS 6 (DN 150) threaded or flanged inlet, and base section with NPS 6 (DN 150) mechanical-joint inlet; interior coating according to AWWA C550.

2.10 FIRE DEPARTMENT CONNECTIONS

- A. Fire system base water supply must provide a minimum of 1000 gpm (3785 l/m) at 150 psi (1035 kPa) and 700 gpm (2650 l/m) at 200 psi (1380 kPa) at the Fire Department connection. For hydraulic calculations, the calculated demand shall not fall less than 10 percent below the water supply curve.
- B. Fire Department connections: UL 405, NFPA 1963, freestanding, cast bronze body, thread inlets, and matching local fire department hose threads, threaded bottom outlet, lugged caps, gaskets, and chains; lugged swivel connection and drop clapper for each hose-connection inlet; 18 inch (460 mm) high brass sleeve; round escutcheon plate, meeting the requirements of UL 405.
 - 1. Connections: Two NPS 2-1/2 (DN 65) inlets and one NPS 4 (DN 100) outlet
 - 2. Inlet Alignment: Inline, horizontal

- 3. Finish Including Sleeve: Polished chrome-plated
- 4. Escutcheon Plate Marking: "AUTO SPKR" & "STANDPIPE"

2.11 ALARM DEVICES

- A. Alarm Devices-General: UL 753 and FMG approved, of types and sizes to mate and match piping and equipment.
- B. Water-Flow Indicators: Vane-type water-flow detector, rated for 250-psi (1725-kPa) working pressure; designed for horizontal or vertical installation; 2 single-pole, double-throw circuit switches to provide isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal when cover is removed.
- C. Supervisory Switches: Single pole, double throw; designed to signal valve in other than fully open position.
- D. Pressure Switches: Single pole, double throw; designed to signal increase in pressure.

2.12 DISINFECTION CHLORINE

- A. Liquid chlorine: AWWA B301.
- B. Sodium Hypochlorite: AWWA B300 with 5 percent to 15 percent available chlorine.
- C. Calcium hypochlorite: AWWA B300 supplied in granular form of 5 g. tablets, and shall contain 65 percent chlorine by weight.

2.13 WARNING TAPE

A. Warning tape shall be standard, 4 mil. Polyethylene, 3 inch (76 mm) wide tape, detectable type, blue with black letters and imprinted with "CAUTION BURIED WATER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. Use pipe, fittings, and joining methods for piping systems according to the following applications.
 - Transition couplings and special fittings with pressure ratings at least equal to piping pressure rating may be used, unless otherwise indicated.
 - 2. Do not use flanges or unions for underground piping.
 - Flanges, unions, grooved-end-pipe couplings, and special fittings may be used, instead of joints indicated, on aboveground piping and piping in vaults.

be the following:

1. PVC, Schedule 40 pipe, socket fittings; and solvent-cemented joints.

- C. Underground water-service piping NPS 4 to NPS 8 (DN 100 to DN 200) shall be the following:
 - Ductile iron, push-on-joint pipe; ductile iron, push-on-joint fittings; and gasketed or mechanical-joint pipe; ductile iron, mechanical-joint fittings; joints.
 - 2. PVC, Schedule 40 pipe; socket fittings; and solvent-cemented joints.
 - 3. PVC, AWWA Class 150 pipe for NPS 4 and NPS 6 (DN 100 and DN 150): NPS 6 (DN 150) PVC, AWWA Class 150 pipe; PVC, AWWA Class 150 fabricated fittings; and gasketed joints.
 - PVC, AWWA Class 200 pipe for NPS 8 (DN 200): PVC, AWWA Class 200 fabricated, ductile iron mechanical-joint, ductile iron fittings; and gasketed joints.
- D. Underground Fire-Service-Main Piping NPS 4 to NPS 12 (DN 100 to DN 300) shall be the following:
 - Ductile iron, push-on-joint pipe; ductile iron, push-on-joint fittings; and gasketed or mechanical-joint pipe; ductile iron, mechanical-joint fittings; and mechanical joints.
 - PE, Class 150, fire-service pipe; molded PE fittings; and heatfusion joints.
 - 3. PVC, AWWA Class 150 pipe listed for fire-protection service; PVC Class 150 fabricated or molded fittings; and gasketed joints.
- E. Underground Combined Water-Service and Fire-Service-Main Piping NPS 6 to NPS 12 (DN 150 to DN 300) shall be the following:
 - Ductile iron, push-on-joint pipe; Ductile Iron, push-on-joint fittings; and gasketed or mechanical-joint pipe; Ductile Iron, mechanical-joint fittings; and mechanical joints.
 - 2. PVC, AWWA Class 150 pipe listed for fire-protection service; PVC fabricated or molded fittings of same Class as pipe; and gasketed joints.

3.2 VALVE APPLICATIONS

A. Use mechanical-joint-end valves for NPS 3 (DN 80) and larger underground installation. Use threaded- or flanged-end valves for installation in vaults. Use UL/FMG, non-rising-stem gate valves for installation with indicator posts. Use corporation valves and curb valves with ends compatible with piping, for NPS 2 (DN 50) and smaller installation.

- B. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Underground Valves, NPS 3 (DN 80) and Larger: AWWA, cast iron, nonrising-stem, metal -seated gate valves with valve box.
 - Underground Valves, NPS 4 (DN 100) and Larger, for Indicator Posts: UL/FMG, cast iron, non-rising-stem gate valves with indicator post.

3.3 DUCTILE IRON PIPE

- A. Install Ductile Iron, water-service piping according to AWWA C600 and AWWA M41-3rd Edition.
 - Install PE corrosion-protection encasement according to ASTM A674 or AWWA C105/A21.5.
- B. Pipe shall be sound and clean before laying. When laying is not in progress, the open ends of the pipe shall be closed by watertight plug or other approved means.
- C. When cutting pipe is required, the cutting shall be done by machine, leaving a smooth cut at right angles to the axis of the pipe. Bevel cut ends of pipe to be used with push-on bell to conform to the manufactured spigot end. Cement lining shall be undamaged.
- D. Push on joints shall be made in strict accordance with the manufacturer's instruction. Pipe shall be laid with bell ends looking ahead.

3.4 PVC PIPE

- A. PVC piping shall be installed in strict accordance with the manufacturer's instructions and AWWA C605. Place selected material and thoroughly compacted to one foot above the top of the pipe.
- B. Install Copper Tracer Wire, No. 14 AWG solid, single conductor, insulated. Install in the trench with piping to allow location of the pipe with electronic detectors. The wire shall not be spiraled around the pipe nor taped to the pipe. Wire connections are to be made by stripping the insulation from the wire and soldering with rosin core solder per ASTM 828. Solder joints shall be wrapped with rubber tape and electrical tape. At least every 1000 feet (300 m) provide a 5 pound (2.3 kg) magnesium anode attached to the main tracer wire by solder. The solder joint shall be wrapped with rubber tape and with electrical tape. An anode shall also be attached at the end of each line.
- C. Magnetic markers may be used in lieu of copper tracer wire to aid in future pipe location. Generally, install markers on 20 foot (6 m) centers. If pipe is in a congested piping area, install on 10 foot (3 m)

centers. Prepare as-built drawing indicating exact location of magnetic markers.

3.5 ANCHORAGE INSTALLATION

- A. Install water-distribution piping with restrained joints. Anchorages and restrained-joint types that may be used include: concrete thrust blocks, locking mechanical joints.
- B. Install anchorages for tees, plugs and caps, bends, crosses, valves, and hydrant branches. Include anchorages for the following piping systems:
 - 1. Gasketed-Joint, Ductile Iron, Water-Service Piping: According to AWWA C600.
 - 2. Gasketed-Joint, PVC Water-Service Piping: According to AWWA M23.
 - 3. Fire-Service-Main Piping: According to NFPA 24.
- C. Apply full coat of asphalt or other acceptable corrosion-resistant material to surfaces of installed ferrous anchorage devices.

3.6 VALVE INSTALLATION

- A. AWWA Valves: Install each underground valve with stem pointing up and with valve box.
- B. UL/FMG, Valves: Install each underground valve and valves in vaults with stem pointing up and with vertical cast iron indicator post.
- C. MSS Valves: Install as component of connected piping system.
- D. Corporation Valves and Curb Valves: Install each underground curb valve with head pointed up and with service box.
- E. Pressure-Reducing Valves: Install in vault or aboveground between shutoff valves.
- F. Relief Valves: Install aboveground with shutoff valve on inlet.
- G. Raise or lower existing valve and curb stop boxes and fire hydrants to finish grade in areas being graded.

3.7 DETECTOR-CHECK VALVE INSTALLATION

- A. Install in vault or aboveground and for proper direction of flow. Install bypass with water meter, gate valves on each side of meter, and check valve downstream from meter.
- B. Support detector check valves, meters, shutoff valves, and piping on brick or concrete piers.

3.8 FLUSHING HYDRANT INSTALLATION

A. Install post-type flushing hydrants with valve below frost line and provide for drainage. Support in upright position. Include separate gate valve or curb valve and restrained joints in supply piping.

- B. Install ground-type flushing hydrants with valve below frost line and provide for drainage. Install hydrant box flush with grade. Include separate gate valve or curb valve and restrained joints in supply piping.
- C. Install sampling stations with valve below frost line and provide for drainage. Attach weather-resistant housing and support in upright position. Include separate curb valve in supply piping.

3.9 FIRE DEPARTMENT CONNECTION INSTALLATION

- A. Install ball drip valves at each check valve for fire department connection to mains.
- B. Install protective pipe bollards on two sides of each fire department connection.

3.10 FIRE HYDRANT INSTALLATION

- A. Install each fire hydrant with separate gate valve in supply pipe, anchor with restrained joints or thrust blocks, and support in upright position.
- B. Install Wet-Barrel Fire Hydrants with valve below frost line. Provide for drainage.

3.11 CONNECTIONS

A. Drawings indicate general arrangement of piping, fittings, and specialties. Install water service lines to a point of connection within approximately 5 feet (1500 mm) outside of building(s) to which service is to be connected and make connections thereto. If building services have not been installed provide temporary caps and mark for future connection.

3.12 FIELD QUALITY CONTROL

- A. Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- C. Perform hydrostatic tests at not less than one-and-one-half times working pressure for two hours.
 - Increase pressure in 50-psi (350-kPa) increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psi (0 kPa). Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts (1.89 L) per hour

per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.

D. Prepare reports of testing activities.

3.13 IDENTIFICATION

A. Install continuous underground warning tape 12 inches (300 mm) directly over piping.

3.14 CLEANING

- A. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
- B. Use purging and disinfecting procedure prescribed by local utility provider or other authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:
 - Fill the water system with a water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
 - Drain the system of the previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow system to stand for 3 hours.
 - 3. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
 - Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- C. Prepare reports of purging and disinfecting activities.
- D. Underground piping, from the water supply to the system riser, and leadin connections to the system riser shall be completely flushed before the connection is made to downstream fire protection system piping.
 - The flushing operation shall be continued for a sufficient time to ensure thorough cleaning.
 - The minimum rate of flow shall be not less than one of the following:
 - a. Hydraulically calculated water demand flow rate of the system, including any hose requirements.
 - b. Flow necessary to provide a velocity of 10 ft/sec (3.1 m/sec)
 - c. Maximum flow rate available to the system under fire conditions1) Pipe Size: 6 in. Flow Rate: 880 gpm

---- E N D ----33 10 00-20

SECTION 33 30 00

SANITARY SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies materials and procedures for construction of outside, underground sanitary sewer systems that are complete and ready for operation. This includes piping, structures, and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTHWORK.
- B. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- C. Fabrication of Steel Ladders: Section 05 50 00, METAL FABRICATION.
- D. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- E. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

None

1.4 ABBREVIATIONS

- A. PVC: Polyvinyl chloride plastic
- B. DI: Ductile iron pipe

1.5 DELIVERY, STORAGE AND HANDLING

- A. Store plastic piping protected from direct sunlight and support to prevent sagging and bending. Protect stored piping from moisture and dirt by elevating above grade. Protect flanges, fittings, and specialties from moisture and dirt.
- B. Handle manholes according to manufacturer's written rigging instructions.

1.6 COORDINATION

- A. Coordinate exterior utility lines and connections to building lines up to 5 feet of building wall.
- B. Coordinate connection to public sewer system with Public Utility Company.

1.7 QUALITY ASSURANCE:

A. Products Criteria:

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Utility having jurisdiction over the connection to Public Sanitary Sewer lines and the extension, and/or modifications to Public Utility Systems.

1.8 SUBMITTALS:

- A. Manufacturers' Literature and Data shall be submitted for the following as one package:
 - 1. Pipe, Fittings, and, Appurtenances.
 - 2. Jointing Material.
 - 3. Manhole and Structure Material.
 - 4. Frames and Covers.
 - 5. Steps and Ladders.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A74-09Cast Iron Soil Pipe and Fittings

A185/A185M-07Steel Welded Wire Reinforcement, Plain, for Concrete

A615/A615M-09bDeformed and Plain Carbon-Steel Bars for Concrete Reinforcement

A746-99Ductile-Iron Gravity Sewer Pipe

C478-09Precast Reinforced Concrete Manhole Sections

C857-11Minimum Structural Design Loading for Underground Precast Concrete Utility Structures

06-01-13

C890-11	.Minimum Structural Design Loading for Monolithic or Sectional Precast Concrete Water and Wastewater Structures
C913-08	.Precast Concrete Water and Wastewater Structures
C923-08	Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals
C924-02(2009)	.Testing Concrete Pipe Sewer Lines by Low- Pressure Air Test Method
C990-09	Joints for Concrete Pipe, Manholes, and precast Box Sections using Preformed Flexible Joint Sealants
C1173-10	.Flexible Transition Couplings for Underground Piping Systems
C1440-08	.Thermoplastic Elastomeric (TPE) Gasket Materials for Drain, Waste and Vent (DWV), Sewer, Sanitary and Storm Plumbing Systems
C1460-08	.Shielded Transition Couplings for Use With Dissimilar DWV Pipe and Fittings Above Ground
C1461-08	Mechanical Couplings Using Thermoplastic Elastomeric (TPE) Gaskets for Joining Drain, Waste and Vent (DWV), Sewer, Sanitary and Storm Plumbing systems for Above and below Ground Use
D2321-11	.Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications
D3034-08	.Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings
F477-10	.Elastomeric Seals (Gaskets) for Joining Plastic Pipe
F679-08	.Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings

F891-10Coextruded Poly(vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F949-10Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11Standard Test Method for Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08Construction Procedures for Buried Plastic Pipe C. American Water Works Association (AWWA): C105/A21.5-10Polyethylene Encasement for Ductile-Iron Pipe Systems C110-08 Ductile-Iron and Gray-Iron Fittings C111/A21.11-06Rubber Gasket Joints for Ductile Iron Pressure Pipe and Fittings C151/A21.51-09Ductile Iron Pipe, Centrifugally Cast C153/A21.53-06Ductile Iron Compact Fittings for Water Service C219-11Bolted, Sleeve-Type Couplings for Plain-End Pipe C512-07Air Release, Air/Vacuum and Combination Air Valves for Water Works Service C600-10 Installation of Ductile-Iron Mains and Their Appurtenances C900-07Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution D. American Society of Mechanical Engineers: A112.14.1-2003Backwater Valves

A112.36.2M-1991Cleanouts

1.10 WARRANTY

A. The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom

33 30 00-4

within a period of one year from final acceptance. Further, the Contractor will provide all manufacturers' and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. All pipe and fittings used in the construction of force mains shall be rated to meet the system maximum operating pressure with a minimum of 150 psi (1035 kPa).
- C. The Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 DUCTILE-IRON PIPE AND FITTINGS

- A. Mechanical Joint Piping
 - 1. Pipe and Fittings: AWWA C151, as specified.
 - 2. Compact Fittings: AWWA C153.
 - 3. Gaskets: AWWA C111.
 - 4. Exterior coating: AWWA C151.
 - 5. Interior lining shall be as per ASTM A746.
 - 6. Pipe and fittings shall be polyethylene encased as per AWWA C105.
- B. Push-on-Joint Piping:
 - 1. Pipe: AWWA C151, with bolt holes in bell.
 - 2. Standard Fittings: AWWA C110.
 - 3. Compact Fittings: AWWA C153.
 - 4. Gaskets: AWWA C111.
 - 5. Exterior coating: AWWA C151.
 - 6. Interior lining: AWWA C151.
 - 7. Pipe and fittings shall be polyethylene encased as per AWWA C105.

2.3 PVC, GRAVITY SEWER PIPE AND FITTINGS

- A. PVC Gravity Sewer Piping:
 - 1. Pipe and Fittings shall conform to ASTM D3034, SDR 26.
 - 2. Gaskets: ASTM F477.

2.4 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C1173, elastomeric, sleeve type, reducing or transition coupling, for joining underground nonpressure piping.

33 30 00-5

Include ends to match same sizes of main line piping and install corrosion-resistant metal tension bands and tightening mechanism on each end.

- B. Sleeve Materials:
 - 1. For Plastic Pipes: ASTM F477, elastomeric seal.
 - 2. For Dissimilar Pipes: PVC or other material compatible with pipe materials being joined.
- C. Unshielded, Flexible Couplings:
 - 1. Couplings shall be elastomeric sleeve with corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, Flexible Couplings:
 - Couplings shall meet ASTM C1460 with elastomeric with full-length, corrosion-resistant outer shield with corrosion-resistant-metal tension band and tightening mechanism on each end.
- E. Ring-Type, Flexible Couplings:
 - Couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger mainline pipe and for spigot of smaller main line pipe to fit inside ring.
- F. Nonpressure-Type, Rigid Couplings:
 - Coupling shall be ASTM C1461, sleeve-type, reducing-, molded from ASTM C1440, TPE material; with corrosion-resistant-metal tension band and tightening mechanism on each end.

2.5 CLEANOUTS

- A. Cast-Iron Cleanouts:
 - Cleanouts shall be as per ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - Top-Loading Classification(s): Valve loadings shall be designed for Heavy Duty.
 - 3. Cleanout Riser: Sewer pipe fitting on main line pipe and riser shall be as per ASTM A74, service class.
- B. PVC Cleanouts:
 - PVC body with PVC threaded plug: Cleanout shall be as per ASTM D3034. PVC sewer pipe fitting and riser to cleanout.
 - Cleanout Riser: Sewer pipe fitting on main line sewer and riser shall match main line piping.

2.6 MANHOLES

- A. Standard precast concrete manholes and vaults shall be constructed of precast concrete segmental blocks, precast reinforced concrete rings, precast reinforced sections or cast-in-place concrete.
 - Precast Concrete Manholes: Material shall be as per ASTM C478, precast, reinforced concrete, of depth indicated, with sealed joints.
 - Concrete Base: Concrete for base of manhole shall have a minimum compressive strength of 5000 psi (35 MPa) at 28 days. Thickness to be 8 inches (200 mm), minimum.
 - 3. Riser Section: 4 inch (100 mm) minimum thickness, of lengths to provide the total depth of manhole.
 - 4. Top Section: Eccentric-cone type unless otherwise indicated. Top section to match adjustment ring configurations.
 - 5. Joint Sealant: ASTM C990.
 - 6. Resilient Pipe Connectors: ASTM C923.
 - 7. Steps: If over 60 inches (1500 mm) in depth, individual FRP steps or ladder, with 16 inch (400 mm) minimum width, 12 to 16 inches (300 to 400 mm) center-to-center from top to bottom.
 - 8. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch (150 to 225 mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Concrete Manholes:
 - Description: ASTM C913; designed according to ASTM C890 for AASHTO HS20-44, heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C990, bitumen or butyl rubber.
 - Resilient Pipe Connectors: ASTM C923, cast or fitted into manhole walls, for each pipe connection.
 - 5. Steps: If over 60 inches (1500 mm) in depth, individual FRP steps or FRP ladder; width 16 inches (400 mm) minimum, 12 to 16 inches (300 to 400 mm) center-to-center from top to bottom.
 - 6. Adjusting Rings: Reinforced-concrete rings; 6 to 9 inch (150 to 225 mm) total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.

33 30 00-7

C. Manhole Base Channels: Manhole channels shall be main line pipe material. Lay main pipe through manhole and cut top of pipe out to be three-fourths of pipe diameter. Slope through manhole to match run slopes of the main pipe.

2.7 CONCRETE

- A. Cast-in-place concrete shall be 4000 psi (27.6 MPa) minimum, with 0.45 maximum water/cementitious materials ratio.
- B. Reinforcement
 - Reinforcing fabric shall be ASTM A185, steel, welded wire fabric, plain.
 - 2. Reinforcing bars shall be ASTM A615, Grade 60 (420 MPa) deformed steel.
- C. Benches shall be concrete, sloped to drain into the channel. Provide 6 inches (150 mm) from the cut section of top of pipe to edge of manhole.
- D. Ballast and Pipe Supports shall be Portland cement design mix, 3000 psi (20.7 MPa) minimum, with 0.58 maximum water/cementitious materials ratio.

2.8 WARNING TAPE

A. Warning tape shall be standard, 4 mil (0.1 mm) polyethylene 3 inch (76 mm) wide tape non-detectable type, green with black letters and imprinted with "CAUTION BURIED SEWER LINE BELOW".

PART 3 - EXECUTION

3.1 PIPING INSTALLATION

- A. Drawing plans and details indicate the general location and arrangement of underground sanitary sewer piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at the low point, true to grades and alignment indicated on the drawings, with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
- D. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.

- E. Inspect pipes and fittings for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
- F. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
- G. Do not walk on pipe in trenches until covered by layers of bedding or backfill material to a depth of 12 inches (300 mm) over the crown of the pipe.
- H. Warning tape shall be continuously placed 12 inches (300 mm) above sewer pipe
- I. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- J. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- K. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process or microtunneling.
- L. Install gravity-flow, non-pressure, drainage piping according to the following:
 - Install piping pitched down in direction of flow, at minimum slope of 0.4 percent unless otherwise indicated.
 - 2. Install PVC gravity sewer according to ASTM D2321 and ASTM F1668.
- M. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.2 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, non-pressure, drainage piping according to the following:
 - Join ductile iron, gravity sewer piping according to AWWA C600 for push-on joints.
 - 2. Join PVC piping according to ASTM D2321.
 - 3. Join dissimilar pipe materials with nonpressure-type, flexible couplings.

3.3 SEWER AND MANHOLE SUPPORTS, CONCRETE CRADLES WITHIN VAULTS

A. Install reinforced concrete as detailed on the drawings. The concrete shall not restrict access for future maintenance of the joints within the piping system.

3.4 BUILDING SERVICE LINES

A. Install sanitary sewer service lines to point of connection within approximately 5 feet (1500 mm) outside of building(s) where service is required and make connections. Coordinate the invert and location of the service line with the Contractor installing the building lines.

3.5 MANHOLE INSTALLATION

- A. Install manholes complete with appurtenances and accessories indicated.
 - Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch (15 mm) or cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top, shall be sealed as per manufacturer's recommendations. Adjust the length of the rings so that the top section will be at the required elevation. Cutting the top section is not acceptable.
 - 3. Concrete manhole risers and tops: Install as specified.
- B. Designed Concrete Structures:
 - Concrete structures shall be installed in accordance with Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. Do not build structures when air temperature is 32 deg F (0 deg C), or below.
- D. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
- E. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- F. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. In unpaved areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade.
- G. Install manhole frames and covers on a mortar bed, such that frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until

the adjacent pavement is placed. Install an 8 inches (200 mm) thick, by 12 inches (300 mm) wide concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.6 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Cleanouts should be 6 inches (150 mm) in diameter and consist of a ductile iron 45 degree fitting on end of run, or combination Y fitting and 1/8 bend in the run with ductile iron pipe extension, water tight plug or cap and cast frame and cover flush with finished grade. Install piping so cleanouts open in direction of flow in sewer pipe.
 - Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - Use Medium-Duty, top-loading classification cleanouts in paved foottraffic areas.
 - 3. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic service areas.
 - 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete, 18 by 18 by 12 inches (450 by 450 by 300 mm) 1 inch (25 mm) above surrounding grade.
- C. Where cleanout is in force main, provide a blind flange top connection. The center of the flange shall be equipped with a 2 inches (50 mm) base valve to allow the pressure in the line to be relieved prior to removal of the blind flange. Frames and covers for pressure (force) mains shall be 24 inches (600 mm) in diameter.
- D. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.
- E. The top of the cleanout assembly shall be 2 inches (50 mm) below the bottom of the cover to prevent loads being transferred from the frame and cover to the piping.

3.7 CONNECTIONS

- A. Make connections to existing piping and underground manholes by coring and installing the pipe at the design invert. Install an elastomeric gasket around the pipe, and grout the interstitial space between the pipe and the core.
- B. Connection to an existing manhole: The bench of the manhole shall be cleaned and reshaped to provide a smooth flowline for all new pipes connected to the manhole.

- C. Use commercially manufactured wye fittings for piping branch connections. Encase entire wye fitting plus 6-inch (150-mm) overlap with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
 - Make branch connections from the side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500), by removing a section of the existing pipe.
 - 2. Make branch connections from the side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes by cutting an opening into existing unit large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in concrete to provide additional support of collar from connection to undisturbed ground.
 - 3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.8 REGRADING

- A. Raise or lower existing manholes and structures frames and covers, cleanout frames and covers and valve boxes in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Adjust the elevation of the cleanout pipe riser and reinstall the cap or plug. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure and shall prevent debris from entering the wastewater stream.

3.9 CLOSING ABANDONED SANITARY SEWER SYSTEMS

A. Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed.

- 1. Piping under and within 5 feet (1500 mm) of building areas shall be completely removed.
- 2. Piping outside of building areas shall be completely removed.
- B. Excavate around manholes as required and use either procedure below:
 - Manholes and structures outside of building areas: Remove frame and cover, cut and remove the top of an elevation of 2 feet (600 mm) below finished grade. Fill the remaining portion with compacted gravel or crushed rock or concrete.
 - 2. Manholes and structures with building areas: Remove frame and cover and remove the entire structure and the base.
- C. Backfill to grade according to Division 31 Section 31 20 00, EARTH MOVING.
- D. When the limit of the abandonment terminates in an existing manhole to remain, the flow line in the bench of the manhole to the abandoned line shall be filled with concrete and shaped to maintain the flowline of the lines to remain.

3.10 PIPE SEPARATION

- A. Horizontal Separation Water Mains and Sewers:
 - Existing and proposed water mains shall be at least 10 feet (3 m) horizontally from any proposed gravity flow and pressure (force main) sanitary sewer or sewer service connection.
 - 2. Gravity flow mains and pressure (force) mains may be located closer than 10 feet (3 m) but not closer than 6 feet (1.8 m) to a water main when:
 - a. Local conditions prevent a lateral separation of 10 feet (3 m);
 and
 - b. The water main invert is at least 18 inches (450 mm) above the crown of the gravity sewer or 24 inches (600 mm) above the crown of the pressure (force) main; and the water main is in a separate trench separated by undisturbed earth.
 - 3. When it is impossible to meet (1) or (2) above, both the water main and sanitary sewer main shall be constructed of push-on or mechanical joint ductile iron pipe.
- B. Vertical Separation Water Mains and Sewers at Crossings:
 - Water mains shall be separated from sewer mains so that the invert of the water main is a minimum of 24 inches (600 mm) above the crown of gravity flow sewer or 48 inches (1200 mm) above the crown of pressure (force) mains. The vertical separation shall be maintained

33 30 00-13

within 10 feet (3 m) horizontally of the sewer and water crossing. When these vertical separations are met, no additional protection is required.

- 2. When it is impossible to meet (1) above, the gravity flow sewer may be installed 18 inches (450 mm) above or 12 inches (300 mm) below the water main, provided that both the water main and sewer shall be constructed of push-on or mechanical ductile pipe. Pressure (Force) sewers may be installed 24 inches (600 mm) below the water line provided both the water line and sewer line are constructed of ductile iron pipe.
- 3. The required vertical separation between the sewer and the water main shall extend on each side of the crossing until the perpendicular distance from the water main to the sewer line is at least 10 feet (3 m).

3.11 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edges of underground manholes.

3.12 FIELD QUALITY CONTROL

- A. All systems shall be inspected and obtain the Resident Engineer's approval. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
- B. To inspect, thoroughly flush out the lines and manholes before inspection. Lamp test between structures and show full bore indicating sewer is true to line and grade. Lips at joints on the inside of gravity sewer lines are not acceptable.
 - 1. Submit separate report for each system inspection.
 - 2. Defects requiring correction include the following:
 - Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.

33 30 00-14

4. Re-inspect and repeat procedure until results are satisfactory.

- C. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - 1. Test plastic gravity sewer piping according to ASTM F1417.
 - 2. Test concrete gravity sewer piping according to ASTM C924.
 - 3. Clean and isolate the section of sewer line to be tested. Plug or cap the ends of all branches, laterals, tees, wyes, and stubs to be included in the test to prevent air leakage. The line shall be pressurized to 4 psi (28 kPa) and allowed to stabilize. After pressure stabilization, the pressure shall be dropped to 3.5 psi (24 kPa) greater than the average back-pressure of any groundwater above the sewer.

3.13 CLEANING

A. Clean dirt and superfluous material from interior of piping.

--- E N D ----

SECTION 33 40 00

STORM SEWER UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of outside, underground storm sewer systems that are complete and ready for operation. This includes piping, structures, and all other incidentals.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Concrete Work, Reinforcing, Placement and Finishing: Section 03 30 00, CAST-IN-PLACE CONCRETE.
- C. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Fabrication of Steel Ladders: Section 05 50 00, METAL FABRICATIONS.
- E. Materials and Testing Report Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- F. Erosion and Sediment Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.3 DEFINITIONS

None

1.4 ABBREVIATIONS

- A. HDPE: High-density polyethylene
- B. PE: Polyethylene

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Handle manholes, catch basins, and stormwater inlets according to manufacturer's written rigging instructions.

1.6 COORDINATION

- A. Coordinate connection to storm sewer main with the Public Agency providing storm sewer off-site drainage.
- B. Coordinate exterior utility lines and connections to building services up to the actual extent of building wall.

1.7 QUALITY ASSURANCE:

A. Products Criteria:

- When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.

1.8 SUBMITTALS

A. Manufacturers' Literature and Data shall be submitted, as one package, for pipes, fittings, and appurtenances, including jointing materials, hydrants, valves and other miscellaneous items.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

A185/A185M-07Steel Welded Wire Reinforcement, Plain, for Concrete A242/A242M-04(2009)High-Strength Low-Alloy Structural Steel A536-84(2009)Ductile Iron Castings A615/A615M-09bDeformed and Plain Carbon-Steel Bars for Concrete Reinforcement A760/A760M-10Corrugated Steel Pipe, Metallic-Coated for Sewers and Drains A798/A798M-07Installing Factory-Made Corrugated Steel Pipe for Sewers and Other Applications A849-10Post-Applied Coatings, Paving, and Linings for Corrugated Steel Sewer and Drainage Pipe A929/A929M-01(2007)Steel Sheet, Metallic-Coated by the Hot-Dip Process for Corrugated Steel Pipe B745/B745M-97(2005)Corrugated Aluminum Pipe for Sewers and Drains B788/B788M-09Installing Factory-Made Corrugated Aluminum Culverts and Storm Sewer Pipe

C14-07	.Non-reinforced Concrete Sewer, Storm Drain, and Culvert Pipe
СЗЗ/СЗЗМ-08	.Concrete Aggregates
C76-11	.Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe
C139-10	.Concrete Masonry Units for Construction of Catch Basins and Manholes
C150/C150M-11	.Portland Cement
C443-10	.Joints for Concrete Pipe and Manholes, Using Rubber Gaskets
C478-09	.Precast Reinforced Concrete Manhole Sections
C506-10b	.Reinforced Concrete Arch Culvert, Storm Drain, and Sewer Pipe
C507-10b	.Reinforced Concrete Elliptical Culvert, Storm Drain, and Sewer Pipe
C655-09	.Reinforced Concrete D-Load Culvert, Storm Drain, and Sewer Pipe
C857-07	.Minimum Structural Design Loading for Underground Precast Concrete Utility Structures
C891-09	.Installation of Underground Precast Concrete Utility Structures
C913-08	.Precast Concrete Water and Wastewater Structures
C923-08	.Resilient Connectors Between Reinforced Concrete Manhole Structures, Pipes, and Laterals
C924-02(2009)	.Testing Concrete Pipe Sewer Lines by Low- Pressure Air Test Method
C990-09	.Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants

C1103-03(2009)	Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines
c1173-08	Flexible Transition Couplings for Underground Piping Systems
C1433-10	Precast Reinforced Concrete Monolithic Box Sections for Culverts, Storm Drains, and Sewers
C1479-10	Installation of Precast Concrete Sewer, Storm Drain, and Culvert Pipe Using Standard Installations
D448-08	Sizes of Aggregate for Road and Bridge Construction
D698-07e1	Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))
D1056-07	Flexible Cellular Materials—Sponge or Expanded Rubber
D1785-06	Poly(Vinyl Chloride) (PVC) Plastic Pipe, Schedules 40, 80, and 120
D2321-11	Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications
D2751-05	Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings
D2774-08	Underground Installation of Thermoplastic Pressure Piping
D3034-08	Type PSM Poly(Vinyl Chloride) (PVC) Sewer Pipe and Fittings
D3350-10	Polyethylene Plastics Pipe and Fittings Materials
D3753-05e1	Glass-Fiber-Reinforced Polyester Manholes and Wetwells
D4101-11	Polypropylene Injection and Extrusion Materials

D5926-09Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems F477-10Elastomeric Seals (Gaskets) for Joining Plastic Pipe F679-08Poly(Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings F714-10Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter F794-03(2009)Poly(Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter F891-10Coextruded Poly(Vinyl Chloride) (PVC) Plastic Pipe With a Cellular Core F894-07Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe F949-10Poly(Vinyl Chloride) (PVC) Corrugated Sewer Pipe With a Smooth Interior and Fittings F1417-11Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air F1668-08Construction Procedures for Buried Plastic Pipe C. American Association of State Highway and Transportation Officials (AASHTO): M190-04Bituminous-Coated Corrugated Metal Culvert Pipe and Pipe Arches M198-10Joints for Concrete Pipe, Manholes, and Precast Box Sections Using Preformed Flexible Joint Sealants M252-09Corrugated Polyethylene Drainage Pipe M294-10Corrugated Polyethylene Pipe, 12 to 60 In. (300 to 1500 mm) Diameter

D. American Water Works Association(AWWA):

12-17

C105/A21.5-10Polyethylene Encasement for Ductile iron Pipe Systems C110-08Ductile-Iron and Gray-Iron Fittings C219-11Bolted, Sleeve-Type Couplings for Plain-End Pipe C600-10Installation of Ductile iron Mains and Their Appurtenances C900-07Polyvinyl Chloride (PVC) Pressure Pipe and Fabricated Fittings, 4 In. Through 12 In. (100 mm Through 300 mm), for Water Transmission and Distribution M23-2nd edPVC Pipe "Design And Installation" E. American Society of Mechanical Engineers (ASME):

A112.6.3-2001Floor and Trench Drains

A112.14.1-2003Backwater Valves

A112.36.2M-1991Cleanouts

F. American Concrete Institute (ACI):

G. National Stone, Sand and Gravel Association (NSSGA): Quarried Stone for Erosion and Sediment Control

1.10 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting therefrom within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturers' and suppliers' written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements. The Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 STEEL PIPE AND FITTINGS

- A. Steel pipe and fittings shall be as per ASTM A760.
- B. Type of pipe: I.
- C. Corrugations: Annular 2-2/3 by 1/2 inch (68 by 13 mm) corrugations.
- D. Corrugations: Helical 3/4 by 3/4 by 7-1/2 inch (19 by 19 by 190 mm) corrugations.
- E. Internal Coating: Internal coating shall be fully bituminous coated (AASHTO M190 Type A).
- F. Exterior Coating: Aluminum Coated.
- G. Gaskets: ASTM D1056, Type 2, A1.
- H. Connecting Bands: To be same type and size as the ends of the pipe being connected.

2.3 ALUMINUM PIPE AND FITTINGS

- A. Corrugated aluminum pipe and fittings shall be ASTM B745, Type I with fittings of similar form and construction as pipe.
 - 1. Special-joint bands shall be corrugated steel with O-ring seals.
 - 2. Standard-joint bands shall be corrugated steel.

2.4 ABS PIPE AND FITTINGS

- A. ABS Sewer Pipe and Fittings: Pipe and fittings shall conform to ASTM D2751, with bell-and-spigot ends for gasketed joints.
 - 1. NPS 3 to NPS 6 (DN 80 to DN 150): SDR 35.
 - 2. NPS 8 to NPS 12 (DN 200 to DN 300): SDR 42.
- B. Gaskets: ASTM F477, elastomeric seals.

2.5 PE PIPE AND FITTINGS

- A. Corrugated PE drainage pipe and fittings, NPS 3 to NPS 10 (DN 80 to DN 250); ASTM F714, SDR 21 with smooth waterway for coupling joints.
 - Silt-tight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.
 - Soil-tight Couplings: AASHTO M252, corrugated, matching tube and fittings.

33 40 00-7

- B. Corrugated PE pipe and fittings, NPS 12 to NPS 60 (DN 300 to DN 1500); AASHTO M294, Type S with smooth waterway for coupling joints. Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.
 - Silt-tight Couplings: PE sleeve with ASTM D1056, Type 2, Class A, Grade 2 gasket material that mates with tube and fittings.
 - 2. Soil-tight Couplings: AASHTO M252, corrugated, matching tube and fittings.
 - 3. Water tight joints shall be made using a PVC or PE coupling and rubber gaskets as recommended by the pipe manufacturer. Rubber gaskets shall conform to ASTM F477. Soil tight joints shall conform to requirements in AASHTO HB-17, Division II, for soil tightness and shall be as recommended by the manufacturer.
- C. Profile Wall PE Pipe: Pipe shall comply with ASTM F894, Class 160.
 - Profile Wall PE Plastic Pipe Joints: Joints shall be as per ASTM F894, gasket with integral bell.
- D. PVC Pipe And Fittings
 - PVC Cellular-Core Pipe And Fittings: ASTM F891, Sewer and Drain Series, PS 50 minimum stiffness, PVC cellular-core pipe with plain ends for solvent-cemented joints.
 - 2. Fittings: ASTM D3034, SDR 35, PVC socket-type fittings.
- E. PVC Corrugated Sewer Piping
 - 1. Pipe: ASTM F949, PVC, corrugated pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: ASTM F949, PVC molded or fabricated, socket type.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- F. PVC Profile Sewer Piping
 - 1. Pipe: ASTM F794, PVC profile, gravity sewer pipe with bell-and-spigot ends.
 - 2. Fittings: ASTM D3034, PVC with bell ends.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- G. PVC Type PSM Sewer Piping
 - 1. Pipe: ASTM D3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends.
 - 2. Fittings: ASTM D3034, PVC with bell ends.
 - 3. Gaskets: ASTM F477, elastomeric seals.
- H. PVC Gravity Sewer Piping

- 1. Pipe and fittings shall be ASTM F679, T-1 wall thickness, PVC gravity sewer pipe with bell-and-spigot ends.
- 2. Gaskets: ASTM F477, elastomeric seals for gasketed joints.
- I. PVC Pressure Piping
 - 1. Pipe: AWWA C900, Class 100 PVC pipe with bell-and-spigot ends for gasketed joints.
 - 2. Fittings: AWWA C900, Class 100 PVC pipe with bell ends
 - 3. Gaskets: ASTM F477, elastomeric seals.

2.6 CONCRETE PIPE AND FITTINGS

- A. Non-Reinforced-Concrete sewer pipe and fittings shall be ASTM C14, Class 1, with bell-and-spigot ends and gasketed joints with ASTM C443, rubber gaskets.
- B. Reinforced-Concrete sewer pipe and fittings shall be ASTM C76 or ASTM C655.
 - Bell-and-spigot ends and gasketed joints with ASTM C443, rubber gaskets.
 - 2. Class I: Wall A
 - 3. Class II, Wall B
 - 4. Class III: Wall A
 - 5. Class IV: Wall A
 - 6. Class V: Wall B
- C. Reinforced arch culvert and storm drain pipe and fittings shall be ASTM C506, Class A-III and gasketed joints with ASTM C443, rubber gaskets.
- D. Reinforced-Concrete elliptical culvert and storm drain pipe and fittings shall be ASTM C507, Class HE III and gasketed joints with ASTM C443, rubber gaskets.

2.7 NONPRESSURE TRANSITION COUPLINGS

- A. Comply with ASTM C1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground non-pressure piping. Include ends of same sizes as piping to be joined, and corrosionresistant-metal tension band and tightening mechanism on each end.
- B. Sleeve Materials
 - 1. For concrete pipes: ASTM C443, rubber.
 - 2. For plastic pipes: ASTM F477, elastomeric seal or ASTM D5926, PVC.
 - 3. For dissimilar pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.

- C. Unshielded, Flexible Couplings: Couplings shall be an elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
- D. Shielded, flexible couplings shall be elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistantmetal tension band and tightening mechanism on each end.
- E. Ring-Type, flexible couplings shall be elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

2.8 PRESSURE PIPE COUPLINGS

- A. Couplings: AWWA C219, tubular-sleeve coupling, with center sleeve, gaskets, end rings, and bolt fasteners.
- B. Metal, bolted, sleeve-type, reducing or transition coupling, for joining underground pressure piping. Include 150-psi (1035-kPa) minimum pressure rating and ends sized to match adjoining pipes.
- C. Center-Sleeve Material: Carbon steel.
- D. Gasket Material: Natural or synthetic rubber.
- E. Metal Component Finish: Corrosion-resistant coating or material.

2.9 CLEANOUTS

- A. Cast-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - 1. Top-Loading Classification(s): Heavy Duty
 - 2. Pipe fitting and riser to cleanout shall be same material as main pipe line.
- B. Plastic Cleanouts shall have PVC body with PVC threaded plug. Pipe fitting and riser to cleanout shall be of same material as main line pipe.

2.10 DRAINS

- A. Cast-Iron Area Drains: ASME A112.6.3, gray-iron round body with anchor flange and round secured grate. Include bottom outlet with inside calk or spigot connection, of sizes indicated.
 - 1. Top-Loading Classification(s): Heavy Duty
- B. Cast-Iron Trench Drains: ASME A112.6.3, 6 inch (150 mm) wide top surface, rectangular body with anchor flange or other anchoring device, and rectangular secured grate. Include units of total length indicated

and quantity of bottom outlets with inside calk or spigot connections, of sizes indicated.

- 1. Top-Loading Classification(s): Heavy Duty
- C. Steel Trench Drains: ASTM A242, welded steel plate, to form rectangular body with uniform bottom downward slope of 2 percent toward outlet, anchor flange, and grate.
 - 1. Plate Thicknesses: 1/8 inch (3.2 mm)
 - 2. Overall Widths: 7-1/2 inches (190 mm)
- D. Grate openings shall be 1/4 inch (6.4 mm) circular or 3/8 inch (9.5 mm) circular.

2.11 ENCASEMENT FOR PIPING

- A. Material: AWWA C105 Linear low-density polyethylene film of 0.008 inch (0.20 mm) minimum thickness.
- B. Form: Sheet
- C. Color: Black

2.12 MANHOLES AND CATCH BASINS

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C478 (ASTM C478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches (1200 mm) minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 - Base Section: 6 inch (150 mm) minimum thickness for floor slab and 4-inch (102 mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 - 5. Riser Sections: 4 inch (102 mm) minimum thickness, and lengths to provide depth indicated.
 - Top Section: Eccentric-cone type unless concentric-cone or flatslab-top type is indicated, and top of cone of size that matches grade rings.
 - 7. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
 - Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
 - 9. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps or FRP ladder; FRP ladder; or ASTM A615, deformed, 1/2 inch (13 mm) steel reinforcing rods encased in ASTM D4101, PP, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.

12-17

- 10. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- B. Designed Precast Concrete Manholes:
 - Description: ASTM C913; designed for A-16 (AASHTO HS20-44), heavytraffic, structural loading; of depth, shape, and dimensions indicated, with provision for sealant joints.
 - 2. Ballast: Increase thickness of one or more precast concrete sections or add concrete to manhole as required to prevent flotation.
 - 3. Joint Sealant: ASTM C990 (ASTM C990M), bitumen or butyl rubber.
 - Resilient Pipe Connectors: ASTM C923 (ASTM C923M), cast or fitted into manhole walls, for each pipe connection.
 - 5. Steps: If total depth from floor of manhole to finished grade is greater than 60 inches (1500 mm). Individual FRP steps or FRP ladder, width of 16 inches (400 mm) minimum, spaced at 12 to 16 inch (300 to 400 mm) intervals.
 - 6. Adjusting Rings: Reinforced-concrete rings, 6 to 9 inch (150 to 225 mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.
- C. Manhole Frames and Covers:
 - Description: Ferrous; 24 inch (610 mm) ID by 7 to 9 inch (175 to 225 mm) riser with 4 inch (102 mm) minimum width flange and 26-inch (600 mm) diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
 - Material: ASTM A536, Grade 60-40-18 ductile iron unless otherwise indicated.

2.13 CONCRETE FOR MANHOLES AND CATCH BASINS

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C150, Type II.
 - 2. Fine Aggregate: ASTM C33, sand.
 - 3. Coarse Aggregate: ASTM C33, crushed gravel.
 - 4. Water: Potable.
- B. Concrete Design Mix: 4000 psi (27.6 MPa) minimum, compressive strength in 28 days.
 - 1. Reinforcing Fabric: ASTM A185, steel, welded wire fabric, plain.

33 40 00-12

2. Reinforcing Bars: ASTM A615, Grade 60 (420 MPa) deformed steel.

- C. Manhole Channels and Benches: Channels shall be the main line pipe material. Include benches in all manholes and catch basins.
 - Channels: Main line pipe material or concrete invert. Height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope. Invert Slope: Same slope as the main line pipe. Bench to be concrete, sloped to drain into channel. Minimum of 6 inch slope from main line pipe to wall sides.

2.14 POLYMER-CONCRETE, CHANNEL DRAINAGE SYSTEMS

- A. General Requirements for Polymer-Concrete, Channel Drainage Systems: Modular system of precast, polymer-concrete channel sections, grates, and appurtenances; designed so grates fit into channel recesses without rocking or rattling. Include quantity of units required to form total lengths indicated.
- B. Sloped-Invert, Polymer-Concrete Systems:
 - 1. Channel Sections:
 - a. Interlocking-joint, precast, modular units with end caps.
 - b. 4-inch (102 mm) inside width and deep, rounded bottom, with built-in invert slope of 0.6 percent and with outlets in quantities, sizes, and locations indicated.
 - c. Extension sections necessary for required depth.
 - d. Frame: Include gray-iron or steel frame for grate.
 - 2. Grates:
 - a. Manufacturer's designation "Heavy Duty," with slots or perforations that fit recesses in channels.
 - b. Material: Gray iron.
 - 3. Covers: Solid gray iron if indicated.
 - 4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.
- C. Narrow-Width, Level-Invert, Polymer-Concrete Systems:
 - 1. Channel Sections:
 - a. Interlocking-joint, precast, modular units with end caps.
 - b. 5 inch (127 mm) inside width and 9-3/4 inch (248 mm) deep, rounded bottom, with level invert and with NPS 4 (DN 100) outlets in quantities, sizes, and locations indicated.
 - 2. Grates:
 - a. Slots or perforations that fit recesses in channels.

- b. Material: Gray iron.
- 3. Covers: Solid gray iron if indicated.
- 4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.
- D. Wide-Width, Level-Invert, Polymer-Concrete Systems:
 - 1. Channel Sections:
 - a. Interlocking-joint, precast, modular units with end caps.
 - b. 8 inch (203 mm) inside width and 13-3/4 inch (350 mm) deep, rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
 - 2. Grates:
 - a. Slots or other openings that fit recesses in channels.
 - b. Material: Gray iron.
 - 3. Covers: Solid gray iron if indicated.
 - 4. Locking Mechanism: Manufacturer's standard device for securing grates to channel sections.
- E. Drainage Specialties: Precast, polymer-concrete units.
 - 1. Large Catch Basins:
 - a. 24 by 12 inch (610 by 305-mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 - b. Gray-iron slotted grate.
 - c. Frame: Include gray-iron or steel frame for grate.
 - 2. Small Catch Basins:
 - a. 19 to 24 inch by approximately 6 inch (483 to 610 mm by approximately 150 mm) polymer-concrete body, with outlets in quantities and sizes indicated.
 - b. Gray-iron slotted grate.
 - c. Frame: Include gray-iron or steel frame for grate.
 - 3. Oil Interceptors:
 - a. Polymer-concrete body with interior baffle and four steel support channels and two 1/4 inch (6.4 mm) thick, steel-plate covers.
 - b. Steel-plate covers.
 - c. Capacity: 140 gal. (530 L).
 - d. Inlet and Outlet: NPS 4 (DN 100).
 - 4. Sediment Interceptors:
 - a. 27 inch (686 mm) square, polymer-concrete body, with outlets in quantities and sizes indicated.
 - b. 24 inch (610 mm) square, gray-iron frame and slotted grate.

- F. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.
- G. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.15 PLASTIC, CHANNEL DRAINAGE SYSTEMS

- A. General Requirements for Plastic, Channel Drainage Systems:
 - Modular system of plastic channel sections, grates, and appurtenances.
 - 2. Designed so grates fit into frames without rocking or rattling.
 - 3. Number of units required to form total lengths indicated.
- B. Fiberglass Systems:
 - 1. Channel Sections:
 - a. Interlocking-joint, fiberglass modular units, with built-in invert slope of approximately 1 percent and with end caps.
 - b. Rounded or inclined inside bottom surface, with outlets in quantities, sizes, and locations indicated.
 - c. Width: 6 inches (150 mm).
 - Factory- or field-attached frames that fit channel sections and grates.
 - a. Material: Galvanized steel.
 - 3. Grates with slots or perforations that fit frames.
 - a. Material: Galvanized steel.
 - 4. Covers: Solid gray iron if indicated.
 - 5. Drainage Specialties:
 - a. Large Catch Basins: 24 inch (610 mm) square plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
 - b. Small Catch Basins: 12 by 24 inch (305 by 610 mm) plastic body, with outlets in quantities and sizes indicated. Include gray-iron frame and slotted grate.
- C. PE Systems:
 - Channel Sections: Interlocking-joint, PE modular units, 4 inches (102 mm) wide, with end caps. Include rounded bottom, with level invert and with outlets in quantities, sizes, and locations indicated.
 - 2. Grates: PE, ladder shaped; with stainless-steel screws.
 - 3. Color: Gray unless otherwise indicated.
 - 4. Drainage Specialties: Include the following PE components:

- a. Drains: 4 inch (102 mm) diameter, round, slotted top; with NPS 4 (DN 100) bottom outlet.
- b. Drains: 8 inch (203 mm) diameter, round, slotted top; with NPS 6 (DN 150) bottom outlet.
- c. Drains: 4 inch (102 mm) square, slotted top; with NPS 3 (DN 80) bottom outlet.
- d. Drains: 8 inch (203 mm) square, slotted top; with NPS 6 (DN 150) bottom outlet.
- e. Catch Basins: 12 inch (305 mm) square plastic body, with outlets in quantities and sizes indicated. Include PE slotted grate 11-3/4 inches (298 mm) square by 1-1/8 inches (28.6 mm) thick.
- D. Supports, Anchors, and Setting Devices: Manufacturer's standard unless otherwise indicated.
- E. Channel-Section Joining and Fastening Materials: As recommended by system manufacturer.

2.16 PIPE OUTLETS

- A. Head walls: Cast in-place reinforced concrete, with apron and tapered sides.
- B. Riprap basins: Broken, irregularly sized and shaped, graded stone according to NSSGA's "Quarried Stone for Erosion and Sediment Control."
 1. Average Size: NSSGA No. R-3, screen opening 2 inches (51 mm).
 - 2. Average Size: NSSGA No. R-4, screen opening 3 inches (76 mm).
 - 3. Average Size: NSSGA No. R-5, screen opening 5 inches (127 mm).
- C. Filter Stone: NSSGA's "Quarried Stone for Erosion and Sediment Control," No. FS-2, No. 4 screen opening, average-size graded stone.
- D. Energy Dissipaters: To be as per NSSGA's "Quarried Stone for Erosion and Sediment Control," No. A-1, 3-ton (2721-kg) average weight armor stone, unless otherwise indicated.

2.17 STORMWATER DISPOSAL SYSTEMS

- A. Chamber Systems:
 - Storage and leaching chambers: Molded PE with perforated sides and open bottom. Include number of chambers, distribution piping, end plates, and other standard components as required for system total capacity.
 - 2. Filtering material: ASTM D448, Size No. 24, 3/4 to 2-1/2 inch (19 to 63 mm) washed, crushed stone or gravel. Include Geotextile woven or spun filter fabric, in one or more layers, for minimum total unit weight of 4 oz./sq. yd (135 g/sq. m).

33 40 00-16

B. Pipe Systems: Perforated manifold, header, and lateral piping complying with AASHTO M252 for NPS 10 (DN 250) and smaller, AASHTO M294 for NPS 12 to NPS 60 (DN 300 to DN 1500). Include fittings, couplings, seals, and filter fabric.

2.18 HEADWALLS

A. Headwalls: Cast in-place concrete with a minimum compressive strength of 3000 psi (20 MPa) at 28 days.

2.19 FLARED END SECTIONS

A. Flared End Sections: Sections shall be of standard design fabricated from zinc-coated steel sheets conforming to requirements of ASTM A929.

2.20 RESILIENT CONNECTORS AND DOWNSPOUT BOOTS FOR BUILDING ROOF DRAINS

A. Resilient connectors and downspout boots: Flexible, watertight connectors used for connecting pipe to manholes and inlets, and shall conform to ASTM C923.

2.21 WARNING TAPE

A. Standard, 4-Mil polyethylene 3 inch (76 mm) wide tape detectable type, green with black letters, and imprinted with "CAUTION BURIED STORM DRAIN LINE BELOW".

PART 3 - EXECUTION

3.1 PIPE BEDDING

A. The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class IB or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.2 PIPING INSTALLATION

A. Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.

33 40 00-17

- B. Install piping with 36 inch (915 mm) minimum cover.
- C. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
 - Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
 - 3. Inspect pipes and fittings, for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
 - 4. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
 - 5. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
 - Do not walk on pipe in trenches until covered by layers of shading to a depth of 12 inches (300 mm) over the crown of the pipe.
 - Warning tape shall be continuously placed 12 inches (300 mm) above storm sewer piping.
- D. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- E. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- F. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- G. Install gravity-flow, nonpressure drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install piping NPS 6 (DN 150) and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant

rods, pipe or fittings; or cast in-place concrete supports or anchors.

- 3. Install hub-and-spigot, cast iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook."
- Install ductile iron piping and special fittings according to AWWA C600.
- 5. Install corrugated steel piping according to ASTM A798.
- 6. Install corrugated aluminum piping according to ASTM B788.
- 7. Install ABS sewer piping according to ASTM D2321 and ASTM F1668.
- 8. Install PE corrugated sewer piping according to ASTM D2321 with gasketed joints.
- 9. Install PVC cellular-core piping, PVC sewer piping, and PVC profile gravity sewer piping, according to ASTM D2321 and ASTM F1668.
- 10. Install reinforced concrete sewer piping according to ASTM C1479.
- 11. Install force-main pressure piping according to the following:
 - a. Install piping with restrained joints at tee fittings and at horizontal and vertical changes in direction. Use corrosionresistant rods, pipe or fittings; or cast in-place concrete supports or anchors.
 - b. Install ductile iron pressure piping and special fittings according to AWWA C600.
 - c. Install PVC pressure piping according to AWWA M23, or ASTM D2774 and ASTM F1668.
 - d. Install corrosion-protection piping encasement over the following underground metal piping according to AWWA C105/A21.5.
 - 1) Hub-and-spigot, cast iron soil pipe and fittings.
 - 2) Hubless cast iron soil pipe and fittings.
 - 3) Ductile iron pipe and fittings.
 - 4) Expansion joints and deflection fittings.

3.3 REGRADING

- A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary

cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.

3.4 CONNECTIONS TO EXISTING VA-OWNED MANHOLES

A. Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.5 CONNECTIONS TO EXISTING PUBLIC UTILITY MANHOLES

- A. Comply with all rules and regulations of the public utility.
- B. Backwater Valve Installation
- C. Install horizontal-type backwater valves in piping where indicated.
- D. Cleanout Installation
 - Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast iron soil pipe fittings in sewer pipes at branches for cleanouts and cast iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - a. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - b. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic areas.
 - c. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic service areas.
 - d. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
 - Set cleanout frames and covers in earth in cast in-place concrete block, 18 by 18 by 12 inches (450 by 450 by 300 mm). Set with tops 1 inch (25 mm) above surrounding earth grade.
- E. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.6 DRAIN INSTALLATION

- A. Install type of drains in locations indicated.
 - Use Light-Duty, top-loading classification cleanouts in earth or unpaved foot-traffic areas.
 - Use Medium-Duty, top-loading classification cleanouts in paved foottraffic areas.

- 3. Use Heavy-Duty, top-loading classification cleanouts in vehicletraffic service areas.
- 4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
- B. Embed drains in 4 inch (102 mm) minimum concrete around bottom and sides.
- C. Set drain frames and covers with tops flush with pavement surface.
- D. Assemble trench sections with flanged joints and embed trench sections in 4 inch (102 mm) minimum concrete around bottom and sides.

3.7 MANHOLE INSTALLATION

- A. Install manholes, complete with appurtenances and accessories indicated. Install precast concrete manhole sections with sealants according to ASTM C891.
- B. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches (76 mm) above finished surface elsewhere unless otherwise indicated.
- C. Circular Structures:
 - Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 1/2 inch (15 mm) or cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top shall be sealed with a preform flexible gasket material specifically manufactured for this type of application. Adjust the length of the rings so that the eccentric conical top section will be at the required elevation. Cutting the conical top section is not acceptable.
 - 3. Precast reinforced concrete manhole risers and tops. Install as specified for precast reinforced concrete rings.
- D. Rectangular Structures:
 - Precast concrete structures shall be placed on a 8 inch (200 mm) reinforced concrete pad, or be provided with a precast concrete base section. Structures provided with a base section shall be set on an 8 inch (200 mm) thick aggregate base course compacted to a minimum of 95 percent of the maximum density as determined by ASTM D698. Set precast section true and plumb. Seal all joints with preform flexible gasket material.

- Do not build structures when air temperature is 32 deg F (0 deg C), or below.
- 3. Invert channels shall be smooth and semicircular in shape conforming to inside of adjacent sewer section. Make changes in direction of flow with a smooth curve of as large a radius as size of structure will permit. Make changes in size and grade of channels gradually and evenly. Construct invert channels by one of the listed methods: a. Forming directly in concrete base of structure.
 - b. Building up with brick and mortar.
- Floor of structure outside the channels shall be smooth and slope toward channels not less than 1 to 12 or more than 1 to 6. Bottom slab and benches shall be concrete.
- 5. The wall that supports access rungs or ladder shall be 90 deg vertical from the floor of structure to manhole cover.
- Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- 7. Install manhole frames and covers on a mortar bed, and flush with the finish pavement. Frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. In unpaved areas, the rim elevation shall be 2 inches (50 mm) above the adjacent finish grade. Install an 8 inch (203 mm) thick, by 12 inch (300 mm) concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.8 CATCH BASIN INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

3.9 STORMWATER INLET INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete.
- B. Construct riprap of broken stone.
- C. Install outlets that spill onto grade, anchored with concrete.
- D. Install outlets that spill onto grade, with flared end sections that match pipe.

3.10 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping in building's storm building drains specified in Division 22 Section FACILITY STORM DRAINAGE PIPING.

- B. Encase entire connection fitting, plus 6 inch (150 mm) overlap, with not less than 6 inches (150 mm) of concrete with 28-day compressive strength of 3000 psi (20.7 MPa).
- C. Make connections to existing piping and underground manholes.
 - Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe; install wye fitting into existing piping.
 - Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping.
 - 3. Make branch connections from side into existing piping, NPS 21 (DN 525) or larger, or to underground manholes and structures by cutting into existing unit and creating an opening large enough to allow 3 inches (76 mm) of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of and be flush with inside wall unless otherwise indicated. On outside of pipe, manhole, or structure wall, use epoxybonding compound as interface between new and existing concrete and piping materials.
 - Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.
- D. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - Use nonpressure-type flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
 a. Unshielded flexible couplings for same or minor difference OD pipes.
 - b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
 - c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.
 - 2. Use pressure-type pipe couplings for force-main joints.

3.11 CLOSING ABANDONED STORM DRAINAGE SYSTEMS

A. Abandoned Piping: Close open ends of abandoned underground piping indicated to remain in place. Include closures strong enough to

33 40 00-23

withstand hydrostatic and earth pressures that may result after ends of abandoned piping have been closed. Use either procedure below:

- Close open ends of piping with at least 8 inch (203 mm) thick, brick masonry bulkheads.
- Close open ends of piping with threaded metal caps, plastic plugs, or other acceptable methods suitable for size and type of material being closed. Do not use wood plugs.
- B. Abandoned Manholes and Structures: Excavate around manholes and structures as required and use one procedure below:
 - 1. Remove manhole or structure and close open ends of remaining piping.
 - Remove top of manhole or structure down to at least 36 inches (915 mm) below final grade. Fill to within 12 inches (300 mm) of top with stone, rubble, gravel, or compacted dirt. Fill to top with concrete.
- C. Backfill to grade according to Division 31 Section EARTH MOVING.

3.12 IDENTIFICATION

A. Install green warning tape directly over piping and at outside edge of underground structures.

3.13 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Prior to final acceptance, provide a video record of all piping from the building to the municipal connection to show the lines are free from obstructions, properly sloped and joined.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - Replace defective piping using new materials and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.

3.14 TESTING OF STORM SEWERS:

A. Submit separate report for each test.

- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - Do not enclose, cover, or put into service before inspection and approval.
 - Test completed piping systems according to requirements of authorities having jurisdiction.
 - 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours advance notice.
 - 4. Submit separate report for each test.
 - 5. Air test gravity sewers. Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.
 - Test force-main storm drainage piping. Perform hydrostatic test after thrust blocks, supports, and anchors have hardened. Test at pressure not less than 1-1/2 times the maximum system operating pressure, but not less than 150 psi (1035 kPa).
 - Ductile iron Piping: Test according to AWWA C600, "Hydraulic Testing" Section.
 - b. PVC Piping: Test according to AWWA M23, "Testing and Maintenance" Chapter.
- C. Leaks and loss in test pressure constitute defects that must be repaired. Replace leaking piping using new materials and repeat testing until leakage is within allowances specified.

3.15 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

--- E N D ---

SECTION 33 46 13

FOUNDATION DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies materials and procedures for construction of foundation drainage systems, including installation, backfill, and cleanout extensions, to a point of connection to storm sewer.

1.2 RELATED WORK

- A. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.
- B. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- C. General plumbing, protection of Materials and Equipment, and quality assurance: Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Submittals: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- E. Cathodic Protection: Section 26 42 00, CATHODIC PROTECTION.

1.3 DEFINITIONS

Subdrainage: Foundation drainage system that collects and removes subsurface or seepage water from building foundation from building to discharge pond.

1.4 ABBREVIATIONS

- A. ABS: Acrylonitrile-butadiene-styrene plastic.
- B. HDPE: High-density polyethylene plastic.
- C. PE: Polyethylene plastic.
- D. PVC: Polyvinyl chloride plastic.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.

1.6 COORDINATION

A. Coordinate exterior utility lines and connections to foundation building drain.

1.7 QUALITY ASSURANCE:

- A. Products Criteria:
 - When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.

33 46 13-1

- 2. A nameplate bearing manufacturer's name or trademark, including model number, shall be securely affixed in a conspicuous place on equipment. In addition, the model number shall be either cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Agency having jurisdiction over the connection to public storm sewer lines or the requirements for discharge of subsurface drainage.

1.8 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM):

A48-03Gray Iron Castings

C14-07Nonreinforced Concrete Sewer, Storm Drain, and Culvert Pipe

C33/C33M-11Concrete Aggregates

C443-10Joints for Concrete Pipe and Manholes, Using Rubber Gaskets

C444-03(2009)Perforated Concrete Pipe

- C578-10aRigid, Cellular Polystyrene Thermal Insulation
- C1173-08Flexible Transition Couplings for Underground Piping Systems
- D448-08Sizes of Aggregate for Road and Bridge Construction
- D1621-10Standard Test Method for Compressive Properties of Rigid Cellular Plastics
- D2235-04(2011)Solvent Cement for Acrylonitrile-Butadiene-Styrene (ABS) Plastic Pipe and Fittings
- D2321-11Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity-Flow Applications
- D2751-05Acrylonitrile-Butadiene-Styrene (ABS) Sewer Pipe and Fittings

D3034-08 Type PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings D3350-10aPolyethylene Plastic Pipe and Fittings Material D4491-99a(2009)Test Methods for Water Permeability of Geotextiles by Permittivity D4716-08Test Method for Determining the (In-plane) Flow Rate per Unit Width and Hydraulic Transmissivity of a Geosynthetic Using a Constant Head D5926-09Poly (Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems D6707-06 (2011)Circular-Knit Geotextile for Use in Subsurface Drainage Applications F405-05Corrugated Polyethylene (PE) Pipe and Fittings F477-10Elastomeric Seals (Gaskets) for Joining Plastic Pipe F667-06Larger Diameter Corrugated Polyethylene Pipe and Fittings F2648-102 to 60 Inch Annular Corrugated Profile Wall Polyethylene (PE) Pipe and Fittings for Land Drainage Applications

1.9 WARRANTY

The Contractor shall remedy any defect due to faulty material or workmanship and pay for any damage to other work resulting there from within a period of one year from final acceptance. Further, the Contractor will furnish all manufacturer's and supplier's written guarantees and warranties covering materials and equipment furnished under this Contract.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

A. Standardization of components shall be maximized to reduce spare part requirements.

33 46 13-3

B. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 UNDERSLAB HEADER

- A. PE pipe and fittings per ASTM F2648.
- B. PVC sewer pipe and fittings per ASTM D3034, with ASTM F477, elastomeric seal gaskets.

2.4 PERFORATED-WALL PIPES AND FITTINGS FOR VAULTS OR MANHOLES

- A. Perforated PE Pipe and Fittings:
 - 1. Pipe shall be ASTM D2648, Type CP; corrugated, for coupled joints.
 - 2. Couplings: Manufacturer's standard.
- B. Perforated PVC Sewer Pipe and Fittings shall be ASTM D3034.

2.5 SOLID-WALL PIPES AND FITTINGS

- A. ABS Sewer Pipe and Fittings shall meet ASTM D2751.
 - 1. Solvent Cement: ASTM D2235.
 - 2. Gaskets: ASTM F477.
- B. PE Pipe and Fittings: ASTM D3350.
- C. PVC Sewer Pipe and Fittings: ASTM D3034.
 - 1. Gaskets: ASTM F477.

2.6 SPECIAL PIPE COUPLINGS

- A. Comply with ASTM C1173 for joining underground non-pressure piping. Include ends of same sizes as piping to be joined and corrosionresistant metal tension band and tightening mechanism on each end.
 - 1. Sleeve Materials:
 - a. For Dissimilar Pipes: ASTM D5926, PVC or other material compatible with pipe materials being joined.
 - 2. Unshielded Flexible Couplings: Elastomeric sleeve with corrosionresistant metal tension band and tightening mechanism on each end.

2.7 CLEANOUTS

A. Cleanouts: Cast-iron parts shall conform to ASTM A48. Lid shall be secured, scoriated, Medium Loading class. Include cast-iron ferrule and countersunk, brass cleanout plug. B. Cleanout PVC Extension shall conform to ASTM D3034. PVC extensions shall have watertight joints and long sweep elbow fittings. PVC cleanout shall have threaded plug and threaded pipe hub.

2.8 DRAINAGE CONDUITS

- A. Single-Pipe Drainage Conduits shall be prefabricated geocomposite with perforated corrugated core molded from HDPE complying with ASTM D3350 and wrapped in geotextile filter fabric.
 - 1. Nominal Size shall be 6 inches (152 mm) high by approximately 1-1/4 inches (31 mm) thick.
 - 2. Filter Fabric shall be nonwoven geotextile.
 - 3. Fittings shall be as per manufacturer.
- B. Smooth PVC Drainage Conduits shall have perforated fittings and couplings complying with ASTM D3034.
 - 1. Nominal size shall be 8 inches (200 mm).
 - a. Minimum flow rate equal to a NPS 4 (DN 100) pipe.
 - 2. Fittings shall be as per manufacturer.

2.9 SOIL MATERIALS

- A. Drainage Material
 - Bedding shall be crushed stone, 3/4 inch (20 mm) to No. 4 per ASTM D448, at a minimum or as per geotechnical recommendations.
 - Fill to 1 foot (300 mm) above pipe shall be Crushed stone, 3/4 inch (20 mm) to No. 4 per ASTM D448, at a minimum or as per geotechnical recommendations.
- B. Concrete Sand shall be ASTM C33.

2.10 GEOTEXTILE FILTER FABRICS

- A. Geotextile fabric shall conform to ASTM 6707. Elongation will be greater than 50 percent and the flow rate shall range from 110 to 330 gpm/sq. ft. (4480 to 13440 L/min. per sq. m).
 - Structure Type shall be Nonwoven, needle-punched continuous filament.
 - 2. Style(s) shall be sock.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine surfaces and areas for suitable conditions where subdrainage systems are to be installed.

- B. If subdrainage is required for landscaping, locate and mark existing utilities, underground structures, and aboveground obstructions before beginning installation and avoid disruption and damage of services.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PIPING APPLICATIONS

- A. Underground Subdrainage Piping shall be:
 - 1. Perforated PE pipe and fittings, couplings, and coupled joints.
 - 2. Perforated PVC sewer pipe and fittings for loose, bell-and-spigot joints.
- B. Underslab Subdrainage Piping shall be:
 - 1. Perforated PE pipe and fittings, couplings, and coupled joints.
 - Perforated PVC sewer pipe and fittings and loose, bell-and-spigot joints.
 - 3. Perforated concrete pipe and fittings, gaskets, and gasketed joints.
- C. Header Piping shall be:
 - 1. ABS pipe and fittings, gaskets, and gasketed joints.
 - 2. PE drainage tubing and fittings, couplings, and coupled joints.
 - 3. PVC sewer pipe and fittings, couplings, and coupled joints.

3.3 CLEANOUT APPLICATIONS

- A. In Underground Subdrainage Piping:
 - 1. At Grade in Earth shall be PVC cleanouts.
 - 2. At Grade in Paved Areas shall be Cast-iron cleanouts.
- B. In Underslab Subdrainage Piping:
 - 1. In Equipment Yards and Unfinished Areas shall be Cast-iron cleanouts.

3.4 FOUNDATION DRAINAGE INSTALLATION

- A. Place impervious fill material on subgrade adjacent to bottom of footing after concrete footing forms have been removed. Place and compact impervious fill to dimensions indicated, but not less than 6 inches (150 mm) deep and 12 inches (300 mm) wide.
- B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
- C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches (100 mm).
- D. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive and install drainage piping.

- E. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.
- F. After satisfactory testing, cover drainage piping to width of at least 6 inches (150 mm) on side away from footing and above top of pipe to within 12 inches (300 mm) of finish grade.
- G. Install drainage course and wrap top of drainage course with flat-style geotextile filter fabric.
- H. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches (100 mm).
- I. Install vertical drainage panels as follows:
 - 1. Coordinate placement with other drainage materials.
 - Lay perforated drainage pipe at base of footing. Do not install aggregate.
 - Separate 4 inches (100 mm) of fabric at beginning of roll and cut away 4 inches (100 mm) of core. Wrap fabric around end of remaining core.
 - 4. Wrap bottom of panel around drainage pipe.
 - 5. Attach panel to wall at horizontal mark and at beginning of pipe. Place core side of panel against wall. Use concrete nails with washers through product cylinders to attach panel to wall. Place nails from 2 to 6 inches (50 to 150 mm) below top of panel, approximately 48 inches (1200 mm) apart. Construction adhesives, metal stick pins, or double double-sided tape may be used instead of nails.
 - If additional panels are required on same row, cut away 4 inches (100 mm) of installed panel core, install new panel against installed panel, and overlap new panel with installed panel fabric.
 - If additional rows of panels are required, overlap lower panel with
 4 inches (100 mm) of fabric.
 - Cut panel as necessary to keep top 12 inches (300 mm) below finish grade.
 - 9. For inside corners, bend panel. For outside corners, cut core to provide 3 inches (75 mm) for overlap.
- J. Do not use drainage panels as protection for waterproof membrane unless approved by factory-authorized service representative of waterproofing membrane manufacturer. Submit approval if so used.
- K. Place initial backfill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches (150 mm).

10-11

Thoroughly compact each layer. Final backfill to finish elevations and slope away from building.

3.5 UNDERSLAB DRAINAGE INSTALLATION

- A. Excavate for underslab drainage system after subgrade material has been compacted but before drainage course has been placed. Include horizontal distance of at least 6 inches (150 mm) between drainage pipe and trench walls. Grade bottom of trench excavations to required slope, and compact to firm, solid bed for drainage system.
- B. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
- C. Place supporting layer of drainage course over compacted subgrade and geotextile filter fabric, to compacted depth of not less than 4 inches (100 mm).
- D. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive. Install drainage piping.
- E. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.
- F. After satisfactory testing, cover drainage piping with drainage course to elevation of bottom of slab, and compact and wrap top of drainage course with flat-style geotextile filter fabric.
- G. Install horizontal drainage panels as follows:
 - 1. Coordinate placement with other drainage materials.
 - 2. Lay perforated drainage pipe at inside edge of footings.
 - Place drainage panel over drainage pipe with core side up. Peel back fabric and wrap fabric around pipe. Locate top of core at bottom elevation of floor slab.
 - 4. Butt additional panels against other installed panels. If panels have plastic flanges, overlap installed panel with flange.

3.6 RETAINING-WALL DRAINAGE INSTALLATION

- A. Lay flat-style geotextile filter fabric in trench and overlap trench sides.
- B. Place supporting layer of drainage course over compacted subgrade to compacted depth of not less than 4 inches (100 mm).
- C. Encase pipe with sock-style geotextile filter fabric before installing pipe. Connect sock sections with adhesive. Install drainage piping.
- D. Add drainage course to width of at least 6 inches (150 mm) on side away from wall and to top of pipe to perform tests.

- E. After satisfactory testing, cover drainage piping to width of at least 6 inches (150 mm) on side away from footing and above top of pipe to within 12 inches (300 mm) of finish grade.
- F. Place drainage course in layers not exceeding 3 inches (75 mm) in loose depth; compact each layer placed and wrap top of drainage course with flat-style geotextile filter fabric.
- G. Place layer of flat-style geotextile filter fabric over top of drainage course, overlapping edges at least 4 inches (100 mm).
- H. Install vertical drainage panels as follows:
 - 1. Coordinate placement with other drainage materials.
 - Lay perforated drainage pipe at base of footing. Do not install aggregate.
 - If weep holes are used instead of drainage pipe, cut 1/2 inch (13 mm) diameter holes on core side at weep-hole locations. Do not cut fabric.
 - Mark horizontal chalk line on wall at a point 6 inches (150 mm) less than panel width above footing bottom. Before marking wall, subtract footing width.
 - 5. Separate 4 inches (100 mm) of fabric at beginning of roll and cut away 4 inches (100 mm) of core. Wrap fabric around end of remaining core.
 - 6. Wrap bottom of panel around drainage pipe.
 - 7. Attach panel to wall at horizontal mark and at beginning of wall corner. Place core side of panel against wall. Use concrete nails with washers through product. Place nails from 2 to 6 inches (50 to 150 mm) below top of panel, approximately 48 inches (1200 mm) apart. Construction adhesives, metal stick pins, or double-sided tape may be used instead of nails.
 - 8. If another panel is required on same row, cut away 4 inches (100 mm) of installed panel core and wrap fabric over new panel.
 - 9. If additional rows of panel are required, overlap lower panel with 4 inches (100 mm) of fabric.
 - 10. Cut panel as necessary to keep top 12 inches (300 mm) below finish grade.
 - 11. For inside corners, bend panel. For outside corners, cut core to provide 3 inches (75 mm) for overlap.

- 12. Do not use drainage panels as protection for waterproof membrane unless approved by factory-authorized service representative of waterproofing membrane manufacturer. Submit approval if so used.
- I. Fill to Grade: Place satisfactory soil fill material over compacted drainage course. Place material in loose-depth layers not exceeding 6 inches (150 mm). Thoroughly compact each layer. Fill to finish grade.

3.7 PIPING INSTALLATION

- A. Install piping beginning at low points of system, true to grades and alignment indicated, with unbroken continuity of invert. Bed piping with full bearing in filtering material. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions and other requirements indicated.
 - Foundation Subdrainage: Install piping with a minimum cover of 36 inches (915 mm), unless otherwise indicated.
 - Underslab Subdrainage: Install piping pitched down in direction of flow, at a minimum slope of 0.5 percent.
 - 3. Retaining-Wall Subdrainage: When water discharges at end of wall into stormwater piping system, install piping pitched down in direction of flow, at a minimum slope of 0.5 percent and with a minimum cover of 36 inches (915 mm), unless otherwise indicated. However, when water discharges through wall weep holes, pipe may be installed with a minimum slope of zero percent.
 - 4. Lay perforated pipe with perforations down.
 - 5. Excavate recesses in trench bottom for bell ends of pipe. Lay pipe with bells facing upslope and with spigot end entered fully into adjacent bell.
- B. Use increasers, reducers, and couplings made for different sizes or materials of pipes and fittings being connected. Reduction of pipe size in direction of flow is prohibited.
- C. Install PE piping according to ASTM D2321.

3.8 PIPE JOINT CONSTRUCTION

- A. Cast-Iron Soil Pipe and Fittings: Hub and spigot, with rubber compression gaskets according to ASTM A74. Use gaskets that match class of pipe and fittings.
- B. Join ABS pipe and fittings according to ASTM D2751.
- C. Join PE pipe, and fittings with couplings for soil-tight joints according to ASTM D2321.
- D. Join PVC pipe and fittings according to ASTM D2729.

33 46 13-10

- E. Join perforated PVC pipe and fittings according to ASTM D2729.
- F. Join perforated concrete pipe and fittings with gaskets according to ASTM C443.
- G. Special Pipe Couplings: Join piping made of different materials and dimensions with special couplings made for this application. Use couplings that are compatible with and fit materials and dimensions of both pipes.

3.9 CLEANOUT INSTALLATION

- A. Cleanouts for Foundation Subdrainage:
 - Install cleanouts from piping to grade. Locate cleanouts at beginning of piping run and at changes in direction. Install fittings so cleanouts open in direction of flow in piping.
 - 2. In vehicular-traffic areas, use NPS 4 (DN 100) cast-iron soil pipe and fittings for piping branch fittings and riser extensions to cleanout. Set cleanout frames and covers in a cast-in-place concrete anchor, 18 by 18 by 12 inches (450 by 450 by 300 mm) in depth. Set top of cleanout flush with grade. Cast-iron pipe may also be used for cleanouts in nonvehicular-traffic areas.
 - 3. In nonvehicular-traffic areas, use NPS 4 (DN 100) PVC pipe and fittings for piping branch fittings and riser extensions to cleanout. Set cleanout frames and covers in a cast-in-place concrete anchor, 12 by 12 by 4 inches (300 by 300 by 100 mm) in depth. Set top of cleanout plug 1 inch (25 mm) above grade.
- B. Cleanouts for Underslab Subdrainage:
 - Install cleanouts and riser extensions from piping to top of slab. Locate cleanouts at beginning of piping run and at changes in direction. Install fittings so cleanouts open in direction of flow in piping.
 - Use NPS 4 (DN 100) cast-iron soil pipe and fittings for piping branch fittings and riser extensions to cleanout flush with top of slab.

3.10 CONNECTIONS

- A. Connect low elevations of subdrainage system to solid-wall-piping storm drainage system.
- B. Where required, connect low elevations of foundation subdrainage to stormwater sump pumps.

3.11 IDENTIFICATION

A. Install PE warning tape or detectable warning tape over ferrous piping.

B. Install detectable warning tape over nonferrous piping and over edges of underground structures.

3.12 FIELD QUALITY CONTROL

Testing: After installing drainage course to top of piping, test drain piping with water to ensure free flow before backfilling. Remove obstructions, replace damaged components, and repeat test until results are satisfactory.

3.13 CLEANING

Clear interior of installed piping and structures of dirt and other superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is completed. Place plugs in ends of uncompleted pipe at end of each day or when work stops.

--- E N D ----